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Introduction

Although college calculus has continuously been confirmed as a central component of STEM
reform efforts (Bressoud, 2020). Some of the main drivers of these reform efforts include
students’ persistent low achievement (Bressoud et al., 2015), poor conceptual understanding
of core ideas, and inability to transfer these ideas to other contexts in STEM (Hallett, 2006).
These efforts have primarily focused on changes in instructional practices, content selection
to highlight core ideas, and the emphasis on the application of core ideas to different
disciplines in STEM (Carreon et al., 2018; Rasmussen et al., 2014).

In terms of changes in instructional practices, special attention has been paid to
classrooms that have implemented active learning (AL) approaches. These approaches have
been characterized as a shift from teacher-centered, lecture-based classrooms to more
student-centered classroom environments where students are actively engaged in meaningful
learning activities and have an opportunity to reflect on their learning process (Bonwell &
Eison, 1991). Examples of these approaches include flipped classrooms (DeLozier & Rhodes,
2017; Jungi¢ et al., 2015), inquiry-based learning (Kogan & Laursen, 2014; Laursen et al.,
2014), and courses that incorporate a larger component of group work supported by
mathematical software (Armstrong & Hendrix, 1999).

The effectiveness of active learning (AL) approaches started to appear in the literature
over three decades ago (Davidson, 1971). Since then, it has been extensively investigated in
undergraduate STEM education (Freeman et al., 2014; Johnson & Johnson, 2002). For
instance, Freeman et al. (2014) in a meta-analysis of 225 studies, found that these approaches
led to an increase in student performance on examinations and concept inventories by almost
one-half standard deviation over traditional lecturing. Furthermore, students enrolled in

courses based on these approaches were found to be 1.5 times less likely to fail the course



than traditional lecturing courses. This success has also proven to be consistent across STEM
areas, leading to high odds of student success in biology (Chambers, 2008), chemistry
(Paulson, 1999), and computer sciences (Lasserre, 2009). In other STEM disciplines, such as
modeling in physics, these odds have shown to be as high as 6.73 times greater than lecture-
based instruction (Brewe et al., 2010).

In the specific case of college calculus, current studies on the effectiveness of AL,
however, are still limited. These studies have focused on high-stakes assessments and
concept inventories, neglecting other relevant outcomes such as students' attitudinal changes.
Furthermore, meta-analysis studies on the impact of AL have included only a small sample of
calculus courses with a wide variety of AL strategies, from courses with a high-lecture
component and marginal emphasis on student collaboration (Lindaman, 2007; Maggelakis &
Lutzer, 2007), to courses with minimal lecturing in classes and large computer-based
component (Armstrong & Hendrix, 1999). Further research on the effectiveness of AL on
additional measures such as student attitudes in calculus is still needed.

As an additional measure of the impact of AL on students’ learning process, attitudes
towards mathematics (ATM) in calculus has only recently been examined (Castillo et al.,
2022). Developing a better understanding of this influence is important because Calculus has
been found to produce sharp declines in ATM in college (Bressoud, 2015). These declines
can have dire consequences in students’ experiences, impacting students’ persistence in
STEM programs (Bressoud et al., 2013; Maltese & Tai, 2011), classroom equity (Ellis et al.,
2016), and driving subsequent mathematics avoidance (Popham, 2005). Finding evidence of
a direct link between AL and ATM positive gains would provide further support for the
implementation of this and similar instructional strategies in calculus, contributing to
addressing these persistent issues in STEM education. The existence of this evidence in the

literature remains extremely limited.



The influence of ATM on achievement, on the other hand, has been widely
ascertained in postsecondary settings, finding small-to-moderate effect sizes in calculus
(House, 1995; Pyzdrowski et al., 2013; Sonnert et al., 2020). This effect size has been
translated, when controlling for other relevant predictors of achievement such as mathematics
preparation, to a 10% increase in final grade per 1-SD increase in ATM (Pyzdrowski et al.,
2013). The nature of the close interaction between students’ ATM and their achievement
could be associated with the existence of a feedback loop between these factors (Ma &
Kishor, 1997; Sonnert et al., 2020). As the semester progresses, students’ higher achievement
in preliminary assessment increases their ATM, and this renewed ATM, in turn, helps them
to increase their future achievement in the class. Conversely, students’ lower achievement in
preliminary assessment decreases their ATM, and such change undermines their future
achievement. This reinforcement cycle aligns with the influence that performance
accomplishments can have over students’ self-efficacy. As Bandura suggests, students’
“successes raise mastery expectations, repeated failures lower them.” (1977, p. 195)

It is possible that the enhanced student engagement in AL classrooms could change
the way in which this cycle evolves throughout the semester. The low-stake environment of
AL classrooms and emphasis on student collaboration could contribute to a better distribution
of skills, attitudes, and knowledge in the classroom (Slavin, 1996). Students with initially low
ATM, often conditioned to lower achievement, might be positively influenced by students on
the other extreme of the spectrum. Despite how plausible this mechanism seems to be, no
studies were found that confirm its existence in AL classrooms in college calculus.

Further reasons supporting AL influence on ATM are related to some of the central
elements present in some AL approaches, including cooperative learning and social
metacognition. On the one hand, several psychological theories confirm the influence of

cooperative learning on attitudinal development (Johnson & Johnson, 1991). As this type of



learning is characterized by students working together to achieve joint goals while
cooperating in group discussions, students not only commit to adopt certain attitudes, but also
advocate attitudes to others (Johnson et al., 2007).

On the other hand, although evidence of the influence of social metacognition on
student attitudes is limited, there are reasons to expect a significant supportive role. Social
metacognition can be understood as an extension of metacognition into group interactions,
where peers influence awareness of one another's knowledge, emotions, and actions (Chiu &
Kuo, 2010). Increases in this awareness could be strengthening students’ confidence in their
ability to be successful. Furthermore, a recent study in physics reported a positive correlation
between metacognition and students’ enthusiasm and self-confidence (Eblen-Zayas, 2016).

Additionally, AL courses that follow culturally appropriate learning models could
even have a higher impact on students’ attitudes. Some of the key features of these models
include the creation of a safe, inclusive, and respectful learning environment and promotion
of equitable learning (Ginsberg & Wlodkowski, 2009). In this environment students would
feel more comfortable helping and giving evaluative feedback to peers, which are known
elements of social persuasion hypothesized to directly influence attitudes (Bandura, 1977).

Equally important, in investigating the nature of the mechanism through which AL
might change the relationship between initial attitudes and achievement, is the role
demographic variables might be playing in this process. Clear interactions between ATM,
achievement, and demographic variables, such as gender, year in college, career choice, race
and ethnicity have been found. First, a recent study reported that women start and end the
semester with significantly lower mathematical confidence than men, even when looking
only at students with above-average mathematics preparation and skills (Ellis et al., 2016).
Second, in terms of year in college, freshman students in college calculus have shown to have

a more positive ATM than their sophomore counterparts (Sonnert et al., 2020). In terms of



career choice, students who were interested in pursuing STEM careers had higher ATM than
the rest of the students enrolled in the course (Sonnert et al., 2020). Last, literature on the
influence of race and ethnicity on ATM is much more limited, but a previous study reported
evidence that African American students showed higher values of ATM than their White
counterparts, while the opposite relationship was true when examining their achievement
(Stanic & Hart, 1995).

Another critical aspect regarding the influence of AL in the classroom is its impact on
students with particularly low attitudes. A regression model from a recent study suggests that
students with initially low ATM (those with less than 2 standard deviations in mean ATM
scores) are likely to earn low grades, fail or drop the class (Sonnert et al., 2020). There is
evidence that these students benefit more from conventional good teaching with less group
work than other instructional strategies better aligned with AL (Sonnert et al. ,2015).
However, a recent study found that certain AL approaches could lead to better outcomes in
students’ ATM (Castillo et al., 2022). This study however did not examine achievement,
suggesting the need further research.

The main purpose of the present study is to examine the relationship between attitudes
towards mathematics (ATM) and achievement in AL and LB calculus classrooms. The
following five research questions guided this investigation: (1) To what extent are students’
initial ATM associated with their achievement in both LB and AL classrooms? (2) How does
this association vary by demographics? (3) To what extent do initial ATM predict
achievement when controlling for instructional strategy and students’ demographics
including gender, year in college, and STEM choice? (4) To what extent does AL influence
the achievement of students with initially low ATM differently, when compared to traditional

classrooms? (5) How does this difference vary by demographics?



Related Literature

Attitudes Towards Mathematics

Extensive research on student affect has been conducted in mathematics over the last
decades (Zan et al., 2006; Reyes, 1984). The general idea of how student attitudes towards
mathematics (ATM) are portrayed in these reviews is summarized by Reyes as “students'
feelings about mathematics, aspects of the classroom, or about themselves as learners of
mathematics” (1984, p.1).

Understanding the impact of these feelings in the learning process is important as they
have been linked to student achievement (Evans, 2007; Yee, 2010), and have also proven to
play a predominant role in shaping students’ persistence in STEM programs (Bressoud et al.,
2013; Maltese & Tai, 2011). Furthermore, students’ ATM have been recently related to
issues of equity. A study examining the effect of attitudes by gender, for instance, found that
odds of a female student being discouraged from continuing in calculus is 1.5 times greater
than that for a male student (Ellis et al., 2016).

Due to the complexity of students’ feelings, developing reliable instruments that
measure students” ATM has proved to be a long process (Chamberlin, 2010; McLeod, 1994).
This process started over six decades ago undergoing multiple iterations focused on capturing
the most salient traits of student attitudes (Hannula, 2002). Most recently, the attitudes
toward mathematics inventory (ATMI) was developed to capture the most essential
dimensions of student attitudes but with less items than previous instruments (Lim &
Chapman, 2013; Tapia & Marsh, 2004). It is composed of 40 items and four factors:
confidence, enjoyment, motivation, and value. Moreover, its psychometric properties have
been confirmed in a college setting, yielding good model fit statistics and high Cronbach

alpha coefficients (above 0.87) for each factor (Tapia & Marsh, 2002) in college settings.



Influence of AL on Student Attitudes

Fewer studies have been conducted to understand the impact of AL approaches on
students ATM than those examining students’ achievement. Moreover, most of these studies
have focused on pre-tertiary education. However, results in general suggest a positive impact
on students’ attitudes. In the US, findings from a meta-analysis of 65 studies on primary and
secondary school (E. Savelsbergh et al., 2016) provide some evidence of this impact.
According to this study, significant effects (0.35<d<0.4) were found in general attitude,
general interest, and career interest in science. These results included a variety of innovative
instructional strategies such as inquiry-based, computer-based, and collaborative learning
strategies with no significant difference between approaches. Another interesting outcome of
this study is that the effects of instruction were found to be weaker for older students.

Outside of the US, the positive influence of AL on student attitudes has also been
confirmed in secondary science education. For instance, in a study of over 12,000 students in
the UK, student engagement in high school classrooms was linked to positive attitudes
towards science, and particularly higher levels of student enjoyment and motivation
(Hampden-Thompson & Bennett, 2013). Similarly, studies recently conducted with students
in Turkey also found significant effect sizes on the impact of AL in students’ attitudes
(Akinoglu & Tandogan, 2007; Demirci, 2017).

In college calculus, Alkhateeb (2002) found that adding a hands-on, technology-based
component to the course further enhanced students’ attitudes and significantly redacted
students’ mathematics anxiety. Finally, a more recent study (Castillo et al., 2022) noted that
incorporating AL strategies in a calculus course can improve student attitudes gains, when
compared to a traditional lecture-based course. Moreover, this study found that AL had a

particular positive impact on female students’ self-confidence, acting as a gender equalizer.



Although there still is a need for more systematic studies, experiences in multiple
educational settings in pre-tertiary education and STEM disciplines in college points to a
positive influence of AL approaches on student attitudes.

With respect to how AL interacts with demographics variables including gender, year
in college, and STEM intended choice a few, yet limited, studies suggest the existence of
significant interactions. For example, Laursen et al. (2014) conducted a quasi-experimental
study of over 100 course sections at four academic institutions over a period of two years to
understand differences between inquiry-based learning (IBL) courses and comparable non-
IBL courses. Their results indicated not only an overall positive impact of IBL, but a
significant decrease in attitudinal and achievement gaps. While female students in non-IBL
courses still showed much lower cognitive and attitudinal gains than their male counterparts,
in IBL courses, no significant differences in these gains were found.

Research on the influence of AL on other demographics variables such as year in
college, and STEM intended career choice is extremely limited. Only one study, by Fuselier
and Jackson (2010) was found regarding this issue. This study examined students’ views on
how collaborative science might change depending on their coursework, finding that the
fewer science courses students take, the more collaborative they report science is for them.
This progression in students’ views of science could influence the impact of AL classrooms
by year in college, indirectly suggesting that AL might be more effective in students in their
first years of college. The present study is intended to contribute to the limited evidence
found. Before presenting main findings, details of the methodology used are included as

follows.

Methods

The present study investigated the influence of AL on the relationship between students’

initial attitudes towards mathematics and their achievement on an introductory calculus



course at a large, urban, research intensive (R1) university. It initially included a randomized
control trial experiment during the Spring 2019 and Fall 2019 terms to establish strong and
reliable evidence. Instructors in the treatment group used an AL curriculum following the
Modeling Practices in Calculus (MPC) model. Instructors in the control group, on the other

hand, followed a lecture-based model.

Modeling Practices in Calculus

Faculty who followed the MPC model, participated in professional development that
included a three-day workshop prior to teaching, and weekly planning meetings throughout
the semester to support the model adoption. The MPC model integrates three core elements at
its foundation: cooperative learning (Johnson et al., 2007; Johnson & Johnson, 1991), social
metacognition (Chiu & Kuo, 2010), and a culturally appropriate learning environment
(Ginsberg and Wlodkowski, 2009). First, in terms of cooperative learning, students work
most of the class in groups on a set of notes and learning activities that develop student
understanding of core calculus ideas. The notes introduce the key topics of the day with some
examples and questions for the groups, and the learning activities contain a set of problems
that lead students to reflect on and challenge their understanding of these topics. For
example, after just the second class, students are led through the notes through group and
whole-class discussions to have an intuitive understanding of limits using visual
representations. With these notes, groups are then asked to develop an idea of how to
compute limits without the need for a graphical or tabular representation. The associated
learning activity presents a question involving a piecewise-function and asks to compute
limits without any visual representations. By working cooperatively on the learning activity,
students note how they use the domain of the piecewise function to ‘visualize’ what happens
which helps them build an understanding of direct substitution, the first technique for

computing limits presented.



Second, the MPC model includes social metacognition as an essential element of the
class. Opportunities for developing social metacognition are promoted on a typical day of
class as students work together to write up and present ideas and solutions to problems they
developed in their groups on whiteboards. Group members are asked to monitor each other’s

thinking and make suggestions to control their group problem solving.

Last, MPC’s culturally appropriate learning model allows students to try out their
ideas in a low-stakes, safe environment, receive ongoing formative feedback from an
instructional team, and participate in a community of learners. The instructor promotes a safe
learning environment by messaging to students regularly that making mistakes and asking
questions are acceptable and a natural part of mathematics. The low-stakes environment is
also enhanced as Learning Assistants (LAs), or trained undergraduate classroom facilitators,
are integrated into the classroom to support learning with groups and provide valuable
information to instructors about student interactions (Otero et al., 2010). LAs are natural
agents of this culturally appropriate model, as their demographics are that of the students,
who provide insights and connections from the point of view of a former student in the

course.

Participants

The sample in this study consisted of a total of 553 students enrolled in Calculus I at a large,
urban, research-intensive institution in the US. In the Spring 2019 semester, a total of 168 of
these students were randomly assigned to three control and three treatment sections. In the
subsequent semester, the number of sections increased due to semester enrollment trends and
the gradual AL curriculum implementation design. In the Fall 2019 semester, the total of
students participating in this study then expanded to a total of 385 students randomly

assigned to six control and six treatment sections.



Additionally, students’ demographics data was reported by students to the university

and collected at the time of course enrollment. A breakdown of the number of students by

treatment group and the demographics of all participating students, can be seen in Table 1.

Table 1. Demographics by treatment group

Treatment

Control

Treatment

Control

(N=286) (N=267) (N=286) (N=267)

Gender STEM choice

Female 147 (51.4) 117 (43.8) Non-STEM 50 (17.5) 45 (16.9)

Male 119 (41.6) 132 (49.4) STEM 216 (75.5) 204 (76.4)

Missing/NA 20 (7.0) 18 (6.7) Missing/NA 20 (7.0) 18 (6.7)
Precalculus proficiency Race/Ethnicity

High 75 (26.2) 78 (29.2) African Am. 15(5.2) 16 (6.0)

Low 186 (65.0) 164 (61.4) Asian/Pac. 1. 12 (4.2) 8 (3.0)

Missing/NA 25(8.7) 25(9.4) Hispanic 185 (64.7) 199 (74.5)
Class Standing (Year in College) White 32(11.2) 15 (5.6)

Freshman 93 (32.5) 79 (29.6) Others 22 (7.7) 11(4.1)

Sophomore 86 (30.1) 93 (34.8) Missing/NA 20 (7.0) 18 (6.7)

Junior 60 (21.0) 49 (18.4)

Senior 27(9.4) 27 (10.1)

Others/NA 20 (7.0) 19 (7.1)

Note. In parentheses: percentages of students in each category in both semesters.

Measures and Procedure

Measures

Student attitudes were measured using the Attitudes towards Mathematics Inventory

(ATMI) developed by Tapia and Marsh (2004). This survey is composed of 40 items

measuring the four subscales described in the previous section of this study: enjoyment (10

items), motivation (5 items), self-confidence (15 items), and value (10 items). Eleven items



of this survey were reversed-coded later on for data analysis. Additionally, at the end of the
semester, students’ final grades were collected and converted to a 100-point scale (A+ = 98,
A=945 A—=92,B+=88,B=84.5,B—=81,C+=78,C=74.5,C-=71,D+=68,D =
64.5, D—= 61, F = 40). This scale was previously used in a study (Sonnert et al., 2015) on
calculus performance that included student attitudes as a predictor, yet not accounting for

innovative instructional strategies as active learning.

Procedures

In order to obtain the final sample in this study, students enrolled in multiple, 80-seat
(twice the normal size) sections of introductory calculus, chosen to fit their schedules as they
normally would. Instructor names were invisible to students throughout this enrollment
process. Two days prior to the beginning of each term, each of these 80-seat sections were
then split into two 40-seat sections by assigning each student at random to one of either a
treatment (MPC) or control (non-MPC lecture-based traditional instruction) section. After
this random assignment was completed, students were still allowed to change sections prior
to the enrollment deadline.
In the Spring semester, a total of 261 students were randomly assigned to ten sections within
the study, with 130 students of these in five treatment sections and 131 students in five
control sections. In the Fall 2019 Semester, a total of 533 students were randomly assigned to
16 sections within the study, with 271 students in eight treatment sections and 258 students in
eight control sections. Since only sections with matching schedules (same day/time teaching)
were included in this study, the final sample included three sections per treatment in the
Spring 2019, and six sections per treatment in the Fall 2019 semester. A group of students,
no larger than 21% of the sample, were not part of the original random assignment. This
group included students from other sections who decided to enroll in RCT sections after the

split and prior to the enrollment deadline. However, these students enrolled evenly in control



and treatment sections. The number of students per treatment per semester in the final sample
can be seen in Table 1. Students were asked to complete the ATMI and the PCA survey, at
the beginning (first week of classes) and end of the semester (last two weeks of classes).
Surveys were administered by the instructors, following a protocol that involved ensuring

students their participation was not going to influence their grade in any way.

Missingness

The overall unweighted unit response rate for both semesters was 82.7% for pre-
surveys, 66.8% for post surveys, and 64.8% for students submitting both surveys. A

breakdown of survey response rates by semester is presented in Table 2.

Table 2. Initial enrollment and survey-response rates by treatment section

Control Treatment
Enrollment® 335 342
Pre-survey® 248 (74.0) 263 (76.9)
Post-survey® 178 (53.1) 235 (68.7)
Both surveys® 156 (46.6) 204 (59.6)

“End of the semester enrollment count, ® Number of students answering at least one item of the
respective survey (%)

A total of 82 (8.8%) out of 924 pre- and post-surveys collected were partially
completed (at least one item completed). Excluding blank surveys, item non-response rate for
both treatment and control groups for each item was less than 3.4% for both pre- and post-
surveys. When including blank pre-ATMI surveys later paired with partially completed post-
surveys, on the other hand, the percentage of missing values across the 40 pre-survey items of
collected surveys ranged between 9% to 14%. However, this percentage was much higher for
the post-survey items, ranging between 18% to 37%. This unbalance was mainly explained

by high rates of student attrition, especially in the control section.



Due to differences in attrition rates between control and treatment sections, missing
data was considered missing not completely at random (Rubin, 1975). Potential loss of
statistical power and biased estimates due to this missingness were addressed using a multiple
imputation (MI) algorithm (Kang, 2013). The extensively validated expectation-
maximization with bootstrapping (EMB) MI algorithm AMELIA Il was used to impute unit
and item non-response (Honaker et al., 2011). MI was carried out considering the pre-post
design as a time series, using the pre PCA survey results as a covariate. Since the percentage
of missing data was less than 30%, using over 30 iterations was considered appropriate
(White et al., 2011). Although assumptions of normality were violated for each survey item,
given the sample size in this study and since these deviations were slight, the EMB algorithm

was assumed to be robust against these violations (Demirtas et al., 2008).

Data Analysis

Four different strategies were used to analyze the data: a correlation analysis, a least
square dummy variable (LSDV) fixed effects model, an optimal cutoff analysis, and an
analysis of mean differences for students identified with low and high initial ATM. First, a
correlational analysis was carried out to understand the strength of association between ATM
and achievement overall and by demographics. Student achievement and ATMI scores were
both considered continuous interval variables. Pearson product moment correlation
coefficient preferred, since sample sizes were considered large enough to assume normal
distribution (Bujang & Baharum, 2016). Since missingness was addressed using M,
correlation coefficients were pooled using Fisher's Z transformation to normalize data before
using Rubin’s rules (Enders, 2010, p. 220).

Second, it was expected that instructors differences might have led to slight variations
in MPC implementation . The lack of direct measures of fidelity of implementation is a

limitation of this study, however, as previously indicated, weekly supporting meetings with



instructors, and professional development workshops contributed to control for this issue.
Additionally, a least square dummy variable (LSDV) fixed effects model, preferred over
mixed-effect models (McNeish & Kelley, 2019; McNeish & Stapleton, 2016), accounted for
differences in sections.

The response variable was students’ final grades (100-point scale), the only
continuous predictor was students’ initial ATMI scores, the remaining predictors were all
categorical: treatment (0:Non-MPC sections; 1: MPC sections), gender (0:male students,
1:female students), year in college (0: freshmen, 1: sophomore, 3: others), and
STEMdeclared (0:Non-STEM and 1:STEM). The section variable included to account for
differences in instructors had 12 levels in the MPC sections and 12 levels in the non-MPC
sections.

Following findings reported in the literature review (Sonnert et al., 2015), interactions
between treatment and initial ATM were added to the model. Additional interactions were
also included between treatment and each of the following variables: gender, year in college,
and STEMdeclared. Although evidence of these additional interactions was not found, each
variable was expected to have large main effects, thus likely to interact with treatment.
Additionally, their inclusion was expected to expand the understanding of the relationship
among these variables (Harrell, 2001). In terms of variable selection, since this study was
exploratory, and there were a priori reasons to assume the initial variables were all relevant,
the full model was preferred over stepwise methods. Furthermore, stepwise methods were
also avoided to minimize bias in parameter estimation, and error inflation (Harrell, 2001).

Third, from previous studies the effect of ATM on achievement was expected to be
polarized (Sonnert et al., 2015). An optimal cutpoint analysis using the Youden index metric
(Yin & Tian, 2014) was conducted on the control section as baseline to identify groups of

students with low and high attitudes. This cutoff optimized the likeliness of misclassifying



students’ success based on their initial ATM. Students with initial ATMI scores lower than
this cutoff were considered more likely to fail the class, based on the data collected from the
Non-MPC sections. Results of this analysis were also compared to the cutoff score analysis
based on equal-frequency discretization to check for consistency. The optimal cutpoint
analysis was conducted using the cutpointr R package (Thiele & Hirschfeld, 2021).

Last, after identifying groups with low and high initial attitudes based on the
previously determined optimal cutoff score, the ATMI scale was considered a continuous
interval variable, given the Likert scale nature of the items and large sample size of this study
(Carifio & Perla, 2008). This assumption followed previous studies (Asante, 2012; Karjanto,
2017; Primi et al., 2020) and was supported by two main theoretical positions. On one hand,
the ATMI scale was considered to have no true zero. Each item in the ATMI survey was
scored with a minimum of 1 (strongly disagree) and a maximum of 5 (strongly agree). A
score of 3, corresponding to the “Neutral” response, was also considered a student attitude
and not the lack of it. When adding each item’s score, the overall ATMI scale ranged
accordingly between 40 and 200.

On the other hand, the assumption of equal distance between points was deemed to be
reasonable given the type of Likert scale involved (Strongly Disagree, Disagree, Neutral,
Agree, and Strongly Agree). Furthermore, confirmatory analyses on the ATMI survey (Lim
& Chapman, 2013; Ngurah & Lynch, 2013) suggest that the contribution of each item to each
scale (overall, motivation, enjoyment, self-confidence, and value scale) is fairly
homogeneous. Since Likert items on each scale in this study were not examined individually,
but as summated scales, this homogeneity prevented certain items from over or under
representation of the scale. Therefore, 1-point differences in scores were assumed to be

similar.



Limitations associated with the midpoint choice of neutral response (Chyung et al.,
2017) and the presence of small differences in loadings from item to item in confirmatory
analyses (Leon-Mantero et al., 2020) were assumed to be controlled by the robustness of the
summated scales, given the sample size, the number of points in each item, and the number of
items in each scale in this study (Carifio & Perla, 2008; Pell, 2005). Finally, multiple
ANCOVAS were then conducted separately in two groups: low and high initial ATM.
Results were used to compare students’ achievement between MPC and Non-MPC sections,
while controlling for initial ATMI scores, and semester of enrollment. Since the nature of this
study was exploratory, corrections for multiplicity were not conducted to prevent error type II
inflation (Streiner, 2015). All statistical analysis, unless otherwise indicated, were conducted

in R, using the stats package (v4.0.2; R Core Team 2021).

Results

Correlation Analysis

Pearson product-moment correlation coefficients were computed to measure the
strength of relationship between student attitudes towards mathematics, as measured by the
ATMI scores, at the beginning of the semester and their course achievement, as measured by
their total grade at the end of the semester. Correlation coefficients were pooled from the
multiple imputed datasets using Fisher's Z transformation and Rubin’s rules. Results of this

analysis are presented in Table 3.

Table 3. Pearson’s pooled correlation coefficients of ATMI pre-scores and final grade by

demographics
Group df MPC? df Non-MPC*?
Overall 265 0.193 248 0.238
Gender

Female 146 0.135 116 0.252



Male 118 0.274 131 0.260

1-2 Years 162 0.118 150 0.224

>2 Years 79 0.340 65 0.247
STEM declared

STEM 215 0.188 203 0.270

Non-STEM 49 0.244 44 0.130

Note: * Pearson’s correlations coefficients pooled using Fisher's Z transformation and Rubin’s
rules.df=N-1. All coefficients were statistically significant (p<.001) ®based on a cutoff of 60

credits.

As shown in Table 3, correlation between student attitudes and achievement in both
MPC and Non-MPC sections was found to be small-to-moderate (Cohen, 1988). Students’
attitudes in MPC sections were slightly less correlated to achievement. When considering
specific groups by gender, year in college, and STEM declared. When examining gender,
attitudes were significantly less correlated to achievement for MPC female students than in
non-MPC sections. On the other hand, correlations for male students were similar in both
MPC and Non-MPC sections.

Regarding year in college, attitudes were correlated to achievement in a similar way
for freshman and sophomore students in both types of instruction with significantly less
correlation in MPC students. In senior students, on the other hand, this situation was
reversed. Finally, correlation between students’ attitudes and achievement was mixed for
STEM and Non-STEM students. Correlations were significantly lower for MPC sections in
STEM students, but higher in non-STEM students. Although most correlations were found to
be small-to-moderate, differences in the strength of association by treatment confirmed the

need to further investigate these relationships using a regression analysis.

Multiple Regression Analysis

A least square dummy variable (LSDV) fixed effects model was used to predict

students’ final grade based on students” ATMI scores at the beginning of the semester, type



of instruction (MPC or Traditional), gender (female or male) and year of college (freshman,
sophomore, junior or senior). The Section variable was considered a fixed effect to control
for between-variability due to differences between instructors or groups of students who
might attend different class days. Following a recent study (Sonnert et al., 2020) absence of
non-linearity in the relationship between initial ATM and Grade was assumed. Basic

descriptive statistics and regression coefficients of this model are shown in Table 4.

Table 4. Descriptive statistics and regression coefficients of LDSV model

estimate®  std.error t conf.low conf.high
(Intercept) 78.24 3.22%%* 24.33 71.92 84.56
ATMI 3.23 1.02%* 3.18 1.23 5.23
ATMI:MPC -0.52 1.33 -0.39 -3.13 2.09
ClassOthers -4.60 2.35. -1.96 -9.22 0.01
ClassSophomore -4.89 2.16* -2.26 -9.13 -0.64
GenderFemale 2.74 1.83 1.50 -0.85 6.33
STEMSTEM 4.54 2.36. 1.93 -0.09 9.17
MPC 9.82 5.69. 1.73 -1.36 21.00
MPC:ClassOthers -1.22 3.19 -0.38 -7.49 5.06
MPC:ClassSophomore 0.22 3.00 0.07 -5.68 6.12
MPC:GenderFemale -0.89 2.49 -0.36 -5.79 4.00
MPC:STEMdeclaredSTEM -3.58 3.28 -1.09 -10.03 2.87

Note. * ATMI scores are normalized by z-scores. Signif. Codes: . p<.1, * p<0.05, ** p<0.01, ***
p<0.001

For the initial model, about 11% of the variance in final grades were accounted for by
the model (adjusted r> = 0.107). Such a low percentage was partially explained by excluding

other relevant predictors of achievement such as mathematics preparation or students' sense



of belonging. ATMI initial scores were found to have a significant effect on Grade (p<0.05),
leading to an increase of 1-SD in ATMI initial scores per 3.23-point mean increase (SE=1.02)
in final grade in non-MPC sections. This increase in grade was found to be similar to the
3.15-point increase reported in a previous nationwide study (Sonnert et al., 2020).

Since the year in college factor had four different levels, an omnibus F test was
conducted, finding a significant effect (F = 8.7265; p < 0.0002). None of the interactions
included in the model (MPC interaction with gender, year in college, and STEMdeclared)
were significant.

It is worth noting that the increase in grade in the model was found to be not
significant, when controlling for all variables. Given the large standard error of the predictor,
this result does not imply that AL had no impact on students’ grade, but that follow-up
studies are needed to better understand this impact. The model also failed to reflect the
differences in gender and intended career choice previously reported in the correlation
analysis.

When visually inspecting residual plots, the existence of a heavy-tailed distribution
for the dependent variable was identified. Although estimation of model coefficients was
robust against deviations from normality when sample size is reasonably large (Pek et al.,
2018), this distribution could imply that data points in the tails were excessively penalized.
The extreme value analysis reported in the following section was expected to contribute to

measuring the impact of this penalization.

Achievement in lower ATMI scores

Optimal Cut-off score

In order to identify groups of students with extreme values of initial ATM, an optimal

cut point analysis using the Youden index as a metric was conducted on the control section as



a baseline to identify students likely to pass the course as predicted by their initial ATMI
score. A maximum value of 0.25 for the Youden index was achieved by setting the cut-off
score for a passing grade in non-MPC sections at a raw ATMI initial score of 131 (sensitivity
69.6%, specificity 55.8%), corresponding to a mean score of 3.28 and a z-score of -0.28. Low
correlation between ATMI scores and achievement led to a relatively low (AUC 0.62)
accuracy of the cutoff in discriminating between students who pass or do not pass the class.
However, the cutoff captured a high proportion of students with lower grades in both
sections. This cutoff also seems to appropriately differentiate students earning higher grades
(A or B), implying an extremely low probability of earning these grades with an initial ATMI
score lower than this cutoff. Furthermore, equal-frequency discretization analysis led to
similar results.

It is important to notice that this cutoff score should not be used to primarily predict
students' performance. The sensitivity of the cutoff score clearly discourages such
interpretation, as it estimates that this score would misclassify 30% of students with low
ATMI scores as failing the class in the control sample. The cutoff score in this study was
used only as an optimal score given the control sample data to identify groups of students

with extreme values of ATM.

Differences by gender and year of college for students with low ATM

After identifying groups of students with lower initial ATM in the control sections,
multiple two-tailed unpaired t-tests were conducted to investigate differences in final grade
between MPC and Non-MPC sections. Using the previously found cut-off score

(ATMI<131), results were summarized in Table 5.

Table 5. Final grade means, standard errors and effect sizes between MPC and Non-MPC

sections by demographics for students under the optimal cutoff score (ATMI<131)

MPC Non-MPC Mean Differences




n M SD np M SD t? A SE LCI UCI d

Low ATM

Female 45 80.72 1245 46 73.71 12.17 2.74* 7.01 2.56 1.91 12.10 0.81

Male 35 76.82 14.34 30 71.64 1845 1.22 5.18 424 -3.34 13.70 045

Freshm/Soph 45 80.81 14.12 44 70.68 1594 3.2% 10.13 3.17 3.82 16.44 0.96

Jun/Senior 35 7636 12.39 32 7594 1285 0.13 041 3.16 -592 6.75 0.05
High ATM

Female 88 83.01 13.87 59 82.04 1198 0.45 097 2.16 -3.30 525 0.12

Male 75 8399 9.25 82 79.26 1495 241* 473 196 0.85 8.61 0.53

Freshm/Soph 118 83.91 12.34 107 81.96 12.69 1.16 1.95 1.67 -1.35 525 0.23

Jun/Senior 45 8240 11.22 34 7574 1544 2.12. 6.65 3.14 0.36 1295 0.73

Note. *Signif. Codes: . p<.1, * p<0.05, ** p<0.01, *** p<0.001
As can clearly be seen in Table 5, AL did not negatively impact any of the groups

considered in the low or high ATM categories. Furthermore, in the low ATM category the
effect of AL on achievement was particularly larger for two groups: female students, with a
medium-to-large effect size (Cohen’s d = 0.81); and students in their first two years of
college with a large effect size (Cohen’s d =0.96). The only group were the effect of AL on
achievement was not significant in this category was students in their last years of college,
with a negligible effect size (Cohen’s d = 0.05).

It is also worth noting that the positive impact of AL in the achievement of students
with high ATM was particularly higher for male students, with a medium effect size
(Cohen’s d=0.53); and students in their last years of college, with a medium-to-large effect
size (Cohen’s d = 0.73). Some of the underlying reasons that could explain these trends are

discussed in the following section.

Discussion

The main objective of this study was to investigate the relationship between attitudes
towards mathematics (ATM) and achievement in two different college calculus settings:
active learning (AL) and lecture-based (LB) classrooms. Previous work on this relationship
has mainly been limited to LB instruction, and paid little attention to the roles played by
gender, year in college, and low initial ATM. This study was intended to contribute to a

better understanding of these issues through the results from an initial RCT design with a



sample of 535 students enrolled in control and treatment sections during the fall and spring
semester of 2019. Treatment sections adopted the Modeling Practices in Calculus (MPC)
approach which incorporates AL strategies and enhances learning facilitation by Learning
Assistants (Otero et al., 2010), and control sections were predominantly lecture-based (LB)
classrooms. Data collected from this implementation included a measure of students’ ATM,
using the ATMI survey (Tapia, 1996; Tapia & Marsh, 2002), final grades, and certain
demographics. After a multiple imputation algorithm was used to address data missingness
issues, the analysis of this data consisted of a correlational analysis, a fixed-effect model, and
a mean differences analysis of students with low ATM, using a referential cutoff score found

by metric optimization. A brief discussion of this analysis is presented below.

Impact of initial ATM on Achievement in AL classrooms

Since AL approaches have proven to positively impact both student achievement
(Freeman et al., 2014) and ATM (Castillo et al., 2022), it was reasonable to expect that AL
would have a moderation effect on students’ initial ATM and achievement. We suspected
that the higher engagement that students typically have in AL classrooms with peers and
instructors would provide them with a better support system to overcome the detrimental
effect of low ATM on their learning process, and thus reinforce their achievement.

The small positive correlations found between students’ initial ATM and their
achievement in MPC and Non-MPC classrooms were within the range of values previously
reported (House, 1995). A significant difference between both classroom settings was found,
indicating a lower correlation in AL classrooms. The direction of this correlation suggests the
existence of a supportive role, in which AL helps students with lower ATM to earn higher
grades than students in LB classrooms. Lastly, when considering specific groups of students,
the correlation analysis suggested that AL’s supporting role is particularly enhanced for

female students, and students in their first two years of college.



The regression model confirmed the supportive role of AL on students learning
processes including a significant increase in final grade, when controlling for ATM, gender,
year in college, and STEM intent. Although we expected to find significant interactions
between the control variables, none were identified. These results do not necessarily
contradict the correlational analysis findings, as the lack of significance of a t-test associated
with a regression coefficient cannot be directly interpreted (Harrell, 2001). We believe that
two main shortcomings related to the regression model might have hindered its ability to
accurately capture these interactions.

On the one hand, the available data did not include important predictors of
achievement including variables associated with mathematics preparation. This restriction
could explain the model’s low goodness-of-fit (adjusted 1> = 0.117) that prevented the model
from accurately reflecting relationships between its variables (Fan & Huang, 2001). On the
other hand, the existence of a heavy-tailed response variable distribution could have led to
underrepresenting the influence of AL for low values of ATM (Catoni, 2012). An extension
of our study to a larger sample and richer dataset that include additional predictors of
achievement will contribute to clarify this issue. While addressing the limitations associated
with the regression model, results from our analysis of students with low ATM not only
helped to confirm some of the trends identified in the correlation analysis, but also provided

further insight into the role that students’ demographics might be playing.

Active learning as leverage to low initial ATM

The mean difference analysis confirmed expectations of a supportive role of AL in
students with low ATM (Sonnert at el., 2015). In terms of demographic variables, as shown
in Table 5, the most compelling findings were the large effect sizes identified in gender and
year in college for students with low initial ATM. Our analysis showed that well-designed

AL strategies such as MPC can have a particularly large effect (d=0.81) on female students



with low initial ATM. This effect size seems to initially contradict a recent study by Sonnert
at el. (2020) who found that ATM’s influence on achievement was similar for both male and
female students. However, the regression model used by these authors was not focused on
active learning classrooms nor included interactions specifically measured on students with
extreme values of ATM, as we did in our study.

The large effect size on MPC female students with low ATM found in our study
translates to an increase of over half-a-letter on final grade, when compared to traditional
lectures. Such a large increase is of particular significance, since several studies have shown
that female students enter STEM careers in college with lower ATM than their male
counterparts (Good et al., 2012; Saxe et al., 2015). Furthermore, in terms of persistence,
female students’ odds of being discouraged from continuing in calculus have been estimated
to be 1.5 times greater than that of their male counterparts (Ellis et al., 2016).

The impact of AL on female students whose initial attitudes might otherwise prompt
them to fail the class, could contribute to create more equitable Calculus classrooms in
college. Results from a recent study (Laursen et al., 2014) that compared inquiry-based
learning (IBL) college mathematics to lecture-based classrooms are consistent with the
supporting role we found AL’s classrooms are playing in female students. In this study,
differences between female and male students found in mastery gain in lecture-based
classrooms vanished in IBL classrooms.

The underlying mechanism that explains the influence of AL on female students has
not been fully explained. However, it is possible that the enhanced collaboration in AL
classrooms provides female students with support they normally do not encounter in more
lecture-based classrooms. This explanation is aligned with several studies that have shown
that women, in general, respond more favorably to collaborative than competitive

environments (Ash et al., 2004; Niederle & Vesterlund, 2011). Studies that support this



explanation in calculus are still needed, but studies on college physics confirm that the
collaborative components of AL courses might be the main factor responsible for diminishing
gaps in conceptual understanding (Lorenzo et al., 2006), and some attitudinal variables such
as students’ self-efficacy (Espinosa et al., 2019).

Regarding the achievement of students with low ATM by year in college, as shown in
Table 5, AL was clearly more beneficial to those in their first or second year of college. This
result is aligned with findings by Savelsbergh et al. (2016) in which the effect of innovative
instruction was found to be weaker for older students. Laursen et al. (2014), also found
similar results, where first-year students had greater gains in social and cognitive measures in
IBL college mathematics than last-year students. Reported gains by Laursen et al. included
mathematical thinking, persistence in solving problems, and collaboration. Although the
reasons why these gains were observed were also not fully explained in their study, we
suspect that since AL classrooms are still underrepresented in the STEM curriculum, junior
and senior students might have a more extended experience with lecture-based courses in
STEM, and that this experience makes their transition to AL more difficult. It is also possible
that students' different views by year in college regarding collaboration and competition in

science (Fuselier & Jackson, 2010) might be interacting with the benefits of AL classrooms.

Limitations and Further Research

The main limitations of this study were related to its sample size and the existence of
unaccounted variables. In the first place, a larger sample size would allow for higher
statistical power in each bivariate analysis conducted for each demographic variable and
alleviate issues related to deviation from normality of the ATM scale. Having a larger sample
would also allow the use of other regression models that account for extreme values such as
spline regression (Harrell, 2001). Similarly, including more participants in the study could

have helped to address a limitation related to natural constraints of students’ enrollment in



college calculus. Giving students the freedom to switch sections after the ATMI survey was
administered, resulted in a small group of students who were not part of the original random
assignment. Although the fact that these students enrolled evenly in AL and traditional
calculus sections led to an overall balanced sample, a proximity score matching algorithm
(PSM) (Granger et al., 2019) could have contributed to better control for these changes. The
reduced number of observations after PSM would however prevent us from exploring issues
related to students’ demographics with appropriate power. Expanding our study to additional
semesters and other institutions would also help to address this limitation.

The authors also recognize the need to incorporate additional variables in a
subsequent model. Some of the important unaccounted variables in this study included
student mathematics preparation, instructors’ characteristics, and measures of student
collaboration. First, measuring students’ mathematics preparation would have helped to
provide a more robust regression model to capture the main interactions investigated. Second,
this study assumed that the instructors' weekly professional development and planning
meetings in the AL sections were effective in ensuring a high level of fidelity of
implementation, yet no associated measures to confirm this assumption were included in the
study. To partially address this issue, the effect of the instructor on the interactions was
examined through a fixed-effect model with a dummy variable on instructor and its analysis
yielded consistent results. Last, other variables such as students’ course engagement or their
level of collaboration throughout the semester were not available. Qualitative studies that
explore students’ classroom interactions in groups are also needed to avoid overlooking these

and other relevant variables in this process.
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