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12 Abstract
13 Ocean microbial communities are made up of thousands of diverse taxa whose metabolic

14 demands set the rates of both biomass production and degradation. Thus, these microscopic
15 organisms play a critical role in ecosystem dynamics, global carbon cycling, and climate. While
16 we have frameworks for relating phytoplankton diversity to rates of carbon fixation, our
17 knowledge of how variations in heterotrophic microbial populations drive changes in carbon
18 cycling is in its infancy. Here, we leverage global metagenomic datasets and metabolic models to
19 identify a set of metabolic niches with distinct growth strategies. These groupings provide a
20 simplifying framework for describing microbial communities in different oceanographic regions
21 and for understanding how heterotrophic microbial populations function. This framework,
22 predicated directly on metabolic capability rather than taxonomy, enables us to tractably link
23 heterotrophic diversity directly to biogeochemical rates in large scale ecosystem models.

24

25

26 Classification of heterotrophic microbes into metabolic functional guilds can provide a
27 framework for coalescing diverse microbial communities' into more tractable units for
28 incorporation into biogeochemical models®. Historically, we have grouped marine microbial
29 heterotrophs into copiotrophic organisms, which thrive in high resource environments and
30 generally have faster growth rates with flexible metabolisms, and oligotrophic organisms, which
31 dominate resource poor environments and have slower growth rates’. While these broad
32 categories are useful, they do not inherently facilitate defining metabolic niches or substrate
33 preferences that are critical when considering rates of biogeochemical cycling. Specifically, there
34 1s no intrinsic linkage between fast or slow maximum growth rates and the substrate preferences
35 for organisms®. In this analysis, we expand beyond the copiotroph-oligotroph paradigm and
36 independently assess metabolic strategy and growth rates to generate a generalizable functional
37 categorization of marine microbial heterotrophic metabolisms.

38 Genome-scale metabolic models (GEMs) provide a means for translating genomic
39 information into cellular metabolisms® but have historically been labor intensive to generate and
40 have been generally restricted to cultured isolates®. The advent of fast automated metabolic
41 model construction software such as CarveMe, ModelSEED, Agora™®, etc., has enabled
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42 generating GEMs for large numbers of genomes and from uncultured organisms'®. Metabolic
43 potential from GEMs can further be explored through the use of flux balance analysis tools such
44 as CobraPy'. These combined analyses provide insights into the minimal metabolic
45 requirements for a cell and hypotheses about the preferred substrates for growth'?,

46 Here we leveraged a large global dataset of marine microbial genomes (Ocean Microbial
47 Database (OMD))" to identify patterns in metabolic strategies among marine bacteria through
48 GEMs. Testing model sensitivity to growth on different substrates allowed us to define unique
49 clusters of marine heterotrophic bacteria with shared growth strategies. We identified a classic
50 fast-growing copiotrophic cluster, four slow-growing oligotrophic clusters each with a unique
51 metabolic strategy, and three intermediate growth clusters, also with unique metabolic strategies.
52 These clusters are found globally but at varying abundances in different ecological regimes.
53 While clear phylogenetic signals emerged distinguishing the clusters, our findings also suggest
54 that similar metabolic niches are occupied by distinct taxonomic groups.

55

56 Results

57 CarveMe model quality

58 We generated GEMs for 3,918 high quality bacterial genomes (including cultured
59 isolates, metagenomes, and single-cell genomes) from OMD using CarveMe’. This dataset
60 spanned a wide diversity of marine bacteria representing 205 distinct taxonomic orders, fifteen of
61 which had fifty or more genomes (Figure 1). Given the stochastic nature of the cutting algorithm
62 in CarveMe, it is necessary to run ensembles of models for each genome™'. To ensure we
63 included only high quality models in our analysis, we generated a large model ensemble for each
64 genome (N = 60) and assessed the robustness of the models using a consensus metric.
65 Specifically, higher confidence can be placed in models where a consistent set of enzymatic
66 reactions are included across the entire ensemble of models generated by CarveMe for a single
67 genome (high consensus value).

68 Consensus values for the OMD genomes ranged from 1 (all model reactions were the
69 same across all ensemble members) to 0.24 (only 24% of reactions were conserved between
70 ensemble members thus providing low confidence in the CarveMe models). Systematic
71 differences in consensus values were seen between phylogenetic groups (Figure 1, 3rd ring). The
72 Enterobacterales, Rhodobacterales, Cytophagales, Sphingomonadales, and Pseudomonadales
73 had the largest number of genomes with high consensus values: on average, 65.0% of genomes
74 from each of these orders had consensus values above 0.8 (range 51.3%-81.3%). Genomes that
75 were phylogenetically similar to the reference genomes used to develop CarveMe generally had
76 higher consensus values (Figure 1). Several orders had a large proportion of genomes with high
77 consensus values despite being phylogenetically distant from the reference genomes. The
78 Rhodobacterales, for example, have no reference genome but 72.1% of these genomes had a
79 consensus value greater than 0.8. CarveMe struggled to generate high consensus ensembles for
8o several orders. Only 10.8% of Pelagibacterales and 4.1% of PCC-6307 genomes had consensus
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81 values above 0.8, while 66.5% and 49.7% of genomes in these groups had values at or below 0.5,
82 respectively.

83 This analysis suggests that adding reference genomes (experimentally validated
84 metabolic models used to improve the CarveMe tool) in these low consensus orders would
85 substantially improve the ability for CarveMe to generate high consensus ensembles. This would
86 greatly improve our ability to robustly apply CarveMe broadly to environmental datasets'>. Our
g7 further analyses only used the 1,591 genomes with consensus values of 0.8 or greater. We tested
88 a more conservative cutoff of 0.9, yielding a dataset of 983 genomes, and showed that the
89 primary findings of this work remain unchanged (Supplemental Figure S1). The low number of
90 PCC-6307 genomes with high quality models (N=7) was likely due to the fact that these are
91 Cyanobacteria and so phototrophic or mixotrophic (capable of growing on or supplementing
92 growth with organic compounds), whereas the CarveMe universal model is based on, and
93 validated with, heterotrophic bacterial genomes. Given that CarveMe was designed for
94 heterotrophic microbes and only 0.44% of the genomes used for subsequent analyses were from
95 the PCC-6307 order, we focused our analyses on heterotrophic metabolic strategies.

9%

97 Metabolic strategy assessment

98 We defined metabolic strategy as the substrates that are preferred by an organism for
99 growth. We assessed the metabolic strategy for each genome using a suite of sensitivity studies.
100 Specifically, model growth dynamics were evaluated using CobraPy under ‘replete’ conditions
101 (all potential growth substrates available), and then under ‘limiting’ conditions in which the
102 availability of certain compound classes were substantially reduced. Here we used a threshold of
103 an 80% reduction in growth rate under the limiting condition as the designation of substantial
104 reduction in growth (Supplemental Figure S2). We then considered a genome to be sensitive to a
105 compound class if growth was substantially reduced when the compound class was removed.

106 We validated our approach using an extensive culture-based analysis of carbon substrate
107 preferences for 191 marine microbes'®. Good agreement was observed between the CarveMe
108 model predictions for these genomes and the experimentally validated growth preferences
109 (Supplemental Figure S3a). Specifically, 51.0% of the comparisons showed exact agreement
110 between the model predictions and experimental data and only 4.6% of models predicted no
111 growth where growth was experimentally observed. For the remaining 44.4% of the
112 comparisons, the models predicted that the substrate could be taken up by the organism but no
113 growth was experimentally observed when that compound was provided as a sole carbon source.
114 These cases suggest that the organisms might be able to use the substrate, but not as a sole
115 carbon source or under the conditions tested. Good agreement was also seen between
116 model-predicted compound sensitivities and the designation of acid versus sugar specialists
117 identified by'® (Supplemental Figure S3b), suggesting that our framework is capturing substrate
118 preferences observed experimentally (Supplement S1) .

119 The highest growth sensitivity occurred under carboxylic acid limitation, with 39.9% of
120 all models in the dataset demonstrating substantial growth reduction when the uptake of this
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121 compound class was limited (Supplemental Figure S4a). Reducing the availability of amino
122 acids or carbohydrates resulted in substantial growth reduction in 29.2% and 17.6% of the
123 models, respectively (Supplemental Figure S4a). In contrast, the models were generally
124 insensitive to the reduction of amines/amides, ketones/aldehydes, or alcohols with only 0.13%,
125 0.2%, and 0.25% of models showing substantial growth reduction, respectively (Supplemental
126 Figure S4a). When analyzed by taxonomic order, we found that the most sensitive taxa to
127 substrate limitation across all compound classes were the Pelagibacterales (24.9% of models
128 showed substantial growth reduction to at least one compound class), SAR86 (21.6% showed
129 substantial growth reduction), and AEGEAN-169 (19.1% showed substantial growth reduction)
130 (Supplemental Figure S5a). This is consistent with these groups being classically oligotrophic
131 organisms with streamlined genomes and limited metabolic flexibility'”'®. By contrast, the
132 classically copiotrophic groups (the Enterobacterales, Sphingomonadales, and Rhodobacterales)
133 showed the least growth sensitivity to substrate reduction, with only 5.9%, 9.1% and 9.4% of
134 these models showing substantial growth reduction across all compound classes, respectively
135 (Supplemental Figure S5a). This indicates that the classically designated copiotrophic orders
136 may have more flexible metabolisms where they can achieve high growth rates using many
137 different compound classes.

138
139 Emergent metabolic clusters
140 Metabolic niches were identified based on the substrate preference profiles for all 1,591

141 genomes using Self Organizing Maps (SOMs). The SOMs method is an unsupervised clustering
142 method that reduces large, high dimensional datasets to a topologically defined two-dimensional
143 grid space®. Eight SOM clusters emerged with distinct growth sensitivities to different
144 compound classes (Table 1). Differences in sensitivities to carbohydrates, carboxylic acids,
145 amino acids, peptides, and B-vitamins drove the largest separations between the clusters (Figure
146 2, Supplemental Figure S4b). To further expand the analysis of growth strategy, we computed an
147 estimate of maximum growth rate for each genome based on genomic optimization using codon
148 usage bias (dACUB)*"*2. We then assessed differences in genomic estimates of maximum growth
149 rates between clusters (dCUB values were not used in the SOM clustering). Significant
150 differences in estimated maximum growth rates were observed between the SOM clusters
151 (Tukey’s HSD, ANOVA) with one fast-growing cluster (Cluster 2), four slow-growing clusters
152 (Clusters 1, 3, 7, and 8), and three clusters with intermediate growth rates (Clusters 4, 5, and 6)
153 (Supplemental Figure S6, Table 1).

154 The eight SOM clusters had conserved phylogenetic signals with enrichment in specific
155 taxonomic groups (Table 1). However, we simultaneously observed that many taxonomic groups
156 appeared across multiple clusters (Supplemental Figure S5b). This suggests that diverse
157 taxonomic groups have similar substrate preferences and growth sensitivities, and also that some
158 taxonomic groups appear to have sublineages with wide variations in lifestyle. For example, the
159 Enterobacterales and Rhodobacterales were enriched in our fast-growing Cluster 2 by 174.6%
160 and 121.0%, respectively, relative to their abundances in the total dataset (Supplemental Figure
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161 S7). Similarly, SAR86 and the Pelagibacterales were on average enriched in the slow-growing
162 Clusters 1, 3, 7, and 8 by 211% and 307%, respectively, relative to their abundances in the total
163 dataset. This was compared to 74.1% and 80.6% reductions of these two classically oligotrophic
164 orders in the fast-growing Cluster 2 relative to the total dataset. However, we also found that
165 nine of the fifteen most abundant orders were present in all clusters, and only three orders were
166 absent in more than one cluster (the Sphingomonadales, PCC-6307, and AEGEAN-169). The
167 Flavobacteriales, for instance, were present across all eight clusters accounting for 9.7% of
168 slow-growing Cluster 1 up to 33.1% of the intermediate growth Cluster 6 (Supplemental Figure
169 S5b). Thus, although there was variation in the taxonomic composition of the clusters, the
170 differences between clusters was not driven by taxonomy alone (Supplement S3.3). Below we
171 provide an analysis of the four growth types that emerged from the SOM clusters: fast-growing,
172 slow-growing, fast intermediate growth, and slow intermediate growth.

173 The fast-growing Cluster 2 was classically ‘copiotrophic’. 78.0% of genomes in this
174 cluster had predicted maximum genomic growth rates that were higher (more negative dCUB)
175 than the threshold of slow growth (dCUB =— 0. 08, where lower dCUB values correspond to
176 faster growth). This threshold corresponds to a doubling time of approximately 5 hours for
177 mesophilic organisms (optimal growth temperature between 20-60°C)* (Supplemental Figure
178 S6). Taxonomically, Cluster 2 consisted primarily of the Enterobacterales, Flavobacteriales,
179 Rhodobacterales, and Psuedomonadales (Figure 1, Supplemental Figure S5a). Metabolically,
180 this fast-growing cluster showed the least sensitivity to the removal of compounds with no
181 significant growth sensitivity to the reduction of any of the 11 measured compound classes
182 (Figure 2). This suggests that these organisms have flexible metabolisms capable of growing on
183 a wide range of substrates and are able to synthesize or substitute essential metabolites when not
184 available from the environment. Hereafter, we will refer to this as the fast-growing generalist
185 cluster.

186 In contrast, the slow-growing clusters (Clusters 1, 3, 7, and 8) had significantly slower
187 estimated maximum growth rates than the fast-growing generalist cluster (average dCUB of
188 -0.106) (Supplemental Figure S6). For example, 60% of genomes in Cluster 3 had dCUB values
189 within the ‘indistinguishable slow growth range’ (dCUB values above the -0.08 threshold). This
190 cluster had a high proportion of known oligotrophic orders such as SAR86 and the
191 Pelagibacterales, with these groups enriched in this cluster by 457% and 343% relative to the
192 overall dataset (Supplemental Figure S6). The Marinisomatales was also found to be slightly
193 enriched (139.6%) in this cluster relative to its abundance in the overall dataset. All four
194 slow-growing clusters showed growth sensitivities to multiple (two or more) compound classes
195 (Figure 2). This is in contrast to the intermediate growth clusters which demonstrated sensitivity
196 to a single compound class (described below). We observed metabolic niche separation within
197 the slow-growing clusters. For example, Cluster 1 exhibited high growth sensitivities to two
198 classes of acids (carboxylic acids and amino acids/derivatives), whereas Cluster 3 models
199 showed high growth sensitivities to carboxylic acids and peptides (Figure 2, Supplemental
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200 Figure S4b). Cluster 7 showed growth sensitivity to peptides and amino acids, while Cluster 8
201 models were sensitive to carboxylic acids, B vitamins, and amino acids.

202 The three intermediate growth clusters (Clusters 4, 5, and 6) showed growth sensitivity to
203 a single compound class: amino acids, carboxylic acids, and carbohydrates, respectively (Figure
204 2B). All three intermediate growth clusters had predicted growth rates that were significantly
205 slower than the fast-growing Cluster 2 (Supplemental Figure S6). Cluster 5 was also estimated to
206 be significantly faster than the four slow-growing clusters — hereafter referred to as the fast
207 intermediate growth cluster. Overall, these intermediate growth clusters appeared to be more
208 flexible metabolically and faster-growing than the slow-growing specialist clusters but more
209 specialized and slower growing than the fast-growing generalist cluster. The intermediate growth
210 clusters corroborate a recent modeling study which suggested that the dominant heterotrophic
211 group in the subsurface ocean might be slow-growing copiotrophs?.

212

213 Biogeographic Distribution

214 To investigate the biogeographic distributions of our eight SOM clusters, we performed a
215 competitive metagenomic recruitment and calculated normalized Reads Per Kilobase per Million
216 mapped reads (RPKM) for 1,424 globally distributed samples. We compared the relative
217 abundance of aggregate total RPKM for each of the 23 unique oceanographic regions in our
218 global dataset using a bootstrapping approach (Supplemental Figure S8). We further grouped
219 these 23 regions into 5 oceanographic categories and applied our bootstrapping approach, as well
220 as a direct clustering on the raw RPKM values from each site. Clear biogeographical patterns
221 emerged across both the 23 oceanographic regions and the 5 defined oceanographic categories
222 (Figure 3, Supplemental Figures S8&S9). Estuarine sites showed the highest abundance of both
223 the fast-growing generalist and the fast-growing intermediate clusters. The co-occurrence of
224 these copiotrophic and metabolically flexible organisms in these frequently eutrophic and
225 variable salinity environments aligns with our expectation that microbial communities present in
226 these regions are dominated by fast-growing organisms. In contrast, these faster growing clusters
227 were rare at open ocean oligotrophic sites where copiotrophs are primarily present at low
228 abundances, occupying niches such as sinking particles”. We show that community
229 compositions in the oligotrophic seas (Mediterranean and Red Sea) and open ocean sites are
230 dominated by the four slow-growing clusters and the two slower-growing intermediate clusters.
231 The slow-growing acid-specialist cluster (Cluster 1) was the most numerically dominant group of
232 organisms across all samples and also had the greatest enrichment of the Pelagibacterales, the
233 most numerically dominant order of marine heterotrophs'’. Unfortunately, the dataset did not
234 allow us to make further conclusions related to the co-occurrence of specific metabolic
235 preferences and the biogeochemical environment in which these communities were found.
236 However, expanding this analysis to samples where interdisciplinary information (e.g.
237 metagenomic, metabolomic, organic matter composition, and rate measurements) are
238 co-collected is an exciting avenue for future work.

239
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240 Discussion

241 Although marine microbial heterotrophs play a primary role in regulating organic matter
242 cycling, biogeochemical cycles, and global climate outcomes, we have historically lacked an
243 overarching framework for characterizing these diverse communities and assessing their
244 functional metabolic niches. Since the majority of microbial heterotrophic diversity in the oceans
245 remains uncultured®, we must rely on indirect methods to assess these metabolic strategies. By
246 combining metagenomic information, numerical models, and statistical approaches, we identified
247 eight distinct metabolic strategies for marine heterotrophic metabolism. Critically, our approach
248 is a high throughput method for generating key metabolic and physiological insight that could
249 previously only be obtained through labor intensive laboratory experiments restricted to cultured
250 organisms. The hypothesized clusters generated by this analysis provide a set of microbial
251 building blocks on which we can understand the assemblage of global heterotrophic microbial
252 communities and how they differ by oceanographic region.

253 We demonstrated that, when applied correctly, the CarveMe tool provides fundamental
254 insights into the metabolism of a highly diverse set of marine heterotrophic organisms. We
255 additionally showed that there were clear biases in the quality of models generated by CarveMe
256 with some orders, such as the Pelagibacterales that consistently produced poor quality models.
257 There are likely several factors that result in poor quality models. We postulate that the current
258 universal model and cutting algorithm used by CarveMe may struggle with streamlined genomes
259 (e.g., the Pelagibacterales) and for marine heterotrophs that specialize in growth on more
260 complex carbon substrates. We also hypothesize that issues with annotation, in particular for
261 transporters, might also contribute to poor quality models for certain groups. We suggest that
262 including additional reference genomes with validated metabolic models for certain orders (e.g.,
263 the Pelagibacterales) will substantially improve our ability to generate high quality metabolic
264 models across diverse groups.

265 While the clusters identified in this analysis are robust, they are not necessarily complete.
266 In particular, we demonstrated that the CarveMe tool was not successful at creating high quality
267 models for the majority of genomes in many key microbial groups. Thus, we anticipate that once
268 we can create high quality models for these groups and investigate their metabolic strategies, we
269 will potentially identify additional meaningful clusters.

270 Here we used metabolic models to analyze the growth strategies for a large number of
271 marine microbial genomes (the majority uncultured) via in silico methods. We identified eight
272 clusters with distinct substrate preferences, growth strategies, taxonomic profiles, and
273 biogeographic distributions (Table 1, Supplemental Table S1). We demonstrated that some
274 growth strategies correspond strongly with phylogeny, suggesting that we can infer metabolism
275 directly from phylogeny in some cases. However, the majority of the phylogenetic groups in our
276 dataset were distributed across multiple clusters with distinct metabolic preferences,
277 demonstrating that organisms from diverse taxonomic groups can occupy the same metabolic
278 niche, consistent with the findings of widely varying growth rates within closely related
279 organisms®. Our approach also provides a new resource for artificial media development by
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280 identifying key growth-limiting substrates whose absence in traditional media may currently be
281 inhibiting culturing efforts. Finally, our metabolic clusters provide a framework for developing
282 biogeochemical models that explicitly incorporate diverse microbial communities by specifying
283 specific growth strategies and metabolic preferences that can be used to parameterize these

284 groups.
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285 2. Methods

286
287 2.1 Genomic Data
288 Genomic data was obtained from the Ocean Microbial Database (OMD) hosted at

289 microbiomics.io”, which contains approximately 35,000 microbial genomes including
290 metagenome-assembled genomes (MAGs), single amplified genomes (SAGs), and cultured
291 isolates. We included only high quality bacterial genomes as defined by standard thresholds of >
292 80% completeness and < 5% contamination®®?’. These estimates were determined based on the
293 average of the CheckM? and Anvi’0® completeness and contamination scores. High quality
294 genomes were then dereplicated using dRep®® with a 95% ANI threshold which was provided in
295 the OMD metadata. We used the resulting 3,918 high-quality dereplicated bacterial genomes as
296 our preliminary dataset for analysis.

297
298 2.2 Phylogeny
299 The phylogenetic tree of the 3,918 bacterial genomes was determined using GtoTree

300 v1.7.0°' and IQ-TREE v2.0.3*. We also included the 66 unique bacterial reference genomes
301 underlying the bacterial metabolic models in the BiGG database® that was used to generate
302 CarveMe’s universal reaction model’. From these 3,984 total genomes, we created a multiple
303 sequence alignment (MSA) file using the predefined Bacteria single copy gene (SCG) set in
304 GToTree v1.7.00°". During this process, eight genomes were excluded from the tree due to an
305 insufficient number of hits to the target SCG set resulting in an alignment file of 3,976 genomes.
306 However, these eight genomes were still included in our taxonomic analyses of the SOM clusters
307 as we were able to assign their phylogeny using the Genome Taxonomy Database (GTDB). The
308 MSA file was then passed to IQ-TREE v2.0.3 using the LG+R10 model with 3,554 amino-acid
309 sites to generate a phylogenetic tree (Figure 1). For a current taxonomy of all genomes in the
310 dataset, we overlaid full taxonomic assignments generated by GTDB-Tk v2.1.0** with the GTDB
311 r214 database® onto this tree.

312 We also calculated a quantitative measure of phylogenetic relatedness, the UniFrac
313 distance™, for subgroups of genomes we defined based on several external parameters (e.g.,
314 SOM cluster, ensemble consensus score, dCUB, etc.). For example, we created sub-datasets
315 containing genomes assigned to each of our eight SOM clusters that we compared using
316 UniFrac. UniFrac-Binaries’’ was run using the Strided State UniFrac algorithm® to compute
317 unweighted UniFrac scores®. These results from this assessment are presented in Supplemental
318 Section S3.3.

319
320 2.3 Model Generation and Quality Assessment
321 CarveMe v1.5.17 was used to generate multiple metabolic models for each genome,

322 called an ensemble. CarveMe’s ensemble function creates multiple models from a single genome
323 by randomizing the weighting factors for unannotated reactions before generating each model
324 using its mixed integer linear programming (MILP) algorithm. Annotated reactions receive
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325 weighting factors based on their gene-protein-reaction score, a metric that reflects the level of
326 confidence in whether all proteins and subunits required for a reaction to take place are
327 supported in the genome. We tested a variety of ensemble sizes ranging from 2 models to 100
328 models to assess the necessary number of model replicates to effectively capture the reaction
329 space of each genome (Supplemental Figure S10). We found that the new reactions added to the
330 total reaction space started to plateau around an ensemble size of 60 suggesting that 60 models
331 were sufficient to capture the majority of possible model solutions.

332 For each of the 3,918 high quality genomes in our dataset, 60 models were generated
333 using their protein fasta files as input. CarveMe’was run using python 3.7* and IBM ILOG
334 CPLEX Optimizer v20.1.0, using the native DIAMOND annotation procedure v0.9.14*'. To
335 assess the quality of the metabolic models generated by CarveMe, we developed a consensus

336 score metric C. The consensus score is defined as:
r=R m=M
337 C=T+F2Ix =1 (Equation 1)

r=1 m=1

338 where er is the presence/absence matrix of ensemble model reactions across M individually

339 generated models, 7 is an individual reaction, R is the total number of reactions in the ensemble,
340 and E is the ensemble size. In this context, / is the indicator function for the case that reaction 7 is
341 present in ensemble model m. In plain terms, C measures the consistency of the CarveMe model
342 reactions across the ensemble generated for a single genome. If all models in the ensemble
343 contained all the same reactions then the consensus score would be 1, if only half of the models
344 had the same set of reactions then the consensus score would be 0.5. Similar to Machado et al.
345 2018, we equate the consensus score with overall ensemble quality because significant
346 dissimilarities between ensemble models suggest that the cutting algorithm in CarveMe was
347 forced to make more uninformed choices. On the other hand, an ensemble with highly consistent
348 models suggests that the cutting procedure had sufficient knowledge to consistently include the
349 correct pathways in the model. Only genomes with a consensus score greater than 0.8 were used
350 for further analyses (N=1,591).

351
352 2.4 Compound Classification
353 To provide an assessment of broad metabolic strategies, we analyzed the CarveMe model

354 growth sensitivities by compound classes. To do this, compounds that were used as substrates
355 (imported into the cell by the model) were manually classified into the following 13 major
356 categories: carboxylic acids, amino acids and derivatives, peptides,
357 nucleobases/nucleosides/nucleotides and  derivatives, carbohydrates and derivatives,
358 ketones/aldehydes, organic sulfur, phospholipids/fatty acids and triglycerides, alcohols, amines
359 and amides, B vitamins, inorganics, and ‘“other” (Supplemental Table S2). We excluded
360 inorganics and ‘other’ categories from our downstream analyses to focus on the eleven
361 categories with organic substrates necessary for growth. References used in the categorization
362 included ChEBI*, NIH PubChem®, BiGG Database***, HMDB*, BioCyc*"*, ChemSpider*’,
363 ECMDB***! and prior knowledge. There were 2,467 external exchange reactions in the universal
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364 model representing the acquisition of compounds from the environment or media. Only 633 of
365 the 2,467 appeared as external reactions in any of our models. We then classified the 456
366 compounds that showed up the most frequently and accounted for the majority of the total flux
367 into the models across all 95,460 CarveMe models generated for this study. Specifically, our
368 classified compounds accounted for at least 90% of the total import flux in 98.3% models across
369 all of our sensitivity tests (N=1,050,060). The 177 compounds that were not included each
370 appeared in fewer than 10 of the 95,460 total models in the dataset.

371
372 2.5 Growth sensitivity analysis
373 We used the CobraPy v0.25.0" software to test the CarveMe model growth sensitivities

374 under a wide range of substrate availability. First, we assessed the type and quantity of
375 compounds preferred for growth for each of the CarveMe models under replete conditions
376 (where we define replete conditions as having maximum flux of all substrates available to the
377 model). Specifically, we estimated the maximum model growth rate using the slim_optimize
378 function in CobraPy with all possible media components turned on. We then determined the
379 minimal set of compounds that allowed the previously determined maximum model growth rate
380 using the CobraPy minimal media prediction (minimal media function). This function solves a
381 mixed integer linear programming (MILP) problem to minimize the import fluxes (external
382 exchange reactions) while maintaining the maximum model growth rate.

383 Compound-specific growth sensitivities for each of our 11 growth compound classes
384 were then determined for each model. For each substrate compound class (defined above in
385 section 2.4), the available flux for that class was supplied at 50% of the import flux value in the
386 ‘replete conditions’ while all other substrates were allowed to reach their maximum values. Any
387 medium component from the limited growth compound class that was not originally predicted as
388 part of the minimal medium of a given model was made unavailable to prevent models from
389 circumventing the substrate limitation. We then assessed how the substrate import fluxes shifted
390 under these limitation scenarios and the resulting change in predicted growth rate. Sensitivities
391 were computed on a [0, 1] scale using the following equation:

1
392 2x (1 - u") (Equation 2)
393 where W is the predicted growth rate under substrate limitation by compound class n and p is the
394 predicted growth rate in the ‘replete conditions’. The eleven compound-specific growth
395 sensitivities that were estimated per model then served as the input data for the SOM clustering.

396 The full enumeration of the compound specific growth sensitivities for each genome can be
397 found in Supplemental Table S1.

398
399 2.6  Validation on Experimentally Characterized Genomes
400 To validate our CarveMe models and growth sensitivity analysis, we compared our model

401 results to experimentally validated measurements on a shared set of genomes. Specifically, we
402 constructed model ensembles for 176 marine bacterial genomes that were experimentally tested
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403 for their ability to grow on a variety of sugar/acid substrates'®. The data from this study included
404 binary measurements of growth/no growth on 118 compounds as the sole carbon substrate in the
405 media and a prediction of sugar/acid preference (SAP). Of the 176 genomes, 146 generated high
406 quality CarveMe models (above the consensus threshold of 0.8).

407 We conducted a paired comparison of the experimental and model predictions of
408 substrate growth for the 146 high quality genomes that had been assessed for growth on the
409 range of carbon substrates. Of the 118 experimentally measured compounds, 59 had
410 corresponding reactions in the BiGG database. Our results exclude one of these 59 compounds,
411 oxaloacetate, which is highly unstable and rapidly degrades to pyruvate’ and confounds the
412 fidelity of the growth experiment with that compound as the sole carbon source. For presence in
413 the model, we required the external exchange reaction for the substrate to be present in >80% of
414 the ensemble models. For absence, we required that the exchange reaction be absent in >80% of
415 the ensemble models. 1.5% of the model-substrate comparisons fell between these two cutoffs
416 and so were not assigned an outcome. For each genome and each substrate, we assigned one of
417 three outcomes: 1) agreement between the models and the data (either presence/growth or
418 absence/no-growth); 2) disagreement between the models and the data (absence in the
419 model/growth in the data); or 3) false positives where the models contained the exchange
420 reaction but the organism was not able to grow on the substrate as a sole carbon source.

421 To assess the agreement between the modeled growth sensitivities of these organisms and
422 the experimental findings for sugar/acid preference (SAP), we computed the growth sensitivities
423 of the CarveMe model ensembles (see Section 2.5). We used the sensitivity to carbohydrates for
424 the sugar preference assessment and the sensitivity to amino acids for the acid preference
425 assessment. The 146 genomes with high quality models were grouped into two groups based on
426 whether they were sugar-preferring organisms (SAP > 0, N=77) or acid-preferring organisms
427 (SAP < 0, N=69). We then compared the relative sensitivities for each of these classes to their
428 experimentally assigned SAP value by determining the average growth sensitivity of the models
429 associated with the genomes in each group to our sugar and acid compound classes. The results
430 from this assessment are presented in Supplemental Section S1.

431
432 2.7 Generation of Self-Organized Maps
433 To identify clusters of organisms with similar metabolic strategies, we employed

434 Self-Organized Maps (SOMs) to the assessment of compound specific growth sensitivities.
435 SOMs are an unsupervised machine learning dimension reduction method capable of handling
436 large data formats®. SOMSs are a non-parametric approach, capable of highlighting nonlinear,
437 complex patterns in two-dimensional space from highly dimensional data. The map was built
438 using the CobraPy growth sensitivity analysis for the 95,460 high-quality ensemble models
439 (C = 0. 8). These scaled compound flux predictions were clustered using kohonen v3.0.12%° and
440 solved over 1,500 iterations with a learning rate vector of (0.025, 0.01) and default neighborhood
441 radii on a 20-by-20 toroidal, hexagonal grid spatially described by standard Euclidean distance.
442 Map parameters were determined using heuristics and metrics of error proposed in the SOMs
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443 literature™>’

and are discussed further in Supplemental Section S2. Each node in the grid was
444 initialized with a random codebook vector of values for each independent variable. Data entries
445 were then randomly drawn from the dataset - every entry in the dataset was drawn in each
446 iteration - and the grid point values of the closest neighborhood of nodes were updated. After
447 sufficient training, the values assigned to each grid point reflect the spatial topology of the data
448 (e.g., density of data points, variation) as well as the full range of values in the original dataset.
449 The final SOM map was then grouped into eight distinct clusters using k-means clustering®®
450 based on the coherence of the growth compound sensitivity predictions. The full map and

451 designation of the clusters is shown in Supplemental Figure S1la. After 1,500 iterations, the

452 mean object distance to its closest map unit (the quantization error) was approximately 1x10 "
453 (Supplemental Figure S11b).

454 As the SOM map and clusters were built using all of the ensemble models (60 per
455 genome), we then needed to assign each genome to a cluster. This was done by assigning each
456 model to its closest mapping unit, and determining the mapping unit possessing a simple
457 majority of the 60 models generated from a single genome. This mapping unit was designated as
458 the mapping node for the genome and the genome was assigned to the associated SOM cluster.
459 We assessed the frequency with which each of the 60 ensemble models occurred in a single SOM
460 cluster (Supplemental Figure S1lc) and showed that 96.0% of the genomes had 90% of their
461 models assigned to the same SOM cluster (and 68.6% had all 60 models assigned to the same
462 SOM cluster). Of the 1,591 genomes, only one genome had models split equally between two
463 SOM clusters. In this case, this genome was randomly assigned to one of the two clusters using a
464 fixed random seed of 123. The parameter optimization of the SOM map developed in this study
465 is discussed in further detail in Supplemental Section S2.

466
467 2.8  Maximum Growth Rate Estimations
468 To assess differences in maximum growth rates, we estimated the codon usage bias

469 (dCUB) for all 1,591 genomes using the gRodon program®'. dCUB is a metric that has been
470 empirically linked with optimization for faster growth. gRodon measures codon usage bias of
471 highly expressed genes, in this case ribosomal proteins, compared to the codon usage patterns
472 across the whole genome. This genomic measure of maximum growth is a reasonable proxy and
473 allows us to examine the differences in growth optimization for this set of uncultured organisms
474 without needing to do extensive culturing and metabolic characterization efforts. Because
475 estimating actual growth rates from codon usage bias requires correcting for temperature, we
476 used the raw dCUB scores for this analysis to assess relative differences in genomic optimization
477 for rapid growth. Previous work by Weissman?'* suggests that differences in dCUB values are
478 only reliable below the threshold of -0.08 (i.e., lower values of dCUB represent faster growth
479 rates). We use this threshold to differentiate between ‘slow growth’ and ‘fast growth’ organisms.
480 The results from these analyses are presented in Supplemental Section S3.2.

481

482 2.9  Global Distribution
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483 To assess the global distribution of the genomes within each SOM cluster, we performed
484 competitive metagenomic recruitment. Specifically, we calculated normalized Reads Per
485 Kilobase per Million mapped reads (RPKM) with the pipeline RRAP v1.3.2°°. RRAP uses
486 bowtie2 v2.4.2% to align reads and SAMTools v1.14% to index and sort the read alignment data.
487 RRAP takes read alignment statistics generated by SAMTools to calculate RPKM. A total of
488 1,424 metagenomes were used for the read recruitment from several metagenomics surveys
489 including Tara Oceans, BioGeoTraces, and Malaspina"®. Raw metagenome fastq files were
490 aggregated by sample and by depth when multiple depths were present — e.g., the Tara Oceans
491 dataset — and quality filtered using the iu-filter-quality-minoche script from the Illumina-utils
492 library v2.10 with default parameters. This script follows the quality filtering approach outlined
493 in®. After quality filtering, our genome set was recruited to the metagenomic reads, and reads
494 per kilobase per million mapped reads (RPKM) values were calculated for each genome at each
495 site.

496 We then partitioned our data into 23 oceanographic regions defined in Lanclos et al. 2023
497 and aggregated the raw RPKM values for the genomes in our study®. Of the 1,424 sampling sites
498 in the metagenomic recruitment, we had oceanographic region assignments from the metadata
499 for 1,203 sites. The 23 defined oceanographic regions in this metadata averaged 52.3 distinct
500 samples per region (ranging from 3 samples/sites in the Southern Ocean to 299 samples at station
501 ALOHA) (Supplemental Table S3). We then further clustered the 23 oceanographic regions into
502 5 categories: Estuarine, Coastal, Oligotrophic Seas, Oligotrophic Open Oceans, and the
503 Southern Ocean (Supplemental Table S4). We used this categorization to group the sampling
504 sites and compare the relative abundances determined from the raw RPKM values. For the
505 sampling sites associated with each category, we clustered the relative abundances of the eight
506 SOM clusters at each site using Euclidean distance and hierarchical clustering with McQuitty
507 linkage distance.

508 To assess the relative abundance of genomes assigned to each SOM cluster per
509 oceanographic region or category, we conducted a bootstrap recruitment of the individual
510 genome abundance values at each station. We employed bootstrapping due to large variation both
511 in the number of samples present in each region (ranging from 3 at SOC to 299 at ALOHA) and
512 in the number of genomes assigned to each cluster (ranging from 74 genomes in Cluster 8 to 558
513 genomes in Cluster 2). For each region, we computed 1,000 independent bootstrap iterations
514 (using the fixed random seed 123), drawing 10,000 data points from the pool of RPKM samples
515 for each of our eight clusters. During each bootstrapping step, we calculated the cumulative
516 RPKM of the sampled data for each cluster and then compared their magnitudes to determine the
517 relative abundances of the clusters. Average values and 95% confidence intervals were then
518 computed from the resulting distributions of relative abundances for each cluster/region
519 combination.

520

521 2.10  Data Visualization
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522 All data visualizations in R v4.2.3 were performed using ggplot v3.4.2, ggridges v0.5.4%,
523 ggtree®, patchwork v1.1.2%, ragg v1.2.5, and plots native to kohonen v3.0.12%.

524

525
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Figure 1: Diversity of dataset, quality of metabolic models, and designation of metabolic
clusters. Phylogenetic tree of all 3,984 bacterial genomes included in this study (including the 66
reference genomes from the BiGG database). The tree is contextualized by several external rings
that describe different qualitative and quantitative components of the genomes in this study. The
first ring around the tree denotes both the position and density of high quality ensembles within
the tree as well as the assignment of these genomes to each of our eight SOM clusters. The
second ring shows the ensemble consensus score (Equation 1) for each genome in the tree. The
third, sparse ring of red lines denotes the position of the 66 BiGG reference genomes present in
the tree. Finally, the fourth and innermost ring shows the location of the top 15 most abundant
orders.
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Figure 2: Substrate sensitivities for 8 SOM clusters. Bubble plot of the mean growth
sensitivity values for genomes in each of our 8 SOM clusters. A growth sensitivity of 1 indicates
high sensitivity to that substrate such that the modeled growth rate was reduced proportionally to
the reduction in the substrate’s flux (e.g., 50% substrate reduction corresponded to 50% growth
rate reduction). The size of the bubbles in this plot reflect the relative sensitivity of each of the 8
SOM clusters to a given compound class where larger bubbles indicate that cluster was more
sensitive to that compound class than others. The 6 compound classes which resulted in
significant growth reduction for at least one of the SOM clusters are shown here. The full results
for all 11 substrate classes are provided in Supplemental Figures S2 & S3). Cluster numbers
were colored based on maximal genomic growth rate (Supplemental Figure S6).
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Figure 3: Biogeographical relative abundances of 8 SOM clusters. Clustered bar charts of the
relative abundances of the 8 SOM clusters as determined by RPKM at each of the 1,203 stations
assigned to one of the 23 oceanographic regions. Stations were grouped into our 5 defined
oceanographic categories and then arranged based on a hierarchical clustering of the relative
abundances.

o«

Cluster

-

o

Relative RPKM values by sample
EEEEEEE

(&

18


https://doi.org/10.1101/2024.05.29.596556
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.29.596556; this version posted June 2, 2024. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Table 1: Description of 8 SOM clusters including the number of genomes per cluster, the
growth strategy as determined by the dCUB distributions, the number and names of the growth
limiting substrate classes, as well as the 2 most numerically abundant orders.

% fast
Cluster [Genomes |Growth Strategy [growers [Limiting Classes Top 2 orders
# Substrate

Carboxylic Acids, [Pelagibacterales,

1 144 Slow 50.00% 2 Amino Acids |Rhodobacterales

Flavobacteriales,

2 558 Fast 78.00% 0 None [Enterobacterales

Carboxylic Acids, [Flavobacteriales,

3 95 Slow 40.00% 2 Peptides [Pelagibacterales

Flavobacterales,

4 211 Slow Intermediate | 62.10% 1 Amino Acids|[Rhodobacterales
Pseudomonadales,

5 299 Fast Intermediate | 73.20% 1 Carboxylic Acids|Rhodobacterales

Flavobacteriales,

6 133 Slow Intermediate | 66.20% 1 Carbohydrates [Rhodobacterales

Flavobacteriales,

7 77 Slow 42.90% 2| Peptides, Amino Acids [Rhodobacterales

Carboxylic Acids,
Amino Acids, B [Flavobacterales,
8 74 Slow 48.60% 3 vitamins |Rhodobacterales
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