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Introduction 

Although college calculus has continuously been confirmed as a central component of STEM 

careers (Bressoud et al., 2013), its steady presence in the curriculum has been linked to large 

reform efforts (Bressoud, 2020). Some of the main drivers of these reform efforts include 

students’ persistent low achievement (Bressoud et al., 2015), poor conceptual understanding 

of core ideas, and inability to transfer these ideas to other contexts in STEM (Hallett, 2006). 

These efforts have primarily focused on changes in instructional practices, content selection 

to highlight core ideas, and the emphasis on the application of core ideas to different 

disciplines in STEM (Carreon et al., 2018; Rasmussen et al., 2014).  

In terms of changes in instructional practices, special attention has been paid to 

classrooms that have implemented active learning (AL) approaches. These approaches have 

been characterized as a shift from teacher-centered, lecture-based classrooms to more 

student-centered classroom environments where students are actively engaged in meaningful 

learning activities and have an opportunity to reflect on their learning process (Bonwell & 

Eison, 1991). Examples of these approaches include flipped classrooms (DeLozier & Rhodes, 

2017; Jungić et al., 2015), inquiry-based learning (Kogan & Laursen, 2014; Laursen et al., 

2014), and courses that incorporate a larger component of group work supported by 

mathematical software (Armstrong & Hendrix, 1999).  

The effectiveness of active learning (AL) approaches started to appear in the literature 

over three decades ago (Davidson, 1971). Since then, it has been extensively investigated in 

undergraduate STEM education (Freeman et al., 2014; Johnson & Johnson, 2002). For 

instance, Freeman et al. (2014) in a meta-analysis of 225 studies, found that these approaches 

led to an increase in student performance on examinations and concept inventories by almost 

one-half standard deviation over traditional lecturing. Furthermore, students enrolled in 

courses based on these approaches were found to be 1.5 times less likely to fail the course 



 

 

than traditional lecturing courses. This success has also proven to be consistent across STEM 

areas, leading to high odds of student success in biology (Chambers, 2008), chemistry 

(Paulson, 1999), and computer sciences (Lasserre, 2009). In other STEM disciplines, such as 

modeling in physics, these odds have shown to be as high as 6.73 times greater than lecture-

based instruction (Brewe et al., 2010).   

In the specific case of college calculus, current studies on the effectiveness of AL, 

however, are still limited. These studies have focused on high-stakes assessments and 

concept inventories, neglecting other relevant outcomes such as students' attitudinal changes. 

Furthermore, meta-analysis studies on the impact of AL have included only a small sample of 

calculus courses with a wide variety of AL strategies, from courses with a high-lecture 

component and marginal emphasis on student collaboration (Lindaman, 2007; Maggelakis & 

Lutzer, 2007), to courses with minimal lecturing in classes and large computer-based 

component (Armstrong & Hendrix, 1999). Further research on the effectiveness of AL on 

additional measures such as student attitudes in calculus is still needed.  

As an additional measure of the impact of AL on students’ learning process, attitudes 

towards mathematics (ATM) in calculus has only recently been examined (Castillo et al., 

2022). Developing a better understanding of this influence is important because Calculus has 

been found to produce sharp declines in ATM in college (Bressoud, 2015). These declines 

can have dire consequences in students’ experiences, impacting students’ persistence in 

STEM programs (Bressoud et al., 2013; Maltese & Tai, 2011), classroom equity (Ellis et al., 

2016), and driving subsequent mathematics avoidance (Popham, 2005). Finding evidence of 

a direct link between AL and ATM positive gains would provide further support for the 

implementation of this and similar instructional strategies in calculus, contributing to 

addressing these persistent issues in STEM education. The existence of this evidence in the 

literature remains extremely limited.  



 

 

The influence of ATM on achievement, on the other hand, has been widely 

ascertained in postsecondary settings, finding small-to-moderate effect sizes in calculus 

(House, 1995; Pyzdrowski et al., 2013; Sonnert et al., 2020). This effect size has been 

translated, when controlling for other relevant predictors of achievement such as mathematics 

preparation, to a 10% increase in final grade per 1-SD increase in ATM (Pyzdrowski et al., 

2013). The nature of the close interaction between students’ ATM and their achievement 

could be associated with the existence of a feedback loop between these factors (Ma & 

Kishor, 1997; Sonnert et al., 2020). As the semester progresses, students’ higher achievement 

in preliminary assessment increases their ATM, and this renewed ATM, in turn, helps them 

to increase their future achievement in the class. Conversely, students’ lower achievement in 

preliminary assessment decreases their ATM, and such change undermines their future 

achievement. This reinforcement cycle aligns with the influence that performance 

accomplishments can have over students’ self-efficacy. As Bandura suggests, students’ 

“successes raise mastery expectations, repeated failures lower them.” (1977, p. 195)  

It is possible that the enhanced student engagement in AL classrooms could change 

the way in which this cycle evolves throughout the semester. The low-stake environment of 

AL classrooms and emphasis on student collaboration could contribute to a better distribution 

of skills, attitudes, and knowledge in the classroom (Slavin, 1996). Students with initially low 

ATM, often conditioned to lower achievement, might be positively influenced by students on 

the other extreme of the spectrum. Despite how plausible this mechanism seems to be, no 

studies were found that confirm its existence in AL classrooms in college calculus. 

Further reasons supporting AL influence on ATM are related to some of the central 

elements present in some AL approaches, including cooperative learning and social 

metacognition. On the one hand, several psychological theories confirm the influence of 

cooperative learning on attitudinal development (Johnson & Johnson, 1991). As this type of 



 

 

learning is characterized by students working together to achieve joint goals while 

cooperating in group discussions, students not only commit to adopt certain attitudes, but also 

advocate attitudes to others (Johnson et al., 2007).  

On the other hand, although evidence of the influence of social metacognition on 

student attitudes is limited, there are reasons to expect a significant supportive role. Social 

metacognition can be understood as an extension of metacognition into group interactions, 

where peers influence awareness of one another's knowledge, emotions, and actions (Chiu & 

Kuo, 2010). Increases in this awareness could be strengthening students’ confidence in their 

ability to be successful. Furthermore, a recent study in physics reported a positive correlation 

between metacognition and students’ enthusiasm and self-confidence (Eblen-Zayas, 2016). 

Additionally, AL courses that follow culturally appropriate learning models could 

even have a higher impact on students’ attitudes. Some of the key features of these models 

include the creation of a safe, inclusive, and respectful learning environment and promotion 

of equitable learning (Ginsberg & Wlodkowski, 2009). In this environment students would 

feel more comfortable helping and giving evaluative feedback to peers, which are known 

elements of social persuasion hypothesized to directly influence attitudes (Bandura, 1977).

  Equally important, in investigating the nature of the mechanism through which AL 

might change the relationship between initial attitudes and achievement, is the role 

demographic variables might be playing in this process. Clear interactions between ATM, 

achievement, and demographic variables, such as gender, year in college, career choice, race 

and ethnicity have been found. First, a recent study reported that women start and end the 

semester with significantly lower mathematical confidence than men, even when looking 

only at students with above-average mathematics preparation and skills (Ellis et al., 2016). 

Second, in terms of year in college, freshman students in college calculus have shown to have 

a more positive ATM than their sophomore counterparts (Sonnert et al., 2020). In terms of 



 

 

career choice, students who were interested in pursuing STEM careers had higher ATM than 

the rest of the students enrolled in the course (Sonnert et al., 2020). Last, literature on the 

influence of race and ethnicity on ATM is much more limited, but a previous study reported 

evidence that African American students showed higher values of ATM than their White 

counterparts, while the opposite relationship was true when examining their achievement 

(Stanic & Hart, 1995).  

 Another critical aspect regarding the influence of AL in the classroom is its impact on 

students with particularly low attitudes. A regression model from a recent study suggests that 

students with initially low ATM (those with less than 2 standard deviations in mean ATM 

scores) are likely to earn low grades, fail or drop the class (Sonnert et al., 2020). There is 

evidence that these students benefit more from conventional good teaching with less group 

work than other instructional strategies better aligned with AL (Sonnert et al. ,2015). 

However, a recent study found that certain AL approaches could lead to better outcomes in 

students’ ATM (Castillo et al., 2022). This study however did not examine achievement, 

suggesting the need further research.  

 The main purpose of the present study is to examine the relationship between attitudes 

towards mathematics (ATM) and achievement in AL and LB calculus classrooms. The 

following five  research questions guided this investigation: (1) To what extent are students’ 

initial ATM associated with their achievement in both LB and AL classrooms? (2) How does 

this association vary by demographics? (3) To what extent do initial ATM predict 

achievement when controlling for instructional strategy and students’ demographics 

including gender, year in college, and STEM choice? (4) To what extent does AL influence 

the achievement of students with initially low ATM differently, when compared to traditional 

classrooms? (5) How does this difference vary by demographics? 



 

 

Related Literature 

Attitudes Towards Mathematics 

Extensive research on student affect has been conducted in mathematics over the last 

decades (Zan et al., 2006; Reyes, 1984). The general idea of how student attitudes towards 

mathematics (ATM) are portrayed in these reviews is summarized by Reyes as “students' 

feelings about mathematics, aspects of the classroom, or about themselves as learners of 

mathematics” (1984, p.1).  

Understanding the impact of these feelings in the learning process is important as they 

have been linked to student achievement (Evans, 2007; Yee, 2010), and have also proven to 

play a predominant role in shaping students’ persistence in STEM programs (Bressoud et al., 

2013; Maltese & Tai, 2011). Furthermore, students’ ATM have been recently related to 

issues of equity. A study examining the effect of attitudes by gender, for instance, found that 

odds of a female student being discouraged from continuing in calculus is 1.5 times greater 

than that for a male student (Ellis et al., 2016).  

Due to the complexity of students’ feelings, developing reliable instruments that 

measure students’ ATM has proved to be a long process (Chamberlin, 2010; McLeod, 1994). 

This process started over six decades ago undergoing multiple iterations focused on capturing 

the most salient traits of student attitudes (Hannula, 2002). Most recently, the attitudes 

toward mathematics inventory (ATMI) was developed to capture the most essential 

dimensions of student attitudes but with less items than previous instruments (Lim & 

Chapman, 2013; Tapia & Marsh, 2004). It is composed of 40 items and four factors: 

confidence, enjoyment, motivation, and value. Moreover, its psychometric properties have 

been confirmed in a college setting, yielding good model fit statistics and high Cronbach 

alpha coefficients (above 0.87) for each factor (Tapia & Marsh, 2002) in college settings.  



 

 

Influence of AL on Student Attitudes 

Fewer studies have been conducted to understand the impact of AL approaches on 

students ATM than those examining students’ achievement. Moreover, most of these studies 

have focused on pre-tertiary education. However, results in general suggest a positive impact 

on students’ attitudes. In the US, findings from a meta-analysis of 65 studies on primary and 

secondary school (E. Savelsbergh et al., 2016) provide some evidence of this impact. 

According to this study, significant effects (0.35<d<0.4) were found in general attitude, 

general interest, and career interest in science. These results included a variety of innovative 

instructional strategies such as inquiry-based, computer-based, and collaborative learning 

strategies with no significant difference between approaches. Another interesting outcome of 

this study is that the effects of instruction were found to be weaker for older students.   

Outside of the US, the positive influence of AL on student attitudes has also been 

confirmed in secondary science education. For instance, in a study of over 12,000 students in 

the UK, student engagement in high school classrooms was linked to positive attitudes 

towards science, and particularly higher levels of student enjoyment and motivation 

(Hampden-Thompson & Bennett, 2013). Similarly, studies recently conducted with students 

in Turkey also found significant effect sizes on the impact of AL in students’ attitudes 

(Akinoglu & Tandogan, 2007; Demirci, 2017).  

In college calculus, Alkhateeb (2002) found that adding a hands-on, technology-based 

component to the course further enhanced students’ attitudes and significantly redacted 

students’ mathematics anxiety. Finally, a more recent study (Castillo et al., 2022) noted that 

incorporating AL strategies in a calculus course can improve student attitudes gains, when 

compared to a traditional lecture-based course. Moreover, this study found that AL had a 

particular positive impact on female students’ self-confidence, acting as a gender equalizer.  



 

 

Although there still is a need for more systematic studies, experiences in multiple 

educational settings in pre-tertiary education and STEM disciplines in college points to a 

positive influence of AL approaches on student attitudes.  

With respect to how AL interacts with demographics variables including gender, year 

in college, and STEM intended choice a few, yet limited, studies suggest the existence of 

significant interactions. For example, Laursen et al. (2014) conducted a quasi-experimental 

study of over 100 course sections at four academic institutions over a period of two years to 

understand differences between inquiry-based learning (IBL) courses and comparable non-

IBL courses. Their results indicated not only an overall positive impact of IBL, but a 

significant decrease in attitudinal and achievement gaps. While female students in non-IBL 

courses still showed much lower cognitive and attitudinal gains than their male counterparts, 

in IBL courses, no significant differences in these gains were found.  

Research on the influence of AL on other demographics variables such as year in 

college, and STEM intended career choice is extremely limited. Only one study, by Fuselier 

and Jackson (2010) was found regarding this issue. This study examined students’ views on 

how collaborative science might change depending on their coursework, finding that the 

fewer science courses students take, the more collaborative they report science is for them. 

This progression in students’ views of science could influence the impact of AL classrooms 

by year in college, indirectly suggesting that AL might be more effective in students in their 

first years of college. The present study is intended to contribute to the limited evidence 

found. Before presenting main findings, details of the methodology used are included as 

follows.  

Methods 

The present study investigated the influence of AL on the relationship between students’ 

initial attitudes towards mathematics and their achievement on an introductory calculus 



 

 

course at a large, urban, research intensive (R1) university. It initially included a randomized 

control trial experiment during the Spring 2019 and Fall 2019 terms to establish strong and 

reliable evidence. Instructors in the treatment group used an AL curriculum following the 

Modeling Practices in Calculus (MPC) model. Instructors in the control group, on the other 

hand, followed a lecture-based model.  

Modeling Practices in Calculus 

Faculty who followed the MPC model, participated in professional development that 

included a three-day workshop prior to teaching, and weekly planning meetings throughout 

the semester to support the model adoption. The MPC model integrates three core elements at 

its foundation: cooperative learning (Johnson et al., 2007; Johnson & Johnson, 1991), social 

metacognition (Chiu & Kuo, 2010), and a culturally appropriate learning environment 

(Ginsberg and Wlodkowski, 2009). First, in terms of cooperative learning, students work 

most of the class in groups on a set of notes and learning activities that develop student 

understanding of core calculus ideas. The notes introduce the key topics of the day with some 

examples and questions for the groups, and the learning activities contain a set of problems 

that lead students to reflect on and challenge their understanding of these topics. For 

example, after just the second class, students are led through the notes through group and 

whole-class discussions to have an intuitive understanding of limits using visual 

representations. With these notes, groups are then asked to develop an idea of how to 

compute limits without the need for a graphical or tabular representation. The associated 

learning activity presents a question involving a piecewise-function and asks to compute 

limits without any visual representations. By working cooperatively on the learning activity, 

students note how they use the domain of the piecewise function to ‘visualize’ what happens 

which helps them build an understanding of direct substitution, the first technique for 

computing limits presented. 



 

 

Second, the MPC model includes social metacognition as an essential element of the 

class. Opportunities for developing social metacognition are promoted on a typical day of 

class as students work together to write up and present ideas and solutions to problems they 

developed in their groups on whiteboards. Group members are asked to monitor each other’s 

thinking and make suggestions to control their group problem solving.  

Last, MPC’s culturally appropriate learning model allows students to try out their 

ideas in a low-stakes, safe environment, receive ongoing formative feedback from an 

instructional team, and participate in a community of learners. The instructor promotes a safe 

learning environment by messaging to students regularly that making mistakes and asking 

questions are acceptable and a natural part of mathematics. The low-stakes environment is 

also enhanced as Learning Assistants (LAs), or trained undergraduate classroom facilitators, 

are integrated into the classroom to support learning with groups and provide valuable 

information to instructors about student interactions (Otero et al., 2010). LAs are natural 

agents of this culturally appropriate model, as their demographics are that of the students, 

who provide insights and connections from the point of view of a former student in the 

course. 

Participants  

The sample in this study consisted of a total of 553 students enrolled in Calculus I at a large, 

urban, research-intensive institution in the US. In the Spring 2019 semester, a total of 168 of 

these students were randomly assigned to three control and three treatment sections. In the 

subsequent semester, the number of sections increased due to semester enrollment trends and 

the gradual AL curriculum implementation design. In the Fall 2019 semester, the total of 

students participating in this study then expanded to a total of 385 students randomly 

assigned to six control and six treatment sections.  



 

 

Additionally, students’ demographics data was reported by students to the university 

and collected at the time of course enrollment. A breakdown of the number of students by 

treatment group and the demographics of all participating students, can be seen in Table 1. 

 

 

 

 

 

 

Table 1. Demographics by treatment group 
  Treatment Control   Treatment Control 
  (N=286) (N=267)   (N=286) (N=267) 

Gender     STEM choice 
    Female  147 (51.4) 117 (43.8)      Non-STEM 50 (17.5) 45 (16.9) 
    Male  119 (41.6) 132 (49.4)      STEM 216 (75.5) 204 (76.4) 
    Missing/NA      20 (7.0) 18 (6.7)      Missing/NA 20 (7.0) 18 (6.7) 
Precalculus proficiency  Race/Ethnicity 
    High  75 (26.2) 78 (29.2)      African Am. 15 (5.2) 16 (6.0) 
    Low  186 (65.0) 164 (61.4)      Asian/Pac. I. 12 (4.2) 8 (3.0) 
    Missing/NA  25 (8.7) 25 (9.4)      Hispanic 185 (64.7) 199 (74.5) 
Class Standing (Year in College)      White 32 (11.2) 15 (5.6) 
    Freshman  93 (32.5) 79 (29.6)      Others 22 (7.7) 11 (4.1) 
    Sophomore  86 (30.1) 93 (34.8)      Missing/NA 20 (7.0) 18 (6.7) 
    Junior  60 (21.0) 49 (18.4)     
    Senior  27 (9.4) 27 (10.1)     
    Others/NA  20 (7.0) 19 (7.1)     

Note. In parentheses: percentages of students in each category in both semesters.  

Measures and Procedure  

Measures 

Student attitudes were measured using the Attitudes towards Mathematics Inventory 

(ATMI) developed by Tapia and Marsh (2004). This survey is composed of 40 items 

measuring the four subscales described in the previous section of this study: enjoyment (10 

items), motivation (5 items), self-confidence (15 items), and value (10 items). Eleven items 



 

 

of this survey were reversed-coded later on for data analysis. Additionally, at the end of the 

semester, students’ final grades were collected and converted to a 100-point scale (A+ = 98, 

A = 94.5, A– = 92, B+ = 88, B = 84.5, B– = 81, C+ = 78, C = 74.5, C– = 71, D+ = 68, D = 

64.5, D– = 61, F = 40). This scale was previously used in a study (Sonnert et al., 2015) on 

calculus performance that included student attitudes as a predictor, yet not accounting for 

innovative instructional strategies as active learning.    

Procedures 

In order to obtain the final sample in this study, students enrolled in multiple, 80-seat 

(twice the normal size) sections of introductory calculus, chosen to fit their schedules as they 

normally would. Instructor names were invisible to students throughout this enrollment 

process. Two days prior to the beginning of each term, each of these 80-seat sections were 

then split into two 40-seat sections by assigning each student at random to one of either a 

treatment (MPC) or control (non-MPC lecture-based traditional instruction) section. After 

this random assignment was completed, students were still allowed to change sections prior 

to the enrollment deadline.  

In the Spring semester, a total of 261 students were randomly assigned to ten sections within 

the study, with 130 students of these in five treatment sections and 131 students in five 

control sections. In the Fall 2019 Semester, a total of 533 students were randomly assigned to 

16 sections within the study, with 271 students in eight treatment sections and 258 students in 

eight control sections. Since only sections with matching schedules (same day/time teaching) 

were included in this study, the final sample included three sections per treatment in the 

Spring 2019, and six sections per treatment in the Fall 2019 semester.  A group of students, 

no larger than 21% of the sample, were not part of the original random assignment. This 

group included students from other sections who decided to enroll in RCT sections after the 

split and prior to the enrollment deadline. However, these students enrolled evenly in control 



 

 

and treatment sections. The number of students per treatment per semester in the final sample 

can be seen in Table 1. Students were asked to complete the ATMI and the PCA survey, at 

the beginning (first week of classes) and end of the semester (last two weeks of classes). 

Surveys were administered by the instructors, following a protocol that involved ensuring 

students their participation was not going to influence their grade in any way.  

Missingness 

The overall unweighted unit response rate for both semesters was 82.7% for pre-

surveys, 66.8% for post surveys, and 64.8% for students submitting both surveys. A 

breakdown of survey response rates by semester is presented in Table 2.  

Table 2. Initial enrollment and survey-response rates by treatment section 

 Control Treatment 

Enrollmenta 335 342 

Pre-surveyb 248 (74.0) 263 (76.9) 

Post-surveyb 178 (53.1) 235 (68.7) 

Both surveysb 156 (46.6) 204 (59.6) 

a End of the semester enrollment count, b Number of students answering at least one item of the 

respective survey (%) 

A total of 82 (8.8%) out of 924 pre- and post-surveys collected were partially 

completed (at least one item completed). Excluding blank surveys, item non-response rate for 

both treatment and control groups for each item was less than 3.4% for both pre- and post-

surveys. When including blank pre-ATMI surveys later paired with partially completed post-

surveys, on the other hand, the percentage of missing values across the 40 pre-survey items of 

collected surveys ranged between 9% to 14%. However, this percentage was much higher for 

the post-survey items, ranging between 18% to 37%. This unbalance was mainly explained 

by high rates of student attrition, especially in the control section.  



 

 

Due to differences in attrition rates between control and treatment sections, missing 

data was considered missing not completely at random (Rubin, 1975).  Potential loss of 

statistical power and biased estimates due to this missingness were addressed using a multiple 

imputation (MI) algorithm (Kang, 2013). The extensively validated expectation-

maximization with bootstrapping (EMB) MI algorithm AMELIA II was used to impute unit 

and item non-response (Honaker et al., 2011).  MI was carried out considering the pre-post 

design as a time series, using the pre PCA survey results as a covariate. Since the percentage 

of missing data was less than 30%, using over 30 iterations was considered appropriate 

(White et al., 2011). Although assumptions of normality were violated for each survey item, 

given the sample size in this study and since these deviations were slight, the EMB algorithm 

was assumed to be robust against these violations (Demirtas et al., 2008).   

Data Analysis 

Four different strategies were used to analyze the data: a correlation analysis, a least 

square dummy variable (LSDV) fixed effects model, an optimal cutoff analysis, and an 

analysis of mean differences for students identified with low and high initial ATM. First, a 

correlational analysis was carried out to understand the strength of association between ATM 

and achievement overall and by demographics. Student achievement and ATMI scores were 

both considered continuous interval variables. Pearson product moment correlation 

coefficient preferred, since sample sizes were considered large enough to assume normal 

distribution (Bujang & Baharum, 2016). Since missingness was addressed using MI, 

correlation coefficients were pooled using Fisher's Z transformation to normalize data before 

using Rubin’s rules (Enders, 2010, p. 220). 

Second, it was expected that instructors differences might have led to slight variations 

in MPC implementation . The lack of direct measures of fidelity of implementation is a 

limitation of this study, however, as previously indicated, weekly supporting meetings with 



 

 

instructors, and professional development workshops contributed to control for this issue. 

Additionally, a least square dummy variable (LSDV) fixed effects model, preferred over  

mixed-effect models (McNeish & Kelley, 2019; McNeish & Stapleton, 2016), accounted for 

differences in sections.  

The response variable was students’ final grades (100-point scale), the only 

continuous predictor was students’ initial ATMI scores, the remaining predictors were all 

categorical: treatment (0:Non-MPC sections; 1: MPC sections), gender (0:male students, 

1:female students), year in college (0: freshmen, 1: sophomore, 3: others), and 

STEMdeclared (0:Non-STEM and 1:STEM). The section variable included to account for 

differences in instructors had 12 levels in the MPC sections and 12 levels in the non-MPC 

sections. 

Following findings reported in the literature review (Sonnert et al., 2015), interactions 

between treatment and initial ATM were added to the model. Additional interactions were 

also included between treatment and each of the following variables: gender, year in college, 

and STEMdeclared. Although evidence of these additional interactions was not found, each 

variable was expected to have large main effects, thus likely to interact with treatment. 

Additionally, their inclusion was expected to expand the understanding of the relationship 

among these variables (Harrell, 2001). In terms of variable selection, since this study was 

exploratory, and there were a priori reasons to assume the initial variables were all relevant, 

the full model was preferred over stepwise methods. Furthermore, stepwise methods were 

also avoided to minimize bias in parameter estimation, and error inflation (Harrell, 2001).  

Third, from previous studies the effect of ATM on achievement was expected to be 

polarized (Sonnert et al., 2015). An optimal cutpoint analysis using the Youden index metric 

(Yin & Tian, 2014) was conducted on the control section as baseline to identify groups of 

students with low and high attitudes. This cutoff optimized the likeliness of misclassifying 



 

 

students’ success based on their initial ATM. Students with initial ATMI scores lower than 

this cutoff were considered more likely to fail the class, based on the data collected from the 

Non-MPC sections. Results of this analysis were also compared to the cutoff score analysis 

based on equal-frequency discretization to check for consistency. The optimal cutpoint 

analysis was conducted using the cutpointr R package (Thiele & Hirschfeld, 2021).  

Last, after identifying groups with low and high initial attitudes based on the 

previously determined optimal cutoff score, the ATMI scale was considered a continuous 

interval variable, given the Likert scale nature of the items and large sample size of this study 

(Carifio & Perla, 2008). This assumption followed previous studies (Asante, 2012; Karjanto, 

2017; Primi et al., 2020) and was supported by two main theoretical positions. On one hand, 

the ATMI scale was considered to have no true zero. Each item in the ATMI survey was 

scored with a minimum of 1 (strongly disagree) and a maximum of 5 (strongly agree). A 

score of 3, corresponding to the “Neutral” response, was also considered a student attitude 

and not the lack of it. When adding each item’s score, the overall ATMI scale ranged 

accordingly between 40 and 200.  

On the other hand, the assumption of equal distance between points was deemed to be 

reasonable given the type of Likert scale involved (Strongly Disagree, Disagree, Neutral, 

Agree, and Strongly Agree). Furthermore, confirmatory analyses on the ATMI survey (Lim 

& Chapman, 2013; Ngurah & Lynch, 2013) suggest that the contribution of each item to each 

scale (overall, motivation, enjoyment, self-confidence, and value scale) is fairly 

homogeneous. Since Likert items on each scale in this study were not examined individually, 

but as summated scales, this homogeneity prevented certain items from over or under 

representation of the scale. Therefore, 1-point differences in scores were assumed to be 

similar. 



 

 

Limitations associated with the midpoint choice of neutral response (Chyung et al., 

2017) and the presence of small differences in loadings from item to item in confirmatory 

analyses (León-Mantero et al., 2020) were assumed to be controlled by the robustness of the 

summated scales, given the sample size, the number of points in each item, and the number of 

items in each scale in this study (Carifio & Perla, 2008; Pell, 2005). Finally, multiple 

ANCOVAS were then conducted separately in two groups: low and high initial ATM. 

Results were used to compare students’ achievement between MPC and Non-MPC sections, 

while controlling for initial ATMI scores, and semester of enrollment. Since the nature of this 

study was exploratory, corrections for multiplicity were not conducted to prevent error type II 

inflation (Streiner, 2015). All statistical analysis, unless otherwise indicated, were conducted 

in R, using the stats package (v4.0.2; R Core Team 2021).  

Results  

Correlation Analysis 

Pearson product-moment correlation coefficients were computed to measure the 

strength of relationship between student attitudes towards mathematics, as measured by the 

ATMI scores, at the beginning of the semester and their course achievement, as measured by 

their total grade at the end of the semester. Correlation coefficients were pooled from the 

multiple imputed datasets using Fisher's Z transformation and Rubin’s rules. Results of this 

analysis are presented in Table 3. 

Table 3. Pearson’s pooled correlation coefficients of ATMI pre-scores and final grade by 

demographics 

Group df MPCa  df Non-MPCa 

Overall 265 0.193  248 0.238 

Gender      

    Female 146 0.135  116 0.252 



 

 

    Male 118 0.274  131 0.260 

   1-2 Years 162 0.118  150 0.224 

    >2 Years 79 0.340  65 0.247 

STEM declared      

    STEM 215 0.188  203 0.270 

    Non-STEM 49 0.244  44 0.130 

Note: a Pearson’s correlations coefficients pooled using Fisher's Z transformation and Rubin’s 

rules.df=N-1. All coefficients were statistically significant (p<.001) b based on a cutoff of 60 

credits. 

As shown in Table 3, correlation between student attitudes and achievement in both 

MPC and Non-MPC sections was found to be small-to-moderate (Cohen, 1988). Students’ 

attitudes in MPC sections were slightly less correlated to achievement. When considering 

specific groups by gender, year in college, and STEM declared. When examining gender, 

attitudes were significantly less correlated to achievement for MPC female students than in 

non-MPC sections. On the other hand, correlations for male students were similar in both 

MPC and Non-MPC sections.  

Regarding year in college, attitudes were correlated to achievement in a similar way 

for freshman and sophomore students in both types of instruction with significantly less 

correlation in MPC students. In senior students, on the other hand, this situation was 

reversed. Finally, correlation between students’ attitudes and achievement was mixed for 

STEM and Non-STEM students. Correlations were significantly lower for MPC sections in 

STEM students, but higher in non-STEM students. Although most correlations were found to 

be small-to-moderate, differences in the strength of association by treatment confirmed the 

need to further investigate these relationships using a regression analysis.  

Multiple Regression Analysis 

A least square dummy variable (LSDV) fixed effects model was used to predict 

students’ final grade based on students’ ATMI scores at the beginning of the semester, type 



 

 

of instruction (MPC or Traditional), gender (female or male) and year of college (freshman, 

sophomore, junior or senior). The Section variable was considered a fixed effect to control 

for between-variability due to differences between instructors or groups of students who 

might attend different class days. Following a recent study (Sonnert et al., 2020) absence of 

non-linearity in the relationship between initial ATM and Grade was assumed.  Basic 

descriptive statistics and regression coefficients of this model are shown in Table 4. 

 

 

 

 

 

Table 4. Descriptive statistics and regression coefficients of LDSV model  
 

estimatea std.error t conf.low conf.high 

(Intercept) 78.24 3.22*** 24.33 71.92 84.56 

ATMI 3.23 1.02** 3.18 1.23 5.23 

ATMI:MPC -0.52 1.33   -0.39 -3.13 2.09 

ClassOthers -4.60 2.35. -1.96 -9.22 0.01 

ClassSophomore -4.89 2.16* -2.26 -9.13 -0.64 

GenderFemale 2.74 1.83 1.50 -0.85 6.33 

STEMSTEM 4.54 2.36. 1.93 -0.09 9.17 

MPC 9.82 5.69. 1.73 -1.36 21.00 

MPC:ClassOthers -1.22 3.19 -0.38 -7.49 5.06 

MPC:ClassSophomore 0.22 3.00 0.07 -5.68 6.12 

MPC:GenderFemale -0.89 2.49 -0.36 -5.79 4.00 

MPC:STEMdeclaredSTEM -3.58 3.28 -1.09 -10.03 2.87 

Note. a ATMI scores are normalized by z-scores. Signif. Codes: . p<.1, * p<0.05, ** p<0.01, *** 

p<0.001 

For the initial model, about 11% of the variance in final grades were accounted for by 

the model (adjusted r2 = 0.107). Such a low percentage was partially explained by excluding 

other relevant predictors of achievement such as mathematics preparation or students' sense 



 

 

of belonging.  ATMI initial scores were found to have a significant effect on Grade (p<0.05), 

leading to an increase of 1-SD in ATMI initial scores per 3.23-point mean increase (SE=1.02) 

in final grade in non-MPC sections. This increase in grade was found to be similar to the 

3.15-point increase reported in a previous nationwide study (Sonnert et al., 2020).  

Since the year in college factor had four different levels, an omnibus F test was 

conducted, finding a significant effect (F = 8.7265; p < 0.0002). None of the interactions 

included in the model (MPC interaction with gender, year in college, and STEMdeclared) 

were significant.  

It is worth noting that the increase in grade in the model was found to be not 

significant, when controlling for all variables. Given the large standard error of the predictor, 

this result does not imply that AL had no impact on students’ grade, but that follow-up 

studies are needed to better understand this impact. The model also failed to reflect the 

differences in gender and intended career choice previously reported in the correlation 

analysis.  

When visually inspecting residual plots, the existence of a heavy-tailed distribution 

for the dependent variable was identified. Although estimation of model coefficients was 

robust against deviations from normality when sample size is reasonably large (Pek et al., 

2018), this distribution could imply that data points in the tails were excessively penalized. 

The extreme value analysis reported in the following section was expected to contribute to 

measuring the impact of this penalization.  

Achievement in lower ATMI scores 

Optimal Cut-off score 

In order to identify groups of students with extreme values of initial ATM, an optimal 

cut point analysis using the Youden index as a metric was conducted on the control section as 



 

 

a baseline to identify students likely to pass the course as predicted by their initial ATMI 

score. A maximum value of 0.25 for the Youden index was achieved by setting the cut-off 

score for a passing grade in non-MPC sections at a raw ATMI initial score of 131 (sensitivity 

69.6%, specificity 55.8%), corresponding to a mean score of 3.28 and a z-score of -0.28. Low 

correlation between ATMI scores and achievement led to a relatively low (AUC 0.62) 

accuracy of the cutoff in discriminating between students who pass or do not pass the class. 

However, the cutoff captured a high proportion of students with lower grades in both 

sections. This cutoff also seems to appropriately differentiate students earning higher grades 

(A or B), implying an extremely low probability of earning these grades with an initial ATMI 

score lower than this cutoff. Furthermore, equal-frequency discretization analysis led to 

similar results.  

It is important to notice that this cutoff score should not be used to primarily predict 

students' performance. The sensitivity of the cutoff score clearly discourages such 

interpretation, as it estimates that this score would misclassify 30% of students with low 

ATMI scores as failing the class in the control sample. The cutoff score in this study was 

used only as an optimal score given the control sample data to identify groups of students 

with extreme values of ATM.  

Differences by gender and year of college for students with low ATM 

After identifying groups of students with lower initial ATM in the control sections, 

multiple two-tailed unpaired t-tests were conducted to investigate differences in final grade 

between MPC and Non-MPC sections. Using the previously found cut-off score 

(ATMI<131), results were summarized in Table 5.  

Table 5. Final grade means, standard errors and effect sizes between MPC and Non-MPC 

sections by demographics for students under the optimal cutoff score (ATMI<131) 
 MPC  Non-MPC  Mean Differences 



 

 

 n1 M SD  n2  M SD ta   SE LCI UCI d 
Low ATM                        

Female 45 80.72 12.45  46  73.71 12.17 2.74*  7.01 2.56 1.91 12.10 0.81 
Male 35 76.82 14.34  30  71.64 18.45 1.22  5.18 4.24 -3.34 13.70 0.45 
Freshm/Soph 45 80.81 14.12  44  70.68 15.94 3.2*  10.13 3.17 3.82 16.44 0.96 
Jun/Senior 35 76.36 12.39  32  75.94 12.85 0.13  0.41 3.16 -5.92 6.75 0.05 

High ATM                        
Female 88 83.01 13.87  59  82.04 11.98 0.45  0.97 2.16 -3.30 5.25 0.12 
Male 75 83.99 9.25  82  79.26 14.95 2.41*  4.73 1.96 0.85 8.61 0.53 
Freshm/Soph 118 83.91 12.34  107  81.96 12.69 1.16  1.95 1.67 -1.35 5.25 0.23 
Jun/Senior 45 82.40 11.22  34  75.74 15.44 2.12.  6.65 3.14 0.36 12.95 0.73 

Note. aSignif. Codes: . p<.1, * p<0.05, ** p<0.01, *** p<0.001 

As can clearly be seen in Table 5, AL did not negatively impact any of the groups 

considered in the low or high ATM categories. Furthermore, in the low ATM category the 

effect of AL on achievement was particularly larger for two groups: female students, with a 

medium-to-large effect size (Cohen’s d = 0.81); and students in their first two years of 

college with a large effect size (Cohen’s d =0.96). The only group were the effect of AL on 

achievement was not significant in this category was students in their last years of college, 

with a negligible effect size (Cohen’s d = 0.05).  

It is also worth noting that the positive impact of AL in the achievement of students 

with high ATM was particularly higher for male students, with a medium effect size 

(Cohen’s d=0.53); and students in their last years of college, with a medium-to-large effect 

size (Cohen’s d = 0.73). Some of the underlying reasons that could explain these trends are 

discussed in the following section.  

Discussion 

The main objective of this study was to investigate the relationship between attitudes 

towards mathematics (ATM) and achievement in two different college calculus settings: 

active learning (AL) and lecture-based (LB) classrooms. Previous work on this relationship 

has mainly been limited to LB instruction, and paid little attention to the roles played by 

gender, year in college, and low initial ATM. This study was intended to contribute to a 

better understanding of these issues through the results from an initial RCT design with a 



 

 

sample of 535 students enrolled in control and treatment sections during the fall and spring 

semester of 2019. Treatment sections adopted the Modeling Practices in Calculus (MPC) 

approach which incorporates AL strategies and enhances learning facilitation by Learning 

Assistants (Otero et al., 2010), and control sections were predominantly lecture-based (LB) 

classrooms. Data collected from this implementation included a measure of students’ ATM, 

using the ATMI survey (Tapia, 1996; Tapia & Marsh, 2002), final grades, and certain 

demographics. After a multiple imputation algorithm was used to address data missingness 

issues, the analysis of this data consisted of a correlational analysis, a fixed-effect model, and 

a mean differences analysis of students with low ATM, using a referential cutoff score found 

by metric optimization. A brief discussion of this analysis is presented below.  

Impact of initial ATM on Achievement in AL classrooms 

Since AL approaches have proven to positively impact both student achievement 

(Freeman et al., 2014) and ATM (Castillo et al., 2022), it was reasonable to expect that AL 

would have a moderation effect on students’ initial ATM and achievement. We suspected 

that the higher engagement that students typically have in AL classrooms with peers and 

instructors would provide them with a better support system to overcome the detrimental 

effect of low ATM on their learning process, and thus reinforce their achievement.  

The small positive correlations found between students’ initial ATM and their 

achievement in MPC and Non-MPC classrooms were within the range of values previously 

reported (House, 1995). A significant difference between both classroom settings was found, 

indicating a lower correlation in AL classrooms. The direction of this correlation suggests the 

existence of a supportive role, in which AL helps students with lower ATM to earn higher 

grades than students in LB classrooms. Lastly, when considering specific groups of students, 

the correlation analysis suggested that AL’s supporting role is particularly enhanced for 

female students, and students in their first two years of college.  



 

 

The regression model confirmed the supportive role of AL on students learning 

processes including a significant increase in final grade, when controlling for ATM, gender, 

year in college, and STEM intent. Although we expected to find significant interactions 

between the control variables, none were identified. These results do not necessarily 

contradict the correlational analysis findings, as the lack of significance of a t-test associated 

with a regression coefficient cannot be directly interpreted (Harrell, 2001). We believe that 

two main shortcomings related to the regression model might have hindered its ability to 

accurately capture these interactions.  

On the one hand, the available data did not include important predictors of 

achievement including variables associated with mathematics preparation. This restriction 

could explain the model’s low goodness-of-fit (adjusted r2 = 0.117) that prevented the model 

from accurately reflecting relationships between its variables (Fan & Huang, 2001). On the 

other hand, the existence of a heavy-tailed response variable distribution could have led to 

underrepresenting the influence of AL for low values of ATM (Catoni, 2012). An extension 

of our study to a larger sample and richer dataset that include additional predictors of 

achievement will contribute to clarify this issue. While addressing the limitations associated 

with the regression model, results from our analysis of students with low ATM not only 

helped to confirm some of the trends identified in the correlation analysis, but also provided 

further insight into the role that students’ demographics might be playing.  

Active learning as leverage to low initial ATM 

The mean difference analysis confirmed expectations of a supportive role of AL in 

students with low ATM (Sonnert at el., 2015). In terms of demographic variables, as shown 

in Table 5, the most compelling findings were the large effect sizes identified in gender and 

year in college for students with low initial ATM. Our analysis showed that well-designed 

AL strategies such as MPC can have a particularly large effect (d=0.81) on female students 



 

 

with low initial ATM. This effect size seems to initially contradict a recent study by Sonnert 

at el. (2020) who found that ATM’s influence on achievement was similar for both male and 

female students. However, the regression model used by these authors was not focused on 

active learning classrooms nor included interactions specifically measured on students with 

extreme values of ATM, as we did in our study. 

The large effect size on MPC female students with low ATM found in our study 

translates to an increase of over half-a-letter on final grade, when compared to traditional 

lectures. Such a large increase is of particular significance, since several studies have shown 

that female students enter STEM careers in college with lower ATM than their male 

counterparts (Good et al., 2012; Saxe et al., 2015). Furthermore, in terms of persistence, 

female students’ odds of being discouraged from continuing in calculus have been estimated 

to be 1.5 times greater than that of their male counterparts (Ellis et al., 2016).  

The impact of AL on female students whose initial attitudes might otherwise prompt 

them to fail the class, could contribute to create more equitable Calculus classrooms in 

college. Results from a recent study (Laursen et al., 2014) that compared inquiry-based 

learning (IBL) college mathematics to lecture-based classrooms are consistent with the 

supporting role we found AL’s classrooms are playing in female students. In this study, 

differences between female and male students found in mastery gain in lecture-based 

classrooms vanished in IBL classrooms.  

The underlying mechanism that explains the influence of AL on female students has 

not been fully explained. However, it is possible that the enhanced collaboration in AL 

classrooms provides female students with support they normally do not encounter in more 

lecture-based classrooms. This explanation is aligned with several studies that have shown 

that women, in general, respond more favorably to collaborative than competitive 

environments (Ash et al., 2004; Niederle & Vesterlund, 2011). Studies that support this 



 

 

explanation in calculus are still needed, but studies on college physics confirm that the 

collaborative components of AL courses might be the main factor responsible for diminishing 

gaps in conceptual understanding (Lorenzo et al., 2006), and some attitudinal variables such 

as students’ self-efficacy (Espinosa et al., 2019).  

Regarding the achievement of students with low ATM by year in college, as shown in 

Table 5, AL was clearly more beneficial to those in their first or second year of college. This 

result is aligned with findings by Savelsbergh et al. (2016) in which the effect of innovative 

instruction was found to be weaker for older students. Laursen et al. (2014), also found 

similar results, where first-year students had greater gains in social and cognitive measures in 

IBL college mathematics than last-year students. Reported gains by Laursen et al. included 

mathematical thinking, persistence in solving problems, and collaboration. Although the 

reasons why these gains were observed were also not fully explained in their study, we 

suspect that since AL classrooms are still underrepresented in the STEM curriculum, junior 

and senior students might have a more extended experience with lecture-based courses in 

STEM, and that this experience makes their transition to AL more difficult. It is also possible 

that students' different views by year in college regarding collaboration and competition in 

science (Fuselier & Jackson, 2010) might be interacting with the benefits of AL classrooms. 

Limitations and Further Research 

The main limitations of this study were related to its sample size and the existence of 

unaccounted variables. In the first place, a larger sample size would allow for higher 

statistical power in each bivariate analysis conducted for each demographic variable and 

alleviate issues related to deviation from normality of the ATM scale. Having a larger sample 

would also allow the use of other regression models that account for extreme values such as 

spline regression (Harrell, 2001). Similarly, including more participants in the study could 

have helped to address a limitation related to natural constraints of students’ enrollment in 



 

 

college calculus. Giving students the freedom to switch sections after the ATMI survey was 

administered, resulted in a small group of students who were not part of the original random 

assignment. Although the fact that these students enrolled evenly in AL and traditional 

calculus sections led to an overall balanced sample, a proximity score matching algorithm 

(PSM) (Granger et al., 2019) could have contributed to better control for these changes. The 

reduced number of observations after PSM would however prevent us from exploring issues 

related to students’ demographics with appropriate power. Expanding our study to additional 

semesters and other institutions would also help to address this limitation.  

The authors also recognize the need to incorporate additional variables in a 

subsequent model. Some of the important unaccounted variables in this study included 

student mathematics preparation, instructors’ characteristics, and measures of student 

collaboration. First, measuring students’ mathematics preparation would have helped to 

provide a more robust regression model to capture the main interactions investigated. Second, 

this study assumed that the instructors' weekly professional development and planning 

meetings in the AL sections were effective in ensuring a high level of fidelity of 

implementation, yet no associated measures to confirm this assumption were included in the 

study. To partially address this issue, the effect of the instructor on the interactions was 

examined through a fixed-effect model with a dummy variable on instructor and its analysis 

yielded consistent results. Last, other variables such as students’ course engagement or their 

level of collaboration throughout the semester were not available. Qualitative studies that 

explore students’ classroom interactions in groups are also needed to avoid overlooking these 

and other relevant variables in this process.  
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