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Abstract
Selective partitioning of amino acids among organelles, cells, tissues, and organs is essential for cellular metabolism and plant 
growth. Nitrogen assimilation into glutamine and glutamate and de novo biosynthesis of most protein amino acids occur in 
chloroplasts; therefore, various transport mechanisms must exist to accommodate their directional efflux from the stroma to 
the cytosol and feed the amino acids into the extraplastidial metabolic and long-distance transport pathways. Yet, Arabidopsis 
(Arabidopsis thaliana) transporters functioning in plastidial export of amino acids remained undiscovered. Here, USUALLY 
MULTIPLE ACIDS MOVE IN AND OUT TRANSPORTER 44 (UMAMIT44) was identified and shown to function in glutamate 
export from Arabidopsis chloroplasts. UMAMIT44 controls glutamate homeostasis within and outside of chloroplasts and in
fluences nitrogen partitioning from leaves to sinks. Glutamate imbalances in chloroplasts and leaves of umamit44 mutants im
pact cellular redox state, nitrogen and carbon metabolism, and amino acid (AA) and sucrose supply of growing sinks, leading to 
negative effects on plant growth. Nonetheless, the mutant lines adjust to some extent by upregulating alternative pathways for 
glutamate synthesis outside the plastids and by mitigating oxidative stress through the production of other amino acids and 
antioxidants. Overall, this study establishes that the role of UMAMIT44 in glutamate export from chloroplasts is vital for con
trolling nitrogen availability within source leaf cells and for sink nutrition, with an impact on growth and seed yield.
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Introduction
Amino acids play a crucial role in the intricate metabolic net
works of plants, which span across various compartments 
within cells. They are the basic constituents of peptides, pro
teins, and enzymes and act as precursors or nitrogen (N) do
nors for the biosynthesis of thousands of other compounds 
fundamental to plant growth and stress response (Tegeder 
and Masclaux-Daubresse 2018; Maeda 2019; Wang et al. 
2019; Huang and Dudareva 2023). Plastids, and especially 
chloroplasts of photosynthetically active source leaves, serve 
as the site of N assimilation and they are also the major loca
tion of de novo synthesis of most proteinogenic amino acids. 
Since (i) all biochemical pathways require the action or pres
ence of amino acids, (ii) amino acids serve as long-distance N 
transport forms from leaves to sinks (e.g. developing leaves 

and seeds) (Tegeder and Hammes 2018), and (iii) amino acids 
function as important signaling molecules in plant physio
logical processes and tolerance to abiotic and biotic stresses 
(Szabados and Savouré 2010; Toyota et al. 2018; Heinemann 
and Hildebrandt 2021), it is essential to understand how spe
cific amino acids are fed into diverse metabolic pathways 
that are competing for N, and how this allocation is 
regulated.

To sustain the function of extra plastidial biochemical 
pathways, chloroplast-synthesized amino acids need first to 
be exported from the stroma to the cytosol across the enve
lope membranes. While the outer envelope membrane al
lows nonspecific movement of amino acids and amines 
through the OUTER ENVELOPE PORIN 16 (OEP16) channel 
(Pohlmeyer et al. 1997; Steinkamp et al. 2000), the inner 
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envelope acts as the barrier for the controlled transport of 
amino acids and other solutes in, and out of, chloroplasts 
(Weber et al. 2005; Fischer 2011). Numerous highly specific 
membrane proteins have been identified that mediate the 
transport of ions and metabolites across the inner envelope 
membrane (Awai et al. 2006; Facchinelli and Weber 2011; 
Kunz et al. 2014; López-Millán et al. 2016; Eisenhut et al. 
2018; Trentmann et al. 2020), yet plastid amino acid (AA) 
transporters remain unexplored, with the exception of the 
CATIONIC AMINO ACID TRANSPORTER PhpCAT from 
petunia (Petunia hybrida) operating in plastidial export of 
aromatic amino acids in petals (Widhalm et al. 2015). 
Although not directly functioning in AA transport, it has 
also been shown that the Arabidopsis (Arabidopsis thaliana) 
DICARBOXYLATE TRANSPORTER DIT2 imports malate into 
the plastids in exchange with glutamate (Renné et al. 2003).

The principal form of N that is assimilated into organic N is 
ammonium. It might be taken up directly from the soil or ori
ginate from nitrate reduction (Liu and von Wirén 2017; 
Tegeder and Masclaux-Daubresse 2018). In the final N assimi
lation step in plastids, ammonium is reduced via the glutam
ine synthetase/glutamate synthase cycle into glutamine and 
glutamate. The N from glutamate is then transferred to a var
iety of carbon precursors, using energy and/or reducing 
equivalents provided by photosynthesis and subsequently 
respiration, to produce other amino acids within the plastid 
(Lawlor 2002; Forde and Lea 2007; Qiu et al. 2020). 
Asparagine, alanine, and proline are the only proteinogenic 
amino acids that are generally synthesized in the cytosol, al
though proline is also produced in chloroplasts under stress 

(Lam et al. 1998; Székely et al. 2008; Rolland et al. 2012; 
Alvarez et al. 2022). Based on the locations of de novo AA 
synthesis, plastidial export of 17 proteinogenic amino acids 
and import of at least 2 cytosolic amino acids are required 
for the generation of proteins/enzymes and other N metabo
lites inside and outside the chloroplasts. However, no chloro
plast AA importers or exporters have been characterized in 
Arabidopsis up to date. Using homology analyses, more 
than 100 putative Arabidopsis AA transporters were identi
fied but their physiological function in AA transport has 
only been demonstrated for relatively few proteins, and these 
are mainly plasma membrane-localized and involved in cellu
lar import (Tegeder and Rentsch 2010; Pratelli and Pilot 2014; 
Tegeder and Masclaux-Daubresse 2018). Nonetheless, mem
bers of the USUALLY MULTIPLE ACIDS MOVE IN AND OUT 
TRANSPORTER (UMAMIT) family have been shown to facili
tate bidirectional transport or cellular efflux of specific amino 
acids (as well as auxin and glucosinolates) across the plasma 
membrane or tonoplast (Ladwig et al. 2012; Ranocha et al. 
2013; Müller et al. 2015; Besnard et al. 2016, 2018; Zhao 
et al. 2021; Xu et al. 2023).

In this study, we aimed to discover missing players in AA 
import into, or export from, Arabidopsis chloroplasts and re
solve their physiological function. UMAMIT44 was identified 
as a potential candidate for plastidial export (see above) since 
localization prediction programs suggested its targeting of 
chloroplasts (Supplementary Table S1). Membrane localiza
tion was performed with UMAMIT44-green fluorescent pro
tein (GFP) fusion proteins, demonstrating that UMAMIT44 is 
localized to the chloroplast. Expression studies support the 

IN A NUTSHELL
Background: Plants produce amino acids in chloroplasts, and membrane transporters are needed to move these ami
no acids to the cytosol. In the cytosol, the amino acids are used for protein production and other biochemical path
ways within leaf cells and to supply nitrogen to growing sink organs, such as seeds. However, despite their importance, 
little is known about these plastidial exporters.

Questions: What is the role of chloroplast amino acid (AA) transporters in leaf metabolism and long-distance trans
port of nitrogen? What is their physiological importance?

Findings: We found that Arabidopsis thaliana USUALLY MULTIPLE ACIDS MOVE IN AND OUT TRANSPORTER 44 
(UMAMIT44) localizes to the chloroplast envelope and regulates plastidial glutamate export and glutamate homeo
stasis within and outside of chloroplasts. Decreased export and subsequent cellular imbalances in umamit44 mutants 
impact the cellular redox state and affect both leaf nitrogen and carbon metabolism as well as the long-distance de
livery of nitrogen and carbon to growing organs. Observed changes lead to decreased mutant growth and seed yield. 
Nevertheless, umamit44 plants adapt to some extent by accelerating alternative pathways for glutamate synthesis 
outside of chloroplasts and by producing other amino acids and antioxidants to alleviate oxidative stress. Overall, 
we demonstrate that UMAMIT44 is an essential player in plastidial glutamate export and vital for plant growth 
and development.

Next steps: Transcriptome, 13CO2 labeling, and metabolic flux analyses are needed to determine the interrelationship 
between plastidial AA export, cellular metabolism, and sink nitrogen supply. In addition, the identification of further 
chloroplast AA transport systems is a “must-do” as our understanding of the kind of transporters that mediate chloro
plast efflux or influx of amino acids, and how they affect metabolic networks, metabolite levels, and sink nitrogen 
nutrition, remains in its infancy.
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presence of the transporter in plastids throughout the plant 
but at higher levels in green tissues. Transport studies in 
Xenopus oocytes, AA profiles, and phenotypic analyses of 2 
mutant lines resolved that UMAMIT44 exports glutamate 
from the chloroplasts and that its function is crucial for plant 
growth. Physiological, biochemical, and molecular analyses of 
umamit44 mutant lines further support that glutamate im
balances inside and outside the plastids affect cellular redox 
status, result in complex adjustments in plastidial and extra
plastidial N and carbon metabolism, and influence the 
amount of N allocated to growing sinks. Overall, it is con
cluded that UMAMIT44 function in glutamate export from 
chloroplasts is essential for regulating N availability for meta
bolic pathways within source leaf cells as well as for 
source-to-sink N partitioning and seed yield.

Results
UMAMIT44 is localized to plastids throughout 
the plant
When screening putative Arabidopsis AA transporters from 
different gene families (Tegeder and Masclaux-Daubresse 
2018) for the presence of chloroplast transit peptides, nu
merous prediction programs identified UMAMIT44 
(At3g28130) as a potential chloroplast/plastid membrane 
transporter (Supplementary Table S1), including Predotar 
(Small et al. 2004), WoLF PSORT (Horton et al. 2007), and 
LOCALIZER (Sperschneider et al. 2017). To resolve the mem
brane localization in planta, UMAMIT44-green fluorescence 
protein (GFP) fusions were transiently expressed in 
Nicotiana benthamiana protoplasts and leaf cells, respective
ly. Using chloroplast autofluorescence as control, microscopy 
imaging showed that UMAMIT44 is indeed localized to the 
chloroplasts (Fig. 1A). The ring-shaped GFP pattern further 
suggests UMAMIT44 localization to the chloroplast envelope 
(c.f. Oikawa et al. 2003; Kunz et al. 2014; Zhang et al. 2018; 
Yuan et al. 2021). Nevertheless, further work is needed to 
demonstrate functionality of the localization constructs 
used in this study.

Expression analysis was performed by reverse transcription 
polymerase chain reaction (RT-PCR) and RT-qPCR of 
Arabidopsis plants at the vegetative stage (Fig. 1B). While 
UMAMIT44 transcripts were detected throughout the plant, 
expression was much higher in green tissues (i.e. source and 
sink leaves) compared to roots pointing, together with the 
protein localization, to a major role of UMAMIT44 in chloro
plast transport processes.

UMAMIT44 function affects levels of specific amino 
acids and glutathione in chloroplasts and whole 
leaves
To determine the physiological role of UMAMIT44 in planta, 
2 homozygous umamit44 mutant lines with T-DNA inser
tions in the 3rd intron (umamit44-1) and 1st exon 
(umamit44-2) were identified (Fig. 1C). No UMAMIT44 

transcripts were detected in leaves of both mutants 
(Fig. 1C) indicating a transporter knockout. To resolve if 
and how UMAMIT44 function in the chloroplast is related 
to AA transport and if it affects AA homeostasis in the mu
tants, free AA levels were measured in chloroplasts versus 
whole leaves (Fig. 2, Supplementary Table S2). While the 
amounts of total amino acids were unchanged in umamit44 
compared to wild-type (WT) chloroplasts (Fig. 2A), gluta
mate, glutamine, proline, and alanine levels were significantly 
increased in both lines (Fig. 2B). At the whole leaf level, total 
amino acids were reduced in umamit44 plants (Fig. 2C), 
which was mainly due to a decrease in glutamate, glutamine, 
and proline (Fig. 2D, Supplementary Table S2). In addition, 
leaf amounts of aspartate and lower-abundant leucine and 
isoleucine were reduced (Supplementary Table S2). 
Together, these data suggest that, either directly or indirectly, 
UMAMIT44 plays a role in regulating plastidial and extraplas
tidial amino acid levels.

We further analyzed the concentrations of the tripeptide 
glutathione (GSH) which consists of cysteine, glutamate, 
and glycine and exhibits strong antioxidant properties. 
Under high oxidative stress, GSH functions as a scavenger 
for reactive oxygen species (ROS) to reduce the harmful ef
fects of free radicals, and it catalyzes the detoxification of 
hydrogen peroxide via GSH peroxidase (Noctor et al. 2012; 
Bela et al. 2015). While levels of reduced GSH (GSHred) 
were not changed in mutants versus in the wild type, in
creased amounts of oxidized GSH (GSSG; glutathionedisul
fide) were detected in both umamit44 chloroplasts and 
whole leaves (Fig. 2, E and F), indicating that the mutant 
leaves experience oxidative stress, potentially caused by 
changes in plastidial and/or extra plastidial AA levels 
(Fig. 2, A to D).

UMAMIT44 is a glutamate exporter, and its function 
is essential for plant growth
To resolve if the observed accumulation of specific amino 
acids in umamit44 chloroplasts (Fig. 2B) is directly linked 
to UMAMIT44 transport function, efflux studies were per
formed in Xenopus oocytes that expressed UMAMIT44 
cRNA (Fig. 3, A and B). Oocytes, that were initially injected 
with either UMAMIT44 cRNA or water (control), were in
jected with specific radiolabeled amino acids, and oocyte 
AA levels were measured at injection and after 30 min. No 
differences in AA levels were found in control oocytes be
tween 0 and 30 min and UMAMIT44-expressing oocytes at 
0 min (Fig. 3A), indicating functional oocytes without sub
strate leakage. However, oocytes expressing the transporter 
showed a significant decrease in labeled glutamate after 
30 min compared to the controls, supporting glutamate ef
flux through UMAMIT44. No differences in AA levels were 
observed after 30 min between UMAMIT44-expressing and 
control oocytes when labeled glutamine, proline, alanine, 
or glycine were injected suggesting that these amino acids 
are not substrates for UMAMIT44 (Fig. 3B). Overall, the 
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Figure 1. Subcellular localization and organ expression of UMAMIT44. A) Subcellular localization of UMAMIT44 in Nicotiana benthamiana leaf 
protoplasts (top images) and leaf cells (bottom). Left images, transient expression of UMAMIT44-GFP fusion proteins. Middle, chloroplast autofluor
escence (control). Right, merged images. Results show that both the shorter (At3g28130.1; top) and longer versions (At3g28130.2; bottom) of 
UMAMIT44 are localized to the chloroplasts. Results were confirmed in at least 2 independent experiments for protoplasts and leaf cells, respect
ively. Scale bars = 20 µm. B) (Left) UMAMIT44 expression in source (SoL) and sink leaves (SiL), and roots (Rt) of 4-wk-old WT Arabidopsis plants 
using RT-PCR. ACTIN2 (ACT2) was used as control for equal amounts of RNA. (Right) RT-qPCR analysis of UMAMIT44 expression (n = 4). C) 
UMAMIT44 expression analysis in umamit44-1 and umamit44-2 mutant lines. (Left) Positions of T-DNA insertions in the 2 mutants. Boxes and lines 
represent exon and intron regions, respectively. Inverted triangles indicate the locations of T-DNA insertions (+865 nucleotides downstream of the 
start codon/ATG in umamit44-1 and +151 nucleotides for umamit44-2). Corner arrows indicate primer positions: GS1 to GS4 primers were used for 
mutant screening, and GS5 and GS6 for RT-PCR. (Right) UMAMIT44 expression in mutant and WT source leaves using RT-PCR. UBIQUITIN11 
(UBQ11) was amplified as an internal control for equal amounts of RNA. Error bars depict ± SD. See Supplementary Table S3 for primer information.
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transport studies (Fig. 3, A and B) together with the subcel
lular localization (Fig. 1A), expression analyses (Fig. 1, B and 
C) and the accumulation of glutamate in the mutant chlor
oplasts (Fig. 2B) support that UMAMIT44 exports glutamate 
from green plastids.

Phenotypic analyses were performed to determine the im
portance of UMAMIT44 function in plastidial glutamate ex
port for plant growth. Results showed a significant decrease 
in leaf surface area and a reduction in shoot biomass in the 
umamit44 lines (Fig. 3, C and D).

The lack of UMAMIT44 function in glutamate efflux 
leads to a rebalancing of n metabolism inside 
and outside the chloroplasts
Glutamine, proline, and alanine are not exported from oo
cytes by UMAMIT44 (Fig. 3B) but accumulate in mutant 
chloroplasts besides glutamate (Fig. 2B). Since some of the 
piled-up glutamate may be channeled into plastidial glutam
ine or proline synthesis, expression analysis of respective syn
thesis genes, that have been reported to be transcriptionally 
regulated, was performed. Results showed an upregulation of 

Figure 2. Analysis of AA and GSH concentrations in chloroplasts and whole leaves of umamit44 and WT plants. A) Total free AA content in chlor
oplasts (n = 5). B) Chloroplast glutamate (Glu), glutamine (Gln), proline (Pro), and alanine (Ala) levels (n = 3 to 4). C) Total free AA content in leaves 
(n = 4 to 5). D) Leaf Glu, Gln, Pro, and Ala levels (n = 4 to 7). E and F) Reduced (GSHred) and oxidized (GSSG) GSH in (E) chloroplasts (n = 3 to 5; 
note the y-axis break) and (F) leaves (n = 3 to 5). Data points superimposed over the bar graphs represent an individual plant. Error bars depict ± SD, 
asterisks indicate levels of significant differences from WT (*P < 0.05; **P < 0.01; ***P < 0.001), and numbers above the columns describe the per
centage change in umamit44 versus WT. DW, dry weight.
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GLUTAMINE SYNTHETASE 2 (GLN2) and no change in 
GLUTAMATE SYNTHASE 1 (GLU1) and GLU2 transcript levels 
in umamit44 versus WT leaves (Fig. 4A). Further, expression 
of PYRROLINE-5-CARBOXYLATE SYNTHASE 1 (P5CS1) encod
ing for the plastidic/cytosolic pyrroline-5-carboxylate syn
thase essential for proline synthesis was significantly 
increased. Although de novo synthesis of alanine occurs in 
the cytosol, in plastids it may be produced from cysteine in
volving NIFS-LIKE CYSTEINE DESULFURASE 2 (NFS2), a cyst
eine desulfurase gene, but its expression was not changed 
(Fig. 4B). In line with the observed high amounts of total 
GSH (Fig. 2E), transcript levels of γ-GLUTAMYLCYSTEINE 
SYNTHETASE 1 (GSH1) were upregulated (Fig. 4B).

Decreased export of glutamate from umamit44 plastids 
and its reduced availability in the mutant cytosol (Fig. 2, B 
and D; Supplementary Table S2) may, to some extent, be 

counterbalanced by other yet unknown glutamate efflux sys
tems or by DiT2, a dicarboxylate transporter that imports 
malate in exchange with glutamate (Renné et al. 2003). 
However, DiT2 expression was not altered (Fig. 4C). 
Alternatively, increased chloroplast export of glutamine or 
other amino acids such as phenylalanine may occur which 
can then be used for extra plastidial glutamate production. 
A potential candidate facilitating this step is Arabidopsis 
CATIONIC AMINO ACID TRANSPORTER 7 (CAT7), the clos
est homolog to petunia PhpCAT plastidial exporter for 
phenylalanine and other aromatic amino acids (Widhalm 
et al. 2015). Transcript levels of CAT7 were upregulated in 
umamit44 leaves (Fig. 4C).

It is generally assumed that subcellular AA levels may be 
monitored by sensors triggering complex signaling cascades 
and adjustments in metabolic pathways, but the underlying 

Figure 3. Transport studies in Xenopus oocytes and growth analysis of umamit44 mutant plants. A and B) Efflux of amino acids from oocytes ex
pressing UMAMIT44. Oocytes were injected with either UMAMIT44 cRNA or water (control) 4 d before the injection with 5 mM of radiolabeled (A) 
glutamate, (B) glutamine, proline, alanine, and glycine (n = 10). Levels of amino acids in oocytes were measured immediately after injection (0′) and 
after 30 min (30″). Error bars depict ± SD, asterisks show levels of significant differences from WT (***P < 0.001), and n.s. indicates statistically non
significant differences. The number above the bracket describes the percentage change in glutamate levels in oocytes injected with water versus 
UMAMIT44 cRNA. C) Rosette leaf area (n = 4 to 6) and D) rosette biomass (DW, dry weight; n = 12) of 4-wk-old mutant and WT plants. Data points 
superimposed over the bar graphs represent individual plants. Error bars depict ± SD, asterisks indicate levels of significant differences from WT 
(*P < 0.05; **P < 0.01; ***P < 0.001), and numbers above the columns describe the percentage change in umamit44 versus WT.
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mechanisms remain elusive. Yet, recent work suggests a role 
of membrane-localized glutamate receptor-like (GLR) chan
nels in glutamate signaling (Simon et al. 2023), and expres
sion analysis revealed significant increases in plastidial 
GLR3.4 and GLR3.5.2 transcript levels in umamit44 leaves 
(Fig. 4D).

Enhanced catabolism or deamination reactions of amino 
acids, or decreased glutamine synthesis outside the uma
mit44 plastids may serve as a compensatory mechanism to 
mitigate the deficit of cytosolic glutamate. Results showed 
that GLN1; 2 and GLN1; 3, encoding products important for 
cytosolic N re-assimilation, were downregulated, and expres
sion of glutamate dehydrogenase 1 (GDH1), encoding a prod
uct implicated in the reversible conversion of glutamate to 
2-oxoglutarate and ammonia outside the plastids, was upre
gulated in umamit44 leaves (Fig. 4E). Further, transcript levels 
of ASPGB1, encoding a product important for deamination of 
asparagine and the release of ammonium for re-assimilation, 
were increased (Fig. 4F). No change in mutant leaf expression 

was observed for the cytosolic proline synthesis gene P5CS2, 
while unchanged and decreased transcript levels were de
tected for P5CDH or ProDH2, which encode products in
volved in converting proline to glutamate (Fig. 4F). 
Expression of genes encoding extraplastidial alanine amino
transferases, functioning in the reversible conversion of pyru
vate and glutamate to alanine and 2-oxoglutarate, were 
either not changed (AlaAT1) or upregulated (AlaAT2) in mu
tant leaves compared to in WT leaves (Fig. 4F), and no 
changes were observed for GSH2, encoding a product in
volved in cytosolic GSH synthesis or for plasma membrane 
receptor genes GLR1.4, GLR3.2, and GLR3.3 (Fig. 4, F and G).

The umamit44 growth phenotype can be recovered 
by feeding specific amino acids
Mutant and WT plants were grown on media supplied with 
individual amino acids to analyze if the umamit44 growth 
phenotype can be complemented by exogenous application 

Figure 4. Expression analysis of genes involved in plastidial and extraplastidial nitrogen (N) metabolism, transport and signaling. A to D) Leaf ex
pression of genes encoding products involved in plastidic (A) N assimilation (GLN2; GLUTAMATE SYNTHASE GLU1, and GLU2), B) synthesis of the 
amino acids (AA) proline and alanine, and GSH synthesis (P5CS1, PYRROLINE-5-CARBOXYLATE (P5C) SYNTHETASE 1; NFS2, NIFS-LIKE CYSTEINE 
DESULFURASE 2 involved in removal of sulfur from cysteine to produce L-alanine; GSH1, γ-GLUTAMYLCYSTEINE SYNTHETASE 1), C) AA efflux 
(DiT2.1, DICARBOXYLATE TRANSPORTER 2.1; CAT7, CATIONIC AMINO ACID TRANSPORTER 7), and D) glutamate signaling through inner envelope- 
localized GLRs channels GLR3.4 and GLR3.5.2. E to G) Expression of genes encoding products involved in extraplastidial (E) N re-assimilation 
(GLUTAMINE SYNTHETASE GLN1; 2 and GLN1; 3; GDH1, GLUTAMATE DEHYDROGENASE 1), (F) proline, alanine, and GSH synthesis (P5CS2, 
PYRROLINE-5-CARBOXYLATE (P5C) SYNTHETASE 2; ALANINE AMINOTRANSFERASE AlaAT1 and AlaAT2; GSH2, γ-GLUTAMYLCYSTEINE 
SYNTHETASE 2), and asparagine and proline catabolism (ASPARAGINASE B1, ASPGB1; ProDH2, PROLINE DEHYDROGENASE 2; P5CDH, P5C 
DEHYDROGENASE), and (G) glutamate signaling through plasma membrane-localized GLRs (GLR1.4, GLR3.2, GLR3.3). For primer information see 
Supplementary Table S3. (n = 3 to 7). Data points superimposed over the bar graphs represent individual plants. Error bars depict ± SD; asterisks 
indicate levels of significant differences from WT (*P < 0.05; **P < 0.01; ***P < 0.001).
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of glutamate or amino acids that are generally found in rela
tively high concentrations in leaf cells and can be used to 
generate glutamate outside the plastids (Fig. 5). Like for soil- 
grown plants (Fig. 3D), results showed a significant reduction 
in shoot biomass of 21% to 28% for the mutant lines grown 
on control medium (Fig. 5). When fed with glutamate, glu
tamine, or proline, similar biomass was obtained for uma
mit44 and WT plants, demonstrating that external supply 
of these amino acids fully restores mutant growth to WT le
vel. No effect on mutant growth was found for aspartate and 
alanine, while some growth recovery was observed for as
paragine as indicated by only a 9% to 11% decrease in uma
mit44 shoot biomass.

Carbon metabolism is altered in umamit44 mutants
We further examined if and how UMAMIT44 function in 
chloroplasts affects interconnected carbon (C) metabolism 
(Fig. 6, A to I). First, gas exchange measurements were per
formed, and results showed that photosynthetic rates were 
significantly decreased in the umamit44 mutant lines 
(Fig. 6A). Absorbed light energy is mainly used to drive 
photochemistry, but some excitation energy is dissipated 
as heat in nonphotochemical quenching (NPQ) or emitted 
as fluorescence radiation to protect against adverse effects 
of high light intensity. No differences were observed for 
Fv/Fm (variable versus maximum chlorophyll a fluorescence 
yield) between umamit44 and WT plants (Fig. 6B), and 
NPQ was generally not changed (Fig. 6C). When analyzing 
the actual quantum efficiency of electron flux through PSII 
(ΦPSII) it was generally lower in the mutants (Fig. 6D). 
Together with the gas exchange experiments (Fig. 6A), this 
suggests an effect on PSII photochemistry in umamit44 
plants resulting in decreased efficiency of photochemical re
actions and ultimately reduced leaf C fixation.

Analysis of fixed leaf C pools showed no change for sucrose 
(Fig. 6E) but a decrease in glucose levels in umamit44 leaves 
(Fig. 6F). Besides directed C allocation toward sucrose and 
glucose, relatively large amounts of photosynthetically fixed 
C is channeled toward the shikimate pathway to produce 
aromatic amino acids including phenylalanine (Schenck 
and Maeda 2018; Lynch and Dudareva 2020) and down
stream derivatives such as anthocyanin and other flavonoids 
that act as free radical scavengers against ROS (Heim et al. 
2002; Das and Roychoudhury 2014; Kovinich et al. 2015). 
Levels of anthocyanin and other flavonoids were significantly 
higher in umamit44 leaves compared to in WT leaves (Fig. 6, 
G and H). In addition, expression of CHALCONE SYNTHASE 
(CHS), which encodes for the first committed enzyme and 
rate-limiting step in flavonoid biosynthesis (Feinbaum and 
Ausubel 1988; Grotewold 2006; Saito et al. 2013), as well as 
FLAVONOL SYNTHASE 3 (FLS3), encoding a product involved 
in downstream formation of flavonols (Preuß et al. 2009), 
were upregulated (Fig. 6I). Levels of hydrogen peroxide 
(H2O2), a major ROS that accumulates under stress, showed 
no changes in umamit44 plants (Fig. 6J). Together the results 
suggest that umamit44 leaves experience oxidative stress and 

use flavonoids as a protection mechanism (Fig. 6, G to J). 
Flavonoid synthesis from phenylalanine also results in the re
lease of ammonium that can be used for N re-assimilation 
into glutamate (see Fig. 8).

UMAMIT44 function affects source-to-sink transport 
of N and C, and sink development
It was further examined if decreased export of glutamate 
from umamit44 chloroplasts and, consequently, reduced 
cytosolic levels of major amino acids (see Fig. 2, A to D; 
Supplementary Table S2) affect source-to-sink transport of 
amino acids via the phloem (Fig. 7, A to C). First, expression 
of transporter genes involved in leaf phloem loading of ami
no acids was analyzed, and results resolved significantly re
duced transcript levels for AMINO ACID PERMEASE 8 
(AAP8) and CAT6 in umamit44 leaves (Fig. 7A), suggesting 
decreased AA export from leaves and long-distance trans
port in the phloem. This was further examined by leaf 
phloem exudate analyses demonstrating a decrease in total 
AA levels in umamit44 exudates, which was mostly due to re
duced glutamate, glutamine, proline, alanine, and asparagine 
levels (Fig. 7, B and C; Supplementary Table S2). In addition, 
sucrose levels in phloem exudates of umamit44 leaves were 
significantly reduced (Fig. 7D). Together, the changes in N 
and C allocation to sinks resulted in significantly decreased 
seed yields of 21% and 24%, dependent on the umamit44 
line (Fig. 7E), and a reduction in seed protein content by 
up to 25% (Fig. 7F).

Discussion
Amino acids are fundamental components of complex plant 
metabolic networks involving numerous cellular compart
ments. As plastids are the location of N assimilation and de 
novo biosynthesis of most proteinogenic amino acids, mem
brane transporters are required to regulate their export from 
the stroma to the cytosol to accommodate numerous sub
cellular biochemical pathways, as well as the N demand of 
sinks (The et al. 2021). In the current study, an Arabidopsis 
plastidial AA transporter, called UMAMIT44, was identified 
(Fig. 1). UMAMIT44 localization (Fig. 1A) and transport stud
ies (Fig. 3, A and B) as well as umamit44 mutant analyses 
showing accumulation of glutamate in umamit44 chloro
plasts (Fig. 2B) and decreased glutamate amounts at whole 
leaf level (Fig. 2D) support that UMAMIT44 transports gluta
mate from the chloroplasts to the cytosol via the plastidial 
envelope. Since the chloroplast outer envelope is not select
ive for AA movement (Pohlmeyer et al. 1997; Steinkamp et al. 
2000), it is reasonable to assume that UMAMIT44 regulates 
glutamate efflux across the inner envelope membrane. 
Additionally, our data demonstrate that UMAMIT44 is an es
sential transporter, since reduced plastidial export of gluta
mate and its limited availability for extraplastidial 
metabolic pathways (Fig. 2, C and D) and for source-to sink 
transport (Fig. 7, B and C) result in strongly reduced 
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Figure 5. Growth phenotype and shoot biomass of umamit44 plants cultured on media supplemented with specific amino acids. WT plants and 
umamit44-1 (44-1) and umamit44-2 (44-2) lines were grown on normal MS medium (control) or on MS media supplemented with glutamate (50 mM 

Glu), glutamine (25 mM Gln), proline (25 mM Pro), aspartate (10 mM Asp), asparagine (10 mM Asn), or alanine (25 mM Ala). Plants were harvested 
after 14 d of growth, pressed between two layers of transparent foil, imaged using a flatbed scanner, and then used for rosette biomass analysis (DW, 
dry weight) (n = 8 to 15). Data points superimposed over the bar graphs represent individual plants. Error bars depict ± SD, asterisks indicate levels 
of significant differences from WT (*P < 0.05; **P < 0.01; ***P < 0.001), and numbers above the columns describe the percentage change in uma
mit44 versus WT. Scale bars = 1 cm.
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Figure 6. Analyses of photosynthetic parameters, carbon metabolites and other factors related to oxidative stress. A) Leaf photosynthetic rate 
(n = 6 to 7). B-D) Analyses of chlorophyll fluorescence parameters in umamit44 lines, WT (control) and keaD1 plants (control; double mutant 
line of inner-envelope K+ efflux antiporters KEA1 and KEA2, Kunz et al. 2014). Results are shown as box plots, with the line within each box repre
senting the median and the minimum and maximum values being indicated at the end of the lower and upper whiskers, respectively (n = 6 to 12). 
B) Maximum quantum efficiency of photosystem (PS) II (Fv/Fm). C) NPQ. D) Photochemical efficiency of PSII (ФPSII). E) Leaf sucrose levels (n = 5). 
F) Leaf glucose levels (n = 5 to 7). G) Leaf anthocyanin (n = 5 to 7) and (H) other flavonoids (n = 6). I) Expression analysis of genes encoding pro
ducts involved in flavonoid biosynthesis (n = 3 to 5). J) Hydrogen peroxide (H2O2) (n = 6). Data points superimposed over the bar graphs represent 
individual plants. Error bars depict ± SD, asterisks indicate levels of significant differences from WT (*P < 0.05; **P < 0.01; ***P < 0.001), and numbers 
above the columns describe the percentage change in umamit44 versus WT.
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vegetative growth of umamit44 lines (Fig. 3, C and D). The 
growth phenotype can be recovered by externally supplied 
glutamate (Fig. 5) further supporting the shortage of cytosol
ic glutamate in the mutants for downstream physiological 
processes and that UMAMIT44 is a key player in maintaining 
glutamate homeostasis.

Nevertheless, since the knockout in UMAMIT44 is not le
thal, other transporters may move some glutamate to the 

cytosol (Renné et al. 2003; Figs. 4C and 8). Additionally, uma
mit44 plants may compensate, at least to some extent, for the 
loss of UMAMIT44 function in glutamate export by generat
ing increased amounts of amino acids that can be used for 
glutamate production outside the chloroplasts, such as glu
tamine, proline, and alanine (c.f. Hildebrandt et al. 2015
and within). Glutamine restores umamit44 growth to normal 
when fed to the mutants (Fig. 5) and seems to be the major 

Figure 7. Analysis of source-sink transport of nitrogen and carbon, seed yield and seed protein levels. A) Expression analysis of plasma membrane- 
localized AA phloem loaders using RT-qPCR (n = 3 to 5). See Supplementary Table S3 for primer information. B to D) Analysis of leaf exudates. B) 
Total free AA (n = 7). C) Individual AA (n = 4 to 7). D) Sucrose (n = 7 to 8). E) Seed yield (n ≥ 37). Results are shown as violin plots, with the bold line 
in the plot representing the median, and the lower and upper dashed lines the first and third quartile, respectively. F) Total soluble protein in dry 
seeds (n = 4 to 5). Data points superimposed over the bar graphs represent individual plants. Error bars depict ± SD, asterisks indicate levels of sig
nificant differences from WT (*P < 0.05; **P < 0.01; ***P < 0.001), and numbers above the columns describe the percentage change in umamit44 
versus WT.
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player in warranting glutamate availability in the umamit44 
cytosol via 2 strategies. First, higher amounts of glutamine 
are produced in the umamit44 chloroplasts, exported, and 
used for cytosolic glutamate production, most likely via as
paragine which also partially recovers the growth phenotype 

of umamit44 plants (Figs. 5 and 8). This prediction is in agree
ment with the (i) upregulation of the plastidial GLN2 
(Fig. 4A), (ii) increased glutamine chloroplast levels 
(Fig. 2B) and (iii) decreased whole leaf and phloem glutamine 
levels (Figs. 2, D and 7C), as well as with (iv) decreased leaf 

Figure 8. Model of plastidial and extraplastidial nitrogen metabolism and transport processes in leaves of umamit44 lines. The loss of UMAMIT44 
function in glutamate (Glu) export from chloroplasts causes accumulation of Glu in plastids and subsequently its decreased availability outside the 
plastids/at whole leaf level. While some Glu may still be moved out of chloroplasts via DiT2 or by a yet unknown Glu efflux system, the Glu imbalance 
results in numerous adjustments to ensure continuation of umamit44 chloroplast function, cellular metabolism, nitrogen (N) allocation, and 
source-to-sink transport of amino acids. Within the chloroplasts, N assimilation continues, and Glu is channeled into increased glutamine (Gln) 
synthesis as well as higher production of proline (Pro) and GSH, the latter 2 mitigating oxidative damage. On the other hand, increased plastid levels 
of alanine (Ala) seem to originate from its increased extraplastidial synthesis and chloroplast import. No changes in phenylalanine (Phe) levels in 
chloroplasts and whole leaves of mutants, increased expression of the putative Phe exporter gene CAT7 and higher extraplastidial flavonoid synthesis 
support that Glu is also used to produce more Phe for increased production of flavonoids, additionally functioning in oxidative stress response. 
Changes in cytosolic Glu or the N status and signaling may involve Glu receptor-like (GLR) ion channels leading to the observed adjustments in 
N (and C) metabolism and transport. The decreased availability of Glu for physiological processes outside the chloroplasts is alleviated by (i) de
creased Glu usage for cytosolic N re-assimilation and Gln synthesis through glutamine synthetase1 (encoded by GLN1; 2 and GLN1; 3), as well as for 
proline synthesis and (ii) increased N re-assimilation and direct Glu production via Glu dehydrogenase GDH1. Ammonia (NH3) for re-assimilation 
may originate from multiple sources including from Phe used for flavonoid synthesis as well as Gln. Higher amounts of plastid Gln are exported by an 
unknown transporter and used for cytosolic Glu production, most likely via asparagine (Asn) and its deamination. The lack of UMAMIT44-mediated 
Glu export from chloroplasts not only results in a complex rebalancing of source N (and C) metabolism, but also affects phloem loading of amino 
acids and sink N supply. Arrows with circles indicate transporters and “X” refers to knockout of UMAMIT44. Upward arrows indicate upregulation or 
increases, downward arrows downregulation or decreases, and double-headed arrows no change. Question marks refer to yet unknown transporters. 
NH4

+, ammonium; Asp, aspartate; Cys, cysteine; Gly, glycine. For specific genes see Supplementary Table S3.
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aspartate amounts (Supplementary Table S2), (v) upregula
tion of expression of ASPGB1 associated with deamination 
of asparagine (Fig. 4F), and (vi) reduced levels of asparagine 
in leaf phloem exudates (Supplementary Table S2). Second, 
re-assimilation of ammonium released from asparagine and 
other metabolic pathways generally occurs through cytosolic 
glutamine synthetases using glutamate as a substrate (c.f. Xu 
et al. 2012; Hildebrandt et al. 2015; Fig. 8). However, in uma
mit44 leaves, GLN1 genes were downregulated while GDH1 
was significantly upregulated suggesting (i) that cytosolic 
glutamine synthesis is decreased to preserve glutamate avail
ability for other essential physiological processes and (ii) that 
some re-assimilation occurs via glutamate dehydrogenase to 
directly produce additional glutamate for cellular metabol
ism (Fig. 8; Masclaux-Daubresse et al. 2010; Gaufichon et al. 
2016 and ref within). Increased amounts of ammonium for 
N re-assimilation into glutamate also derive from deamin
ation of phenylalanine that is used toward enhanced flavon
oid synthesis in umamit44 leaves (Figs. 6, G to I, and 8). Future 
experiments will need to address if adjustments in other 
catabolic pathways also participate in metabolic plasticity 
and formation of glutamate outside of the umamit44 chlor
oplasts and to identify further interconnected metabolic pro
cesses, for example by using transcriptomics (Krouk et al. 
2010; Contreras-López et al. 2022; Durand et al. 2023; 
Wang et al. 2023), and crucial 13CO2 labeling (Arrivault 
et al. 2017; Treves et al. 2022; Xu et al. 2022) and metabolic 
flux analyses (Allen et al. 2009; Ma et al. 2014; Hildebrandt 
et al. 2015; Lynch and Dudareva 2020). At least alanine 
does not provide a main route for alternative glutamate pro
duction as it is unable to recover the umamit44 growth 
phenotype (Fig. 5). De novo biosynthesis of alanine takes 
place outside the plastids, and upregulated expression of ex
traplastidial AlaAT2 (Fig. 4F), reduced alanine amounts in 
phloem exudates (Fig. 7C), but increased levels in mutant 
chloroplasts (Fig. 2B) rather suggest enhanced alanine syn
thesis and import into umamit44 chloroplasts by an un
known transport mechanism (Fig. 8) to potentially 
attenuate stress triggered by buildup of glutamate (Sato 
et al. 2002; Ricoult et al. 2005; Miyashita et al. 2007; Limami 
et al. 2008). Moreover, cytosolic proline synthesis and its 
usage for glutamate production appear to be not changed 
or downregulated as no changes or decreases were observed 
in expression for extraplastidial proline synthesis and catab
olism genes (Fig. 4F) and both whole leaf and phloem proline 
levels were declined in the mutants (Figs. 2, D and 7C). On 
the other hand, upregulation was found for plastidic/cytosol
ic P5CS1 (Fig. 4B) which is most probably responsible for pro
line synthesis in umamit44 chloroplasts as supported by high 
plastidial proline levels (Fig. 2B). Similarly, upregulation of 
P5CS1, accumulation of plastidial P5CS1-GFP proteins and in
creases in proline pools have been reported for Arabidopsis 
plants exposed to abiotic stress (Yoshiba et al. 1995; 
Strizhov et al. 1997; Székely et al. 2008). In umamit44 chloro
plasts, the increased synthesis of proline from glutamate and 
proline accumulation may have a 2-fold benefit: the 

reduction of otherwise damaging high glutamate pools, 
and the production of a multifunctional AA with diverse 
roles in alleviating plastidial stress (Hong et al. 2000; 
Matysik et al. 2002; Kishor et al. 2005; Szabados and 
Savouré 2010). The lower quantum efficiency of PSII and sig
nificantly reduced photosynthesis rates in umamit44 leaves 
(Fig. 6, A and D) demonstrate some adverse effects on photo
synthetic energy transfer and C fixation. Increased proline 
synthesis and associated generation of NAD+/NADP+ elec
tron carriers may be required in umamit44 plastids to stabil
ize cellular redox balance and prevent damage to the 
photosynthetic apparatus (Hare and Cress 1997; Sharma 
et al. 2011; Hashida et al. 2018).

ROS form as by-products of electron transport chains or 
redox reactions in chloroplasts (and other compartments) 
and lead to oxidative stress (Mittler et al. 2004; D’Autréaux 
and Toledano 2007; Hossain et al. 2015). Depending on the 
concentration, ROS can be damaging to cellular components 
(Halliwell 2006; Petrov et al. 2015; Qi et al. 2018), but at prop
er levels, they act as signaling compounds for plant develop
mental processes and stress responses (Baxter et al. 2014; 
Mittler et al. 2022). This intricate function implies that the 
rates of ROS generation and degradation must be controlled 
at subcellular and cellular levels (Meyer et al. 2012; 
Müller-Schüssele et al. 2020). One strategy to adjust ROS le
vels and reduce oxidative damage is the production of anti
oxidants. In umamit44 chloroplasts, excess glutamate may 
lead to changes in the steady-state levels of ROS triggering 
the synthesis of ROS scavengers (Mittler et al. 2022). This is 
not only in line with the significant increase in proline 
(Fig. 2B), that stabilizes antioxidant enzymes and potentially 
serves direct antioxidant function (Alia et al. 2001; Matysik 
et al. 2002; Alvarez et al. 2022), but also with a substantial in
crease in oxidized GSH at both the umamit44 plastid and 
whole leaf level (Fig. 2, E and F; Noctor and Foyer 1998; 
Pfannschmidt 2003). Further, levels of anthocyanins and 
other flavonoids were strongly elevated (Fig. 6, G to I), 
most probably additionally diminishing glutamate-induced 
oxidative damage in the mutant leaves (Hahlbrock and 
Scheel 1989; Mehrtens et al. 2005; Preuß et al. 2009; Zhang 
et al. 2017). Overall, the observed adjustments in oxidative 
stress response and antioxidant production (i.e. more pro
line, GSH, and flavonoids) seem to be effective as no differ
ences were found in H2O2 levels in umamit44 leaves 
compared to in WT leaves (Fig. 6J).

Flavonoids are mainly produced in the cytosol, and the bio
synthesis pathways heavily rely on phenylalanine biosyn
thesis and its subsequent export out of plastids (Maeda 
and Dudareva 2012), which is mediated in petunia by 
PhpCAT (Widhalm et al. 2015). CAT7, which is the closest 
Arabidopsis homolog and encodes a putative plastid trans
porter (Su et al. 2004), was upregulated in umamit44 leaves 
and may facilitate enhanced movement of the aromatic 
AA from the plastids to the cytosol. Interestingly, phenylalan
ine synthesis and downstream flavonoid production and ac
cumulation are also increased by N stress (Stewart et al. 2001; 
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Lea et al. 2007; Lillo et al. 2008; Peng et al. 2008; Rubin et al. 
2009; Zhang and Liu 2015) implying that in the umamit44 
cytosol a N/glutamate deficiency signal is transduced regulat
ing C flow into the flavonoid biosynthetic pathway while re
leasing ammonium for re-assimilation via GDH and 
extraplastidial availability of glutamate (Figs. 4E and 8). 
Changes in N/AA signaling may also explain why umamit44 
mutants continue N assimilation despite plastidial glutamate 
accumulation (Fig. 4A). While plant AA signal transduction 
pathways remain elusive, several studies have demonstrated 
that glutamate or other amino acids function as signaling 
molecules activating GLR ion channels (Qi et al. 2006; 
Vincill et al. 2012), thereby regulating many physiological 
processes including N and C metabolism (Kang and Turano 
2003; Grenzi et al. 2022; Simon et al. 2023). Both GLR3.4 
and GLR3.5.2 have been localized to the Arabidopsis chloro
plast inner envelope, most probably with their ligand-binding 
domain sensing the outer/cytosolic space (Teardo et al. 2011; 
2015; Simon et al. 2023). Expression of both GLR3.4 and 
GLR3.5.2 was upregulated in umamit44 leaves (Fig. 4D), sug
gesting that the GLRs are required to maintain chloroplast in
tegrity and N (and C) metabolism to, for example, 
accommodate extraplastidial glutamate/N needs. Further, 
it has been shown for GLR3.4 that GSH additionally regulates 
channel activity by binding to the amino-terminal domain 
(Green et al. 2021). It is therefore fair to speculate for uma
mit44 that the changes in glutamate homeostasis and subse
quent alterations in redox potential and GSH concentrations 
(see above; Fig. 2, E and F) may regulate GLRs and down
stream oxidative signaling events (c.f. Simon et al. 2023). If 
GLR-mediated alterations in calcium fluxes or other regula
tory mechanisms lead to the observed metabolic adjust
ments in the umamit44 chloroplasts and cytosol remains 
to be investigated (c.f. Stephens et al. 2008; Cho et al. 2009; 
Vincill et al. 2012; Wudick et al. 2018).

Recent work has shown that transporters functioning in 
AA phloem loading are critical for source-to-sink N partition
ing and plant productivity (Tan et al. 2010; Zhang et al. 2010; 
Zhang et al. 2015; Santiago and Tegeder 2016; Garneau et al. 
2018; c.f. Rosado-Souza et al. 2023). Current studies re
solved that export of glutamate (and probably other amino 
acids) from plastids presents an initial bottleneck for effective 
AA phloem loading and sink N supply. This is corroborated 
by the downregulation of AA phloem loader genes AAP8 
and CAT6 (Fig. 7A; Hammes et al. 2006; Santiago and 
Tegeder 2016; Perchlik and Tegeder 2017), decreased level 
of glutamate in phloem exudates (Fig. 7C), and decreased 
seed protein levels (Fig. 7F) in umamit44 plants. In addition, 
levels of amino acids that may be used as precursors for glu
tamate production outside the plastids or to reduce 
glutamate-induced stress within the plastids (e.g. glutamine, 
proline, and alanine; see above), were also severely reduced in 
the phloem exudate (Fig. 7C, Supplementary Table S2), sug
gesting that umamit44 leaf cells rebalance AA metabolic and 
partitioning processes to accommodate both source and sink 
N requirements. But it is yet unknown, how the source cells 

sense AA disturbances, decide what needs to be done next, 
restore or adjust their AA homeostasis to a new status quo 
by altering physiological processes, and orchestrate modified 
AA availability for source and sink physiology.

Glutamate is central to plant functions and stands at the 
starting point of N metabolic pathways (Fig. 8). In addition, 
it plays a key signaling role in physiological processes includ
ing at the interface of C and N metabolism, and in the cellular 
responses to environmental stresses. N assimilation and glu
tamate synthesis occur in plastids, and the current study de
monstrates that the plastidial exporter UMAMIT44 exerts 
regulatory control over glutamate availability within the 
chloroplasts, its allocation to the cytosol and its transport 
over long distances (Figs. 2, B and D, 3A, 7, A and C). 
Glutamate imbalances inside and outside the plastids seem 
to affect the cellular redox status and influence both N 
and C metabolism and sink supply (Figs. 4, A to G, 6, and 
7, A to D) with negative consequences for plant growth 
and seed yield (Figs. 3, C and D, and 7, E and F). 
Nevertheless, when glutamate accumulates in plastids 
through decreased export, plants demonstrate a remarkable 
plasticity by attenuating oxidative stress through the produc
tion of other amino acids and antioxidants, and by accelerat
ing alternative, extraplastidial pathways for glutamate 
synthesis. With the current and recent work in Arabidopsis 
and petunia on plastidial glutamate (Figs. 1 to 8) and phenyl
alanine (Widhalm et al. 2015) export, respectively, we are just 
at the infancy of understanding the kind of transporters 
needed to mediate chloroplast efflux (and influx) of protein 
or nonprotein amino acids and related compounds, and how 
they affect metabolic networks, metabolite levels and sink N 
nutrition.

Materials and methods
Subcellular localization of UMAMIT44
Several programs were used for prediction of the subcellular lo
calization of the UMAMIT44 isoforms including Predotar 
(Small et al. 2004), BaCelLo (Pierleoni et al. 2006), WoLF 
PSORT (Horton et al. 2007), SUBA5 (Hooper et al. 2017), 
AtSubP (Kaundal et al. 2010), and LOCALIZER (Sperschneider 
et al. 2017; see Supplementary Table S1). Two UMAMIT44 iso
forms seem to be synthesized by alternative translation initi
ation, At3g28130.2 (355 amino acids), and a shorter protein 
(At3g28130.1) lacking the N-terminal 89 amino acids. The 
open reading frame of both versions was amplified from leaf 
cDNA by PCR without the stop codon (for primers see 
Supplementary Table S3), cloned into pENTR D/TOPO 
(Lifetechnologies, Chicago, IL, USA) and then introduced by 
LR clonase recombination into the Gateway-compatible vector 
pB7FWG2,0 (Karimi et al. 2002; At3g28130.2) or pUB-Dest 
(Grefen et al. 2010; At3g28130.1) containing eGFP for 
C-terminal fusion. PCR reactions were performed using 
Phusion High-Fidelity DNA Polymerase (New England 
Biolabs, Frankfurt, Germany), and cloned PCR products were 
verified by sequencing. Using the Agrobacterium tumefaciens 
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infiltration method (Sparkes et al. 2006), UMAMIT44-GFP fu
sion proteins were either transiently expressed in leaf epidermal 
cells of Nicotiana benthamiana as described by Bartetzko et al. 
(2009; At3g28130.2), or the construct (At3g28130.1) was trans
ferred into Agrobacterium tumefaciens strain GV3101 (Koncz 
and Schell 1986) and co-infiltration was done with GV3101:: 
pMP90 strain harboring the p19 protein gene of tomato bushy 
stunt virus (Voinnet et al. 2003). Protoplasts were isolated after 
3 d, and transporter-GFP localization was visualized in proto
plasts or leaf cells by using a Zeiss laser scanning microscope 
as described (Breuers et al. 2012). Colocalization was performed 
using chlorophyll autofluorescence.

Plant growth and materials
Two independent Arabidopsis (Arabidopsis thaliana, ecotype 
Columbia-0) T-DNA insertion lines of UMAMIT44 
(At3g28130) were purchased from the Arabidopsis Biological 
Resource Center at the Ohio State University (https://abrc. 
osu.edu/), umamit44-1 (SALK021827C) and umamit44-2 
(SALK099629C). The lines were screened for homozygosity 
and grown along with WT plants in 36-well Com-Packs (T.O. 
Plastics, Clearwater, MN, USA) for molecular, biochemical, 
and phenotypic analyses, or in single pots (100 cm2) for photo
synthetic rate measurements. Plant growth conditions used are 
described in Santiago and Tegeder (2016). Fully expanded 
source leaves (rosette leaf number 1 to 4), developing sink 
leaves (leaf 11 to 14), whole rosettes, and roots were collected 
during the vegetative growth stage at 4 wks after planting and 
either flash-frozen in liquid nitrogen (N) and stored at −80 °C 
until analysis, or directly used for phloem exudate collection, 
leaf chloroplast isolation, or rosette leaf area and shoot biomass 
measurements. For leaf area analysis, rosettes were pressed be
tween two layers of transparent foil and imaged using a flatbed 
scanner followed by image processing with ImageJ2 (Rueden 
and Eliceiri 2019; National Institute of Health, Bethesda, MD, 
USA). For seed protein and yield analyses, plants were grown 
until maturity.

Chloroplast isolation
Leaf disks (0.9 cm diameter) were collected from source 
leaves (leaves 1 to 4; 1 disk per plant). Sample pools of 8 disks 
for at least 5 biological replicates (n≥5) were used to obtain 
chloroplasts with the Minute Chloroplast Isolation Kit ac
cording to the manufacturer’s protocol (Invent 
Biotechnologies, Inc, Plymouth, MN, USA). Chlorophyll con
tent was determined by employing specific absorption coef
ficients at 480, 645, and 663 nm wavelength as described 
(Rowan 1989) and to equalize sample concentration for 
AA analyses (see below). Amino acids were extracted from 
intact chloroplast suspensions using 80% methanol at 
70 °C for 15 min, and while shaking (1,000 rpm). After 
15 min centrifugation at 10,000 × g, the supernatant was 
transferred to a new tube and the pellet was re-extracted 
with 20% methanol. Supernatants from both extractions 
were combined and dried (SpeedVac concentrator; Savant 
Instruments, Hyderabad, India). The resulting pellet was 

resuspended in 160 µL of sterile double-deionized water, 
and 45 µL was used for high performance liquid chromatog
raphy (HPLC).

Collection of leaf phloem exudates
Phloem exudates were collected from source leaves (leaves 3 
and 4) in EDTA-containing buffer for 2 h as described by 
Deeken et al. (2008) and Santiago and Tegeder (2016). 
Exudates were aliquoted (80 µL), freeze-dried, and resus
pended in 33 µL of double-deionized water. The EDTA in so
lution was precipitated by adding 1:10 volume of 1 N HCl and 
incubated on ice for 30 min. Following centrifugation at 
10,000 × g for 30 min at 4 °C, the supernatant was stored 
at −80 °C until analysis.

RT-PCR and RT-qPCR
Total RNA was extracted from source and sink leaves, and 
roots using the TRIzol Reagent (Thermo Fisher Scientific, 
Waltham, MA, USA) according to Chomczynski and Sacchi 
(1987). DNA contaminants were removed using the TURBO 
DNA-freeTM Kit (Thermo Fisher Scientific, Waltham, MA, 
USA) following the manufacturer’s protocol. RT-PCR was per
formed as described (Santiago and Tegeder 2016) and by 
using Moloney Murine Leukemia Virus reverse transcriptase 
(Thermo Fisher Scientific, Waltham, MA, USA) and 
UmamiT44-specific primers (Supplementary Table S3). 
RT-quantitative PCR (RT-qPCR) was done according to 
Zhang et al. (2010) and with an Applied Biosystems 7,500 
FastThermal cycler (Foster City, CA, USA). Changes in gene 
expression were determined by comparing cycle threshold 
values with the control gene ACTIN2 (At3g18780) and 
UBIQUITIN11 (At4g05050) using the 2−ΔΔCT method (Livak 
and Schmittgen 2001).

HPLC analysis of amino acids and GSH
Free amino acids and GSH were extracted from lyophilized 
leaf tissues (2 mg) according to Garneau et al. (2021). 
Twenty-fold diluted tissue extracts, undiluted chloroplast ex
tracts, or undiluted leaf phloem exudates (each 45 µl) were 
derivatized with 4-fluoro-7-nitro-2,1,3-benzoxadiazole 
(NBD-F; Sigma-Aldrich, St. Louis, MO, USA) according to 
Aoyama et al. (2004). A standard was prepared with a com
mercially available AA mixture (Sigma Aldrich, St Louis, MO, 
USA) supplemented with arginine, glutamine, histidine, ly
sine, homo-serine, and reduced or oxidized GSH, and used 
at a final concentration of 25 µM for each N compound. 
HPLC analysis was performed with a Waters 2,695 separation 
module with column heater, autosampler, and Empower2 
software (Waters, Milford, MA, USA) as previously described 
(Garneau et al. 2021; Lu et al. 2022). Amino acids and GSH 
were identified with a Waters 2,475 multi λ fluorescence de
tector at 470 nm wavelength excitation and 540 nm emis
sion, and concentrations were determined by comparing 
sample peak areas against a standard curve.
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Transport measurements in Xenopus oocytes
Transport studies were performed according to Zourelidou 
et al. (2014) and Müller et al. (2015). UMAMIT44 cDNA 
(At3g28130.1) was cloned into the pOO2 vector, and tran
scribed cRNA was injected into oocytes of Xenopus laevis. 
As a negative control, water was used instead of 
UMAMIT44 cRNA. Oocytes were incubated in Barth’s solu
tion consisting of 88 mM NaCl, 1 mM KCl, 0.8 mM MgSO4, 
0.4 mM CaCl2, 0.3 mM Ca(NO3)2, 2.4 mM NaHCO3, and 
10 mM HEPES (pH 7.4) supplemented with 50 µL gentamy
cin at 16 °C to allow for transporter protein synthesis. 
Transport measurements were performed 4 d after incuba
tion. Oocytes were injected with 50 nL of 5 mM 

[14C]-glutamate, glutamine, proline, alanine, or glycine 
(American Radiochemicals, St. Louis, MO, USA), resulting 
in a final internal concentration of 1 mM based on the esti
mated oocyte total volume of 400 nL. Oocytes were incu
bated on ice for 2 min to permit closure of the injection 
site, washed and transferred to Barth’s solution at 21 °C to 
allow for export of the respective AA. Residual amounts of 
the labeled AA within the oocytes were determined by scin
tillation counting immediately at 0 min to establish a base 
line, and after 30 min incubation. Depending on the AA 
tested, 2 to 6 independent transport experiments were per
formed, and 7 to 10 individual oocytes were analyzed per ex
periment and treatment.

Analysis of mutant growth on media containing 
specific amino acids
Seeds were surface-sterilized as described in Perchlik et al. 
(2014), stratified at 4 °C in the dark for 3 d, plated on full- 
strength MS medium (Murashige and Skoog 1962) containing 
1% sucrose (w/v) and 0.8% agar (w/v; Phytotechnology 
Laboratories, Shawnee, KS, USA), and grown in the tissue culture 
chamber at 16-h daylength and 200 µmol photons m−2 s−1. 
Day/night temperatures were set at 21° C/16 °C and 70% rela
tive humidity. After 14 d, seedlings were transferred to MS me
dium supplemented with or without amino acids, specifically 
glutamate (50 mM Glu), glutamine (25 mM Gln), proline 
(25 mM Pro), aspartate (25 mM Asp), asparagine (10 mM 
Asn), or alanine (25 mM Ala), and grown for an additional 
14 d to determine shoot dry weights.

Measurements of photosynthetic parameters
Photosynthetic rates were measured with a LI-6400XT 
photosynthesis system (LI-COR; Lincoln, NE, USA) using 
6-wk-old plants at vegetative stage. Plants were grown at 
12-h daylength for 4.5 wks to promote leaf expansion and 
then acclimated to 16-h daylength for 10 d. Photosynthetic 
rates were determined with mature source leaves at 
1,000 µmol m−2 s−1 photosynthetic photon flux density 
(PPFD) with 90% red and 10% blue light, 25 °C leaf tempera
ture, and 400 ppm CO2 level.

In vivo measurements of chlorophyll-a fluorescence para
meters were performed using a pulse amplitude modulated 

(PAM) fluorometer of the IMAGING-PAM M-Series 
(Effeltrich, Germany) as described by Kunz et al. (2009). 
WT and keaD1 mutant plants with plastidial K+/H+ antipor
ter genes KEA1 and KEA2 knocked out (Kunz et al. 2014) were 
used as controls. Umamit44 mutants and control plants were 
grown under a 16-h daylength until 15, 16, 17, or 18 d after 
germination at temperature and light conditions described 
above. Before fluorescence measurements plants were 
adapted for 30 min in the dark and then a light induction 
curve was recorded using the standard settings of the man
ufacturer’s software at actinic light 8 (186 µmol quanta 
m−2 s−1) and slow induction parameters (40 s delay, 20 s 
clock, and 315 s measurement time). At the start of each 
measurement, the ratio of variable to maximum chlorophyll 
a fluorescence yield (Fv/Fm; Maxwell and Johnson 2000) was 
calculated. NPQ was analyzed according to Bilger and 
Björkman (1990), and the quantum efficiency of electron 
flux through PSII (ΦPSII) was determined following Genty 
et al. (1989).

Carbohydrate and protein assays
Glucose, sucrose, and starch were extracted from 3 mg lyo
philized leaf tissue with 500 µL of 80% ethanol, and levels 
were measured using the Amplex Red Glucose/Glucose 
Oxidase Assay kit (Thermo Fisher Scientific, Waltham, MA, 
USA) based on the manufacturer’s instructions and as de
scribed by Santiago and Tegeder (2017). Total soluble pro
teins were extracted from lyophilized leaf or dry seed 
tissues (2 mg) following Zhang et al. (2010). Proteins were 
measured with the NanoOrange protein quantitation kit 
(Invitrogen, Carlsbad, CA, USA) according to the manufac
turer’s protocol, and by using a BioTek Synergy HT micro
plate fluorescence reader equipped with KC4 v.3.4 software 
(Winooski, VA, USA) at 480 nm excitation wavelength and 
590 nm emission.

Quantification of anthocyanin and other flavonoids
Flavonoid content was measured as described by Ronchi 
et al. (1997). Fully expanded source leaves (rosette leaf num
ber 1 to 4) were collected, weighed, and ground in 1 mL of 1% 
HCl in ethanol (v/v). The extracts were centrifuged twice at 
14,000 × g and the aqueous phase was measured spectro
photometrically at 530 and 350 nm wavelength to quantify 
anthocyanin and other flavonoids, respectively.

Hydrogen peroxide analysis
Hydrogen peroxide (H2O2) was extracted from 300 µL 
pulverized frozen tissue samples with 500 µL of 5% trichloro
acetic acid in 50 mM sodium phosphate buffer (pH 7.4), 
vortexed, and centrifuged at 14,000 × g. The resulting super
natants were transferred to 1.5 mL microcentrifuge tubes, 
and hydrogen peroxide levels were quantified using the 
Amplex Red Hydrogen Peroxide/Peroxidase Assay Kit 
(ThermoFisher Scientific, Waltham, MA, USA) based on 
the manufacturer’s directions. Fluorescence emission was 
measured at 590 nm with a BioTek Synergy HT microplate 
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fluorescence reader (Winooski, VA, USA) with KC4 v.3.4 
software.

Statistical analysis
Tissue fresh and dry weights, and photosynthetic parameters 
were determined from individual plants. All other results 
were obtained from at least 4 independent tissue pools (n≥  
4), each consisting of 8 to 10 individual plants. Respective bio
logical replications can be found in the figure legends. Bar 
graphs, box and whisker plots, as well as violin plots were 
made using Graphpad Prism software ver. 10.0 (GraphPad 
Software, Inc., La Jolla, CA, USA). Data are presented as mean  
± standard deviation. To determine differences between geno
types, 1-way analysis of variance (ANOVA) and mean separ
ation tests were performed using SigmaStat 3.0 (Systat 
Software Chicago, IL, USA). Small, moderate, and large statistic
ally significant changes are specified as *P ≤ 0.05, **P ≤ 0.01, and 
***P ≤ 0.001, respectively. The numbers above columns indicate 
percent change versus the wild type. Statistical data are pro
vided in Supplemental Data Set S1.

Accession numbers
The Arabidopsis Genome Initiative numbers for the genes men
tioned in this article are as follows: UMAMIT44 (At3g28130), 
GLN1; 2 (At1g66200), GLN1; 3 (At3g17820), GLN2 (At5g35630), 
GLU1 (At5g04140), GLU2 (At2g41220), GDH1 (At5g18170), 
P5CS1 (At2g39800), P5CS2 (At3g55610), ProDH2 (At5g38710), 
P5CDH (At5g62530), AlaAT1 (At1g17290), AlaAT2 (At1g723 
30), NFS2 (At1g08490), GSH1 (At4g23100), GSH2 (At5g27380), 
GLR1.4 (At3g07520), GLR3.2 (At4g35290), GLR3.3 (At1g42540), 
GLR3.4 (At1g05200), GLR3.5.2 (At2g32390.2), DiT2.1 (At5g6 
4290), CAT6 (At5g04770), CAT7 (At3g10600), AAP1 (At1g58 
360), AAP2 (At5g09220), AAP3 (At1g77380), AAP4 (At5g63 
850), AAP5 (At1g44100), AAP8 (At1g10010), CHS (At5g13930), 
FLS3 (At5g63590), ACT2 (At3g18780), and UBQ11 (At4g05050).
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