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A B S T R A C T

Notwithstanding the evidence against them, classical variational phase-field models continue to
be used and pursued in an attempt to describe fracture nucleation in elastic brittle materials.
In this context, the main objective of this paper is to provide a comprehensive review of
the existing evidence against such a class of models as descriptors of fracture nucleation.
To that end, a review is first given of the plethora of experimental observations of fracture
nucleation in nominally elastic brittle materials under quasi-static loading conditions, as well
as of classical variational phase-field models, without and with energy splits. These models
are then confronted with the experimental observations. The conclusion is that they cannot
possibly describe fracture nucleation in general. This because classical variational phase-field
models cannot account for material strength as an independent macroscopic material property.
The last part of the paper includes a brief summary of a class of phase-field models that can
describe fracture nucleation. It also provides a discussion of how pervasively material strength
has been overlooked in the analysis of fracture at large, as well as an outlook into the modeling
of fracture nucleation beyond the basic setting of elastic brittle materials.

1. Introduction

Historically, research on fracture has primarily focused on the growth of pre-existing cracks, or crack propagation, while much
ess effort has been devoted to the nucleation of cracks. Since the early 2010s, however, the subject of crack nucleation has become
he focus of an increasing number of investigations, especially within the basic setting of elastic brittle materials1 and quasi-static

loading conditions. The next paragraphs trace back the origin of this recent impetus to two disparate events: the popularization of
phase-field approximations of the variational theory of brittle fracture and the uncovering of the so-called phenomenon of cavitation
in elastomers as a fracture event.

∗ Corresponding author.
E-mail addresses: pamies@illinois.edu (O. Lopez-Pamies), jdolbow@duke.edu (J.E. Dolbow), gfrancfort@flatironinstitute.org (G.A. Francfort),

cjlarsen@wpi.edu (C.J. Larsen).
1 Brittleness, as we understand it, is the assumption that the energy dissipated through a crack (add)-surface is proportional to that add-surface, the coefficient

of proportionality being called the fracture toughness, or for reasons that are familiar to the practitioner of fracture, the critical energy release rate. Elastic brittle
materials are thus materials that, in response to mechanical forces, either deform elastically or fracture in a brittle manner, the latter being the sole mechanism
by which these materials dissipate energy.
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The origin of phase-field approximations of the variational sharp theory of brittle fracture [1] — dubbed here as classical
variational phase-field models or simply variational phase-field models for short — dates back to the turn of the millennium [2].2
In spite of the pioneering efforts of Blaise Bourdin who undertook the non-trivial numerical implementation of phase-field evolution

ithin that context, it took the computational mechanics community a while to become receptive to the approach. It did so about
 decade later, when it became extensively used; see, e.g., [7–10]. With the increasing popularity came the realization that these
odels could describe fracture nucleation in a way that the variational theory of sharp fracture cannot. This quirk — described by
any as ‘‘getting fracture nucleation for free’’ — comes about because of the use of a small but finite regularization length 𝜀 for

rack thickness. This observation soon resulted in a reimagining of the regularization length 𝜀 in variational phase-field models of
racture as a material length scale [11,12], of course at the expense of severing the connection with the variational theory of brittle

fracture, or with any other theory of sharp fracture for that matter. Comfort with this guiding principle increased with apparent
experimental agreement [13] and models with an 𝜀 slaved to some material-specific value were and continue to be used and pursued
n the literature in an attempt to describe fracture nucleation in elastic brittle materials.

In a different place, cavitation in elastomers had, since the 1950s, been viewed as a purely elastic process.3 As such it lent itself
o elegant mathematics first expounded by Ball [15] and subsequently indulged in many works. Yet, despite the many investigations

of cavitation in elastomers as a purely elastic process for decades, it was only in 2015 that direct comparisons between the elasticity
view of this phenomenon and experiments were reported in the literature [16]. Those revealed that cavitation in elastomers is in
act a fracture nucleation event, one that could not be explained by any existing theory at the time, including existing variational
hase-field models.

The question before us was clear, although largely unstated at the time: What are the intrinsic macroscopic material properties
hat govern fracture nucleation? It was posed as such in [17,18] for nominally nonlinear elastic brittle materials (e.g., elastomers

like silicone) and in [19] for nominally linear elastic brittle materials (e.g., ceramics like titania, alumina, graphite, and polymers
ike PMMA); see also [20].

The answer, based on a vast body of experimental evidence gathered for over a century, is that at least three intrinsic macroscopic
material properties govern fracture nucleation in elastic brittle materials:

I. The elasticity of the material;
II. Its strength; and

III. Its intrinsic fracture toughness or critical energy release rate.

Out of these, the strength has been the most often misunderstood, insomuch that no precise complete definition appears in the
classical literature. Kumar and Lopez-Pamies [18] and Kumar et al. [19] proposed the following definition: the strength of an elastic
rittle material is the set of all critical stresses 𝐒 at which the material fractures when it is subjected to a state of monotonically
ncreasing, spatially uniform, but otherwise arbitrary stress. Such a set of critical stresses defines a surface  (𝐒) = 0 in stress space,
hich is referred to as the strength surface of the material.

Like elasticity and toughness, strength is an intrinsic macroscopic material property that can be measured directly from
acroscopic experiments. Critically, while they may correlate with some of the same underlying microscopic features of the material,

the elasticity, the strength, and the toughness are independent of each other. What is more, save for some elementary restrictions
hat they must satisfy,4 they can take on any value. So the strength surface  (𝐒) = 0 is potentially any star-shaped surface in stress

space containing 0 in the interior of the ascribed domain.5
In view of the above realization, Kumar, Francfort and Lopez-Pamies [17], Kumar and Lopez-Pamies [18], and Kumar et al. [19]

established that any potentially successful attempt at a macroscopic theoretical description of fracture nucleation in elastic brittle
materials must be able to account for any elasticity, any strength, and any toughness. As a corollary, no variational phase-field
model can possibly describe fracture nucleation in general. This is because such models inherently only account for the elasticity
and the toughness of the material, but not for its strength. Sure, as shown in Section 3 of [19], these models can be made to
account for certain types of strength surfaces upon an appropriate choice of regularization length 𝜀 and energy split. However, the
strength surfaces that result from such an approach are not representative of actual materials. The reason for this shortcoming is that
those strength surfaces are subordinate to the elastic energy and the toughness of the material, instead of being truly independent
macroscopic material properties, as observed experimentally.

Notwithstanding the results just outlined, variational phase-field models have continued to be widely used by the computational
echanics community, presumably because they are typically employed in particular problems where only a small part of the

trength surface — the one that is fitted to some desired outcome by a suitable choice of the value of 𝜀 — is relevant and hence
their inability to model fracture nucleation in general is not apparent; see, e.g., [21–30]. What is more, faced with a precise definition
of strength and with the realization that different energy splits lead to different strength surfaces, researchers have continued to
ursue different types of energy splits in the hope of producing variational phase-field models that better approximate the strength
urfaces  (𝐒) = 0 of actual materials; see, e.g., [31,32].

2 Throughout, by variational phase-field models we mean phase-field models of fracture that 𝛤 -converge to the variational theory of brittle fracture of Francfort
nd Marigo [1]; see Section 3 below. Many other phase-field models of fracture are variational but do not 𝛤 -converge to that theory; see, e.g., [3–6].

3 For an account of the fascinating history of cavitation in elastomers, see, e.g., the recent review by Breedlove et al. [14].
4 For instance, in isotropic materials, the Young’s modulus 𝐸 and Poisson’s ratio 𝜈 must satisfy 𝐸 > 0 and −1 ≤ 𝜈 ≤ 1∕2, but are otherwise unconstrained.

Similarly, the toughness 𝐺𝑐 is positive but otherwise arbitrary.
5 Accordingly, rays starting at the origin 𝐒 = 0 can cross the strength surface  (𝐒) = 0 at most once.
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In this context, the main objective of this paper is to provide a comprehensive review of the existing evidence that conclusively
stablishes that variational phase-field models cannot be valid descriptors of fracture nucleation. We begin in Section 2 by providing

a summary of the current experimental knowledge of fracture nucleation in nominally elastic brittle materials under quasi-static
loading conditions. In Section 3, we introduce the variational phase-field models, without and with energy splits. In Section 4,
we then confront the models with basic experimental observations on a variety of materials of common use (graphite, titania,
natural rubber, and a synthetic rubber), thereby demonstrating that variational phase-field models cannot possibly describe fracture
nucleation precisely because they can only account for strength surfaces that are written in terms of the elastic energy and the
toughness of the material. As already stated, strength surfaces of actual materials are independent macroscopic material properties!
We conclude in Section 5 by providing a brief summary of a class of phase-field models that can describe fracture nucleation, that
introduced by Kumar, Francfort and Lopez-Pamies [17]. We also provide an outlook into the modeling of fracture nucleation beyond
the basic setting of elastic brittle materials.

2. A summary of experimental observations of fracture nucleation in nominally elastic brittle materials

Experimental investigations of the nucleation of fracture in nominally elastic brittle materials are broadly of three distinct sorts:
when the state of stress is spatially uniform, when a large pre-existing crack is present, and if neither holds true. The findings can
be summarized as follows.

2.1. Nucleation under states of spatially uniform stress: The strength

A plethora of experiments carried out since the 1830s [33] have repeatedly shown that when a macroscopic piece of a nominally
elastic brittle material is subjected to a state of monotonically increasing, spatially uniform, but otherwise arbitrary stress, fracture

ill nucleate at a critical value of the applied stress. The set of all such critical stresses defines a surface in stress space. This surface
s referred to as the strength surface of the material. In terms of the first Piola–Kirchhoff stress tensor 𝐒, we write

 (𝐒) = 0. (1)

Any other stress measure could be equally used, but some prove more convenient than others [18]. We will agree that any stress
state 𝐒 such that

 (𝐒) ≥ 0 (2)

is in violation of the strength of the material.
Physically, the origin of the type of fracture nucleation described by the strength surface (1) can be directly linked to the

underlying defects of the material at hand. Put differently, the strength surface (1) is the macroscopic manifestation of the presence
of microscopic defects, i.e., the ‘‘weakest links’’ in the material. This stands in stark contrast with other macroscopic properties
impervious to microscopic defects, such as the elasticity. The nature of the defects is material dependent. For instance, they can be
pores at grain boundaries in a sintered ceramic [34] or inhomogeneous distributions of cross-links in an elastomer [35]. Furthermore,
he size and spatial variations of defects are inherently stochastic. The variations are most acute when comparing material points

within the bulk of the body with material points on its boundary, since different fabrication processes or boundary treatments (such
s polishing or chemical treatments) can drastically affect the nature of boundary defects vis-à-vis those in the bulk. It is for this

reason that the strength surface (1) is a material property that is inherently stochastic.
While experiments that measure the uniaxial tensile strength 𝑠𝚝𝚜 — that is, the point defined by the equation  (diag(𝑠𝚝𝚜 >

, 0, 0)) = 0 — are, in general, fairly accessible, direct experiments that probe triaxial states of stress are much less so.
For hard materials, probing triaxial stress states of the form 𝐒 = diag(𝑠1, 𝑠2, 0) has been achieved by using thin-walled tubes

subjected to internal and external pressurization at the same time that they are axially loaded. By way of an example, Fig. 1
reproduces the strength results for IG-11 graphite obtained by Sato et al. [36] using such a test. The plots in Fig. 1 include the
fit of the experimental data (solid circles) by the Drucker–Prager strength surface

 (𝐒) =
√

2 +
𝑠𝚌𝚜 − 𝑠𝚝𝚜

√

3
(

𝑠𝚌𝚜 + 𝑠𝚝𝚜
)

1 −
2𝑠𝚌𝚜𝑠𝚝𝚜

√

3
(

𝑠𝚌𝚜 + 𝑠𝚝𝚜
)

= 0 wit h
{

𝑠𝚝𝚜 = 27 MPa

𝑠𝚌𝚜 = 77 MPa
, (3)

where

1 ∶= 𝑠1 + 𝑠2 + 𝑠3 and 2 ∶=
1
3
(

(𝑠1 + 𝑠2 + 𝑠3)2 − 𝑠21 − 𝑠22 − 𝑠23
)

, (4)

so to reinforce the crucial realization that the strength of a material is characterized by an entire surface in stress space, and not by
ust a single point in that space, a common a priori in the literature. In the above expressions, 𝑠1, 𝑠2, 𝑠3 stand for the eigenvalues of the
iot stress tensor, or principal nominal stresses, while the material constants 𝑠𝚝𝚜 and 𝑠𝚌𝚜 denote the uniaxial tensile and compressive
trengths of the material, that is, they denote the critical nominal stress values at which fracture nucleates under spatially uniform
tates of monotonically increased uniaxial tension and compression when 𝐒 = diag(𝑠 > 0, 0, 0) and 𝐒 = diag(𝑠 < 0, 0, 0), respectively.6

6 For later use, we introduce here the analogous notation 𝑠𝚋𝚜, 𝑠𝚑𝚜, and 𝑠𝚜𝚜 for the equi-biaxial tensile, hydrostatic tensile, and shear strengths, that is, the
critical values of the nominal stress 𝑠 at which fracture nucleates when 𝐒 = diag(𝑠 > 0, 𝑠 > 0, 0), 𝐒 = diag(𝑠 > 0, 𝑠 > 0, 𝑠 > 0), and 𝐒 = diag(𝑠 > 0,−𝑠, 0), respectively.
3 
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Fig. 1. The experiments of Sato et al. [36] to measure the strength of IG-11 graphite. (a) Typical nucleated cracks in thin-walled tubes subjected to a combination
of pressurization and axial loading. (b) Plot of the principal stress 𝑠2 in terms of the principal stress 𝑠1 at fracture nucleation; the results correspond to the case
when roughly 𝑠3 = 0. (c) Plot of the Drucker–Prager strength surface (3), fitted to the experimental data, in the space of all three principal stresses (𝑠1 , 𝑠2 , 𝑠3).

Fig. 2. (a) Plot of the strength surface for titania reported by Ely [40]. The data is plotted in the space of principal stresses (𝑠1 , 𝑠2) with 𝑠3 = 0. (b) Plot of the
trength surface for one of the natural rubbers studied by Gent and Lindley [41]. The data is plotted in the space of principal stresses (𝑠1 , 𝑠2) with 𝑠3 = 𝑠2.

For soft materials, the strength under triaxial stress states of the form 𝐒 = diag(𝑠1, 𝑠2, 0) has been traditionally measured by
iaxial and pure-shear stretching of thin sheets [37], while the so-called poker-chip experiments have been helpful in estimating the

hydrostatic strength 𝑠𝚑𝚜; see Section 4.2 in [38]. In contrast with the strength surface of most hard materials, the strength surface of
ome soft materials can feature a hydrostatic strength 𝑠𝚑𝚜 that is much smaller than the uniaxial and equi-biaxial tensile strengths
𝚝𝚜 and 𝑠𝚋𝚜. That is the case, for instance, for many natural rubbers [39]. The reason for this behavior is that natural rubber is nearly

incompressible and hence hardly deforms and hardly stiffens when subjected to a purely hydrostatic stress. On the other hand, under
uniaxial and biaxial tension, natural rubber can reach very large stretches and stiffenings before fracturing, which leads to relatively
large uniaxial and equi-biaxial tensile strengths. So, especially in soft materials, the strength surfaces of different nominally elastic
brittle materials can greatly vary.

In this spirit, Fig. 2 presents cross sections of the strength surfaces for the titania studied by Ely [40] and one of the natural
rubbers (vulcanizate D) studied by Gent and Lindley [41] in their famed poker-chip experiments. The former is shown in the space
of principal stresses (𝑠1, 𝑠2) with 𝑠3 = 0, while the latter is shown in the space (𝑠1, 𝑠2) with 𝑠3 = 𝑠2. In this figure, the solid circles
correspond to the experimental data, while the solid lines have been added to help their visualization, including their stochasticity.

Clearly, the classification of strength surfaces is a taxonomic effort, and not one that can emerge from any kind of energetic
onsideration.
4 



O. Lopez-Pamies et al.

f
t

t

t
L

e

o

l
I
n

e

G

r

Computer Methods in Applied Mechanics and Engineering 433 (2025) 117520 
2.2. Nucleation from large pre-existing cracks: The Griffith energy competition

When a specimen of a nominally elastic brittle material contains a large7 pre-existing crack, fracture may nucleate from the
crack front, in other words, the crack may grow. The first systematic experimental campaign on this type of fracture nucleation is
famously due to Griffith [42], who studied the nucleation of fracture from large pre-existing cracks in thin-walled cylindrical tubes
and spherical bulbs made of glass that were subjected to internal pressure. For soft materials, the first experiments on this type of
racture nucleation can be traced back to the work of Busse [43], who carried out single edge notch fracture tests, as well as to
he more complete work of Rivlin and Thomas [44], who carried out single edge notch, as well as the so-called ‘‘pure-shear’’ and

trousers fracture tests. All of those were carried out on natural rubber.
His pioneering experiments on glass led Griffith [42] to conclusively establish that a criterion based on strength could not possibly

explain nucleation of fracture from large pre-existing cracks. Indeed, because of the sharp geometry of the cracks, the stresses around
he crack fronts greatly exceeded the strength of the glass as soon as the specimens were loaded, and yet the cracks did not grow.

These experiments prompted Griffith [42] to introduce the idea of energy competition between bulk deformation energy and surface
fracture energy. In modern parlance, the postulate is as follows in a 2D setting: under a given load and for a preset path, a crack
will have length 𝓁 in its reference state if any putative crack add-length would result in an expenditure of surface energy (assumed
to be proportional to the add-length) greater than the accompanying decrease in potential energy  (i.e., the total stored elastic
energy minus the work done by the external forces). Letting the add-length tend to 0, the following condition must hold for the
crack to have length 𝓁:

− 𝜕
𝜕𝓁

< 𝐺𝑐 . (5)

In this expression, 𝐺𝑐 is the proportionality coefficient in the surface energy, a material property referred to as the intrinsic fracture
oughness, or critical energy release rate. Note that (5) says nothing about crack propagation because it is all about crack stability.
ater on, it morphed into the following statement: the crack cannot grow unless.8

− 𝜕
𝜕𝓁

= 𝐺𝑐 . (6)

Since the experiments of Griffith [42] on glass and also those of Rivlin and Thomas [44] on natural rubber, a multitude of
xperiments have been conducted. The consensus is that the Griffith criticality condition (6) is a necessary condition for the

nucleation of fracture from the front of large pre-existing cracks. A variety of routine tests have been developed for the computation
f the energy release rate −𝜕∕𝜕𝓁, from which the critical energy release rate 𝐺𝑐 can then be directly determined; see, e.g., the

handbook of Tada et al. [45] for hard materials and the work of Rivlin and Thomas [44] for soft materials.
This type of nucleation, which amounts to crack propagation, is that which is most successfully addressed through a variational

approach and time-indexed minimization criteria. As a consequence, it is also in that regime that variational phase-field models
take flight, providing in their wake an amazingly accurate predictor for crack path. This alone vindicates the huge mathematical
expenditure of the last 25 years, one that is yet to come to full completion; see, e.g., [46].

2.3. Nucleation under states of spatially non-uniform stress: Mediation between strength and Griffith

The two preceding subsections have focused on fracture nucleation in nominally elastic brittle materials under two opposite
imiting conditions: a spatially uniform stress field and one where the stress field is that associated with a large pre-existing crack.
n this subsection, we summarize the existing experimental knowledge on fracture nucleation in the in-between states. These include
ucleation from smooth or sharp notches, small pre-existing cracks, and from any other subregion in the body under a non-uniform

state of stress.
Experiments on specimens featuring U- and V-notches [47–50], as well as specimens featuring small pre-existing edge cracks [51–

54] have shown that nucleation of fracture from the front of the notch or crack is the result of a mediation between strength and
nergy competition. The same is true for fracture nucleation that occurs in any other subregion where the stress is non-uniform, such

as in indentation tests [55–57] and Brazilian tests [58–60] in hard materials and in poker-chip tests [41,61,62] and ‘‘two-particle’’
tests [63–65] in soft materials.

By way of an example, Fig. 3 presents the experimental data of Kimoto et al. [52] and Chen et al. [54] for the critical global
stress 𝑆𝑐 at which fracture nucleates from the pre-existing cracks in single edge notch fracture tests on an alumina ceramic and
the elastomer VHB 4905. Both sets of results show that fracture nucleation for sufficiently large cracks is well described by the

riffith criticality condition (6), while for sufficiently small cracks it is well described by the strength criterion (1). In these two
sets of experiments, the uniaxial tensile strength 𝑠𝚝𝚜 suffices. For crack sizes that lie between these two opposite limiting behaviors,
fracture nucleation is indeed seen to occur as a mediation between the strength criterion (1) and the Griffith criticality condition (6).

The experimental results in Fig. 3 are also helpful in illustrating two additional features of fracture nucleation in elastic brittle
materials under states of spatially non-uniform stress. First, the violation (2) of the strength of the material is a necessary condition
for fracture nucleation to occur. Because of the sharpness of the crack, the stresses around the crack fronts greatly exceed the

7 ‘‘Large’’ refers to large relative to the characteristic size of the underlying heterogeneities in the material under investigation. By the same token, ‘‘small’’
efers to sizes that are of the same order or just moderately larger than the sizes of the heterogeneities.

8 We could not locate the original ownership of statement (6).
5 
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Fig. 3. Experimental data of Kimoto et al. [52] and Chen et al. [54] for the critical global stress 𝑆𝑐 at which fracture nucleates from a pre-existing crack in
single edge notch tests (schematically depicted by the inset) performed on (a) alumina, a hard ceramic, and (b) VHB 4905, a soft elastomer. The data is plotted
(solid circles) as a function of the initial crack size 𝐴. For direct comparison, the predictions generated by the pertinent strength criterion (1) and the Griffith
riticality condition (6) are included in the plots (dotted and dashed lines).

strength of the materials as soon as the specimens are loaded, and hence always prior to the nucleation of fracture, this irrespective
f the initial crack size. As discussed in Section 2.1 above, the first instance of the violation (2) of the strength of the material is
 necessary and sufficient condition for nucleation under states of spatially uniform stress. Under states of spatially non-uniform
tresses, that is no longer so and violation (2) is merely necessary.

Second, the mediation between the strength and the Griffith energy competition that determines fracture nucleation in the
experiments presented in Fig. 3 involves a material length scale. More generally, when the applied global stress is triaxial and not
merely uniaxial as in Fig. 3, the scale must be tied to a stress-indexed family of material length scales. This comes about because of
he different units of the strength (force/length2), the elasticity (force/length2), and the toughness (force/length), together with the
act that the strength is not a scalar quantity but an entire surface in stress space. What this family, say 𝓁𝐒, should be is at present
n open question. What is clear, nonetheless, is that 𝓁𝐒 is not described by a single value, as often suggested in the literature, but

by a range of values dependent on the strength surface  (𝐒) = 0.

Fig. 4. Examples of images of fracture nucleation under states of spatially non-uniform stress in popular experiments for hard and soft materials. (a) Indentation
of glass with a flat-ended cylindrical indentor [55]. (b) Brazilian test on graphite [58]. (c) ‘‘Two-particle’’ test on a silicone elastomer [64]. (d) Poker-chip test
on a synthetic rubber [61]. Each example includes a schematic of the test.
6 
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Fig. 4 presents four other experimental results that illustrate the above for both hard and soft materials. Part (a) of Fig. 4 shows
the image of the crack nucleated in a block of glass that has been indented with a flat-ended cylindrical indentor [55], while part
b) shows the image of the cracks nucleated in a Brazilian test on graphite [58]. Moreover, part (c) shows the image in the deformed

configuration of the crack nucleated in a ‘‘two-particle’’ test on a silicone elastomer [64], while part (d) shows the X-ray image,
also in the deformed configuration, of the multiple cracks nucleated across the midplane of the specimen in a poker-chip test on a
synthetic rubber [61]. Elastic analyses of these types of tests corroborate that the stresses in the subregions where fracture nucleates
exceed the strength of the material at the time of fracture nucleation; see, e.g., [18,39,66,67].

Summing up, the experiments outlined above indicate that when a macroscopic sample of a nominally elastic brittle material
s subjected to a state of spatially non-uniform stress, fracture will nucleate in subregions where the strength of the material has
een exceeded, provided that said regions are sufficiently large, typically larger than a pertinent material length scale. That scale

𝓁𝐒 should in turn be born out of a mediation between strength and Griffith. A mathematical formulation of sharp fracture that
would encompass such a mediation while remaining consistent with the limiting cases discussed in the two preceding subsections
s wanting.

3. Variational phase-field models for elastic brittle materials

Leveraging decades of progress in the Calculus of Variations, Francfort and Marigo [1] introduced a mathematically consistent
variational formulation of the Griffith postulate for crack growth under quasi-static loading conditions.9 For an isotropic linear elastic
brittle material occupying an open bounded domain 𝛺0 ⊂ R3 in its undeformed and stress-free configuration, the formulation, in its
time-discretized version, is simple. Denoting by 𝑊 ∶ 𝑀3×3 → R the elastic energy density, or elastic energy for short, by 𝛤 (𝑡) the
crack surface at time 𝑡, by 𝐄(𝐮) ∶= 1∕2(∇𝐮 + ∇𝐮𝑇 ) the symmetrized gradient of the displacement field 𝐮 ∶ 𝛺0 × [0, 𝑇 ] → R3, and by
𝐮 a time-dependent displacement prescribed on a part 𝜕 𝛺

0 of the boundary, and assuming further that no other loading processes
are applied to 𝛺0, then, at times 𝑡𝑘 ∈ {0 = 𝑡0, 𝑡1,… , 𝑡𝑚, 𝑡𝑚+1,… , 𝑡𝑀 = 𝑇 }, the pair (𝐮𝑘 ∶= 𝐮𝑘(𝐗, 𝑡𝑘), 𝛤𝑘 ∶= 𝛤 (𝑡𝑘)) minimizes

(𝐮, 𝛤 ) ∶= ∫𝛺0⧵𝛤
𝑊 (𝐄(𝐮)) d𝐗 + 𝐺𝑐2 (𝛤 ) among all (𝑢, 𝛤 ) with

{

𝐮 = 𝐮(𝐗, 𝑡𝑘) on 𝜕 𝛺
0 ⧵ 𝛤

𝛤 ⊃ 𝛤𝑘−1
. (7)

In this expression, 2(𝛤 ) stands for the 2–dimensional Hausdorff measure (the surface measure) of the unknown crack 𝛤 . The
absence of force loads is not coincidental but an unfortunate necessity because their presence would drive the minimum of (7) to
−∞, thereby rendering the whole process meaningless; for more on this, including an alternative formulation, see [68].

Formulation (7) is not amenable to numerical implementation, nor are any approximate formulations, whenever approximation
is in the sense of 𝛤 -convergence.10 However, as an alternative to global minimization, phase-field approximations are naturally
implementable based on separate minimization (i.e., Nash equilibrium), which we describe below. This separate minimization,

hile it removes the link to the sharp theory, yields results that are consistent with experimental observations. In the sequel, we
provide a review of two classes of phase-field approximations: the variational phase-field models without and those with energy
splits.

3.1. The original variational phase-field models

The first class of variational phase-field models that were introduced to approximate (7) are of the form [2,46]

(𝐮𝜀𝑘, 𝑣𝜀𝑘) = arg min
𝐮=𝐮(𝐗,𝑡𝑘 ) on 𝜕 𝛺

0
0≤𝑣≤𝑣𝑘−1≤1

𝜀(𝐮, 𝑣) ∶= ∫𝛺0

𝑔(𝑣)𝑊 (𝐄(𝐮)) d𝐗 − ∫𝜕 𝛺
0

𝐬(𝐗, 𝑡𝑘) ⋅ 𝐮 d𝐗 +
𝐺𝑐
4𝑐𝑠 ∫𝛺0

(

𝑠(𝑣)
𝜀

+ 𝜀∇𝑣 ⋅ ∇𝑣
)

d𝐗, (8)

where 𝜀 > 0 is a regularization length, 𝑣 is an order parameter or phase-field variable taking values in [0, 1], 𝑔 and 𝑠 are continuous
strictly monotonic functions such that 𝑔(0) = 0, 𝑔(1) = 1, 𝑠(0) = 1, 𝑠(1) = 0, and 𝑐𝑠 ∶= ∫ 1

0

√

𝑠(𝑧)d𝑧 is a normalization parameter [69].
Note that we have now included a boundary force load 𝐬(𝐗, 𝑡) on 𝜕 𝛺

0 = 𝜕 𝛺0 ⧵𝜕 𝛺
0 in the variational problem (8), since these loads

can be handled by the separate minimization process described next.
Observe that:

i. The energy functional 𝜀(𝐮, 𝑣) in (8) is not convex so that finding a minimizer is an impossible task at present. However, it
is separately convex and thus lends itself to staggered minimization. Specifically, knowing (𝐮𝜀𝑘−1, 𝑣𝜀𝑘−1) and setting (𝐮0, 𝐯0) ∶=
(𝐮𝜀𝑘−1, 𝑣𝜀𝑘−1), one minimizes successively 𝜀(⋅ , 𝑣𝑖−1) with 𝐮 = 𝐮(𝐗, 𝑡𝑘) on 𝜕 𝛺

0 , thereby producing 𝐮𝑖 and 𝜀(𝐮𝑖, ⋅) with 𝑣 ≤ 𝑣𝜀𝑘−1,
thereby producing 𝐯𝑖 until convergence. The result can be shown to be a critical point for 𝜀(⋅, ⋅) under the constraints
𝐮 = 𝐮(𝐗, 𝑡𝑘) on 𝜕 𝛺

0 , 𝑣 ≤ 𝑣𝜀𝑘−1, but nothing more.
In other words, even in the absence of boundary force loads when 𝐬(𝐗, 𝑡) = 𝟎, the solutions generated from the class
of variational phase-field models (8) by alternating minimization need not be global minimizers and hence need not be
approximations of the solutions of the variational theory of Francfort and Marigo [1], or even separate minimizers;

9 On page 166 of [42], the author posits that ‘‘In an elastic solid body deformed by specified forces applied at its surface, the sum of the potential energy of the
applied forces and the strain energy of the body is diminished or unaltered by the introduction of a crack whose surfaces are traction-free’’.

10 𝛤 -convergence of 𝜀 to  essentially means that global minimizers of 𝜀 converge to global minimizers of  , and all global minimizers of  are limits of
global minimizers of 𝜀. Outside of global minimality, 𝛤 -convergence is of little relevance.
7 
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ii. The two most common choices for the degradation and surface regularization functions 𝑔(𝑣) and 𝑠(𝑣), and hence the constant
𝑐𝑠, in the class of variational phase-field models (8) are

𝙰𝚃1

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑔(𝑣) = 𝑣2

𝑠(𝑣) = 1 − 𝑣

𝑐𝑠 =
2
3

and 𝙰𝚃2

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑔(𝑣) = 𝑣2

𝑠(𝑣) = (1 − 𝑣)2

𝑐𝑠 =
1
2

. (9)

They are referred to as the 𝙰𝚃1 and 𝙰𝚃2 variational phase-field models in reference to the work of Ambrosio and Tortorelli
[70,71]. The 𝙰𝚃1 variational phase-field model is generally preferred over 𝙰𝚃2 primarily because it leads to evolutions of the
phase field 𝑣 with compact support; and

iii. Evidently, since conceived as approximations of the variational formulation (7) of Francfort and Marigo [1], the class of
variational phase-field models (8) do not account for the strength surface  (𝐒) = 0 of the material.

As already pointed out in the Introduction, the presence of a small but finite regularization length 𝜀 in (8) opens a window
nto a type of fracture nucleation that does not exist in the sharp formulation (7). This feature, brought to the fore by numerical

experiments, prompted several works in which 𝜀 is viewed not as a mere regularization length, but rather as a material length
cale [11,12]. The hope was that the variational phase-field models (8), with 𝜀 fixed to some material-specific value, would describe

not only fracture propagation, but also fracture nucleation.
Following that guiding principle, Tanné et al. [13] proposed the prescription

𝜀 =
3𝐺𝑐𝐸
8𝑠2

𝚝𝚜

(10)

for use in the 𝙰𝚃1 variational phase-field model. Here is how this comes about. Recognizing that the uniaxial tensile strength 𝑠𝚝𝚜 is
a material property, one considers the problem of a bar under uniaxial tension. The phase field solution (𝐮𝜀(𝑡), 𝑣𝜀(𝑡)) (assumed to be
niquely determined) is computed and one looks at the instant 𝑡𝜀𝑐 at which a spatially uniform 𝑣𝜀(𝑡) loses linear stability. One then
omputes the corresponding stress 𝑆𝜀

𝑐 and equates it to 𝑠𝚝𝚜. This will produce a set value for 𝜀, namely, (10).
Comparing the predictions of the resulting model with experimental results on fracture nucleation from U- and V-notches for a

andful of hard materials under tension, an apparent agreement of the predictions with those experiments led Tanné et al. [13] to
state the following in their Abstract:

‘‘Our main claim, supported by validation and verification in a broad range of materials and geometries, is that crack nucleation can be
accurately predicted by minimization of a nonlinear energy in variational phase field models, and does not require the introduction of ad-hoc
criteria’’.

This claim is in contradiction with the experimental observations reviewed above, which show that the strength of nominally elastic
rittle materials is one of the macroscopic material properties that govern fracture nucleation and that such material property is

characterized by an entire strength surface  (𝐒) = 0 in stress space that is independent from elasticity and toughness.
In Section 4 below, we confront the 𝙰𝚃1 variational phase-field with a wider range of experimental observations and show that

he apparent agreement with experiments found by Tanné et al. [13] was only so because of the very specific type and limited set
f experiments that were considered in that work.

3.2. Variational phase-field models with energy splits

In the very first numerical experiments using the 𝙰𝚃2 variational phase-field model (see Fig. 4(f) in [2]), it was shown that cracks
could grow from the front of large pre-existing cracks into regions with compressive strain fields. Cracks in actual materials are not
expected to grow there. Bourdin et al. [2] argued that the reason for this unphysical behavior is the lack of material impenetrability
n formulation (8). While not accounting for material impenetrability is definitely an issue that needs to be addressed, the root cause
or such an unphysical behavior is elsewhere: the elastic energy 𝑊 (𝐄) entering the competition in the class of phase-field models
8) cannot distinguish between tensile and compressive strains, even when material impenetrability is not violated.

As an indirect approach to material impenetrability,11 Amor et al. [7] proposed to modify the class of phase-field models (8)
through a split of the elastic energy 𝑊 (𝐄) = 𝑊 +(𝐄) +𝑊 −(𝐄) into a ‘‘tensile’’ or ‘‘degradable’’ part 𝑊 +(𝐄) and a ‘‘compressive’’ or
‘residual’’ part 𝑊 −(𝐄), only allowing the ‘‘tensile’’ part to be degraded by 𝑔(𝑣). Around the same time, Miehe et al. [8] proposed
a different energy split that was not motivated by material impenetrability but that would target the unphysical growth of cracks
n regions of large compressive strains. Thereafter, many different energy splits have been proposed in the literature; see, e.g., the

reviews included in [73,74]. They all read as

(𝐮𝜀𝑘, 𝑣𝜀𝑘) = arg min
𝐮=𝐮(𝐗,𝑡𝑘 ) on 𝜕 𝛺

0
0≤𝑣≤𝑣𝑘−1≤1

𝜀
𝚂𝚙𝚕𝚒𝚝

(𝐮, 𝑣) ∶= ∫𝛺0

(

𝑔(𝑣)𝑊 +(𝐄(𝐮)) +𝑊 −(𝐄(𝐮))
)

d𝐗 − ∫𝜕 𝛺
0

𝐬(𝐗, 𝑡𝑘) ⋅ 𝐮 d𝐗+

11 Material impenetrability is first and foremost a kinematical constraint and not an energetic one; see, e.g., [72].
8 
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𝐺𝑐
4𝑐𝑠 ∫𝛺0

(

𝑠(𝑣)
𝜀

+ 𝜀∇𝑣 ⋅ ∇𝑣
)

d𝐗, (11)

where the ‘‘tensile’’ part 𝑊 +(𝐄) and the ‘‘compressive’’ part 𝑊 −(𝐄) are such that 𝑊 −(𝐄) ≥ 0 and 𝑊 +(𝐄) +𝑊 −(𝐄) = 𝑊 (𝐄), but are
therwise arbitrary.

Note that:

i. Variational convergence of split phase-field models to any kind of sharp fracture model is lacking except in 2D and for a very
specific class of split [75];

ii. Much like 𝜀(𝐮, 𝑣) in (8), the energy functional 𝜀
𝚂𝚙𝚕𝚒𝚝

(𝐮, 𝑣) in (11) is not convex. It is at best separately convex and thus
amenable to staggered minimization; and

iii. Constructed as modifications of the variational phase-field models (8), the class of variational phase-field models (11)
incorporates the elasticity and toughness of the material, but not its strength surface  (𝐒) = 0.

As already recalled in the Introduction and as further elaborated in the next section, no variational phase-field model, without or
ith energy splits, can possibly describe fracture nucleation in general. Yet, variational phase-field models continue to be insisted
pon for modeling nucleation. In that vein, a notable recent contribution by Vicentini et al. [32], labeled the star-convex

variational phase-field model, stands out because, according to the authors (see the Introduction in [32]):

‘‘...this model is still based on energy decomposition, but it is specifically designed to satisfy the desired requirements for both nucleation and
propagation’’.

In the star-convex variational phase-field model, the ‘‘tensile’’ and ‘‘compressive’’ parts 𝑊 +(𝐄) and 𝑊 −(𝐄) are given by

⎧

⎪

⎨

⎪

⎩

𝑊 +(𝐄) = 𝜇
(

t r 𝐄2 − 1
3
(t r 𝐄)2

)

+ 𝜅
2
(

(t r 𝐄+)2 − 𝛾⋆(t r 𝐄−)2
)

𝑊 −(𝐄) = (1 + 𝛾⋆)𝜅
2
(t r 𝐄−)2

wit h

⎧

⎪

⎪

⎨

⎪

⎪

⎩

t r 𝐄+ ∶=

{

t r 𝐄, t r 𝐄 ≥ 0

0, else

t r 𝐄− ∶=

{

t r 𝐄, t r 𝐄 < 0

0, else

, (12)

where the parameter 𝛾⋆ satisfies 𝛾⋆ ≥ −1, and where 𝜇 and 𝜅 denote the shear and bulk moduli of the material.12

In the next section, we confront the star-convex variational phase-field model (11) with (12) directly with experimental
observations and show that, as expected, fracture nucleation is beyond its reach.

4. Variational phase-field models vs. experimental observations

Per the experimental observations summarized in Section 2, three necessary ingredients must be accounted for by any phase-field
odel, be it variational or not, if it is to potentially describe fracture nucleation in elastic brittle materials. These are:

• Accounting for the elastic energy 𝑊 (𝐄), the strength surface  (𝐒) = 0, and the toughness 𝐺𝑐 of the material;
• Localization of the phase field 𝑣 whenever a macroscopic piece of the material is subjected to any uniform stress 𝐒 that exceeds

the strength surface  (𝐒) = 0 of the material; and
• Having the Griffith energy competition as a descriptor of nucleation from a large pre-existing crack.

Failure to satisfy any of these requirements would prevent the model from describing fracture nucleation even in the simplest of
cenarios, that is, under a spatially uniform stress and/or from large pre-existing cracks.

The choices of degradation and surface regularization functions 𝑔(𝑣) and 𝑠(𝑣) in (8) and (11), as well as the choice of the split
𝑊 +(𝐄) and 𝑊 −(𝐄) of the elastic energy in (11), can result in variational phase-field models for which the phase field 𝑣 does not
roperly localize and/or for which nucleation from a large pre-existing crack is not described by the Griffith energy competition.13 ,14

However, even a proper choice of 𝑔(𝑣) and 𝑠(𝑣) in (8) and of 𝑔(𝑣), 𝑠(𝑣), 𝑊 +(𝐄), and 𝑊 −(𝐄) in (11) will result in a variational
phase-field model that fails to satisfy the first of the three necessary ingredients. This is because the variational phase-field models
(8) and (11) cannot account for the strength surface  (𝐒) = 0 as an independent material property. This is the fundamental reason
why variational phase-field models cannot possibly describe fracture nucleation.

As first illustrated by Kumar et al. [19] and as recalled in the Introduction, the variational phase-field models (8) and (11) can be
ade to account for certain types of strength surfaces by appropriately choosing the value of the regularization length 𝜀 and the type

of energy split. However, the strength surfaces that are generated from such an approach are extremely limited in their functional
form. What is more, they are non-physical in certain regions of stress space. In short, they are not representative of actual materials.

12 Recall that 𝜇 and 𝜅 are given in terms of the Young’s modulus and the Poisson’s ratio by 𝜇 = 𝐸∕(2(1 + 𝜈)) and 𝜅 = 𝐸∕(3(1 − 2𝜈)).
13 Localization of the phase field 𝑣 is essential. As illustrated, for example, in Fig. 1(a), nominally elastic brittle materials deform and crack. Given that

phase-field models describe cracks via a phase field 𝑣 that localizes in space near 𝑣 = 0, a phase field 𝑣 < 1 that does not localize is not descriptive of reality.
14 Other types of phase-field models, like those where the elastic energy is replaced by a non-energetic driving force in the evolution equation for the phase

field do not typically lead to the proper localization of the phase field and/or do not typically describe nucleation from a large pre-existing crack according to
the Griffith energy competition; see, for example, [76,77].
9 
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This is because those surfaces can only be written in terms of the elastic energy 𝑊 (𝐄) and the toughness 𝐺𝑐 of the material, instead
of being truly independent material properties.

Next, by way of examples for both different classes of variational phase-field models (8) and (11), we present the strength
surfaces generated by the AT1 variational phase-field model (8) with (9)1 and by the AT1 version of the star-convex variational
hase-field model (11) with (9)1 and (12). After discussing their main features, we confront the resulting strength surfaces with
xperimental data for four materials of common use.

4.1. The strength surface generated by the AT 1 variational phase-field model

The strength surfaces generated by variational phase-field models without energy splits (8) — assuming a correct localization
of 𝑣 — are simply defined by the Euler–Lagrange equation of the minimization problem (8) associated with variations in the phase
ield 𝑣 when evaluated at 𝑣 = 1 and at spatially uniform strains 𝐄, and hence at spatially uniform stresses 𝐒.15

For the case of the AT1 variational phase-field model, the Euler–Lagrange equation associated with variations in 𝑣, evaluated at
𝑣 = 1 and at spatially uniform strains 𝐄, reads simply

2𝑊 (𝐄) − 3𝐺𝑐
8𝜀

= 0.
Rewriting the constant strain 𝐄 in terms of the associated constant stress 𝐒 = 𝐸∕(1 + 𝜈)𝐄+ 𝜈 𝐸∕((1 + 𝜈)(1 − 2𝜈))(t r𝐄)𝐈 yields as strength
surface

𝙰𝚃1 (𝐒) = 2
𝜇

+
2
1

9𝜅
−

3𝐺𝑐
8𝜀

= 0, (13)

where we recall that the stress invariants 1 and 2 are given by (4).
The surface 𝙰𝚃1 (𝐒) = 0 is not an independent material property, but one that is subordinate to the elasticity and the toughness of

he material, even if 𝜀 is viewed as a free parameter. Note also that the strength surface 𝙰𝚃1 (𝐒) = 0 exhibits a very specific functional
ependence on the stress invariants 1 and 2. Such a dependence is inconsistent with experimental observations as obviated in the
pecial case of hydrostatic tensile loading, when 𝐒 = diag(𝑠 > 0, 𝑠 > 0, 𝑠 > 0), for which (13) predicts

𝑠𝚑𝚜 =

√

3𝐺𝑐𝜅
8𝜀

for the hydrostatic strength 𝑠𝚑𝚜 of the material. Thus, according to the AT1 variational phase-field model, the hydrostatic strength
𝚑𝚜 increases with increasing values of the bulk modulus 𝜅 of the material. In particular, incompressible materials (𝜅 = +∞) are

predicted to be infinitely strong (𝑠𝚑𝚜 = +∞) under hydrostatic tension. This is nonsensical.
When considered as a material length scale, 𝜀 can be viewed as the sole tunable parameter in (13), one whose value can be

selected so that the strength surface 𝙰𝚃1 (𝐒) = 0 matches the actual strength surface  (𝐒) = 0 of the material of interest at a single
point of choice in stress space. For example, the prescription (10) forces 𝙰𝚃1 (𝐒) = 0 to match the actual uniaxial tensile strength
𝚝𝚜 of the material.

4.2. The strength surface generated by the star-convex variational phase-field model

Exactly as for the variational phase-field models without energy splits (8), the strength surfaces generated by variational phase-
field models with energy splits (11), assuming, once more, proper localization of the phase field 𝑣, are defined by the Euler–Lagrange
equation of the minimization problem (11) associated with variations in the phase field 𝑣 when evaluated at 𝑣 = 1 and at spatially
niform strains 𝐄. Upon following the argument outlined in the previous subsection, we find the following strength surface for the
star-convex variational phase-field model:

⋆(𝐒) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2
𝜇

+
2
1

9𝜅
−

3𝐺𝑐
8𝜀

= 0, 1 ≥ 0

2
𝜇

− 𝛾⋆
2
1

9𝜅
−

3𝐺𝑐
8𝜀

= 0, 1 < 0

, (14)

where, once again, 𝛾⋆ ≥ −1.16

The strength surface (14) reduces identically to the strength surface (13) generated by the AT1 variational phase-field model
when 1 = 𝑠1 + 𝑠2 + 𝑠3 ≥ 0, that is, when the volumetric part of the stress is non-negative. This implies that both strength surfaces
generate the same uniaxial tensile, equi-biaxial tensile, hydrostatic tensile, and shear strengths 𝑠𝚝𝚜, 𝑠𝚋𝚜, 𝑠𝚑𝚜, and 𝑠𝚜𝚜; see [78]. By the
same token, the criticisms in the previous subsection equally apply to (14).

For stress states with 1 < 0, the strength surface (14) improves on (13) in that it contains one additional parameter, 𝛾⋆, whose
value can be selected to match the actual strength surface  (𝐒) = 0 of the material of interest at one additional point of choice in

15 As discussed in Appendix A in [19], the loss of linear stability of the spatially affine/homogeneous solution pair (𝐮, 𝑣) is a necessary condition for localization
and that loss eventually leads to this statement.

16 In all fairness, one should re-examine the analysis in Appendix A in [19] for the case where  < 0, which we have not done.
1
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stress space. Since the value of 𝛾⋆ is only relevant for points in stress space where 1 < 0, a natural point to match is that of uniaxial
compressive strength 𝑠𝚌𝚜. That choice leads to the prescription

𝛾⋆ =

(

3
𝜇
−

27𝐺𝑐

8𝜀 𝑠2
𝚌𝚜

)

𝜅 .

If using in turn (10) for 𝜀 to match the uniaxial tensile strength 𝑠𝚝𝚜, this last result specializes to

𝛾⋆ = 1
1 − 2𝜈

(

2(1 + 𝜈) − 3𝑠2
𝚝𝚜

𝑠2
𝚌𝚜

)

. (15)

Since 𝛾⋆ ≥ −1, the minimal value of uniaxial compressive strength that can be matched is 𝑠𝚌𝚜 = 𝑠𝚝𝚜. It is also interesting to note
that while the prescription (10) subordinates 𝜀 to 𝐸 and 𝐺𝑐 , the prescription (15) subordinates 𝛾⋆ to 𝜈.

4.3. Comparisons with experiments for four materials of common use

Table 1
Material constants for the graphite, titania, natural rubber, and SBR considered in this work and the corresponding values for the
parameters 𝜀 and 𝛾⋆ in the strength surfaces (13) and (14) generated by the AT1 and star-convex variational phase-field models.

Graphite Titania Natural Rubber SBR

Young’s modulus 𝐸 9.8 GPa 250 GPa 1.77 MPa 2.99 MPa
Poisson’s ratio 𝜈 0.13 0.29 0.4999 0.4998
Shear modulus 𝜇 4.3 GPa 97 GPa 0.588 MPa 1 MPa
Bulk modulus 𝜅 4.4 GPa 198 GPa 2.2 GPa 2.2 GPa
Uniaxial tensile strength 𝑠𝚝𝚜 27 MPa 100 MPa 9 MPa 26.6 MPa
Uniaxial compressive strength 𝑠𝚌𝚜 77 MPa 1232 MPa 1000 MPa 1000 MPa
Toughness 𝐺𝑐 91 N∕m 36 N∕m 100 N∕m 100 N/m
𝜀 0.46 mm 0.34 mm 0.82 μm 0.16 μm
𝛾⋆ 2.56 6.10 11 217 6626

Fig. 5 confronts the strength surfaces (13) and (14) generated by the AT1 and star-convex variational phase-field models
with the experimental data for two ceramics of common use, graphite and titania, as reported by Sato et al. [36] and Ely [40]. The
data is plotted in the space of principal stresses (𝑠1, 𝑠2) with 𝑠3 = 0. The relevant material constants for these two ceramics are listed
n Table 1, which also lists the values of the parameters 𝜀 and 𝛾⋆ in the strength surfaces (13) and (14), as obtained from (10) and

(15).
Fig. 5 calls for the following observations. First, qualitatively, the shapes of the strength surfaces (13) and (14) are different from

hose of the experimental data, even in the admittedly limited subspace of plane stresses (𝑠3 = 0) explored by the experiments.
Then, quantitatively, the agreement with the non-fitted experimental data varies by quadrant. In the first quadrant (𝑠1 ≥ 0, 𝑠2 ≥ 0),

he agreement happens to be good, more so for graphite than for titania. In the third quadrant (𝑠1 ≤ 0, 𝑠2 ≤ 0), experimental data
re not available. However, conventional wisdom dictates that these ceramics should be very strong under biaxial compression,
hich is not the case for the strength surface (13). A similar disagreement may be true for the strength surface (14), but the lack of

experimental data does not allow us to reach a conclusion. Finally, in the second quadrant (𝑠1 ≤ 0, 𝑠2 ≥ 0) — which, from isotropy,
s the same as the fourth quadrant (𝑠1 ≥ 0, 𝑠2 ≤ 0) — both strength surfaces (13) and (14) disagree with the experimental data, more

so (13) than (14).
So as to quantify the actual difference between the strength surfaces (13) and (14) and the experimental data, we consider the

maximum radial ratios

𝙰𝚃1
𝑚𝑎𝑥 = max

{

max
𝜃 , 𝜑

𝑑 𝑎𝑡𝑎(𝜃 , 𝜑)
𝙰𝚃1 (𝜃 , 𝜑) ,max

𝜃 , 𝜑
𝙰𝚃1 (𝜃 , 𝜑)
𝑑 𝑎𝑡𝑎(𝜃 , 𝜑)

}

and ⋆
𝑚𝑎𝑥 = max

{

max
𝜃 , 𝜑

𝑑 𝑎𝑡𝑎(𝜃 , 𝜑)
⋆(𝜃 , 𝜑) ,max

𝜃 , 𝜑
⋆(𝜃 , 𝜑)
𝑑 𝑎𝑡𝑎(𝜃 , 𝜑)

}

(16)

in the space of principal stresses as measures of the difference. Here,
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑 𝑎𝑡𝑎(𝜃 , 𝜑) =
√

𝑠21 + 𝑠22 + 𝑠23, (𝑠1, 𝑠2, 𝑠3) ∈ 𝑑 𝑎𝑡𝑎

𝙰𝚃1 (𝜃 , 𝜑) =
√

𝑠21 + 𝑠22 + 𝑠23, (𝑠1, 𝑠2, 𝑠3) ∈ 𝙰𝚃1

⋆(𝜃 , 𝜑) =
√

𝑠21 + 𝑠22 + 𝑠23, (𝑠1, 𝑠2, 𝑠3) ∈ ⋆

,

stand for the radial distances from the origin (𝑠1, 𝑠2, 𝑠3) = (0, 0, 0) to points in the surfaces 𝑑 𝑎𝑡𝑎 = {

(𝑠1, 𝑠2, 𝑠3) ∶ 𝑑 𝑎𝑡𝑎(diag(𝑠1, 𝑠2, 𝑠3))
= 0}, 𝙰𝚃1 =

{

(𝑠1, 𝑠2, 𝑠3) ∶ 𝙰𝚃1 (diag(𝑠1, 𝑠2, 𝑠3)) = 0}, and ⋆ =
{

(𝑠1, 𝑠2, 𝑠3) ∶ ⋆(diag(𝑠1, 𝑠2, 𝑠3)) = 0} along the directions 𝜃 =

t an−1(𝑠2∕𝑠1) and 𝜑 = cos−1(𝑠3∕
√

𝑠21 + 𝑠22 + 𝑠23) in the space of principal stresses (𝑠1, 𝑠2, 𝑠3). Table 2 presents the values of the maximum
radial ratios. For graphite, there is a direction in which the strength surface (13) is 2.96 times smaller than the corresponding
xperimental data, while in a different direction the strength (14) is 1.55 times smaller than the corresponding experimental data.

The comparison for titania is even more striking, as there are directions in which the strength surfaces (13) and (14) are 12.32 and
4.31 times smaller than the experimental data, respectively.
11 
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Fig. 5. Comparisons of the strength surfaces (13) and (14) generated by the AT1 and star-convex variational phase-field models with experimental data for
(a) graphite and (b) titania. The data is plotted in the space of principal stresses (𝑠1 , 𝑠2) with 𝑠3 = 0.

Next, Fig. 6 confronts the strength surfaces (13) and (14) generated by the AT1 and star-convex variational phase-field
models with experimental data for two elastomers of common use, natural rubber and a synthetic SBR rubber, studied respectively
by Gent and Lindley [41] and Hamdi et al. [79]. The data for natural rubber is plotted in the space of principal stresses (𝑠1, 𝑠2) with
𝑠3 = 𝑠2, while that for SBR is plotted in the space (𝑠1, 𝑠2) with 𝑠3 = 0. The relevant material constants for these two elastomers are
listed in Table 1, which also lists the values of the parameters 𝜀 and 𝛾⋆ in the strength surfaces (13) and (14), as obtained from the
prescriptions (10) and (15).

Note that, save for the experimental data points around hydrostatic tension (𝑠1 = 𝑠2 = 𝑠3) in Fig. 6(a) for natural rubber, the
remaining experimental data points in Fig. 6 are associated with nominal stresses that are attained when the specimens are finitely
eformed. This should call for the use of finite-elasticity versions of the AT1 and star-convex variational phase-field models;
ee, e.g., [17]. The use of finite elasticity would not significantly change the resulting strength surfaces in the space of principal
ominal stresses (𝑠1, 𝑠2, 𝑠3) shown in Fig. 6.

The main observations from the comparisons presented in Fig. 6 are as follows. First, qualitatively, the shapes of the strength
urfaces (13) and (14) are different from those of the experimental data, strikingly so for natural rubber. Second, quantitatively, both

strength surfaces (13) and (14) do not provide a good fit with both sets of experimental results. This difference is clearly illustrated
y the values obtained from the measures (16), which are presented in Table 2. These show that there is a direction in which the

strength surfaces (13) and (14) are 110 times larger than the corresponding experimental data for natural rubber, while for SBR
there is a direction in which (13) and (14) are 1.88 times larger than the corresponding experimental data. The extremely large
difference for the case of natural rubber is due to the fact that the ratio of bulk-to-shear moduli of this material is large, 𝜅∕𝜇 = 3741.
As discussed above, because of their energetic nature, the strength surfaces (13) and (14) describe a hydrostatic strength 𝑠𝚑𝚜 that is
proportional to √

𝜅. Clearly, this is inconsistent with the actual behavior of the material.

Table 2
Difference between the strength surfaces (13) and (14) and the experimental data
for graphite, titania, natural rubber, and SBR in terms of the measures (16).

Graphite Titania Natural rubber SBR

𝙰𝚃1
𝑚𝑎𝑥 2.96 12.32 110 1.88

⋆
𝑚𝑎𝑥 1.55 4.31 110 1.88

Summing up, the representative comparisons presented in Figs. 5 and 6 with experiments for four materials of common use, two
hard and two soft, clearly illustrate that variational phase-field models, without and with energy splits, cannot possibly describe
fracture nucleation in elastic brittle materials in general. The comparisons have also illustrated that such models may be calibrated
to de facto account for small portions of the actual strength surface of materials. While this may allow apparent agreement with
particular experiments, it should be clear that the resulting models will not be descriptive nor predictive for problems beyond
the very specific types of problems (those involving only the small portion of strength surface accounted for) that they have been
calibrated to.
12 
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Fig. 6. Comparisons of the strength surfaces (13) and (14) generated by the AT1 and star-convex variational phase-field models with experimental data for
(a) natural rubber and (b) SBR. The data in part (a) is plotted in the space of principal stresses (𝑠1 , 𝑠2) with 𝑠3 = 𝑠2, while the data in part (b) is plotted in the
space of principal stresses (𝑠1 , 𝑠2) with 𝑠3 = 0.

5. Final comments

As reviewed above, the vast body of experimental evidence gathered over the years forces any potentially successful candidate
or a macroscopic theory of fracture nucleation in nominally elastic brittle materials to account for the elasticity, the strength, and
he toughness of the material of interest. Since variational phase-field models, without and with energy splits, cannot account for

one of these three independent macroscopic material properties — namely, the strength — they are not viable candidates.
By the same token, any formulation that cannot account for an arbitrary strength surface  (𝐒) = 0 is also non viable. In this

egard, we note that existing cohesive models of fracture, be they sharp or regularized [4,5,46,80,81], while they do predict that
nucleation does not occur unless a strength surface criterion is violated, cannot account for an arbitrary strength surface.

As recalled in the Introduction, a class of phase-field models introduced by Kumar, Francfort and Lopez-Pamies [17] provides a
formulation that can account for the elasticity, the strength, and the toughness of elastic brittle materials, whatever these material
properties may be. To that effect, the models introduce a driving force 𝑐𝚎 in the evolution equation for the phase field 𝑣. That force
must be such that the phase field 𝑣 localizes properly and that the nucleation from large pre-existing cracks follows the Griffith
energy competition. Kumar and Lopez-Pamies [18] and Kumar et al. [19] offered a blueprint for such a driving force and used that
blueprint to derive a particular one in the case of a Drucker–Prager type strength surface (3)1. In a recent contribution, Kamarei,
Kumar and Lopez-Pamies [39] have derived a new constitutive prescription for 𝑐𝚎 that has additional advantages over the original
one, chief among them that it is fully explicit.

In the basic setting considered in Section 3, that of an isotropic linear elastic brittle material occupying an open bounded domain
𝛺0 ⊂ R3, with boundary 𝜕 𝛺0 and outward unit normal 𝐍, the phase-field model introduced in [17] with the driving force 𝑐𝚎
introduced in [39] yields the following system of governing equations at any given discrete time 𝑡𝑘 ∈ {0 = 𝑡0, 𝑡1,… , 𝑡𝑚, 𝑡𝑚+1,… , 𝑡𝑀 =
}:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Div
[

(𝑣2𝑘 + 𝜂𝜀)
𝜕 𝑊
𝜕𝐄

(𝐄(𝐮𝑘))
]

= 𝟎, 𝐗 ∈ 𝛺0

𝐮𝑘(𝐗) = 𝐮(𝐗, 𝑡𝑘), 𝐗 ∈ 𝜕 𝛺
0

[

(𝑣2𝑘 + 𝜂𝜀)
𝜕 𝑊
𝜕𝐄

(𝐄(𝐮𝑘))
]

𝐍 = 𝐬(𝐗, 𝑡𝑘), 𝐗 ∈ 𝜕 𝛺
0

(17)

and
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

𝜀 𝛿𝜀𝐺𝑐𝛥𝑣𝑘 = 8
3
𝑣𝑘𝑊 (𝐄(𝐮𝑘)) + 4

3
𝑐𝚎(𝐗, 𝑡𝑘) −

𝛿𝜀𝐺𝑐
2𝜀

, if 𝑣𝑘(𝐗) < 𝑣𝑘−1(𝐗), 𝐗 ∈ 𝛺0

𝜀 𝛿𝜀𝐺𝑐𝛥𝑣𝑘 ≥ 8
3
𝑣𝑘𝑊 (𝐄(𝐮𝑘)) + 4

3
𝑐𝚎(𝐗, 𝑡𝑘) −

𝛿𝜀𝐺𝑐
2𝜀

, if 𝑣𝑘(𝐗) = 1 or 𝑣𝑘(𝐗) = 𝑣𝑘−1(𝐗) > 0, 𝐗 ∈ 𝛺0

𝑣𝑘(𝐗) = 0, if 𝑣𝑘−1(𝐗) = 0, 𝐗 ∈ 𝛺0

(18)
⎩

∇𝑣𝑘 ⋅ 𝐍 = 0, 𝐗 ∈ 𝜕 𝛺0
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with initial conditions 𝐮(𝐗, 0) ≡ 𝟎 and 𝑣(𝐗, 0) ≡ 1, where ∇𝑣𝑘 = ∇𝑣(𝐗, 𝑡𝑘), 𝛥𝑣𝑘 = 𝛥𝑣(𝐗, 𝑡𝑘), 𝜂𝜀 = 𝑜(𝜀) is a positive constant, and where

𝑐𝚎(𝐗, 𝑡) = 𝛽2
√

2 + 𝛽11 − 𝑣

⎛

⎜

⎜

⎜

⎝

1 −

√

2
1

1

⎞

⎟

⎟

⎟

⎠

𝑊 (𝐄(𝐮)). (19)

In (18) and (19),

⎧

⎪

⎨

⎪

⎩

1 = t r 𝐒 = 3𝜅 𝑣2t r 𝐄
2 =

1
2
t r 𝐒2𝐷 = 2𝜇2𝑣4

(

t r 𝐄2 − 1
3
(t r 𝐄)2

) ,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛽1 =
1
𝑠𝚑𝚜

𝛿𝜀
𝐺𝑐
8𝜀

−
2𝚑𝚜

3𝑠𝚑𝚜

𝛽2 =

√

3(3𝑠𝚑𝚜 − 𝑠𝚝𝚜)
𝑠𝚑𝚜𝑠𝚝𝚜

𝛿𝜀
𝐺𝑐
8𝜀

+
2𝚑𝚜
√

3𝑠𝚑𝚜
−

2
√

3𝚝𝚜

𝑠𝚝𝚜

,

and

𝛿𝜀 =

(

𝑠𝚝𝚜 + (1 + 2
√

3) 𝑠𝚑𝚜
(8 + 3

√

3) 𝑠𝚑𝚜

)

3𝐺𝑐
16𝚝𝚜𝜀

+ 2
5
, 𝚝𝚜 =

𝑠2
𝚝𝚜

2𝐸
, 𝚑𝚜 =

𝑠2
𝚑𝚜

2𝜅
. (20)

The interested reader is referred to the above cited papers for a complete discussion of the theoretical and practical features of
the phase-field model (17)–(18) with (19). Here, we wish to make three remarks of practical relevance.

First, on their own, the governing Eqs. (17) and (18) are standard second-order PDEs for the displacement field 𝐮𝑘(𝐗) and
the phase field 𝑣𝑘(𝐗). Accordingly, their numerical solution is amenable to a FE staggered scheme in which (17) and (18) are
discretized with finite elements and solved iteratively one after the other at every time step 𝑡𝑘 until convergence is reached. In a
recent contribution, Larsen et al. [6] have shown that the solution pair (𝐮𝜀𝑘, 𝑣𝜀𝑘) computed in such a staggered approach corresponds
in fact to the fields that minimize separately two different functionals. This is exactly the same alternating minimization approach
sed to generate FE solutions for the classical variational phase-field models (8) and (11). The key difference lies in the accounting

of the strength surface  (𝐒) = 0 of the material by (17)–(18).
Second, the phase-field model (17)–(18) reduces identically to the AT1 variational phase-field model (8) with (9)1 by setting

𝑐𝚎(𝐗, 𝑡) = 0 and 𝛿𝜀 = 1. This implies that any existing FE implementation of the AT1 variational phase-field model can be readily
upgraded to the phase-field model (17)–(18) by simply multiplying 𝐺𝑐 with (20)1 and by adding the driving force (19) to the right-
hand side of the Euler–Lagrange equation associated with variations in the phase field 𝑣. FEniCSx and MOOSE implementations of
the phase-field model (17)–(18) are available on GitHub.17,18

Third, over the past six years, a series of simulations [17–19,38,39,66,67,82] for numerous materials, hard and soft, specimen
eometries, and loading conditions have shown that the predictions generated by the phase-field model (17)–(18), as well as by its

finite-elasticity version, are in qualitative and quantitative agreement with experimental observations on where and when fracture
nucleates and propagates in nominally elastic brittle materials at large.

It thus appears that a correct way to incorporate the strength into a phase-field model consists in adding a driving force to the
𝑣-equation, one tailored to the given strength surface  (𝐒) = 0. What the corresponding sharp model (𝜀 ↘ 0) should look like for
his class of phase-field models, if it even exists, is at present an open question.

What about the modeling of fracture nucleation beyond the basic setting of elastic brittle materials?
Actual materials are, of course, not purely elastic. They dissipate energy by deformation, typically via viscous and/or plastic

rocesses, and not just by the creation of surface when fracturing. A review of experimental observations [84], akin to that presented
in Section 2 above, reveals that once again fracture nucleation in dissipative materials critically depend on: (I) the property that
describes the mechanics of deformation, (II) the property that describes the mechanics of strength, and (III) the toughness. This
suggests that the same type of formulations may apply to materials at large and hence that such formulations may lead to a universal
macroscopic theory of fracture. This is an exciting prospect.

In this regard, we note that the loading-history dependence of the mechanics of deformation of dissipative materials has long
been a subject of intense activity in the mechanics community. The same is not true for the loading-history dependence of the
mechanics of strength or of toughness.

By way of an example, Fig. 7 presents a set of experimental results due to Knauss [83] of fracture nucleation in bands, also referred
o as ring specimens, made of a polyurethane elastomer subjected to spatially uniform uniaxial tension applied at different constant
uasi-static stretch rates. The main observation from these experiments is that larger stretch rates lead not only to larger values of
he uniaxial tensile strength 𝑠𝚝𝚜 at which the specimens fracture, but also to larger values of the corresponding stretch 𝜆𝚝𝚜 at fracture.
his makes it plain that the strength of materials that dissipate energy by deformation — in this case, by viscous deformation —
annot be simply characterized by a fixed strength surface  (𝐒) = 0 in stress space. Instead, a more complex characterization, one
hat is loading-history dependent, is required. More studies in this direction would prove invaluable.

17 https://github.com/farhadkama/FEniCSx_Kamarei_Kumar_Lopez-Pamies.
18 https://github.com/hugary1995/raccoon.
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Fig. 7. Classical experimental results due to Knauss [83] for the uniaxial tensile strength 𝑠𝚝𝚜 of a polyurethane elastomer loaded at different constant quasi-static
stretch rates. The data for 𝑠𝚝𝚜 is plotted as a function of the corresponding stretch 𝜆𝚝𝚜 at fracture. The schematic illustrates the type of ring specimens and
loading setup used in the tests.
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