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 Abstract 
 Ocean  microbial  communities  are  made  up  of  thousands  of  diverse  taxa  whose  metabolic 

 demands  set  the  rates  of  both  biomass  production  and  degradation.  Thus,  these  microscopic 
 organisms  play  a  critical  role  in  ecosystem  dynamics,  global  carbon  cycling,  and  climate.  While 
 we  have  frameworks  for  relating  phytoplankton  diversity  to  rates  of  carbon  fixation,  our 
 knowledge  of  how  variations  in  heterotrophic  microbial  populations  drive  changes  in  carbon 
 cycling  is  in  its  infancy.  Here,  we  leverage  global  metagenomic  datasets  and  metabolic  models  to 
 identify  a  set  of  metabolic  niches  with  distinct  growth  strategies.  These  groupings  provide  a 
 simplifying  framework  for  describing  microbial  communities  in  different  oceanographic  regions 
 and  for  understanding  how  heterotrophic  microbial  populations  function.  This  framework, 
 predicated  directly  on  metabolic  capability  rather  than  taxonomy,  enables  us  to  tractably  link 
 heterotrophic diversity directly to biogeochemical rates in large scale ecosystem models. 

 Classification  of  heterotrophic  microbes  into  metabolic  functional  guilds  can  provide  a 
 framework  for  coalescing  diverse  microbial  communities  1  into  more  tractable  units  for 
 incorporation  into  biogeochemical  models  2  .  Historically,  we  have  grouped  marine  microbial 
 heterotrophs  into  copiotrophic  organisms,  which  thrive  in  high  resource  environments  and 
 generally  have  faster  growth  rates  with  flexible  metabolisms,  and  oligotrophic  organisms,  which 
 dominate  resource  poor  environments  and  have  slower  growth  rates  3  .  While  these  broad 
 categories  are  useful,  they  do  not  inherently  facilitate  defining  metabolic  niches  or  substrate 
 preferences  that  are  critical  when  considering  rates  of  biogeochemical  cycling.  Specifically,  there 
 is  no  intrinsic  linkage  between  fast  or  slow  maximum  growth  rates  and  the  substrate  preferences 
 for  organisms  4  .  In  this  analysis,  we  expand  beyond  the  copiotroph-oligotroph  paradigm  and 
 independently  assess  metabolic  strategy  and  growth  rates  to  generate  a  generalizable  functional 
 categorization of marine microbial heterotrophic metabolisms. 

 Genome-scale  metabolic  models  (GEMs)  provide  a  means  for  translating  genomic 
 information  into  cellular  metabolisms  5  but  have  historically  been  labor  intensive  to  generate  and 
 have  been  generally  restricted  to  cultured  isolates  6  .  The  advent  of  fast  automated  metabolic 
 model  construction  software  such  as  CarveMe,  ModelSEED,  Agora  7–9  ,  etc.,  has  enabled 
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 generating  GEMs  for  large  numbers  of  genomes  and  from  uncultured  organisms  10  .  Metabolic 
 potential  from  GEMs  can  further  be  explored  through  the  use  of  flux  balance  analysis  tools  such 
 as  CobraPy  11  .  These  combined  analyses  provide  insights  into  the  minimal  metabolic 
 requirements for a cell and hypotheses about the preferred substrates for growth  12  . 

 Here  we  leveraged  a  large  global  dataset  of  marine  microbial  genomes  (Ocean  Microbial 
 Database  (OMD))  13  to  identify  patterns  in  metabolic  strategies  among  marine  bacteria  through 
 GEMs.  Testing  model  sensitivity  to  growth  on  different  substrates  allowed  us  to  define  unique 
 clusters  of  marine  heterotrophic  bacteria  with  shared  growth  strategies.  We  identified  a  classic 
 fast-growing  copiotrophic  cluster,  four  slow-growing  oligotrophic  clusters  each  with  a  unique 
 metabolic  strategy,  and  three  intermediate  growth  clusters,  also  with  unique  metabolic  strategies. 
 These  clusters  are  found  globally  but  at  varying  abundances  in  different  ecological  regimes. 
 While  clear  phylogenetic  signals  emerged  distinguishing  the  clusters,  our  findings  also  suggest 
 that similar metabolic niches are occupied by distinct taxonomic groups. 

 Results 
 CarveMe model quality 

 We  generated  GEMs  for  3,918  high  quality  bacterial  genomes  (including  cultured 
 isolates,  metagenomes,  and  single-cell  genomes)  from  OMD  using  CarveMe  7  .  This  dataset 
 spanned  a  wide  diversity  of  marine  bacteria  representing  205  distinct  taxonomic  orders,  fifteen  of 
 which  had  fifty  or  more  genomes  (Figure  1).  Given  the  stochastic  nature  of  the  cutting  algorithm 
 in  CarveMe,  it  is  necessary  to  run  ensembles  of  models  for  each  genome  7,14  .  To  ensure  we 
 included  only  high  quality  models  in  our  analysis,  we  generated  a  large  model  ensemble  for  each 
 genome  (N  =  60)  and  assessed  the  robustness  of  the  models  using  a  consensus  metric. 
 Specifically,  higher  confidence  can  be  placed  in  models  where  a  consistent  set  of  enzymatic 
 reactions  are  included  across  the  entire  ensemble  of  models  generated  by  CarveMe  for  a  single 
 genome (high consensus value). 

 Consensus  values  for  the  OMD  genomes  ranged  from  1  (all  model  reactions  were  the 
 same  across  all  ensemble  members)  to  0.24  (only  24%  of  reactions  were  conserved  between 
 ensemble  members  thus  providing  low  confidence  in  the  CarveMe  models).  Systematic 
 differences  in  consensus  values  were  seen  between  phylogenetic  groups  (Figure  1,  3rd  ring).  The 
 Enterobacterales  ,  Rhodobacterales  ,  Cytophagales  ,  Sphingomonadales  ,  and  Pseudomonadales 
 had  the  largest  number  of  genomes  with  high  consensus  values:  on  average,  65.0%  of  genomes 
 from  each  of  these  orders  had  consensus  values  above  0.8  (range  51.3%-81.3%).  Genomes  that 
 were  phylogenetically  similar  to  the  reference  genomes  used  to  develop  CarveMe  generally  had 
 higher  consensus  values  (Figure  1).  Several  orders  had  a  large  proportion  of  genomes  with  high 
 consensus  values  despite  being  phylogenetically  distant  from  the  reference  genomes.  The 
 Rhodobacterales  ,  for  example,  have  no  reference  genome  but  72.1%  of  these  genomes  had  a 
 consensus  value  greater  than  0.8.  CarveMe  struggled  to  generate  high  consensus  ensembles  for 
 several  orders.  Only  10.8%  of  Pelagibacterales  and  4.1%  of  PCC-6307  genomes  had  consensus 
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 values  above  0.8,  while  66.5%  and  49.7%  of  genomes  in  these  groups  had  values  at  or  below  0.5, 
 respectively. 

 This  analysis  suggests  that  adding  reference  genomes  (experimentally  validated 
 metabolic  models  used  to  improve  the  CarveMe  tool)  in  these  low  consensus  orders  would 
 substantially  improve  the  ability  for  CarveMe  to  generate  high  consensus  ensembles.  This  would 
 greatly  improve  our  ability  to  robustly  apply  CarveMe  broadly  to  environmental  datasets  15  .  Our 
 further  analyses  only  used  the  1,591  genomes  with  consensus  values  of  0.8  or  greater.  We  tested 
 a  more  conservative  cutoff  of  0.9,  yielding  a  dataset  of  983  genomes,  and  showed  that  the 
 primary  findings  of  this  work  remain  unchanged  (Supplemental  Figure  S1).  The  low  number  of 
 PCC-6307  genomes  with  high  quality  models  (N=7)  was  likely  due  to  the  fact  that  these  are 
 Cyanobacteria  and  so  phototrophic  or  mixotrophic  (capable  of  growing  on  or  supplementing 
 growth  with  organic  compounds),  whereas  the  CarveMe  universal  model  is  based  on,  and 
 validated  with,  heterotrophic  bacterial  genomes.  Given  that  CarveMe  was  designed  for 
 heterotrophic  microbes  and  only  0.44%  of  the  genomes  used  for  subsequent  analyses  were  from 
 the PCC-6307 order, we focused our analyses on heterotrophic metabolic strategies. 

 Metabolic strategy assessment 
 We  defined  metabolic  strategy  as  the  substrates  that  are  preferred  by  an  organism  for 

 growth.  We  assessed  the  metabolic  strategy  for  each  genome  using  a  suite  of  sensitivity  studies. 
 Specifically,  model  growth  dynamics  were  evaluated  using  CobraPy  under  ‘replete’  conditions 
 (all  potential  growth  substrates  available),  and  then  under  ‘limiting’  conditions  in  which  the 
 availability  of  certain  compound  classes  were  substantially  reduced.  Here  we  used  a  threshold  of 
 an  80%  reduction  in  growth  rate  under  the  limiting  condition  as  the  designation  of  substantial 
 reduction  in  growth  (Supplemental  Figure  S2).  We  then  considered  a  genome  to  be  sensitive  to  a 
 compound class if growth was substantially reduced when the compound class was removed. 

 We  validated  our  approach  using  an  extensive  culture-based  analysis  of  carbon  substrate 
 preferences  for  191  marine  microbes  16  .  Good  agreement  was  observed  between  the  CarveMe 
 model  predictions  for  these  genomes  and  the  experimentally  validated  growth  preferences 
 (Supplemental  Figure  S3a).  Specifically,  51.0%  of  the  comparisons  showed  exact  agreement 
 between  the  model  predictions  and  experimental  data  and  only  4.6%  of  models  predicted  no 
 growth  where  growth  was  experimentally  observed.  For  the  remaining  44.4%  of  the 
 comparisons,  the  models  predicted  that  the  substrate  could  be  taken  up  by  the  organism  but  no 
 growth  was  experimentally  observed  when  that  compound  was  provided  as  a  sole  carbon  source. 
 These  cases  suggest  that  the  organisms  might  be  able  to  use  the  substrate,  but  not  as  a  sole 
 carbon  source  or  under  the  conditions  tested.  Good  agreement  was  also  seen  between 
 model-predicted  compound  sensitivities  and  the  designation  of  acid  versus  sugar  specialists 
 identified  by  16  (Supplemental  Figure  S3b),  suggesting  that  our  framework  is  capturing  substrate 
 preferences observed experimentally (Supplement S1) . 

 The  highest  growth  sensitivity  occurred  under  carboxylic  acid  limitation,  with  39.9%  of 
 all  models  in  the  dataset  demonstrating  substantial  growth  reduction  when  the  uptake  of  this 
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 compound  class  was  limited  (Supplemental  Figure  S4a).  Reducing  the  availability  of  amino 
 acids  or  carbohydrates  resulted  in  substantial  growth  reduction  in  29.2%  and  17.6%  of  the 
 models,  respectively  (Supplemental  Figure  S4a).  In  contrast,  the  models  were  generally 
 insensitive  to  the  reduction  of  amines/amides,  ketones/aldehydes,  or  alcohols  with  only  0.13%, 
 0.2%,  and  0.25%  of  models  showing  substantial  growth  reduction,  respectively  (Supplemental 
 Figure  S4a).  When  analyzed  by  taxonomic  order,  we  found  that  the  most  sensitive  taxa  to 
 substrate  limitation  across  all  compound  classes  were  the  Pelagibacterales  (24.9%  of  models 
 showed  substantial  growth  reduction  to  at  least  one  compound  class),  SAR86  (21.6%  showed 
 substantial  growth  reduction),  and  AEGEAN-169  (19.1%  showed  substantial  growth  reduction) 
 (Supplemental  Figure  S5a).  This  is  consistent  with  these  groups  being  classically  oligotrophic 
 organisms  with  streamlined  genomes  and  limited  metabolic  flexibility  17–19  .  By  contrast,  the 
 classically  copiotrophic  groups  (the  Enterobacterales  ,  Sphingomonadales  ,  and  Rhodobacterales  ) 
 showed  the  least  growth  sensitivity  to  substrate  reduction,  with  only  5.9%,  9.1%  and  9.4%  of 
 these  models  showing  substantial  growth  reduction  across  all  compound  classes,  respectively 
 (Supplemental  Figure  S5a).  This  indicates  that  the  classically  designated  copiotrophic  orders 
 may  have  more  flexible  metabolisms  where  they  can  achieve  high  growth  rates  using  many 
 different compound classes. 

 Emergent metabolic clusters 
 Metabolic  niches  were  identified  based  on  the  substrate  preference  profiles  for  all  1,591 

 genomes  using  Self  Organizing  Maps  (SOMs).  The  SOMs  method  is  an  unsupervised  clustering 
 method  that  reduces  large,  high  dimensional  datasets  to  a  topologically  defined  two-dimensional 
 grid  space  20  .  Eight  SOM  clusters  emerged  with  distinct  growth  sensitivities  to  different 
 compound  classes  (Table  1).  Differences  in  sensitivities  to  carbohydrates,  carboxylic  acids, 
 amino  acids,  peptides,  and  B-vitamins  drove  the  largest  separations  between  the  clusters  (Figure 
 2,  Supplemental  Figure  S4b).  To  further  expand  the  analysis  of  growth  strategy,  we  computed  an 
 estimate  of  maximum  growth  rate  for  each  genome  based  on  genomic  optimization  using  codon 
 usage  bias  (dCUB)  21,22  .  We  then  assessed  differences  in  genomic  estimates  of  maximum  growth 
 rates  between  clusters  (dCUB  values  were  not  used  in  the  SOM  clustering).  Significant 
 differences  in  estimated  maximum  growth  rates  were  observed  between  the  SOM  clusters 
 (Tukey’s  HSD,  ANOVA)  with  one  fast-growing  cluster  (Cluster  2),  four  slow-growing  clusters 
 (Clusters  1,  3,  7,  and  8),  and  three  clusters  with  intermediate  growth  rates  (Clusters  4,  5,  and  6) 
 (Supplemental Figure S6, Table 1). 

 The  eight  SOM  clusters  had  conserved  phylogenetic  signals  with  enrichment  in  specific 
 taxonomic  groups  (Table  1).  However,  we  simultaneously  observed  that  many  taxonomic  groups 
 appeared  across  multiple  clusters  (Supplemental  Figure  S5b).  This  suggests  that  diverse 
 taxonomic  groups  have  similar  substrate  preferences  and  growth  sensitivities,  and  also  that  some 
 taxonomic  groups  appear  to  have  sublineages  with  wide  variations  in  lifestyle.  For  example,  the 
 Enterobacterales  and  Rhodobacterales  were  enriched  in  our  fast-growing  Cluster  2  by  174.6% 
 and  121.0%,  respectively,  relative  to  their  abundances  in  the  total  dataset  (Supplemental  Figure 
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 S7).  Similarly,  SAR86  and  the  Pelagibacterales  were  on  average  enriched  in  the  slow-growing 
 Clusters  1,  3,  7,  and  8  by  211%  and  307%,  respectively,  relative  to  their  abundances  in  the  total 
 dataset.  This  was  compared  to  74.1%  and  80.6%  reductions  of  these  two  classically  oligotrophic 
 orders  in  the  fast-growing  Cluster  2  relative  to  the  total  dataset.  However,  we  also  found  that 
 nine  of  the  fifteen  most  abundant  orders  were  present  in  all  clusters,  and  only  three  orders  were 
 absent  in  more  than  one  cluster  (the  Sphingomonadales  ,  PCC-6307,  and  AEGEAN-169).  The 
 Flavobacteriales  ,  for  instance,  were  present  across  all  eight  clusters  accounting  for  9.7%  of 
 slow-growing  Cluster  1  up  to  33.1%  of  the  intermediate  growth  Cluster  6  (Supplemental  Figure 
 S5b).  Thus,  although  there  was  variation  in  the  taxonomic  composition  of  the  clusters,  the 
 differences  between  clusters  was  not  driven  by  taxonomy  alone  (Supplement  S3.3).  Below  we 
 provide  an  analysis  of  the  four  growth  types  that  emerged  from  the  SOM  clusters:  fast-growing, 
 slow-growing, fast intermediate growth, and slow intermediate growth. 

 The  fast-growing  Cluster  2  was  classically  ‘copiotrophic’.  78.0%  of  genomes  in  this 
 cluster  had  predicted  maximum  genomic  growth  rates  that  were  higher  (more  negative  dCUB) 
 than  the  threshold  of  slow  growth  (  ,  where  lower  dCUB  values  correspond  to  𝑑𝐶𝑈𝐵 =−  0 .  08 
 faster  growth).  This  threshold  corresponds  to  a  doubling  time  of  approximately  5  hours  for 
 mesophilic  organisms  (optimal  growth  temperature  between  20-60°C)  22  (Supplemental  Figure 
 S6).  Taxonomically,  Cluster  2  consisted  primarily  of  the  Enterobacterales  ,  Flavobacteriales  , 
 Rhodobacterales  ,  and  Psuedomonadales  (Figure  1,  Supplemental  Figure  S5a).  Metabolically, 
 this  fast-growing  cluster  showed  the  least  sensitivity  to  the  removal  of  compounds  with  no 
 significant  growth  sensitivity  to  the  reduction  of  any  of  the  11  measured  compound  classes 
 (Figure  2).  This  suggests  that  these  organisms  have  flexible  metabolisms  capable  of  growing  on 
 a  wide  range  of  substrates  and  are  able  to  synthesize  or  substitute  essential  metabolites  when  not 
 available  from  the  environment.  Hereafter,  we  will  refer  to  this  as  the  fast-growing  generalist 
 cluster. 

 In  contrast,  the  slow-growing  clusters  (Clusters  1,  3,  7,  and  8)  had  significantly  slower 
 estimated  maximum  growth  rates  than  the  fast-growing  generalist  cluster  (average  dCUB  of 
 -0.106)  (Supplemental  Figure  S6).  For  example,  60%  of  genomes  in  Cluster  3  had  dCUB  values 
 within  the  ‘indistinguishable  slow  growth  range’  (dCUB  values  above  the  -0.08  threshold).  This 
 cluster  had  a  high  proportion  of  known  oligotrophic  orders  such  as  SAR86  and  the 
 Pelagibacterales  ,  with  these  groups  enriched  in  this  cluster  by  457%  and  343%  relative  to  the 
 overall  dataset  (Supplemental  Figure  S6).  The  Marinisomatales  was  also  found  to  be  slightly 
 enriched  (139.6%)  in  this  cluster  relative  to  its  abundance  in  the  overall  dataset.  All  four 
 slow-growing  clusters  showed  growth  sensitivities  to  multiple  (two  or  more)  compound  classes 
 (Figure  2).  This  is  in  contrast  to  the  intermediate  growth  clusters  which  demonstrated  sensitivity 
 to  a  single  compound  class  (  described  below  ).  We  observed  metabolic  niche  separation  within 
 the  slow-growing  clusters.  For  example,  Cluster  1  exhibited  high  growth  sensitivities  to  two 
 classes  of  acids  (carboxylic  acids  and  amino  acids/derivatives),  whereas  Cluster  3  models 
 showed  high  growth  sensitivities  to  carboxylic  acids  and  peptides  (Figure  2,  Supplemental 
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 Figure  S4b).  Cluster  7  showed  growth  sensitivity  to  peptides  and  amino  acids,  while  Cluster  8 
 models were sensitive to carboxylic acids, B vitamins, and amino acids. 

 The  three  intermediate  growth  clusters  (Clusters  4,  5,  and  6)  showed  growth  sensitivity  to 
 a  single  compound  class:  amino  acids,  carboxylic  acids,  and  carbohydrates,  respectively  (Figure 
 2B).  All  three  intermediate  growth  clusters  had  predicted  growth  rates  that  were  significantly 
 slower  than  the  fast-growing  Cluster  2  (Supplemental  Figure  S6).  Cluster  5  was  also  estimated  to 
 be  significantly  faster  than  the  four  slow-growing  clusters  –  hereafter  referred  to  as  the  fast 
 intermediate  growth  cluster.  Overall,  these  intermediate  growth  clusters  appeared  to  be  more 
 flexible  metabolically  and  faster-growing  than  the  slow-growing  specialist  clusters  but  more 
 specialized  and  slower  growing  than  the  fast-growing  generalist  cluster.  The  intermediate  growth 
 clusters  corroborate  a  recent  modeling  study  which  suggested  that  the  dominant  heterotrophic 
 group in the subsurface ocean might be slow-growing copiotrophs  2  . 

 Biogeographic Distribution 
 To  investigate  the  biogeographic  distributions  of  our  eight  SOM  clusters,  we  performed  a 

 competitive  metagenomic  recruitment  and  calculated  normalized  Reads  Per  Kilobase  per  Million 
 mapped  reads  (RPKM)  for  1,424  globally  distributed  samples.  We  compared  the  relative 
 abundance  of  aggregate  total  RPKM  for  each  of  the  23  unique  oceanographic  regions  in  our 
 global  dataset  using  a  bootstrapping  approach  (Supplemental  Figure  S8).  We  further  grouped 
 these  23  regions  into  5  oceanographic  categories  and  applied  our  bootstrapping  approach,  as  well 
 as  a  direct  clustering  on  the  raw  RPKM  values  from  each  site.  Clear  biogeographical  patterns 
 emerged  across  both  the  23  oceanographic  regions  and  the  5  defined  oceanographic  categories 
 (Figure  3,  Supplemental  Figures  S8&S9).  Estuarine  sites  showed  the  highest  abundance  of  both 
 the  fast-growing  generalist  and  the  fast-growing  intermediate  clusters.  The  co-occurrence  of 
 these  copiotrophic  and  metabolically  flexible  organisms  in  these  frequently  eutrophic  and 
 variable  salinity  environments  aligns  with  our  expectation  that  microbial  communities  present  in 
 these  regions  are  dominated  by  fast-growing  organisms.  In  contrast,  these  faster  growing  clusters 
 were  rare  at  open  ocean  oligotrophic  sites  where  copiotrophs  are  primarily  present  at  low 
 abundances,  occupying  niches  such  as  sinking  particles  23  .  We  show  that  community 
 compositions  in  the  oligotrophic  seas  (Mediterranean  and  Red  Sea)  and  open  ocean  sites  are 
 dominated  by  the  four  slow-growing  clusters  and  the  two  slower-growing  intermediate  clusters. 
 The  slow-growing  acid-specialist  cluster  (Cluster  1)  was  the  most  numerically  dominant  group  of 
 organisms  across  all  samples  and  also  had  the  greatest  enrichment  of  the  Pelagibacterales  ,  the 
 most  numerically  dominant  order  of  marine  heterotrophs  17  .  Unfortunately,  the  dataset  did  not 
 allow  us  to  make  further  conclusions  related  to  the  co-occurrence  of  specific  metabolic 
 preferences  and  the  biogeochemical  environment  in  which  these  communities  were  found. 
 However,  expanding  this  analysis  to  samples  where  interdisciplinary  information  (e.g. 
 metagenomic,  metabolomic,  organic  matter  composition,  and  rate  measurements)  are 
 co-collected is an exciting avenue for future work. 
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 Discussion 
 Although  marine  microbial  heterotrophs  play  a  primary  role  in  regulating  organic  matter 

 cycling,  biogeochemical  cycles,  and  global  climate  outcomes,  we  have  historically  lacked  an 
 overarching  framework  for  characterizing  these  diverse  communities  and  assessing  their 
 functional  metabolic  niches.  Since  the  majority  of  microbial  heterotrophic  diversity  in  the  oceans 
 remains  uncultured  24  ,  we  must  rely  on  indirect  methods  to  assess  these  metabolic  strategies.  By 
 combining  metagenomic  information,  numerical  models,  and  statistical  approaches,  we  identified 
 eight  distinct  metabolic  strategies  for  marine  heterotrophic  metabolism.  Critically,  our  approach 
 is  a  high  throughput  method  for  generating  key  metabolic  and  physiological  insight  that  could 
 previously  only  be  obtained  through  labor  intensive  laboratory  experiments  restricted  to  cultured 
 organisms.  The  hypothesized  clusters  generated  by  this  analysis  provide  a  set  of  microbial 
 building  blocks  on  which  we  can  understand  the  assemblage  of  global  heterotrophic  microbial 
 communities and how they differ by oceanographic region. 

 We  demonstrated  that,  when  applied  correctly,  the  CarveMe  tool  provides  fundamental 
 insights  into  the  metabolism  of  a  highly  diverse  set  of  marine  heterotrophic  organisms.  We 
 additionally  showed  that  there  were  clear  biases  in  the  quality  of  models  generated  by  CarveMe 
 with  some  orders,  such  as  the  Pelagibacterales  that  consistently  produced  poor  quality  models. 
 There  are  likely  several  factors  that  result  in  poor  quality  models.  We  postulate  that  the  current 
 universal  model  and  cutting  algorithm  used  by  CarveMe  may  struggle  with  streamlined  genomes 
 (e.g.,  the  Pelagibacterales  )  and  for  marine  heterotrophs  that  specialize  in  growth  on  more 
 complex  carbon  substrates.  We  also  hypothesize  that  issues  with  annotation,  in  particular  for 
 transporters,  might  also  contribute  to  poor  quality  models  for  certain  groups.  We  suggest  that 
 including  additional  reference  genomes  with  validated  metabolic  models  for  certain  orders  (e.g., 
 the  Pelagibacterales  )  will  substantially  improve  our  ability  to  generate  high  quality  metabolic 
 models across diverse groups. 

 While  the  clusters  identified  in  this  analysis  are  robust,  they  are  not  necessarily  complete. 
 In  particular,  we  demonstrated  that  the  CarveMe  tool  was  not  successful  at  creating  high  quality 
 models  for  the  majority  of  genomes  in  many  key  microbial  groups.  Thus,  we  anticipate  that  once 
 we  can  create  high  quality  models  for  these  groups  and  investigate  their  metabolic  strategies,  we 
 will potentially identify additional meaningful clusters. 

 Here  we  used  metabolic  models  to  analyze  the  growth  strategies  for  a  large  number  of 
 marine  microbial  genomes  (the  majority  uncultured)  via  in  silico  methods.  We  identified  eight 
 clusters  with  distinct  substrate  preferences,  growth  strategies,  taxonomic  profiles,  and 
 biogeographic  distributions  (Table  1,  Supplemental  Table  S1).  We  demonstrated  that  some 
 growth  strategies  correspond  strongly  with  phylogeny,  suggesting  that  we  can  infer  metabolism 
 directly  from  phylogeny  in  some  cases  .  However,  the  majority  of  the  phylogenetic  groups  in  our 
 dataset  were  distributed  across  multiple  clusters  with  distinct  metabolic  preferences, 
 demonstrating  that  organisms  from  diverse  taxonomic  groups  can  occupy  the  same  metabolic 
 niche,  consistent  with  the  findings  of  widely  varying  growth  rates  within  closely  related 
 organisms  25  .  Our  approach  also  provides  a  new  resource  for  artificial  media  development  by 
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 identifying  key  growth-limiting  substrates  whose  absence  in  traditional  media  may  currently  be 
 inhibiting  culturing  efforts.  Finally,  our  metabolic  clusters  provide  a  framework  for  developing 
 biogeochemical  models  that  explicitly  incorporate  diverse  microbial  communities  by  specifying 
 specific  growth  strategies  and  metabolic  preferences  that  can  be  used  to  parameterize  these 
 groups. 
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 2.  Methods 

 2.1       Genomic Data 
 Genomic  data  was  obtained  from  the  Ocean  Microbial  Database  (OMD)  hosted  at 

 microbiomics.io  13  ,  which  contains  approximately  35,000  microbial  genomes  including 
 metagenome-assembled  genomes  (MAGs),  single  amplified  genomes  (SAGs),  and  cultured 
 isolates.  We  included  only  high  quality  bacterial  genomes  as  defined  by  standard  thresholds  of  > 
 80%  completeness  and  <  5%  contamination  26,27  .  These  estimates  were  determined  based  on  the 
 average  of  the  CheckM  28  and  Anvi’o  29  completeness  and  contamination  scores.  High  quality 
 genomes  were  then  dereplicated  using  dRep  30  with  a  95%  ANI  threshold  which  was  provided  in 
 the  OMD  metadata.  We  used  the  resulting  3,918  high-quality  dereplicated  bacterial  genomes  as 
 our preliminary dataset for analysis. 

 2.2  Phylogeny 
 The  phylogenetic  tree  of  the  3,918  bacterial  genomes  was  determined  using  GtoTree 

 v1.7.0  31  and  IQ-TREE  v2.0.3  32  .  We  also  included  the  66  unique  bacterial  reference  genomes 
 underlying  the  bacterial  metabolic  models  in  the  BiGG  database  33  that  was  used  to  generate 
 CarveMe’s  universal  reaction  model  7  .  From  these  3,984  total  genomes,  we  created  a  multiple 
 sequence  alignment  (MSA)  file  using  the  predefined  Bacteria  single  copy  gene  (SCG)  set  in 
 GToTree  v1.7.00  31  .  During  this  process,  eight  genomes  were  excluded  from  the  tree  due  to  an 
 insufficient  number  of  hits  to  the  target  SCG  set  resulting  in  an  alignment  file  of  3,976  genomes. 
 However,  these  eight  genomes  were  still  included  in  our  taxonomic  analyses  of  the  SOM  clusters 
 as  we  were  able  to  assign  their  phylogeny  using  the  Genome  Taxonomy  Database  (GTDB).  The 
 MSA  file  was  then  passed  to  IQ-TREE  v2.0.3  using  the  LG+R10  model  with  3,554  amino-acid 
 sites  to  generate  a  phylogenetic  tree  (Figure  1).  For  a  current  taxonomy  of  all  genomes  in  the 
 dataset,  we  overlaid  full  taxonomic  assignments  generated  by  GTDB-Tk  v2.1.0  34  with  the  GTDB 
 r214 database  35  onto this tree. 

 We  also  calculated  a  quantitative  measure  of  phylogenetic  relatedness,  the  UniFrac 
 distance  36  ,  for  subgroups  of  genomes  we  defined  based  on  several  external  parameters  (e.g., 
 SOM  cluster,  ensemble  consensus  score,  dCUB,  etc.).  For  example,  we  created  sub-datasets 
 containing  genomes  assigned  to  each  of  our  eight  SOM  clusters  that  we  compared  using 
 UniFrac.  UniFrac-Binaries  37  was  run  using  the  Strided  State  UniFrac  algorithm  38  to  compute 
 unweighted  UniFrac  scores  39  .  These  results  from  this  assessment  are  presented  in  Supplemental 
 Section S3.3. 

 2.3  Model Generation and Quality Assessment 
 CarveMe  v1.5.1  7  was  used  to  generate  multiple  metabolic  models  for  each  genome, 

 called  an  ensemble.  CarveMe’s  ensemble  function  creates  multiple  models  from  a  single  genome 
 by  randomizing  the  weighting  factors  for  unannotated  reactions  before  generating  each  model 
 using  its  mixed  integer  linear  programming  (MILP)  algorithm.  Annotated  reactions  receive 
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 weighting  factors  based  on  their  gene-protein-reaction  score,  a  metric  that  reflects  the  level  of 
 confidence  in  whether  all  proteins  and  subunits  required  for  a  reaction  to  take  place  are 
 supported  in  the  genome.  We  tested  a  variety  of  ensemble  sizes  ranging  from  2  models  to  100 
 models  to  assess  the  necessary  number  of  model  replicates  to  effectively  capture  the  reaction 
 space  of  each  genome  (Supplemental  Figure  S10).  We  found  that  the  new  reactions  added  to  the 
 total  reaction  space  started  to  plateau  around  an  ensemble  size  of  60  suggesting  that  60  models 
 were sufficient to capture the majority of possible model solutions. 

 For  each  of  the  3,918  high  quality  genomes  in  our  dataset,  60  models  were  generated 
 using  their  protein  fasta  files  as  input.  CarveMe  7  was  run  using  python  3.7  40  and  IBM  ILOG 
 CPLEX  Optimizer  v20.1.0,  using  the  native  DIAMOND  annotation  procedure  v0.9.14  41  .  To 
 assess  the  quality  of  the  metabolic  models  generated  by  CarveMe,  we  developed  a  consensus 
 score metric  . The consensus score is defined as:  𝐶 

 (Equation 1)  𝐶 =
 𝑟 = 1 

 𝑟 = 𝑅 

∏  1 
 𝐸 

 𝑚 = 1 

 𝑚 = 𝑀 

∑  𝐼 ( 𝑋 
 𝑚𝑟 

=  1 )

 where  is  the  presence/absence  matrix  of  ensemble  model  reactions  across  M  individually  𝑋 
 𝑚𝑟 

 generated  models,  r  is  an  individual  reaction,  R  is  the  total  number  of  reactions  in  the  ensemble, 
 and  E  is  the  ensemble  size.  In  this  context,  I  is  the  indicator  function  for  the  case  that  reaction  r  is 
 present  in  ensemble  model  m  .  In  plain  terms,  measures  the  consistency  of  the  CarveMe  model  𝐶 
 reactions  across  the  ensemble  generated  for  a  single  genome.  If  all  models  in  the  ensemble 
 contained  all  the  same  reactions  then  the  consensus  score  would  be  1,  if  only  half  of  the  models 
 had  the  same  set  of  reactions  then  the  consensus  score  would  be  0.5.  Similar  to  Machado  et  al. 
 2018,  we  equate  the  consensus  score  with  overall  ensemble  quality  because  significant 
 dissimilarities  between  ensemble  models  suggest  that  the  cutting  algorithm  in  CarveMe  was 
 forced  to  make  more  uninformed  choices.  On  the  other  hand,  an  ensemble  with  highly  consistent 
 models  suggests  that  the  cutting  procedure  had  sufficient  knowledge  to  consistently  include  the 
 correct  pathways  in  the  model.  Only  genomes  with  a  consensus  score  greater  than  0.8  were  used 
 for further analyses (N=1,591). 

 2.4  Compound  Classification 
 To  provide  an  assessment  of  broad  metabolic  strategies,  we  analyzed  the  CarveMe  model 

 growth  sensitivities  by  compound  classes.  To  do  this,  compounds  that  were  used  as  substrates 
 (imported  into  the  cell  by  the  model)  were  manually  classified  into  the  following  13  major 
 categories:  carboxylic  acids,  amino  acids  and  derivatives,  peptides, 
 nucleobases/nucleosides/nucleotides  and  derivatives,  carbohydrates  and  derivatives, 
 ketones/aldehydes,  organic  sulfur,  phospholipids/fatty  acids  and  triglycerides,  alcohols,  amines 
 and  amides,  B  vitamins,  inorganics,  and  “other”  (Supplemental  Table  S2).  We  excluded 
 inorganics  and  ‘other’  categories  from  our  downstream  analyses  to  focus  on  the  eleven 
 categories  with  organic  substrates  necessary  for  growth.  References  used  in  the  categorization 
 included  ChEBI  42  ,  NIH  PubChem  43  ,  BiGG  Database  44,45  ,  HMDB  46  ,  BioCyc  47,48  ,  ChemSpider  49  , 
 ECMDB  50,51  and  prior  knowledge.  There  were  2,467  external  exchange  reactions  in  the  universal 
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 model  representing  the  acquisition  of  compounds  from  the  environment  or  media.  Only  633  of 
 the  2,467  appeared  as  external  reactions  in  any  of  our  models.  We  then  classified  the  456 
 compounds  that  showed  up  the  most  frequently  and  accounted  for  the  majority  of  the  total  flux 
 into  the  models  across  all  95,460  CarveMe  models  generated  for  this  study.  Specifically,  our 
 classified  compounds  accounted  for  at  least  90%  of  the  total  import  flux  in  98.3%  models  across 
 all  of  our  sensitivity  tests  (N=1,050,060).  The  177  compounds  that  were  not  included  each 
 appeared in fewer than 10 of the 95,460 total models in the dataset. 

 2.5  Growth sensitivity analysis 
 We  used  the  CobraPy  v0.25.0  11  software  to  test  the  CarveMe  model  growth  sensitivities 

 under  a  wide  range  of  substrate  availability.  First,  we  assessed  the  type  and  quantity  of 
 compounds  preferred  for  growth  for  each  of  the  CarveMe  models  under  replete  conditions 
 (where  we  define  replete  conditions  as  having  maximum  flux  of  all  substrates  available  to  the 
 model).  Specifically,  we  estimated  the  maximum  model  growth  rate  using  the  slim_optimize 
 function  in  CobraPy  with  all  possible  media  components  turned  on.  We  then  determined  the 
 minimal  set  of  compounds  that  allowed  the  previously  determined  maximum  model  growth  rate 
 using  the  CobraPy  minimal  media  prediction  (minimal_media  function).  This  function  solves  a 
 mixed  integer  linear  programming  (MILP)  problem  to  minimize  the  import  fluxes  (external 
 exchange reactions) while maintaining the maximum model growth rate. 

 Compound-specific  growth  sensitivities  for  each  of  our  11  growth  compound  classes 
 were  then  determined  for  each  model.  For  each  substrate  compound  class  (  defined  above  in 
 section  2.4  ),  the  available  flux  for  that  class  was  supplied  at  50%  of  the  import  flux  value  in  the 
 ‘replete  conditions’  while  all  other  substrates  were  allowed  to  reach  their  maximum  values.  Any 
 medium  component  from  the  limited  growth  compound  class  that  was  not  originally  predicted  as 
 part  of  the  minimal  medium  of  a  given  model  was  made  unavailable  to  prevent  models  from 
 circumventing  the  substrate  limitation.  We  then  assessed  how  the  substrate  import  fluxes  shifted 
 under  these  limitation  scenarios  and  the  resulting  change  in  predicted  growth  rate.  Sensitivities 
 were computed on a  scale using the following equation: [ 0 ,  1 ]

 (Equation 2)  2 × ( 1 −
µ

 𝑛 

µ )

 where  is  the  predicted  growth  rate  under  substrate  limitation  by  compound  class  and  is  the µ
 𝑛 

 𝑛 µ

 predicted  growth  rate  in  the  ‘replete  conditions’.  The  eleven  compound-specific  growth 
 sensitivities  that  were  estimated  per  model  then  served  as  the  input  data  for  the  SOM  clustering. 
 The  full  enumeration  of  the  compound  specific  growth  sensitivities  for  each  genome  can  be 
 found in Supplemental Table S1. 

 2.6  Validation on Experimentally Characterized Genomes 
 To  validate  our  CarveMe  models  and  growth  sensitivity  analysis,  we  compared  our  model 

 results  to  experimentally  validated  measurements  on  a  shared  set  of  genomes.  Specifically,  we 
 constructed  model  ensembles  for  176  marine  bacterial  genomes  that  were  experimentally  tested 
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 for  their  ability  to  grow  on  a  variety  of  sugar/acid  substrates  16  .  The  data  from  this  study  included 
 binary  measurements  of  growth/no  growth  on  118  compounds  as  the  sole  carbon  substrate  in  the 
 media  and  a  prediction  of  sugar/acid  preference  (SAP).  Of  the  176  genomes,  146  generated  high 
 quality CarveMe models (above the consensus threshold of 0.8). 

 We  conducted  a  paired  comparison  of  the  experimental  and  model  predictions  of 
 substrate  growth  for  the  146  high  quality  genomes  that  had  been  assessed  for  growth  on  the 
 range  of  carbon  substrates.  Of  the  118  experimentally  measured  compounds,  59  had 
 corresponding  reactions  in  the  BiGG  database.  Our  results  exclude  one  of  these  59  compounds, 
 oxaloacetate,  which  is  highly  unstable  and  rapidly  degrades  to  pyruvate  52  and  confounds  the 
 fidelity  of  the  growth  experiment  with  that  compound  as  the  sole  carbon  source.  For  presence  in 
 the  model,  we  required  the  external  exchange  reaction  for  the  substrate  to  be  present  in  >80%  of 
 the  ensemble  models.  For  absence,  we  required  that  the  exchange  reaction  be  absent  in  >80%  of 
 the  ensemble  models.  1.5%  of  the  model-substrate  comparisons  fell  between  these  two  cutoffs 
 and  so  were  not  assigned  an  outcome.  For  each  genome  and  each  substrate,  we  assigned  one  of 
 three  outcomes:  1)  agreement  between  the  models  and  the  data  (either  presence/growth  or 
 absence/no-growth);  2)  disagreement  between  the  models  and  the  data  (absence  in  the 
 model/growth  in  the  data);  or  3)  false  positives  where  the  models  contained  the  exchange 
 reaction but the organism was not able to grow on the substrate as a sole carbon source. 

 To  assess  the  agreement  between  the  modeled  growth  sensitivities  of  these  organisms  and 
 the  experimental  findings  for  sugar/acid  preference  (SAP),  we  computed  the  growth  sensitivities 
 of  the  CarveMe  model  ensembles  (see  Section  2.5).  We  used  the  sensitivity  to  carbohydrates  for 
 the  sugar  preference  assessment  and  the  sensitivity  to  amino  acids  for  the  acid  preference 
 assessment.  The  146  genomes  with  high  quality  models  were  grouped  into  two  groups  based  on 
 whether  they  were  sugar-preferring  organisms  (SAP  >  0,  N=77)  or  acid-preferring  organisms 
 (SAP  <  0,  N=69).  We  then  compared  the  relative  sensitivities  for  each  of  these  classes  to  their 
 experimentally  assigned  SAP  value  by  determining  the  average  growth  sensitivity  of  the  models 
 associated  with  the  genomes  in  each  group  to  our  sugar  and  acid  compound  classes.  The  results 
 from this assessment are presented in Supplemental Section S1. 

 2.7       Generation of Self-Organized Maps 
 To  identify  clusters  of  organisms  with  similar  metabolic  strategies,  we  employed 

 Self-Organized  Maps  (SOMs)  to  the  assessment  of  compound  specific  growth  sensitivities. 
 SOMs  are  an  unsupervised  machine  learning  dimension  reduction  method  capable  of  handling 
 large  data  formats  53  .  SOMs  are  a  non-parametric  approach,  capable  of  highlighting  nonlinear, 
 complex  patterns  in  two-dimensional  space  from  highly  dimensional  data.  The  map  was  built 
 using  the  CobraPy  growth  sensitivity  analysis  for  the  95,460  high-quality  ensemble  models 

 .  These  scaled  compound  flux  predictions  were  clustered  using  kohonen  v3.0.12  20  and ( 𝐶     ≥     0 .  8 )
 solved  over  1,500  iterations  with  a  learning  rate  vector  of  (0.025,  0.01)  and  default  neighborhood 
 radii  on  a  20-by-20  toroidal,  hexagonal  grid  spatially  described  by  standard  Euclidean  distance. 
 Map  parameters  were  determined  using  heuristics  and  metrics  of  error  proposed  in  the  SOMs 
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 literature  53–57  and  are  discussed  further  in  Supplemental  Section  S2.  Each  node  in  the  grid  was 
 initialized  with  a  random  codebook  vector  of  values  for  each  independent  variable.  Data  entries 
 were  then  randomly  drawn  from  the  dataset  -  every  entry  in  the  dataset  was  drawn  in  each 
 iteration  -  and  the  grid  point  values  of  the  closest  neighborhood  of  nodes  were  updated.  After 
 sufficient  training,  the  values  assigned  to  each  grid  point  reflect  the  spatial  topology  of  the  data 
 (e.g.,  density  of  data  points,  variation)  as  well  as  the  full  range  of  values  in  the  original  dataset. 
 The  final  SOM  map  was  then  grouped  into  eight  distinct  clusters  using  k-means  clustering  58 

 based  on  the  coherence  of  the  growth  compound  sensitivity  predictions.  The  full  map  and 
 designation  of  the  clusters  is  shown  in  Supplemental  Figure  S11a.  After  1,500  iterations,  the 

 mean  object  distance  to  its  closest  map  unit  (the  quantization  error)  was  approximately  1×1  0 − 4 

 (Supplemental Figure S11b). 
 As  the  SOM  map  and  clusters  were  built  using  all  of  the  ensemble  models  (60  per 

 genome),  we  then  needed  to  assign  each  genome  to  a  cluster.  This  was  done  by  assigning  each 
 model  to  its  closest  mapping  unit,  and  determining  the  mapping  unit  possessing  a  simple 
 majority  of  the  60  models  generated  from  a  single  genome.  This  mapping  unit  was  designated  as 
 the  mapping  node  for  the  genome  and  the  genome  was  assigned  to  the  associated  SOM  cluster. 
 We  assessed  the  frequency  with  which  each  of  the  60  ensemble  models  occurred  in  a  single  SOM 
 cluster  (Supplemental  Figure  S11c)  and  showed  that  96.0%  of  the  genomes  had  90%  of  their 
 models  assigned  to  the  same  SOM  cluster  (and  68.6%  had  all  60  models  assigned  to  the  same 
 SOM  cluster).  Of  the  1,591  genomes,  only  one  genome  had  models  split  equally  between  two 
 SOM  clusters.  In  this  case,  this  genome  was  randomly  assigned  to  one  of  the  two  clusters  using  a 
 fixed  random  seed  of  123.  The  parameter  optimization  of  the  SOM  map  developed  in  this  study 
 is discussed in further detail in Supplemental Section S2. 

 2.8  Maximum Growth Rate Estimations 
 To  assess  differences  in  maximum  growth  rates,  we  estimated  the  codon  usage  bias 

 (dCUB)  for  all  1,591  genomes  using  the  gRodon  program  21  .  dCUB  is  a  metric  that  has  been 
 empirically  linked  with  optimization  for  faster  growth.  gRodon  measures  codon  usage  bias  of 
 highly  expressed  genes,  in  this  case  ribosomal  proteins,  compared  to  the  codon  usage  patterns 
 across  the  whole  genome.  This  genomic  measure  of  maximum  growth  is  a  reasonable  proxy  and 
 allows  us  to  examine  the  differences  in  growth  optimization  for  this  set  of  uncultured  organisms 
 without  needing  to  do  extensive  culturing  and  metabolic  characterization  efforts.  Because 
 estimating  actual  growth  rates  from  codon  usage  bias  requires  correcting  for  temperature,  we 
 used  the  raw  dCUB  scores  for  this  analysis  to  assess  relative  differences  in  genomic  optimization 
 for  rapid  growth.  Previous  work  by  Weissman  21,22  suggests  that  differences  in  dCUB  values  are 
 only  reliable  below  the  threshold  of  -0.08  (i.e.,  lower  values  of  dCUB  represent  faster  growth 
 rates).  We  use  this  threshold  to  differentiate  between  ‘slow  growth’  and  ‘fast  growth’  organisms. 
 The results from these analyses are presented in Supplemental Section S3.2. 

 2.9      Global Distribution 
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 To  assess  the  global  distribution  of  the  genomes  within  each  SOM  cluster,  we  performed 
 competitive  metagenomic  recruitment.  Specifically,  we  calculated  normalized  Reads  Per 
 Kilobase  per  Million  mapped  reads  (RPKM)  with  the  pipeline  RRAP  v1.3.2  59  .  RRAP  uses 
 bowtie2  v2.4.2  60  to  align  reads  and  SAMTools  v1.14  61  to  index  and  sort  the  read  alignment  data. 
 RRAP  takes  read  alignment  statistics  generated  by  SAMTools  to  calculate  RPKM.  A  total  of 
 1,424  metagenomes  were  used  for  the  read  recruitment  from  several  metagenomics  surveys 
 including  Tara  Oceans,  BioGeoTraces,  and  Malaspina  13  .  Raw  metagenome  fastq  files  were 
 aggregated  by  sample  and  by  depth  when  multiple  depths  were  present  –  e.g.,  the  Tara  Oceans 
 dataset  –  and  quality  filtered  using  the  iu-filter-quality-minoche  script  from  the  Illumina-utils 
 library  v2.10  with  default  parameters.  This  script  follows  the  quality  filtering  approach  outlined 
 in  62  .  After  quality  filtering,  our  genome  set  was  recruited  to  the  metagenomic  reads,  and  reads 
 per  kilobase  per  million  mapped  reads  (RPKM)  values  were  calculated  for  each  genome  at  each 
 site. 

 We  then  partitioned  our  data  into  23  oceanographic  regions  defined  in  Lanclos  et  al.  2023 
 and  aggregated  the  raw  RPKM  values  for  the  genomes  in  our  study  63  .  Of  the  1,424  sampling  sites 
 in  the  metagenomic  recruitment,  we  had  oceanographic  region  assignments  from  the  metadata 
 for  1,203  sites.  The  23  defined  oceanographic  regions  in  this  metadata  averaged  52.3  distinct 
 samples  per  region  (ranging  from  3  samples/sites  in  the  Southern  Ocean  to  299  samples  at  station 
 ALOHA)  (Supplemental  Table  S3).  We  then  further  clustered  the  23  oceanographic  regions  into 
 5  categories:  Estuarine,  Coastal,  Oligotrophic  Seas,  Oligotrophic  Open  Oceans,  and  the 
 Southern  Ocean  (Supplemental  Table  S4).  We  used  this  categorization  to  group  the  sampling 
 sites  and  compare  the  relative  abundances  determined  from  the  raw  RPKM  values.  For  the 
 sampling  sites  associated  with  each  category,  we  clustered  the  relative  abundances  of  the  eight 
 SOM  clusters  at  each  site  using  Euclidean  distance  and  hierarchical  clustering  with  McQuitty 
 linkage distance. 

 To  assess  the  relative  abundance  of  genomes  assigned  to  each  SOM  cluster  per 
 oceanographic  region  or  category,  we  conducted  a  bootstrap  recruitment  of  the  individual 
 genome  abundance  values  at  each  station.  We  employed  bootstrapping  due  to  large  variation  both 
 in  the  number  of  samples  present  in  each  region  (ranging  from  3  at  SOC  to  299  at  ALOHA)  and 
 in  the  number  of  genomes  assigned  to  each  cluster  (ranging  from  74  genomes  in  Cluster  8  to  558 
 genomes  in  Cluster  2).  For  each  region,  we  computed  1,000  independent  bootstrap  iterations 
 (using  the  fixed  random  seed  123),  drawing  10,000  data  points  from  the  pool  of  RPKM  samples 
 for  each  of  our  eight  clusters.  During  each  bootstrapping  step,  we  calculated  the  cumulative 
 RPKM  of  the  sampled  data  for  each  cluster  and  then  compared  their  magnitudes  to  determine  the 
 relative  abundances  of  the  clusters.  Average  values  and  95%  confidence  intervals  were  then 
 computed  from  the  resulting  distributions  of  relative  abundances  for  each  cluster/region 
 combination. 

 2.10  Data Visualization 
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 All  data  visualizations  in  R  v4.2.3  were  performed  using  ggplot  v3.4.2,  ggridges  v0.5.4  64  , 
 ggtree  65  , patchwork v1.1.2  66  , ragg v1.2.5, and plots  native to kohonen v3.0.12  20  . 
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Figure 1: Diversity of dataset, quality of metabolic models, and designation of metabolic
clusters. Phylogenetic tree of all 3,984 bacterial genomes included in this study (including the 66
reference genomes from the BiGG database). The tree is contextualized by several external rings
that describe different qualitative and quantitative components of the genomes in this study. The
first ring around the tree denotes both the position and density of high quality ensembles within
the tree as well as the assignment of these genomes to each of our eight SOM clusters. The
second ring shows the ensemble consensus score (Equation 1) for each genome in the tree. The
third, sparse ring of red lines denotes the position of the 66 BiGG reference genomes present in
the tree. Finally, the fourth and innermost ring shows the location of the top 15 most abundant
orders.
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Figure 2: Substrate sensitivities for 8 SOM clusters. Bubble plot of the mean growth
sensitivity values for genomes in each of our 8 SOM clusters. A growth sensitivity of 1 indicates
high sensitivity to that substrate such that the modeled growth rate was reduced proportionally to
the reduction in the substrate’s flux (e.g., 50% substrate reduction corresponded to 50% growth
rate reduction). The size of the bubbles in this plot reflect the relative sensitivity of each of the 8
SOM clusters to a given compound class where larger bubbles indicate that cluster was more
sensitive to that compound class than others. The 6 compound classes which resulted in
significant growth reduction for at least one of the SOM clusters are shown here. The full results
for all 11 substrate classes are provided in Supplemental Figures S2 & S3). Cluster numbers
were colored based on maximal genomic growth rate (Supplemental Figure S6).
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Figure 3: Biogeographical relative abundances of 8 SOM clusters. Clustered bar charts of the
relative abundances of the 8 SOM clusters as determined by RPKM at each of the 1,203 stations
assigned to one of the 23 oceanographic regions. Stations were grouped into our 5 defined
oceanographic categories and then arranged based on a hierarchical clustering of the relative
abundances.
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Table 1: Description of 8 SOM clusters including the number of genomes per cluster, the
growth strategy as determined by the dCUB distributions, the number and names of the growth
limiting substrate classes, as well as the 2 most numerically abundant orders.

Cluster Genomes Growth Strategy
% fast
growers Limiting Classes Top 2 orders

# Substrate

1 144 Slow 50.00% 2
Carboxylic Acids,

Amino Acids
Pelagibacterales,
Rhodobacterales

2 558 Fast 78.00% 0 None
Flavobacteriales,
Enterobacterales

3 95 Slow 40.00% 2
Carboxylic Acids,

Peptides
Flavobacteriales,
Pelagibacterales

4 211 Slow Intermediate 62.10% 1 Amino Acids
Flavobacterales,
Rhodobacterales

5 299 Fast Intermediate 73.20% 1 Carboxylic Acids
Pseudomonadales,
Rhodobacterales

6 133 Slow Intermediate 66.20% 1 Carbohydrates
Flavobacteriales,
Rhodobacterales

7 77 Slow 42.90% 2 Peptides, Amino Acids
Flavobacteriales,
Rhodobacterales

8 74 Slow 48.60% 3

Carboxylic Acids,
Amino Acids, B

vitamins
Flavobacterales,
Rhodobacterales
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