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Abstract: Calculus, the study of change in processes and systems, serves as the foundation of
many STEM disciplines. Traditional, lecture-based calculus instruction presents a persistent
barrier for students seeking STEM degrees, limits access to STEM professions, and blocks their
potential to address society’s challenges. A large-scale pragmatic randomized trial was
conducted to compare two calculus instruction styles: active student engagement (treatment
condition) versus traditional, lecture-based instruction (control condition). A sample of 811 U.S.
university students were studied across 32 sections taught by 19 instructors over three semesters
at a large U.S. Hispanic-Serving Institution. Large effect sizes were consistently measured for
student learning outcomes in the treatment condition, which demonstrated a new standard for
calculus instruction and increased opportunities for completion of STEM degrees.

One-Sentence Summary: A new Standard of Care for Calculus Instruction is proposed, focused
on student engagement and supported by experimentally confirmed evidence of substantially
stronger learning outcomes and student success.



Submitted Manuscript

Main Text:

Calculus instruction needs significant transformation as it serves as a frequent barrier to STEM
degree attainment, especially for traditionally underrepresented groups (/—3), depriving both
individuals and society of the potential benefits of their inclusion. National calls for calculus
transformation are numerous (4, 5), as failing calculus can contribute to a student’s departure
from STEM degree programs. Only about 40% of students entering universities with STEM
degree intentions actually graduate with a STEM degree (6). More concerning is that the odds of
female students switching out of STEM after a calculus course is about 1.5 times higher than that
of comparable male students (3). Furthermore, Hispanic and Black/African American students
had more than 50% higher failure rates than White students in calculus (7, 8).

Evidence-based instruction, implemented in many STEM disciplines, has reliably led to
profound improvement in student success (9—117). However, common approaches to calculus
instruction continue to rely on traditional, lecture-based practices, where students are passive
learners in the classroom, expected to construct their knowledge mostly outside of the classroom,
on homework, or in recitation sessions (/2). Mathematics, as a discipline, thus needs to embrace
its role in enabling STEM careers that will lead to prosperity for both individuals and society at
large. “Calculus ... must become a pump and not a filter” for the STEM pipeline, as noted by
Robert White, President of the National Academy of Engineering in 1988 (/3). Handlesman, et
al, (/4) recently argue that, “We must fix the classrooms where many students from historically
excluded communities are discouraged from pursuing STEM” and that “...the continued
exclusive use of lectures is malpractice at best, or an act of discrimination at worst.” Thus, it is
imperative that dramatic transformation in calculus instruction takes place to promote more
equitable learning environments for all students.

We present a large-scale randomized trial carried out to rigorously compare an evidence-based,
active student engagement calculus course to traditional, lecture-based calculus instruction. The
work extends prior Calculus research investigations (/5—/7) by including random assignment of
students to treatment and control sections as well as anonymized analysis of the identical end-of-
semester learning outcomes. The study utilizes a pragmatic randomized trial (/8) design to
inform on the effectiveness of similar interventions at higher education institutions, reflecting
real-world classroom constraints. In these contexts, blinding of the treatment and control
conditions to both students and faculty is not possible, as blinding is only feasible when the
treatment and control conditions remain unknown to the participants during the period of study
(such as in a clinical trial drug study). As with some public health or sociological interventions,
enrollment of participants in this study reveals some aspects of a cohort structure but it is still
possible to maintain the essential aspects of random assignment, following a modified protocol
as in Zwarenstein, et al (/8). The treatment condition integrated a suite of coherent strategies that
have been independently found (/9, 20) to improve student learning; thus, the treatment was a
significant departure from traditional instruction, and it was not logically possible for the
treatment condition to remain hidden from students or faculty after the treatment began. Random
assignment of faculty to control or treatment conditions would not be possible because an
individual faculty member’s knowledge, philosophy, and experience with a variety of classroom
strategies and instructional practices may intersect with the features of the treatment or control
conditions. The experimental protocol thus included a group of instructors willing to adopt the
instructional methods in the treatment condition. This comprehensive experimental approach was
intended to secure the strongest possible evidence for critical stakeholders to sustain the
treatment beyond the trial.
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The treatment condition used the Modeling Practices in Calculus (MPC) curriculum and
pedagogy, and the control condition represented the pre-existing, traditional instructional
practices at the study institution. MPC integrates the practices of mathematicians as a central
design tenet throughout the course. Instructors facilitate students application of mathematical
“habits of mind” (217) that foster deeper understanding of calculus concepts including the
identifying of patterns, hypothesis development and testing, making connections, and
communicating ideas precisely to learn calculus throughout the course. Class time is devoted to
students working collectively in small groups on pre-designed notes and learning activities
developing their calculus understanding with minimal lecturing. Treatment included Learning
Assistants (LAs) (22) who are undergraduate peers integrated within the instructional team to
facilitate student learning and promote culturally responsive instruction. The curriculum
promotes mathematical practices (sense-making, problem solving, argumentation, etc.) and
established strategies to optimize student engagement: Cooperative Learning, Argumentation and
Metacognition, Mathematical Fluency, and a Culturally Responsive Environment (23) (described
in the Supplementary Materials (SM Section 2)). The MPC design builds on the SCALE-UP
Calculus (24) model-and intentionally embodies well-established recommendations for calculus
instruction including ambitious teaching practices and strategies promoted by national
mathematics societies and national reports (72, 20, 25-28).

The study was carried out at Florida International University (FIU) in Miami, Florida, the fourth
largest public research university in the United States, with 58,787 students, of which 41,795 are
undergraduates (Fall 2019 (29)). FIU is a Hispanic-Serving Institution as 64% of students
identify as Hispanic/Latino/a/. Moreover, 79% of the students identify as members of historically
underrepresented racial/ethnic minority groups, and 57% are women. The institution’s size
provided a unique opportunity to carry out this study, as there are 18-34 40-student sections of
Calculus 1 being taught each semester and primarily serving STEM majors. Furthermore,
institutional conditions created urgency to transform calculus, as historic pass rates in
introductory calculus averaged 55% (range of 13%—88%) over the six semesters prior to the
project’s pilot.

Research Design: A pragmatic randomized trial (30—32) of the MPC approach was carried out
during the Fall 2018, Spring 2019, and Fall 2019 semesters to rigorously test student outcomes.
Students were randomly assigned individually to treatment and control conditions at the
beginning of the semester, after enrolling in sections based on their scheduling preferences using
the institution’s enrollment system. To accommodate the randomized assignments, each of the
experimental sections doubled in size from the usual 40-seats to 80-seats prior to enrollment
opening. Instructor names and section sizes were invisible to students throughout the enrollment
phase. Just before each term, the 80-seat sections were split into two 40-seat sections by
assigning each student at random to either a treatment or control section.

Once assigned, the treatment sections implemented the MPC approach while the control sections
were unchanged. After assignment, students were free to change/drop/add course sections up
until the regular institutional drop/add deadline (seven days after classes begin). To account for
such changes, enrollments were monitored and only students who were randomly assigned to
either a treatment or control section and remained in that section through the regular, non-penalty
drop/add deadline were included in the data for the experimental study reported below. In total,
1,019 students were randomly assigned to either the treatment or control groups. Of these, 516
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students were assigned to the treatment group and 417 remained in the section at the drop/add
deadline. At the same time 503 students were assigned to the control group and 394 students
remained in the section at the drop/add deadline. The study follows the Consolidated Standards
for Reporting Trials (CONSORT) (78, 33, 34). The specifics of recruiting, enrollment,
assignment, and completion for the trial are in SM Sections 1.3 and 3.1. The randomization
process produced comparable groups by mathematical background and demographics; class sizes
were typical for the course (SM Section 3).

Faculty participating in the study included seven individuals teaching 16 treatment sections along
with 12 individuals teaching 16 control sections. Faculty recruited to teach the treatment sections
indicated a willingness to adopt and implement the MPC approach, replicating the authentic
condition of faculty reforming their classroom practice under the study design. To prepare for the
new instructional approach, faculty participated in a two-day, pre-semester professional
development workshop and were provided with the MPC curricular materials. Consistency of the
MPC treatment was monitored through weekly preparation meetings where the course objectives
and pacing were discussed. In-class monitoring by the project team was deemed overly intrusive
and disruptive to classroom engagement. Control-section faculty were not guided to use any
particular practices and chose their normal instructional practices, best described as traditional
lecture format with at most limited student engagement. Potential effects of instructor differences
on learning outcomes were investigated, presented in SM Section 3, and summarized below.

The student outcome measures reported include identical end-of-semester learning measures as
well as course success data (i.e. course grades). The end-of-semester learning measures focused
on evaluating learning using a set of identical assessment items (problems) developed by
instructors spanning all calculus sections and spanning the major learning objectives of a
Calculus 1 course. The aim was to determine how well students understood essential elements of,
and exhibited fluency and technical competency in, calculus at course end. Assessment items
aligned to both local and national standards(35), were embedded in a cumulative final exam, and
were administered to all students in each treatment and control section. To ensure fidelity and
fairness to both treatment and control sections, control and treatment faculty collaboratively
developed a set of items to be administered to both conditions in identical format and wording.
This set of identical items formed roughly two-thirds of the total final exam content, with the
remaining items added by individual faculty in a separate section of the exam, allowing them to
address their specific instructional goals. Furthermore, the exams and problems were formatted
identically and without course section identifiers to allow completely anonymized evaluation
during the subsequent comparative analysis. The identical items covered core calculus topics
including evaluating limits, identifying extrema, curve sketching, related rates, and evaluating
indefinite integrals. For the second and third semesters, additional items focusing on implicit
differentiation and optimization were added to the identical set of items. Details are included in
SM Section 3.3. Course success data (grades) reflect the overall assessment of students as
assigned by each section’s instructor. Course grade policies were established by individual
instructors following departmental syllabus guidelines and were broadly consistent across
sections and semesters.

Analysis of the end-of-course learning measures utilized a rubric for each problem, with five
researchers testing the initial rubric on a subset of exams to establish inter-rater reliability. The
final rubric represented consensus on all elements and accounted for initial ambiguity or
disagreement. The analysis was carried out by a team of 10 trained evaluators, each of whom
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evaluated a completely anonymous set of student solutions. An average of two evaluators
reviewed each solution for correctness on a scale from 0-100%. The evaluators were very
consistent with high inter-rater reliability (Cohen’s kappa 0.827 in Fall 2018 and 0.797 in Spring
2019) (36, 37). The same rubric was applied to the Fall 2019 data given its high degree of
agreement. Once all problems were evaluated, the research team de-anonymized and sorted the
results by treatment and control sections for the comparative analysis.

Results: The results indicate significant improvements in student learning for the MPC group
across all three semesters. Students in the treatment group showed substantially higher scores on
the identical end-of-semester learning outcomes: (Fall 2018: d=0.505, p<0.01; Spring 2019:
d=0.748, p<0.001; Fall 2019: d=0.925, p<0.001) when compared to the control group.
Combining results from all three semesters of trials (i.e., 32 sections and 811 total students), the
overall difference between treatment and control is d=0.774 (95% confidence interval 0.618 to
0.930), a medium/large effect size (36, 37). Overall, treatment group students show more
consistency in applying the tools of calculus to optimization problems, using derivatives to
sketch graphs of functions, evaluating limits, and evaluating integrals.

Effect Sizes for End of Semester Learning Measures by Group
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Fig. 1: Overall end-of-semester learning measures effect sizes broken out by major,
race/ethnicity, and gender. Error bars indicate the 95% confidence interval for effect size for
each group.

The success of the MPC intervention occurs across racial and ethnic groups, majors and
academic pathways, and genders (Fig. 1). Similar medium/large overall effect sizes were
observed for students in the treatment condition who identified as Black/African-American
(d=0.882, p<0.001) or Hispanic/Latino/a (d=0.772, p<0.001) when directly comparing the
identical learning measures to their counterparts in the control condition. While all STEM majors
showed significantly improved learning, there were larger effect sizes for Biology majors in the
treatment group (d=0.925, p<0.001). Students matriculating onto campus as both First Time in
College (FTiC) and Transfer students showed medium/large effect sizes, and the majority were
FTiC.
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Furthermore, students of the MPC treatment condition had improved course grades. Average
grades were significantly higher by ~0.4 points (4.0 grade point scale) in MPC sections across all
semesters of the study (p<0.001, d=0.295). This translated to success rates (A/B/C grades)
averaging 11% higher in MPC sections compared to traditional sections (p<0.001, 4=0.251, Fig.
2). Outcomes were consistent across the three semesters of the experiment, Fig. 3. Moreover, the
MPC sections also had lower course late drop rates (departure after the regular drop/add period
ends) across all three semesters (p<0.05, d=0.141), suggesting students more clearly perceived
they were likely to succeed in the course.

Effect Sizes for End of Semester Course Outcome by Group
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Fig. 2: Overall course success (i.e., earned grades of A, B, or C) effect sizes broken out by
major, race/ethnicity, and gender. Error bars indicate the 95% confidence interval for effect size
for each group.

The trend of improved outcomes in course success is also observed for demographic subgroups,
seen in Fig. 2. A logistic regression model of success using gender identification, FTiC status,
and Hispanic identification as independent variables showed the odds of a female-identified
student in the treatment group passing the course to be 58% higher than the odds of a female-
identified student in the control (b;/=0.46, p<0.05). Hispanic students’ odds of passing the course
were almost double that of their counterparts in the control (h;/=0.70, p<0.001). The likelihood of
FTiC students in the treatment passing the course saw an increase by about 85% when compared
to these students in the control (b;/=0.61, p<0.01). Details are included in SM Section 3.4.

Potential biases arising in the random student assignment and faculty selections were
investigated for hidden level effects or confounders to establish limitations of the study (see SM
Section 3). The randomization process showed equivariance in the demographics of student
allocation. Analyses showed that allowing students to drop/add sections during the open
registration period after the initial assignment did not impact the measured outcomes. Faculty
characteristics were compared and found to be similar in both background and prior course
student grade distributions. A mixed effects model with student fixed effects and random cluster
effects due to section and instructor levels was fit (SM Section 3.2.4.1) with tests of fixed effects
computed using Satterthwaite approximations to control for Type I errors. The explanatory
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power of the model was found to be high (conditional R°=0.39) and the portion related to the
fixed effects was 0.303. The effect of Treatment was statistically significant, and explanatory of
0.119 (semi-partial R?) of the outcome variance. This implies an estimated effect size of Cohen’s
f=0.371 with covariates and cluster level effects present. Random effects explain 0.0852 of
outcome variance with an intraclass correlation of 0.14. A sensitivity analysis showed (SM
Section 3.2.4.2) that unmeasured confounders would need to be four times more powerful than
any measured covariate including student mathematics background to be responsible for the
observed effect.

Fall 2018 Spring 2019 Fall 2019

75-

Outcome
50 -

. Late Drop
25-
) n =0 & L

1 1 1 1 1 1
Treatment Control Treatment Control Treatment Control

Percent of Student Success (A/B/C), Fail, and Late
Drop by Term and Assignment Group with Std Error

Fig. 3: Final course grade outcomes broken out by term and curriculum, including Success
(earned grades of A, B, or C), Fail (earned grades of D or F), and Late Drops (withdrawals or
drops after the institution’s drop/add deadline). Vertical scale is percent by outcome, error bars
indicate the 95% confidence interval for the mean percentage of students in each outcome group
over all sections in a term.

Discussion and Conclusion: This pragmatic randomized trial demonstrates that student learning
outcomes were significantly improved in the treatment condition. Contrary to previous research
(38), this study shows that when students are expected to engage with calculus concepts
collaboratively, using intentional, evidence-based teaching strategies, they develop a better
understanding of calculus concepts and techniques. Importantly, the benefits of the MPC
curriculum and pedagogy are realized regardless of racial/ethnic group, gender, or
major/academic pathway. These trends suggest that the treatment includes culturally responsive
and equitable strategies. Specifically, the MPC learning environment is designed to promote
learning communities that provide ongoing support for learning mathematics through
collaborative engagement and ongoing formative feedback. This aims to promote inclusion and
increases access for students with different mathematical backgrounds, different cultural
identities, and different life experiences by allowing them to utilize their mathematics skills in a
supportive, non-threatening environment.
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The improved learning and course success for Modeling Practices in Calculus reported in this
study have profound implications for calculus instruction. This study demonstrates the
substantial benefit to students of the MPC approach designed around established, evidence-based
principles and should motivate educators in mathematics and other STEM disciplines to adopt
the same or similar approaches and conduct similar studies to replicate these findings. Improved
student success also leads to more efficient student progress to graduation and boosts
institutional effectiveness. Applying this study’s 11% average improvement in pass rate to all
2,000 first-time calculus students at FIU, would translate to 220 additional students succeeding
in calculus annually and reducing the instructional load by five sections annually. Extending this
strategy to the roughly 300,000 students across the nation taking Calculus 1 each year, these
results translate to a potential of an additional 33,000 students passing calculus each year, saving
students an estimated $23.9M in tuition (based on a 3-credit course at the average public
college/university tuition rate of $242/credit (39, 40). Pragmatic randomized trials provide
guidance on what can be achieved by engaging faculty willing to change their instruction. These
results potentially represent a lower bound on the long-term effects, as faculty likely develop
additional expertise through continued instruction and realize improved outcomes. The measured
effect size provides rationale to stop the control due to treatment benefit, if one follows medical
research protocols (41, 42).

The experimental methodology establishes a new Standard of Care for calculus instruction and a
high standard of evidence to bear on understanding the impacts on student learning. Improved
learning of calculus aims to foster higher success in future STEM courses and develop the STEM
“habits of mind” students take with them into their future careers. Further, MPC shows potential
to address the disparities that differentially impact historically underrepresented groups, thus
offering a mechanism to address Handelsman, et al (/4)’s call to promote the success of
historically excluded communities. We envision a mathematics experience for all students built
on this approach and advocate that active student engagement must be deployed across all STEM
disciplines to improve our development of future STEM professionals from all backgrounds.
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Materials and Methods

1: Experimental Design

1.1: Historic Calculus Development and Approach
Calculus courses and their impact on student progress in post-secondary settings have been a
significant focus of pedagogical study and policy debate for several decades. This study builds
on prior calculus work and advances the understanding of the impact of instructional change on
student learning by randomizing a large sample of students at the individual level into
comparable control and treatment groups over three semesters, utilizing a comprehensive set of
curricular and pedagogic instructional materials in the treatment condition, and then carrying out
blinded evaluation of the student outcomes. The study design and pedagogic strategies are
motivated by and built on the experiences emanating from the Tulane conference (43, 44) that
inspired efforts to reform calculus in the 1990s (4, 15—17, 45—48) and continuing into the work
of the CSPCC (26, 39), PtC (12), and SEMINAL projects more recently(49, 50). These concerns
have persisted (3, 57) and a great deal of research has identified group work (52), inquiry-based
learning (IBL) (53), and active learning approaches in mathematics (ALM) (19, 50, 54) as
primary levers of change that could lead to the significant improvements in student learning
generating outcomes that national calls have sought. Much of the prior work refocused the
calculus curriculum on conceptual foundations. These include Project Calc at Duke (/5) the
calculus projects at DePaul University (45), the University of Michigan (76, 55), and Baylor
University (/7) used the text developed by the Harvard Consortium (56). Some incorporated
strong technological supports (/5) and others incorporated laboratory or recitation components

(16).

Randomization at the student level was not a common strategy in prior studies. One study that
included randomization (57) had 37 total participants taught in two sections by the same
instructor and did not control for potential internal bias of the instructor towards either condition.
There are no registered post-secondary calculus studies in the What Works Clearinghouse (58)
used by the U.S. Department of Education to evaluate instructional effectiveness and
experimental techniques. A central motivation for this study was to carry out a rigorous
randomized trial and address the concerns that have limited the propagation of the broader
calculus instructional improvement efforts and that would meet the WWC “without reservations”
standard (58). In developing the experimental protocol, the randomization process aimed to
ensure equivariantly distributed student characteristics as well as address concerns such as time
of day / day of week levels which had been critiques of prior studies.

1.2: Pragmatic Randomized Trial Approach
This study intentionally utilized a pragmatic randomized trial approach (30, 37) designed to
replicate real-world conditions in order to inform institutions of higher education considering
similar interventions and adapting to the inherent nature of classroom education research
interventions. The study protocol integrates random assignment of students to treatment and
control sections, as well as blind analysis of the end-of-semester learning measures. Random
assignment of students to treatment and control sections removes effects that could arise from
students intentionally selecting treatment or control conditions. The random assignment occurred
after students selected a day/time meeting pattern to remove any potential bias due to time of
day. As the complete blinding to study participants is not possible in an education study, the
outcome measures were objective and not open to subjective interpretation, following (78, 30,
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31). Analysis of the end-of-semester learning measures, the outcome measures, was blinded to
the researchers to minimize bias.

The aim of the intervention was to establish a novel calculus instructional paradigm, one that
promoted significantly improved student learning and course achievement; thus, the design
integrated multiple research-driven strategies into a coherent classroom approach. These
strategies included the curriculum (class notes, in-class learning activities, homework
assignments, and exams) as well as the pedagogic practices (group work, white-boarding
sessions, instructor and Learning Assistants (22) in-class facilitation. and other classroom
norms), with coherence arising through the consistent themes across all curricular elements and
classroom language that mutually reinforce each other. This intervention contrasts with a
piecemeal approach to intervention where individual elements are changed over time leading to
limited impact, cognitive dissonance among students, ambiguous results and/or overlooked
potential synergies across course elements. The approach mimics a real-world application where
an institution brings together multiple promising practices with the goal of dramatically
improving student outcomes, as a large effect is a mechanism that enables sustained change.

Randomly assigning faculty to control or treatment conditions was not feasible or appropriate, as
it could implicitly or explicitly introduce biases in favor/against the treatment or control
conditions if faculty were forced to teach using strategies that conflicted with their instructional
preferences. An individual faculty member’s knowledge, philosophy, and experience with a
variety of classroom strategies and instructional practices may intersect with the features of the
treatment or control conditions. Further, a design that incorporates the same instructor teaching
both treatment and control sections in the same semester could introduce similar implicit or
explicit biases. Recognizing that biases arising from either of these two strategies could not be
reliably measured, thus neither of the approaches were utilized in the study. The potential
limitations due to faculty awareness of the intervention and not being assigned both conditions
simultaneously are consistent with related investigations of public health or sociological
interventions. The experimental protocols aimed to reduce the impact of instructor biases and
investigated as detailed in Section 3 below. The protocol intentionally compared instructors
willing to change instructional methods, with a range of prior active learning experience, as it
more genuinely replicates the state of faculty in mathematics departments across the nation.

Students were randomly assigned to treatment or control conditions in the same meeting pattern
just prior to each semester, but treatment students likely realized their course was reformed in
their initial class meeting. In educational research studies, both the students and the instructor are
keenly aware of the historic instructional norms in classrooms. College students are most likely
to experience traditional univocal/direct instruction throughout their pre-college studies as well
as in the majority of their college courses, thus students would easily detect the obvious
differences in a treatment section and could never be ‘blind’ to the treatment. Students dropping
the course or switching to a different section of the course (by institution’s official drop
deadline) were removed from the analysis, preventing bias from their choices while following
the pragmatic educational constraints. It would have been unethical and impractical to require
students to remain in the assigned sections for the duration of the semester, as their schedules
need to accommodate changes in other courses, work schedules, and family responsibilities.
Overall, 80% of the randomly assigned students remained in their sections beyond the drop date
and are included in the study. Roughly 12% of the randomly assigned students switching
sections prior to the drop date, the majority of which selected a different class meeting pattern.
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Less than 3% of the randomly assigned students swapped treatment for control, or vice versa,
with roughly equal swaps from treatment to control as control to treatment and were excluded
from the study. The remaining 8% of the randomly assigned students dropped the course for the
semester before the drop date. Complete details of the student enrollment patterns are in Table
S1. Potential biases arising in the student participant allocations were investigated for hidden
level effects(59, 60) or confounders to establish limitations of the study and documented in
Section 3 below.

The pragmatic randomized trial strategy extended to the outcome measures as well. The
assessment of student learning outcomes strove to generate knowledge on students’
understanding of the overall calculus course, following the coherent instruction strategies. The
end-of-semester learning measures assessed the learning objectives common to many courses
across the nation, documented in (26, 35) and described in the End-of-Semester Learning
Measures Overview section below. The end-of-semester learning measures are therefore limited
to providing insight on the whole of the course instruction and are the most valuable for
institutions seeking to implement similar transformations. Ascribing effect to any of the
individual instructional strategies with these measures is ineffective given the grain size of the
measure as well as likely interference effects coming from their combination. Further,
accounting for the complexities of human experiences and interactions prior to, and during the
15-week intervention (both within the class and external to the class), would significantly limit
the conclusions drawn from a more precise investigation.

1.3: CONSORT Protocol Discussion
In enrolling and assigning students to the study, the Consolidated Standards for Reporting Trials
(CONSORT) (18, 33, 34, 61) framework was followed for pragmatic randomized trials and
collected measures for that protocol. Following the checklist for that framework, the title and
abstract (Item 1) references to the randomized nature of the trial and a brief description of the
intervention.

Introduction. The background for the study (Item 2) is described in the main body of this paper
as well as in the methods section. It focuses on determining whether or not the use of the
comprehensive Modeling Practices of Calculus active learning approaches in a calculus
classroom results in increases in student learning over traditional instructional methods that can
be measured.

Methods. In the methods section the setting for the study is described as an urban, Carnegie
classification Research-Very High, minority serving institution with a large population of
students in general as well as in the mainstream Calculus 1 course offered on campus. Data were
collected from both institutional research (for demographics and enrollment data) as well as from
administered assessment tools that were offered to students in their classroom settings. Students
who chose to enroll in Calculus 1 in a given term and who had no registration holds or other
administrative issues that prevented participation were enrolled in the trial. These students were
then randomly assigned to either the treatment group or the control group (Item 3).

Students in the treatment group were assigned to sections of the course at the same day and time
as their original choice mirroring those in the control group. The treatment sections were then
conducted using the active-learning curriculum and pedagogy implemented in the Modeling
Practices in Calculus approach as described in detail in the Methods section. Instructors were
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selected for these treatment sections and provided professional development to support the
implementation of this curriculum. Control students received instruction using the historical
methods employed by the instructors who were assigned to their sections using normal
departmental processes (Item 4). The objective of this process was to provide students access to
different instructional practices that would improve their student learning outcomes and to
measure these outcomes using a blinded assessment protocol (Item 5). The hypothesis is that the
treatment curriculum will improve student learning.

Outcomes were measured by refining a set of identical end-of-semester learning measures
included as embedded final exam questions based first on the departmental practice of
administering an identical final exam to all students in Calculus 1. The identical measures were
based on items developed collaboratively by department faculty that were aligned to existing
learning outcomes established for calculus and used in university accreditation processes.
Historical exam questions were reviewed by a group of instructors drawn from both treatment
and control sections during the project and sets of assessment items were agreed upon to be used
in a commonly administered final exam. Exam items were aligned to national standards. Exams
were administered to all students in calculus sections and so any student in the trial who
completed the semester in their assigned sections were administered an exam that included the
blocks of items and these questions were identical for both groups. The exams administered to
treatment and control students were then blinded and assessed using a rubric by multiple
independent evaluators (Item 6). Evaluators cross-calibrated their scoring and the end-of-
semester learning measures scores from all evaluators were recorded and averaged. Additional
outcomes were measured using pre- and post-surveys administered in the classrooms.

In total, 1,058 students were assessed for eligibility after having enrolled in a calculus 1 section
designated for randomization. Of these, 1,019 were able to be included in randomization and
were assigned to either the treatment or control groups. Subsequently 516 students were assigned
to the treatment group and 417 remained in the treatment section at the drop/add deadline while
99 left either for a different calculus section or left calculus altogether before the date when
students could change schedules with no impact on grade assignment. At the same time 503
students were assigned to the control group with 394 remained in the treatment section at the
drop/add deadline in the control condition. Finally, 44 students in treatment group did not
complete a final exam and are designated “lost to follow-up,” leaving 373 students with
analyzable outcomes. In the control group, 84 students did not complete a final exam and are
designated “lost to follow-up,” leaving 310 students with analyzable outcomes in the control
group. The sample size was dependent on student enrollment for the initial population of eligible
participants and was limited by administrative factors such as academic holds. After assignment,
treatment and control populations were limited by student departure from the calculus course
altogether or student movement to other sections of calculus. These data are reported in the
Methods section and in the flowchart in Fig. S1 (item 7). Randomization was performed by a
team member not involved in course administration, content or measure development, or student
enrollment and was performed using R (62) after obtaining lists of students who had enrolled in
offered calculus sections in a given term. No restrictions were applied. The randomization
resulted in enrollment lists provided to the registrar for assignment to treatment sections. These
lists were hidden from research team members and from instructors until after classes began.
Once enrolled in their courses, instructors and students were no longer blind to the intervention
as it is impossible to mask the actual curriculum during implementation (Items 8, 9, 10 and 11).

N
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Outcomes from the study were analyzed to determine effect size (Cohen’s d) for any difference
in the identical end-of-semester learning measure item scores as well as using a fixed-effects
model and comparison of paired section means to identify any level effects related to course or
instructor levels within the study (Item 12).

Results. Participant flow, recruitment, baseline data (Items 13, 14, and 15) are described in the
methods section. The number of participants in each group included (Item 16) in the analysis are
also in the Methods section as well in the Supplementary Materials information below with the
outcomes and estimation (Item 17) along with subgroup analysis (Item 18). Any adverse events,
mostly related to the assignment of students who had academic holds or other departure events,
are described in the Methods section (Item 19).

Discussion. A discussion of the main results, generalizability and overall evidence (Items 20, 21,
and 22) are provided in the main paper and in more detail in Sections 3.2.1 to 3.2.4 of the
Supplementary Materials, below.
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CONSORT 2010 Flow Diagram
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2: Materials

2.1: Modeling Practices in Calculus Pedagogy and Curriculum Overview
The study utilized a newly developed collection of pedagogic strategies and classroom materials
that implemented active learning centered classroom practices in the treatment intervention. The
Modeling Practices in Calculus (MPC) approach is designed to bring the authentic practices of
mathematicians into the classroom, by facilitating active student engagement in the practices of
mathematicians to learn calculus in a student-centered environment. The pedagogy and
curriculum followed recommendations established by the major mathematical organizations (27,
63) and draws on best practices from across the mathematical education research spectrum,
discussed below. The MPC approach is a conceptual framework for learning introductory
calculus. Students begin with a fundamental model of mathematical behavior, such as limits, and
continually develop and expand their model based on additional considerations, such as
continuity. The MPC approach incorporates five essential features:

1. Practices of Mathematicians. The core of the MPC approach is the process of students
developing their understanding of calculus by engaging in the practices of
mathematicians, including: sense making and constructing an understanding of
mathematical concepts; solving mathematical problems; adaptive reasoning; modeling
with mathematics; using appropriate tools strategically; building mathematical
communication skills; and connecting mathematics with other disciplines. These
practices of mathematicians are centered around the published recommendations for
curricula and pedagogy from professional mathematical associations (21, 64, 65).

2. Cooperative Learning. Students work in small groups cooperatively to accomplish
shared learning goals while providing each other with formative feedback (52, 66—70).
Students work together to complete structured learning activities that involve sharing
ideas, improving skills, developing interpersonal skills, and evaluating group
performance.

3. Argumentation/Metacognition. Students engage in mathematical argumentation on
course problems and topics, a process of dynamic and meaningful social discourse for
discovering new ideas, providing justifications, convincing others, and evaluating claims
in both group and whole-class discussions (7/—73). The inclusion of instruction
promoting mathematical argumentation can provide a deeper understanding of
mathematics as students become generators of knowledge out of their reasoning and
sense-making (73).

4. Mathematical Fluency. Mathematical fluency includes being able to solve problems
accurately, efficiently, and with flexibility (64). Students build fluency, by noticing
mathematical relationships and using strategies through the study and small group /
whole class discussions of various concepts in course learning activities, as well as
through tasks that promote reasoning and problem-solving.

5. Culturally Responsive Environment. The MPC model is centered around Ginsberg and
Wlodkowski’s (74) four motivational conditions for culturally-responsive teaching:
establishing inclusion(75), developing attitude, enhancing meaning, and engendering
competence in all proposed activities. Students are provided with an immersive,
transformation learning experience that allows them to construct their understanding by
working with each other (76), Learning Assistants (LAs), and faculty. LAs,
undergraduate near peers prepared to foster learning (22, 74), are integrated into the
classroom to facilitate learning with the groups. The MPC approach offers a classroom
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environment conducive to learning by allowing students to try out their ideas in a low-
stakes environment with peers, receive ongoing formative assessment, and participate in
a learning community(23, 77). The LAs are natural agents of this learning community, as
their demographics are that of the students (i.e., all LAs are undergraduates), who provide
insights and connections from the point of view of a recent participant in the course. As
former students successful in calculus, LAs use their own backgrounds and experiences
to promote students’ success(78).

There are two immediate antecedents of the Modeling Practices in Calculus approach: Modeling
Instruction in Physics (79) and SCALE-UP Calculus (24). Modeling Instruction in Physics in
university physics instruction has been taught by numerous faculty at Florida International
University since 2003. Modeling Instruction in Physics is organized as an integrated, studio-
based, lecture-free environment where students develop their understanding of physics by
modeling the practices of physicists. These practices include carrying out experiments to
discover the underlying physics, comparing results with others to form consensus on the rules
and laws of physics, negotiating shared meaning (including terminology, physical concepts and
quantities, and relations) and then refining understanding through additional practice and
experimentation. Modeling Instruction in Physics has been institutionally sustained for almost
two decades due to evidence of its profound impact on students including those from historically
underrepresented groups. Evidence includes: 1) significantly improved conceptual understanding
and course outcomes overall and across gender, race, and ethnicity groups, when compared to
traditional instruction (80, 81); 2) the first improved favorable attitudes towards physics and
physics learning measured in an introductory physics course (82, 83); 3) and increased access to
physics degree by underrepresented groups (84). It was also part of programmatic efforts that
lead to dramatic increases in the number of physics majors and graduates at FIU, thus serving as
inspiration for the current project. The other root of the MPC approach is SCALE-UP Calculus
(24) which was developed and taught for many years at Clemson University (including two of
the current authors). SCALE-UP Calculus also uses a studio-based approach complementary to
Modeling, while relying on mini, or targeted, lectures. The development of the MPC curriculum
began with much of the SCALE-UP topical coverage and integrated Modeling Instruction-based
pedagogical approaches into the curriculum. Refinement of MPC based on student experience
and formative feedback from instructors and LAs has continued every semester since the project
began.

MPC implements ambitious teaching practices (20, 26, 85) for developing conceptual
understanding, procedural fluency, strategic competence, adaptive reasoning, and productive
dispositions and as outlined specifically for Calculus in the Mathematics Association of
America’s 2015 report MAA National Study of College Calculus (26). Elements of both good and
ambitious teaching practices are outlined and observed in the MAA Characteristics of Successful
Programs of College Calculus study (26), Bressoud and Rasmussen’s Seven Characteristics of
Successful Calculus Programs (86), and additional studies (27, 87, 88). Many of these practices
form the core of the MAA Instructional Practices Guide (20). The development and
implementation of the MPC reflect an integration of multiple aspects from these studies as well
as multiple semesters of development and revision.

2.2: Modeling Practices in Calculus: Classroom Learning Strategies
The MPC model was developed to engage students in the practices of mathematicians and
potentially experience the joy of mathematics. The curriculum is offered in studio classroom
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environments with minimal lecturing, with most of the class time devoted to students working in
groups at small tables to collectively develop their understanding through guided notes, complete
pre-designed learning activities, write-up solutions on whiteboards, and conduct board meetings.
The curriculum is based on Scale Up Calculus (24), which includes guided inquiry notes and
structured learning activities but modified to promote practices of mathematicians as well as a
culturally responsive environment.

New Concept Initiation
* Introduction
Transition to s Overview (optional)
new Linit * Students Work with Guided

Inquiry Notes

Reflection and . " ]
Communication R ey . ngaged Learning

gt 3 Pl + structured Group Learning

* Board Meetings/Group
Presentations

= Class Discussions

Activities with LA/Faculty
facilitation

Integration nfildeas and
Evaluation

Coalescing Kawfedge and
Building Understanding

* Whiteboard Write Ups

* Group Discussions
» Group Quizzes

Fig. S2: The Modeling Practices of Calculus Learning Cycle

The MPC curriculum is organized as a set of units divided into learning cycles which span
multiple class sessions. The learning cycle is illustrated in Fig. S2 and described in the following.
MPC units begin with a New Concept Initiation phase (top of Fig. S2, that can include a brief
introduction of a new concept or a review of a previous class topic and may include a set of
warm-up question for the students. Then, students, working in groups, actively work through a
set of guided inquiry notes that develop their understanding of the core calculus concepts, such
as limits, rates of change, related rates, optimization, and integration. The notes are presented as
a series of mathematical investigations, where students proceed through concept development
with designed questions and problems that lead them to important insights and challenge (and
build) their mathematical toolset.

In the Engaged Learning phase (right of Fig. S2), students work through Learning Activities in
groups in order to build their knowledge while working through a set of problems designed to
develop mathematical practices and skills. During these learning activities, students are asked to
reflect on the mathematical concepts of the day, describe these concepts to their peers in their
own words, choose appropriate problem-solving strategies, and validate peers’ ideas within their
groups. Thus, the MPC pedagogy promotes social metacognition through meaningful and
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structured learning activities that encourage discussions about misconceptions and construction
of shared knowledge.

In the Coalescing Knowledge and Building Understanding phase (bottom of Fig. S2), students
summarize the knowledge they have developed on portable whiteboards, participate in group
discussions and/or test their knowledge on group quizzes. This coalescing of knowledge allows
students to work collaboratively to write up and present solutions they developed on
whiteboards, a practice perceived by students as analogous to preparing a publication. The social
metacognition continues as group members must monitor each other’s thinking and make
suggestions to prepare their group whiteboard.

In the Reflection and Communication phase (left of Fig. S2), students present their whiteboards
to the whole class and/or participate in faculty-led class discussions. Board meetings are where
groups present their findings to the whole class, akin to publishing or presenting results to the
community. Lessons learned are codified through the board meetings when multiple groups
come to consensus on their findings. Spurious or unexpected results lead to dynamic
conversations that can identify common misconceptions or prime for future learning. For
instance, when students transition from evaluating limits with a graphical representation to
computing limits without a visual representation, board meetings allow groups to check and
validate other group members’ way of thinking and writing up solutions, since misconceptions
regarding limit notation, algebra and simplification often arise when computing limits.

Immersed throughout all phases of the learning cycle is persistent guidance and formative
feedback, thus promoting a culturally responsive learning environment. Students become
accustomed to trying out their ideas in a low-stakes environment, receive ongoing formative
feedback from their peers and the instructional team, and participate in a community of learners.
Grades are assigned based on an absolute scale, with no curve, thus it is in the best interest of all
students to develop their knowledge through cooperative learning. The instructor promotes the
safe learning environment by regularly messaging the value of making mistakes and asking
questions as a central element of learning mathematics. The low-stakes environment is also
enhanced as Learning Assistants (LAs), or trained undergraduate classroom facilitators, are
integrated into the classroom to support learning with groups and provide valuable information
to instructors about student interactions (22, 8§9). LAs help to center mathematical discussions in
and between groups, as they constantly interact with groups and have multiple opportunities to
redirect students’ questions and comments to the groups. LAs are natural agents of this culturally
appropriate model, as their demographics are that of the students, who provide insights and
connections from the point of view of a former student in the course. LAs serve to mitigate
‘blind spots’ that experienced mathematicians bring into dialogues, which helps to increase the
flow of ideas from the students to instructors, so that discussions are more strongly centered on
students’ points of view. They also help students develop skills, such as creating and defending
ideas, making connections between concepts, and solving conceptual problems (90). The
classroom strategies draw out student interaction in this way intentionally to enhance the
connection of mathematical thought and concept development to the student experience.
Through the ongoing dialogues, faculty and LAs have a portal into student ideas and are
constantly adapting to their needs.

It is useful to note that not all class sessions follow the same pattern, as there are times the
faculty recognizes or identifies a need to delve deeper into a topic and adds additional learning
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activities before proceeding into a new unit. Faculty may also want to refine knowledge and have
students expand upon their whiteboard summaries and re-discuss one or more topics. These
adaptations are illustrated as the dashed line bounded segments in the middle of Fig. S2. In these
transitions a facilitator may choose to regroup around an idea, have students revise their
understanding and try again, or bridge from one portion of a concept to another. There are also
accommodations related to the scheduled class periods, including adjusting activities to fit within
the allocated time slot. A Learning Activity may be split into two parts so that the first is
completed one day and the second is completed in the following class meeting.

Faculty in the treatment group participated in professional development activities to prepare for
their MPC implementation. They participated in a 2-day summer professional development
workshop that highlighted the MPC approach, provided the curricular structure and summarized
the pedagogy. They were given access to the full set of MPC learning materials including basic
day-to-day pacing guides, a sample course syllabus with learning outcomes and a course
schedule, guided instructor notes for student learning facilitation, and learning activities to build
skills and understanding within topic areas. Weekly preparation sessions were held to provide
ongoing guidance on instructional strategies, following the usual practice for FIU faculty using
active learning. Faculty met to discuss ongoing progress, prepare for upcoming topics,
collaborate on assessments, and adapt to changing course demands during the semester. MPC
materials were situated in an online repository with authenticated access provided to faculty
individually each term. Materials were provided to students in hard copy form during class time
on a daily basis depending on the scheduling of topics. The project placed no restrictions on
preparation or classroom materials for faculty in the control group. They were free to prepare as
individuals or in groups and utilize any learning materials of their choosing. They were not
provided with access to the MPC materials.
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3: Methods

This study carried out a large-scale pragmatic randomized trial to establish a new standard of
care for calculus instruction. As described in the main body of the paper, the treatment group
used the Modeling Practices of Calculus (MPC) pedagogy and curriculum with the control group
employing pre-existing instructional practices (primarily traditional lecture). Identical end-of-
semester learning measures were used to rigorously assess student learning outcomes in the two
conditions in the randomized trial. Sets of open answer, learning measure questions were
collectively developed (see Section 3.3.1) and embedded as part of the identical end-of-semester
learning measures given each semester to the treatment and control sections in the MPC Calculus
1 trials in order to assess end-of-course student learning in each of the groups.

The Methods section includes investigations of potential bias in the student participants and
instructors, end-of-semester learning outcome measures with samples and analyses, and odds of
success ratios calculations for students by group in the course, The participant investigations
include: 1) student participant randomization and enrollment patterns, 2) equivalence of student
populations 3) comparison of instructor participant characteristics, 4) student and instructor
differences within clusters, 5) a full mixed effect model to estimate variance in learning outcome
measures, and 6) a sensitivity analysis to investigate possible unmeasured confounders.

3.1: Student Participant Randomization and Enrollment

Student participants in the study were students that enrolled in a number of pre-designated
sections of the Calculus 1 course (3, 5 and 8 sections over the 3-semester experiment) using the
Institution’s class registration system. To accommodate the randomized assignments, each of the
experimental sections doubled in size from the usual 40-seats to 80-seats prior to enrollment
opening. Instructor names and section sizes were invisible to students throughout the enrollment
phase. Just prior to the start of the semester, students that were enrolled in the 80-student sections
were randomly assigned to the treatment and control conditions by randomly selecting half of the
enrolled students in each designated section and assigning them to treatment sections (with new
section numbers), with the original sections serving as control. Enrollment capacity in both
treatment and control sections followed the institutional standards for the course. After
randomized assignments were completed, all sections were open to additional enrollment and
course changes as is the usual, customary institutional practice. Students changing sections or
leaving the course prior to the institutional drop deadline (7 days into the semester) were
excluded from the study.

Randomization of assignment was performed for all students in each 80-seat section who did not
have an academic or other hold preventing a registration change. Students with holds or other
constraints were excluded as noted in the CONSORT flow chart for participants (Fig. S1) and
summarized in Table S1. If a student was excluded, additional students were randomly chosen to
replace them in their assignment in order to balance the populations according to the number
currently enrolled in the open 80 seat section. In the Fall of 2019, a group of students were
randomly chosen for assignment to the treatment group to compensate for students who were
excluded in this way while the total enrolled population decreased in the 80-seat sections. This
resulted in a small differential between the treatment (N=270) and control (N=257) populations
for that semester. These students were included in the assigned treatment group as they were
randomly assigned to treatment from the total population.
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In Fall 2018, 115 students were randomly assigned to the control (3 sections) group and 115
students were randomly assigned to the treatment (3 sections) group. Of those, 88 students in the
control group and 91 in the treatment group remained enrolled at the drop/add deadline and had a
grade outcome on the class roster of their respective section. In the Spring semester of 2019, 130
students were randomly assigned to the control (5 sections) group, and 131 to the treatment
group (5 sections). Of the students in this term, 97 students in the control group and 108 in the
treatment group remained enrolled at the drop/add deadline and had a grade outcome on the class
roster of their respective section. In the Fall semester of 2019, 257 students were randomly
assigned to the control (8 sections) group, and 270 to the treatment group (8 sections). In this last
term of the study, 209 students in the control group and 218 in the treatment group enrolled at
the drop/add deadline and had a grade outcome on the class roster of their respective section.

Across all three semesters of study, the within-groups outcomes (e.g. within the treatment or
control groups) were highly consistent and were also consistent with the complete section data
(e.g. counting all students who enrolled in each section, regardless of trial eligibility, looks
largely the same as the trial-only analysis reported here), indicating that allowing students to
drop/add sections during the regular, open registration period after the initial assignment did not
impact the measured outcomes. Specific details of enrollment, exclusion, assignment, and
completion for both groups are included in the CONSORT protocol discussion in Section 1.3
above.

Instructors were assigned to the treatment and control course sections before randomization of
student enrollment. Treatment section instructors were faculty open to adopting and
implementing the MPC curriculum and pedagogy. They were assigned to treatment sections,
participated in professional development, and had access to the full MPC curricular materials.
Identification of control instructors was only dependent on instructor preference of course time,
with control faculty using their traditional instructional practices.

Table S1 summarizes the randomized trial allocations, enrollment patterns and success summary
observed for students in the three terms of the study. This clarification is provided as registration
procedures may vary across institutions. The institutional procedures allow for registration
changes, i.e., drops and adds, freely and without penalty for 7 days after the first day of the
semester. After that date, students may request enrollment changes and approved changes are
designated as late drops or withdrawals on the course roster and student’s transcript. There were
811 Study Participants, i.e., students who were randomly assigned to a treatment or control group
and then remained in their assigned section through the institution’s regular drop/add deadline.
They either received a course grade or were assigned a late drop or withdrawal indicator for
leaving the course after the institutional drop/add period deadline. The remainder of the students
dropped their assigned section during the institution’s drop/add period. Students who switched to
another Calculus 1 section in the same term during the drop/add period are identified as
switchers. Students who departed calculus for the semester after being assigned to treatment or
control conditions are identified as departers.

Table S1 illustrates that no unusual enrollment patterns existed for treatment or control sections.
Roughly 80% of all students assigned to treatment or control sections remained in those sections
past the drop/add deadline. Twelve percent of the students in treatment and control sections
switched to a section in the same semester, 75% of which selected a different meeting pattern.

Py
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The remaining 8% of students in treatment or control sections left their section for the semester.
These enrollment patterns are typical for the institution’s introductory courses and are often the
result of switching into other classes, job schedule changes, and/or adapting to family
responsibilities. Treatment and control sections showed similar enrollment patterns, thus it is not

likely the enrollment patterns biased the results.

Randomized Allocations, Enrollment Patterns and Success Summary

Treatment Control Total
Enrolled at Randomized Allocation - - 1058
Excluded from Assignment - - 39
Randomly Allocated to Treatment or Control 516 503 1019
Study Participants: Remained in Assigned
Section at Add/Drop Deadline 417 (81%) 394 (78%) | 811 (80%)
Succeeded with A/B/C in Course| 332 (80%) 270 (69%) | 602 (74%)
Left Assigned Section for Another in Same
Term (Switcher) 60 (12%) 64 (13%) | 124 (12%)
Left Assigned Section for Different Day/Time 47 49 96
Left Assigned Section for Same Day/Time 13 15 28
Left All Calculus 1 Sections in Term (Departer)| 39 (8%) 45 (9%) 84 (8%)

Table S1: Table of Randomized Trial Allocations, Enrollment Patterns, and Success Summary

3.2: Equivalence of Student Populations and Investigation of Potential Demographic,

Section or Instructor Level Effects on Outcomes

Recognizing that student enrollment may change after randomization, faculty preferences
regarding teaching must be taken into consideration for assignments, as well as the inability in a
pragmatic randomized trial to blind the control or treatment conditions to students or instructors
could introduce unexpected biases / contamination into the study, investigations into possible
sources of unexpected biases were carried out. Demographics and academic backgrounds of
treatment and control participants were evaluated for significant differences between populations
that might have impacted outcomes, and characteristics of instructors in control and treatment
groups were compared in an effort to identify any significant differences. Student learning
outcomes in the study were measured using a collection of embedded end-of-semester learning
measure questions as discussed in SM Section 3.3. These questions were scored anonymously,
and student outcomes converted to a scaled score from 0 to 100 percent. This measure,
LearningQOutcome, is then used as the dependent variable to analyze student learning outcomes in
the study. Multiple investigation of level effects related to individual sections were carried out
from both the student and instructor perspectives including paired section mean analyses and
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mixed-effect analyses as described here. No significant differences were found between groups,
as detailed below.

3.2.1: Comparison of Student Demographics and Academic Backgrounds
Randomizing the assignment of participants to treatment and control groups seeks to ensure that
underlying population characteristics are equivalent in each group. In this section, distributions
of participant gender, race, ethnicity and university level in the treatment and control groups are
examined for statistically significant differences (presented in Tables S2 and S3). In addition,
participants’ incoming mathematics backgrounds as represented by high school grade point
average (HSGPA), SAT mathematics score, ACT mathematics score, and university assigned
Mathematics Placement Score (MPS) were examined and presented in Table S4. Equivalence
was found in all measures across treatment and control groups.

Demographics of Randomly Assigned Students

Treatment Control
Count Percent Count  Percent
Gender
Female 283 55% 263 52%
Male 225 44% 235 47%
No Data Available 8 2% 5 1%
Race or Ethnic Group

Black or African American 59 11% 62 12%
Asian Or Pacific Islander 34 7% 32 6%
Hispanic 389 75% 380 76%
Non-Resident Alien 24 5% 23 5%
White / Not of Hispanic

Origin 55 11% 52 10%
Other 15 3% 9 2%
No Data Available 13 3% 12 2%

University Level

College First Year 80 8% 106 10%
College Sophomore 200 20% 188 18%
College Junior 150 15% 123 12%
College Senior 82 8% 79 8%

Table S2: Table of Demographics (Gender, Race/Ethnicity, Class Standing) for Randomly
Assigned Students in Treatment and Control Groups
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To confirm the similarity of the various demographic and background indicators within the
assigned populations, the demographics of those students assigned to treatment and control
groups of the trial were compiled. The two groups were compared in total and across each
semester with respect to demographic variables of gender, academic standing, and race/ethnicity
(Tables S2 and S3). No significant differences were found in the assignments for control and
treatment in any category, implying that the randomization introduced no unexpected bias.

Fall 2018 Spring 2019 Fall 2019 Total

Treatment Control{Treatment Control [Treatment Control |Treatment Control

Race or

Ethnicity N % N % N % N % N % N % N % N %
Asian 7 8 5 6 4 4 5 5 12 6 11 5 23 6 21 5
Black or African
American 12 13 11 13| 16 15 13 13 | 23 11 30 14 | 51 12 54 14
Hispanic 74 81 70 80| 83 77 74 76 | 164 75 158 76 | 321 77 302 77
White / Not of
Hispanic Origin 6 7 5 6|11 10 15 16 | 32 15 20 10 | 49 12 40 10

Gender
Female 47 52 50 57| 63 58 44 45 | 124 57 108 52 | 234 56 202 51
Male 44 48 38 43| 45 42 53 55 | 94 43 101 48 | 183 44 192 49

University Level

College First Year 22 24 23 26| 6 6 10 10 | 40 18 52 25 68 16 85 22
College Sophomore 32 35 36 41| 42 39 35 36 | 91 42 78 37 | 165 40 149 38
College Junior 20 22 19 22| 40 37 27 28 | 62 28 53 25 | 122 29 99 25
College Senior 17 19 10 11| 20 19 25 26 | 25 12 26 12 62 15 61 16
Total 91 88 108 97 218 209 417 394

Table S3: Table of Demographics (Gender, Class Standing, Race/Ethnicity) by Semester for
students in the study (i.e., enrolled at the end of the drop/add period on day seven of the
semester).

The university computes an institutional Math Placement Score (MPS) to guide course
placement. This score is developed as a regression on student outcomes in mathematics courses
and other student demographics including Pell grant eligibility, transfer student status, prior
mathematics course outcomes, SAT and ACT mathematics subscores, and other available
mathematics placement scores such as the ALEKS placement test. The MPS score assigns a
student to a course where the regression model predicts at least a 70% likelihood of success
(A/B/C) in the course. This data is included in Table S4.

To measure student mathematics backgrounds using factors specific to externally comparable
academic outcomes, a comprehensive Mathematics Background Score (MBS) was computed for
students in the treatment and control groups. Here, the combined academic background data
from SAT mathematics and ACT mathematics subscores with unweighted high school GPA and
the institutional MPS by first scaling these scores to a range from 0 to 100 based on the
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population mean and range of each measure and then taking the mean of all available scaled

scores, ignoring data that was not available for a given student. The Mathematics Background
Score was computed for 95% of student participants in the control and treatment groups and is
included in Table S4.

Mathematics Background of Randomly Assigned Students

Treatment| Control

Mean HSGPA Math 3.42 3.45
% students with score 89 86

# students with score 455 434

Mean Math Placement Score 65.00 67.07
% students with score 62 62

# students with score 320 314

Mean Math Background Score 65.02 65.97
% students with score 95 95

# students with score 490 478
Total Possible Students 516 503

Table S4: Table of Mathematics Background Information for Students in the Trial

Finally, to develop a more comprehensive understanding of student mathematics backgrounds as
they entered one of the study sections, in the Spring and Fall 2019 semesters, the Precalculus
Concept Assessment (PCA) inventory (91) was collected at the beginning of the semester in both
the treatment and control sections. The mean scores of that pre-assessment for both groups are
also reported in Table S5. Within these data, students in the treatment and control groups have
almost identical demographic characteristics as well as mathematical backgrounds, as expected
with a randomized study. This consistency is evident in the total populations from all three
semesters combined as well as within each semester.

Fall 18 Spring 19 Fall 19
CN TR p-value CN TR p-value CN TR p-value
Unweighted 346 345 p=0.8976 | 338 332 p=0.1647 | 348 346 p=0.5915
HSGPA
PCA Prescore 9.3 87 p=0.2783 | 9.8 9.5 p=0.4379

Table S5: Term-by-term comparisons (and the associated p-values from #-test comparisons) of
control and treatment groups on students’ academic background information indicating
mathematical preparation. The information includes means of their reported unweighted high
school GPAs, and prescores on the PCA inventory on a 0 to 25 point scale. (CN = control
sections; TR = treatment sections)
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Examining all measures, no statistically significant differences between control and treatment
populations are observed in the overall or semester-by-semester demographic or mathematics
background data sets. No statistically significant differences are seen in reported unweighted
High School GPAs, institutional Math Placement Scores, Mathematics Background Scores or
PCA prescores. Finding no significant differences in the allocations for control and treatment in
any category leads to the conclusion that the randomization introduced no unexpected bias. In
the section below discussing the paired means of student mathematical background data,
investigations of the differences in the mathematics backgrounds of students are examined and
show no statistically significant difference even at the paired section level.

3.2.2: Comparison of Instructor Characteristics
Characteristics for faculty teaching both control and treatment sections were compared as groups
and to the total group of faculty teaching calculus prior to the beginning of the trial to identify
any potential biases. Instructors in treatment and control sections included mathematics
department faculty and all were allowed to request specific course sections, following the
department’s customary practice. Prior to beginning of each semester, both control and treatment
instructors were assigned to sections based on their availability, other teaching obligations, and
scheduling preferences, but not added to the course rosters. Faculty willing to implement the
Modeling Practices of Calculus curriculum and pedagogy were recruited and prepared to teach
the treatment sections, as noted above. The experimental sections were double the standard
capacity and split into two sections at standard capacity (one for the control and one for the
treatment section). Once the randomization of students was complete and these sections were
split, both treatment and control faculty names were added to the section rosters. This process
produced comparable faculty groups in both treatment and control conditions, when compared
across a number of faculty characteristics.

Faculty in both groups included full-time tenured/tenure-track (TT) and non tenure-track (NTT).
All of the control faculty were full-time TT and NTT faculty. The treatment group consisted of
full-time TT and NTT faculty and one part-time adjunct faculty. Faculty backgrounds were
collected from surveys and institutional sources to develop categories that expressed the teaching
experience, gender, active learning experience, and rank and are summarized in Table S6. Also
tracked was the number of times a faculty member taught in each condition. There was one
instance of one person teaching in the treatment group after having taught in a control section,
but no faculty member who taught in the treatment group subsequently taught in the control
group again. To examine for outliers in faculty instructor practice, historic student grade
outcomes were compared across the treatment and control sections. Historic student success data,
represented as the percent of assigned A/B/C grades in a course, for either Precalculus, Calculus
I, or Business Calculus were collected for all faculty (treatment, control, or any other group) for
the four semesters prior to the experiment (fall and spring semesters Fall 2016 to Spring 2018).
These three courses were used to provide a representative student response to faculty
effectiveness at the time of the experiment using similar level mathematics courses. Student
outcome data from the prior 4 semesters and three courses was used to establish a comparative
index for all faculty.
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Treatment Control
Teaching Experience
Less Than Five Years 11 3
Five to Ten Years 0 2
More Than Ten Years 5 11
Gender
Female 4 9
Male 12 7
Active Learning Experience
None 5 3
Low 4 9
Medium 4 4
High 3 0
Rank
Adjunct 1 0
Non tenure-track (NTT) 12 11
Tenured or Tenure-Track 3 5
Total 16 16
Student Success (A/B/C
grades) percentage in
Precalculus, Calculus I, and 54% (N=643) 55% (N=2,514)
Business Calculus, Fall 2016
to Spring 2018

Table S6: Treatment and Control Faculty Characteristics for the 16 treatment and 16 control
sections. Instructor characteristics represent accumulated individual instances of instruction for
each condition over the three-semester experiment counting repeated instances of faculty.
Student success in prior courses is computed as an A/B/C grade in an instance of Precalculus,
Calculus or Business Calculus for an instructor during Fall 2016, Spring 2017, Fall 2017, and
Spring 2018 prior to the beginning of the trial.

Overall, the faculty characteristics are generally similar. The most significant departure is the
number of years of experience teaching. Faculty teaching treatment sections were typically less
experienced, but both groups included a sample of experienced as well as comparable numbers
of tenured research faculty. This may suggest that faculty new to the field are more open to
trying new instructional techniques, though two treatment group faculty had substantial prior
teaching experience. Student success rates for faculty in treatment and control were not
statistically different, indicating neither group had unusually high or low passing rate histories.
An investigation of instructor level effects on student outcomes was carried out and presented in
Section 3.2.4 below.
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3.2.3: Student and Instructor Differences Within Clusters
Analyses of section level differences for student backgrounds and student end-of-semester
learning measures was carried out to check for equivalence at the section level. The first analysis
in Section 3.2.3.1 explores the variability of the student mathematics backgrounds within time of
day and day of week section clusters, and the second in Section 3.2.3.2 examines the learning
measure data within those same course pairings that resulted from the random allocation of
students to different conditions.

Section 3.2.3.3 compares end-of-semester learning measures data to the prior course student
success data for instructors teaching in the study arms collected from institutional data during the
two years prior to the study in Precalculus, Calculus I, and Business Calculus. These
relationships are then investigated for covariation with outcomes before moving to the full mixed
effects model in Section 3.2.4.

3.2.3.1: Paired Means of Student Demographic Variables
In a randomized trial, randomization is expected to create equal variation of the characteristics of
the populations in each group, and as noted earlier in Section 3.2.1, the treatment and control
student groups have equivalent distributions of all measured demographics an no unusual
patterns of enrollment are observed. As an initial investigation, the High School Grade Point
Averages (HSGPA) and Mathematics Background Scores (MBS) of students in paired sections
created by the randomization process were analyzed to determine how the student populations
were distributed within that level. The paired means of the unweighted high school GPA
(reported in Table S4) were examined and no significant difference was found (#(15)=-0.76,
p=0.46, n=16) in the incoming backgrounds of students in the treatment and control groups by
section. These paired means are shown in Fig. S3 (left).

Ttest, t(15) = -0.76, p = 0.46, n = 16 T test, 1(15)=-0.93,p =037, n =16
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Fig. S3: Paired Section Means for Unweighted HSGPA (left) and Math Background
Scores (right) by Treatment Group

Similarly, paired means of the scaled composite Math Background Scores (reported in Table S4)
were examined and no significant difference was found (#(15)=-0.93, p=0.37, n=16) for students
in the treatment and control groups by section. These paired means are shown in Fig. S3 (right).

Additionally, sample distributions for student mathematics background score (MBS) data
computed (above) were compared using Kolmogorov-Smirnov tests and Wilcoxon rank sum
tests (92, 93) with continuity correction for both the total populations in treatment and control as
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well as the subpopulations in paired sections. In all cases, both tests found the sample
distributions to be the same for treatment and control. Indeed, the paired samples were found to
be more similar distributionally due to their structural association.

Direct comparisons as well as Kolmogorov-Smirov and Wilcoxon tests show that randomization
of treatment and control section assignments allocated students equivariantly both within those
constraints, as well as across the entire study population, as intended. This confirms that student
mathematics backgrounds were equivalent at the time of condition assignment, which would be
expected for randomized assignment.

3.2.3.2: Paired Means of Section Level Student Outcomes
A visual inspection of the paired section means of the end-of-semester learning measures for the
treatment and control groups, along with a #-test of the within pair section means, confirms the
overall differences in outcomes for the two populations. The paired section means were found to
be statistically significantly different ( #(15)=5.57, p<0.0001, n=16 ) and the within-pair section
means reflect the overall general trend found in the data set as shown in Fig. S4.

T test, t(15) = 5.57, p = <0.0001, n = 16
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Fig. S4: Paired Section Means for Identical End-of-Semester Learning Outcome
Measures, with significant difference indicated by the top line.

3.2.3.3: Instructor Level Effects on Outcomes
Instructor instructional practices and their potential impact on outcomes were also investigated to
determine whether or not instructors in the treatment or control conditions exhibited historical
instructional patterns that were consistent or not with each other and with historical departmental
patterns. Historic student success rates (grade of A, B or C in the course) were used as a proxy
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for faculty instructional impact on students at the time of the experiment. Institutional data were
collected for all Calculus 1 instructors’ Precalculus, Calculus I, or Business Calculus sections for
the fall and spring semesters from Fall 2016 to Spring 2018. During this time, 51 distinct
instructors taught 9,095 students in 90 sections over four semesters. For comparison, 9 of the 12
control group instructors taught 2,514 students in 37 sections while 5 of the 7 distinct treatment
group instructors taught 643 students across 10 sections.

a0 -

60 -

40-

and Business Calculus Fall 2016 - Spring 2018

Percent of Students with A/B/C in Precalculus, Calculus |

20~

1 1 1
All Math Instructors Control Group Treatment Group
Instructors Instructors

Fig S5: Historic percentage of students with A/B/C grades (passing rate) in sections of
Precalculus, Calculus I and Business Calculus for all math faculty, treatment, and control
instructors prior to the beginning of the trial. Lower and upper box boundaries correspond
to 25" and 75™ percentiles. Mean for groups indicated by solid dot with vertical error
bars equal to two standard deviations.

The box with scatter plot shown in Fig. S5 illustrates the historic relationship of the student
course success outcomes for the three groups. Note that both treatment and control section
instructors were representative of the existing instructional outcomes in these mathematics
courses. To quantify any potential relationships between the historic student success rates in
Precalculus, Calculus 1, and Business Calculus sections for these instructors with the end-of-
semester learning measures score outcomes in the assignment group of students in the trial, the
difference, SuccessVar, between each instructor’s success percentage in each section they taught
during this time period and the overall departmental success rate in the three courses (1=57.1%,
sd=15.4) was computed. No significant differences (#(524.72) = 1.2716, p = 0.2041) between the
success rates of the treatment (x=54.8%, sd=13.6) and control group (1=56.4%, sd=10.2)
instructors is observed, and no statistically significant effects of this variable, SuccessVar, are
observed on the outcome variable LearningOutcome (F(226,1) =0.5097, p = 0.4757).
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3.2.4: Full Models of Study Outcomes and Effect Analyses
The primary goals of the study included collecting measures of student learning that could be
used to quantify the extent to which the treatment condition impacts those outcomes represented
by the anonymously scored end-of-semester learning measures. These data also provide insight

into the extent to which that impact might be expected to be repeatable in other circumstances
(94, 95).

The main document reports the effect size measured for the study taken as a whole. The
following provides models and analyses of variance to investigate the ways in which covariates
and other regressors impact the relationship of the learning outcome measure with the treatment
condition. Models are presented that analyze student learning outcomes measured using the
identical end-of-semester student learning measures by constructing mixed-effects models of that
outcome dependent on existing student demographic data with random effects from section and
instructor level factors. Sensitivity analyses are provided to characterize possible confounding
within these results.

3.2.4.1 Mixed-Effects Model of Student Learning Outcome
Institutional data were collected and used to construct the Mixed-Effects Model (MEM) below
with student demographics as fixed effects, the treatment condition as a fixed effect, and the
section levels (Section), time of day/day of week levels (SecPair), and instructor levels (77Dw)
as random effects. Student demographic variables included student mathematics background
score (MBS), gender (Gender), and race and ethnicity (RE). A description of all the variables
involved the model is shown in Table S7.

Interactions between Treatment and MBS along with Treatment and Gender were initially
included to control for possible dependence on those factors. Both interactions were found to be
statistically nonsignificant (#658.9)=—-0.250, p=0.803 and #(646.0)=—0.099, p=0.921,
respectively), and so the model with no interactions was used. Linearity, normality, and
homogeneity of variance assumptions were all assessed through visual inspection of the
residuals, finding no significant violations. Homogeneity of variance was further confirmed
using a Levene’s test (F(31) = 0.991, p = 0.483). Considering the cluster level effects of Section,
SecPair, and TIDw as random effects, the mixed effects model below was constructed to explore
cluster level random effects in the study data as it models section clustering, time of day/day of
week effects and instructor effects in the data:

LearningMeasure;, jy; ~ (ﬁo + Vsection;; T Vsecpairy + yTIDwil) + piTreatment; + B, MBS;
+ BsGender; + B, REm, + €

LearningOutcome; is the n;x1 vector of students’ scores. Table S8 shows the model structure
for the full model with all demographic covariates on the left and the model with only the
Treatment fixed effect on the right for comparison.
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Field Description Type
LearningMeasure | Anonymously scored measures of calculus | Outcome;
understanding from the end-of-semester continuous
learning measure scaled to [0,100] variable
Treatment Assigned group as O=control or 1=treatment | Randomized
Assignment;
categorical with
two levels
MBS Math Background Score scaled to [0,100] Demographic
Continuous
Gender Self-Identified Gender as O=male or Demographic
I=female if reported categorical with
two levels
RE, Race or Ethnicity encoded as 0 or 1 for Demographic
RE=Black or African American, categorical with
RE>=Hispanic or Latino/Latina, RE3=White, | four levels
RE4=0Others Combined Due to Low
Numbers
Section; Section assignment induced by Course Split | Cluster;
Random Assignment with Section; =0 or 1 | Categorical with
depending on student presence in cluster 32 levels
level j=1 to 32
SecPairy, Section pairing induced by Time of Cluster;
Day/Day of week chosen for registration by | Categorical with
student prior to course split random 16 levels
assignment with SecPair, =0 or 1
depending on student presence in cluster
level k=1 to 16
TIDw; Instructor of record for course with TIDw;, Cluster;
=0 or 1 depending on student presence in Categorical with
cluster level =1 to 19 19 levels

Table S7: Demographic and Other Study Data utilized in MEM Analyses
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Full Model Reduced Model
Predictors Estimates std. Estimates std.
Error Error
(Intercept) 0.69 5.14 0.892 47.75 2.37 <0.001
(-9.39-10.78) (43.11 — 52.40)
Treatment [TR] 15.79 2.77 <0.001 15.37 3.02 <0.001
(10.36 —21.22) (9.44-21.29)
MBS 0.78 0.06 <0.001
(0.66 — 0.90)
Gender [F] -3.80 1.35 0.005
(-6.44 —-1.15)
RE [2] -9.30 348 0.008
(-16.14 —-2.47)
RE [3] -2.26 2.55 0374
(-7.27-2.74)
RE [4] -0.29 3.27 0.930
(-6.71 —6.14)
Random Effects
o2 288.60 365.39
T0O 17.36 section 27.76 section
13.38 TiDw 11.85 TiDwW
12.44 SecPair 21.73 SecPair
I1CC 0.13 0.14
N 32 Section 32 Section
19 TiDW 19 TIDW
16 secPair 16 secPair
Observations 671 671
Marginal R? / 0.303/0.394 0.121/0.247
Conditional R?
AIC 5746.537 5911.859
log-Likelihood -2862.269 -2949.929

Table S8: Mixed Effects Model with Random Intercepts for Section clusters — Full Model with
all Demographic Covariates (left) and Reduced Model with Treatment Fixed Effect only (right)

Restricted maximum likelihood fitting was used for these models with the 1me4 (96) package in
R. Tests of fixed effects were conducted using #-tests with Satterthwaite degrees of freedom
approximations computed with the 1lmerTest package (97). Satterthwaite degrees of freedom
were used to control for Type I error rates in the multilevel models employed (98). The total
explanatory power of the model is substantial (conditional R? = 0.39) and the part related to the
fixed effects alone (marginal R?) was found to be 0.30. Within the model, the effect of Treatment
[TR] is statistically significant and positive (f= 15.79, 95% CI [10.36, 21.22], #(660) = 5.71,
p <0.001), in the presence of the effect of MBS (statistically significant and positive, § = 0.78,
95% CI[0.66,0.90], #(660) = 12.68, p <0.001), the effect of Gender [F] (statistically significant
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and negative, f=-3.80, 95% CI [-6.44, -1.15], 1(660) = -2.82, p = 0.005), and the effect of RE
[2] (statistically significant and negative, /= -9.30, 95% CI [-16.14, -2.47], 1(660) = -2.67, p =
0.008). Confidence Intervals (Cls) and p-values were computed using a Wald #-distribution
approximation.

In the reduced model, the intercept in the Treatment only fixed effects is 47.75 and the
coefficient of Treatment is found to be 15.37. The random effect variance describing how section
levels vary is 365.39. The value of the adjusted R? for the fixed effects portion of the full model
was computed as 0.303 which implies (99) an effect size of Cohen’s /= 0.659, close to that of
the total study effect observed. The adjusted R? for the random effects in the full model is 0.085
which implies an effect size of 0.305 for the random portion. Computing the same terms for the
reduced model to approximate the portion of the variance related to the Treatment effect, the
model indicates an adjusted R? = 0.121 for the fixed effects portion which implies an estimated
effect size of 0.371 (small-medium) in the presence of random section level intercepts. Using the
methods from (99, 100) and (101) to compute the adjusted R? values for the fixed effects in the
model, the variance explained by the fixed effects are shown in Table S9.

Partial R?
Term estimate CI lower CI upper
Full 0.303 0.23 0.396
Treatment 0.119 0.04 0.213
MBS 0.150 0.07 0.244
Gender 0.010 0 0.116
RE 0.012 0 0.118

Table S9: Estimates of partial R for Fixed Effects Terms in Full Model

Using these values, the effect of treatment within the full mixed effects model is found to be
Cohen's f=0.368 with 95% CI [0.197,0.520], consistent with the reduced model. The study is
powered to detect a difference of means (z-test) to an effect size of Cohen's f=0.109 with the
unbalanced sample sizes observed and so there is a 95% likelihood that the effect of the
treatment will be observed in this interval.

In models with the type of cluster levels observed here, it can be a concern that the variance in
the independent variable may differ greatly in different cluster levels. To determine if this type of
heteroscedasticity was a concern, the variances of the residuals for the full model between cluster
levels were compared and tested using Levene’s test. Variances of model residuals for the total
model were not significant within the Section levels (F(31) =0.991, p = 0.483). Overall,

variance of the model residuals between the two Treatment levels were also not significantly
different (F/(1) = 1.406, p=0.236) and so the model estimates can be considered reliable
computed with the random effects for the cluster levels included. Quantile-Quantile plots of the
random effects of the section levels and the residuals confirm the fit of the model.

The model fit confirms the significance of Treatment. The variance due to random and fixed
effects, and the portion of this variance that is due to the Treatment effect in the presence of the
random instructor and section effects suggest that the effect is significant and that a substantial
portion of that effect is due to other factors beyond instructor and time of day/day of week
effects.
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3.2.4.3 Sensitivity Analysis and Unmeasured Confounders
To check for the possible existence of an unmeasured confounder, a sensitivity analysis (SA)
was conducted. Let U be a confounder that could be responsible for the effect of Treatment
measured on LearningMeasure in the study. Using the approach to identify the impact of
unmeasured confounders developed in (/02), the SA was implemented in the R package
treatSens with a linear analysis of a possible confounder U whose output is provided in
Fig. S6.

In the Fig. S6 plot, the level curves show that, for an unmeasured confounder with a coefficient
of {? =1 in the model developed in (102) as

LearningMeasure|X, U, Treatment ~ N(B*MX + MU+t Treatment, aﬁ)
Treatment | X,U ~ Bernoulli(®(Xp% +¢%U))

where U is the unmeasured confounder, X is the matrix of the covariates of Treatment, and 71is
the treatment effect, the outcome variable would need to have a coefficient {*™ >> 35 in the
model to reduce the effect of Treatment on that variable LM = LearningMeasure to insignificant
levels. If {Z is closer to the observed values in this plot less than 0.25, the outcome coefficient
would need to be close to the maximum value of LM, that is near or greater than 100. Both of
these configurations are inconsistent with the observed data. All other covariates including the
appear near the vertical axis in this plot with horizontal components close to zero and with no
vertical components larger than 7. This output indicates that the hypothetical unmeasured
confounder would need to more than four times larger than all other measured effects, including
student mathematical background even if collinear with Treatment.
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3.3: End-of-Semester Learning Measures Overview
The end-of-semester learning measures were designed to span the major learning objectives of a
Calculus 1 course to determine how well students understood essential elements of, and could
exhibit fluency and technical competency in, calculus at the end of the course. The assessment
strategy followed the national consensus on best assessment practices. Gleason et al., (48) note
that introductory calculus is rich in conceptual topics derived from the interactions between
algebraic, tabular, and graphical representations of function and data such as limits, continuity,
integration, and the concept of the derivative itself. Substantial prior work in the teaching and
learning of calculus has reinforced the importance of the development of conceptual
understanding as a primary goal of calculus (49). To further understand what students should
know and be able to do upon completion of introductory calculus, (50) developed a framework
of essential end goals based on the shared views of 24 calculus experts’ views on what it means
to understand first-year calculus. Collectively, these experts agreed that first-year calculus
students must demonstrate the mastery of fundamental calculus concepts and skills, build
connections and relationships between these concepts and skills, and the ability to apply calculus
ideas to solve problems.

The 1dentical learning measure questions used in this study consisted of six questions for the
initial Fall 2018 semester and eight questions in the following two semesters. The topics of the
questions included the following: interpreting a graph, evaluating limits, implicit differentiation,
related rates, absolute extrema, applied optimization, using derivatives to sketch a curve, and
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evaluating an integral. Selection of these topics was driven by both the local conditions and
national consensus. All sections of calculus follow a department established list of concepts and
topics along with a similar set of assessment practices, established by the department, thus
ensuring that the topics are included in both treatment and control sections. The introductory
Calculus 1 course is based on George Thomas’ Calculus and Analytical Geometry (103) outline
which has been widely used since the 1950s and focuses on limits and continuity, derivatives,
applications of derivatives, and integration (35, 39). The items in the study’s identical assessment
block align with the findings of the experts interviewed by (/04) who shared complete agreement
that limits, derivatives, applications of the derivative, and integrals are core concepts for
introductory calculus students. The analysis showed less agreement between experts that
approximation and sequences and series serve as fundamental calculus concepts, thus assessment
of approximation and sequences topics was not included in the end-of-semester learning
measures.

3.3.1: Development of Identical End-of-Semester Learning Measure Questions
The identical end-of-semester learning measures were questions collectively developed and
embedded in identical cumulative final examinations across both treatment and control sections.
Development of the identical questions seamlessly integrated into established departmental
practices. The introductory calculus courses were collectively organized by a committee of
instructors responsible for choosing an official textbook and homework platform, preparing a
course outline with topics, and developing the final exam.

The learning measure questions were developed initially by a final exam working group
consisting of a subset of instructors currently teaching the course and representing both the
treatment and control conditions. After agreeing to topics for each of the identical questions,
individual members would develop questions and share with the working group for review and
feedback. Revisions were then made and shared with the entire group of faculty teaching the
course for feedback iteratively until all instructors approved of the questions. This process
ensured that the language in the questions was appropriate for students in all sections of the
course. Once all questions were finalized, multiple versions of each question were created by
making minor modifications to the questions that did not change their essential difficulty in order
to accommodate departmental exam administration protocols. Questions shared across all
versions and sections represented roughly two-thirds of the final exams, allowing individual
faculty to cater the remainder of the exams to their instructional goals. Further, the exams and
questions were formatted consistently and without course section identifiers to allow completely
anonymized evaluation of these portions during the subsequent comparative analysis.

3.3.2: Characteristics of End-of-Semester Learning Measure Questions
As noted above, end-of-semester measures of student learning outcomes were embedded in
course final exams. The basic framework for the identical final exam questions used came from
department course assessment practices aligned to content required for all Calculus 1 courses in
the state. The embedded exam questions use arose from normal question types developed as a
departmental norm over time and refined by the instructional team that included both treatment
and control section instructors. In order to ensure that the assessments would maintain the prior
emphasis on traditional calculus skills and concepts while also providing feedback on student
learning that aligned with nationally accepted standards for calculus, faculty teaching calculus
across all sections worked to refine the items and determine their correspondence with the
framework established by Tallman, et al in (35). Table S10 provides the characteristics of the
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end-of-semester learning measure questions based the Exam Characterization Framework (35)
there which characterizes exam items by three attributes: item orientation, item representation,
and item format. The item orientation dimension contains seven categories of intellectual
behaviors needs to respond to an item: remember, recall and apply procedure, understand, apply
understanding, analyze, evaluate, and create. Items were also coded by their representation type:
applied/modeling, symbolic, tabular, graphical, definition/theorem, proof,
example/counterexamples, and explanation. The third dimension characterizes exam items by
their format based on three categories: multiple choice, short answer, or broad open-ended.
Under the item format dimension, items were also subcategorized based on whether the item
required students to provide justification, an explanation, or solve a word problem. Research
team members reviewed the identical embedded exam items used in all versions and sections
during the study and coded them using the ECF. Multiple team members evaluated the questions
and aligned results to ensure consistent characterizations within the framework.

The results from coding the end-of-semester learning measure using the item orientation
taxonomy showed that three of the exam items require students to apply or demonstrate their
understanding. One of the eight items required students to create a graph using their
understanding of derivatives. Four out of eight of the exam items require students to evaluate or
recall and apply a procedure. This is evidence that the final exam requires students to apply a
range of cognitive skills to solve the problem.

The results from coding the identical question items using the item representation taxonomy
revealed that the majority of items (63%) were stated symbolically. No items asked students for
information in the form of a table. These results are consistent with Tallman et al.’s (35)
findings. It is important to note that the remaining three items were stated exclusively as “applied
modeling” or “graphical” items. Increased emphasis was placed on these items since they
covered more than one calculus concept. For example, the related rates item involves the
application of the derivative, but a foundational understanding of implicit differentiation is also
needed.

The results from coding the identical question items using the item format taxonomy revealed
that three-fourths of the items were coded as short answer. While a majority of the items were
coded as short answer, students were still required to justify their solution on four of six items in
the “short answer” format category. No exam items were coded as multiple-choice format items.
Two of the items, related rates and applied optimization, were coded as “broad, open-ended”
items because these problems were stated in a real-world context. It is noteworthy that the set of
question items meets the Tallman et al.’s (35) coding threshold of having more than 10% of the
exam items classified as a word problem in the “broad, open-ended” category. The learning
measure questions presented opportunities for students to demonstrate their ability to apply their
understanding of derivatives to real-world applications, something that Tallman et al. (35) noted
as lacking when examining over 150 randomly-selected Calculus I final exams studied from
various post-secondary U.S. institutions. This data shows that the set of identical questions
embedded in the final exam used in this study does not focus solely on students’ ability to
memorize and apply a procedure.
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Learning Measure Item Item Item
Item Topic Orientation Representation | Format (sub-code)
Interpreting a graph Understand Symbolic Short answer
. . Short answer
Evaluating limits Evaluate Symbolic (Gustify)
Implicit Recall and apply .
differentiation procedure Symbolic Short answer
. Applied/modelin | Broad open-ended
Related rates Apply understanding g (word problem)
Absolute extrema Recall and apply Symbolic Shqrt answer
procedure (Justify)
. Lo . Applied/modelin | Broad open-ended
Applied optimization Apply understanding o (word problem)
. . Short answer
Sketching a curve Create Graphical (Gustify)
Evaluating an . Short answer
integral Evaluate Symbolic (Gustify)

Table S10: Characteristics of the learning measure questions based on Tallman et al.’s Exam
Characterization Framework (35).

3.3.3: Sample End-of-Semester Learning Measure Questions by Topic
Figs. S7 — SO present a representative sample of the identical end-of semester learning measure
questions by topic. These are typical of the types of problems seen by students in Calculus 1
courses. Question format, terminology, and notation were agreed upon by instructors of control
and treatment sections to ensure fairness across all sections. Also, to discourage and detect any
academic dishonesty, the questions were versioned by varying the order of the problems and
making minor modifications (e.g., changing constants, values or functions) while keeping the
difficulty of the problem consistent.
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Interpreting a graph

Consider the function y = f(x) graphed below.

11 -0 8 B 7 6 -5 -4 2 -1 0 12 3 4 5 6 T B8 9 10 11 12 13 14 15 16 17
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Find the following limits. (If a limit does not exist write DNE.)

im f(x) = im flx) = Jim_f(x) = Jim f(x) = Jim f(x) =
lim f(x) = lim fx) = lim f(x) = lim f(x) = lim f(x) =

State the domain of f(x) as a union of intervals.
* State the range of f(x).
* State the equations of the horizontal and vertical asymptotes (if any).

 List the x-values where the function is discontinuous.

Fig. S7: End-of-semester Learning Measures Item - Interpreting a Graph
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Evaluating limits
3

e lim
a1 X3 Inx

. 3-8
¢ lim

x—0 6 — 2x

Implicit differentiation

ar o s e oo dY
Use implicit differentiation to find tf— for 3x* + xy% = 2y° + 5.
ax
Related rates

Two trains leave the station at the same time. Train A travels east at 6 kilometers per hour, while Train
B travels north at 8 kilometers per hour. At what rate is the distance between the two trains changing at
the moment Train A has traveled 3 kilometers and Train B has traveled 4 kilometers?

Absolute extrema

Find the absolute (global) maximum and minimum, values and locations, of the function f(x) = (x2 — 2\-) i
over the closed interval [0, 4]

Applied optimization

A contractor is tasked with enclosing a 32-m? rectangular patch by a fence divided into three identical
and adjacent plots separated by two parallel fences. See figure below. What dimensions for the outer
rectangle will require the smallest total length of fencing material needed?

|
|

Fig. S8: End-of-semester Learning Measures Items - Evaluating Limits, Implicit Differentiation,
Related Rates, Absolute Extrema and Applied Optimization

-

— X

51



Sketching a curve

Given f(x) = x> — 3x%

« State the domain of f(x).

Submitted Manuscript

» State the x— and y—intercepts of f(x).

» Determine the intervals on which the function is increasing/decreasing. Also, identify any relative
maxima and minima.

* Determine the intervals on which the function is concave up/down. Also, list any inflection points.

* Find the limits at the ends of the domain (end behavior) and state any asymptotes of the function.
If an asymptote does not exist, state “NA”.

* Sketch f(x). Label all relative minima, relative maxima and inflection points.

Evaluating an integral

Evaluate the following integral. If substitution is used, be sure to clearly indicate « and du.

/ 30x2e(35 ) gx

Fig. S9: End-of-semester Learning Measures Items - Curve Sketching, and

Evaluating an Integral

3.3.4: End-of-Semester Learning Measure Questions - Individual Item Results
Tables S11 — S13 provide the performance of students assigned to the treatment and control
sections on the individual embedded identical end-of-semester learning measures items for all
three semesters of the study. Note that results reported below are in all cases consistent with the
results for all students enrolled in these course sections. That is, when including students who
were not randomly assigned but enrolled in the treatment and control sections after the
randomized assignment, the findings are identical in nature.

Maximum | Treatment | Control 95% Confidence
Fall 2018 _ _ p-value Effect Size Interval for eff.
Score n=_83 n =63 size

Absolute 5 62% 38% p <0.001 d=0.739 (0.398,1.08)
extrema
Evaluating an 6 50% 54% n/s d=-0.095 (-0.426,0.235)
integral
Evaluating 5 65% 58% n/s d=0.233 (-0.098,0.565)
limits
Interpreting a 20 85% 76% p<0.01 d=0.469 (0.135,0.804)
graph
Related rates 6 11% 10% n/s d=0.086 (-0.244,0.417)
Sketching a 23 66% 52% p<0.01 d=0.520 (0.184,0.855)
curve
Overall 65 65% 55% p <0.01 d=0.502 (0.166,0.837)

52



Submitted Manuscript

Table S11: Individual item results for Fall 2018 treatment and control sections, with percent
correct for treatment and control sections, as well as the associated p-value, effect size and
confidence intervals.

Maximum | Treatment | Control 95% Confidence
Spring 2019 Stlor: n=100 n=19 p-value Effect Size Interval for
effect size
Absolute extrema 6 48% 25% <0.001 d=0.757 (0.449,1.064)
p
Applied 9 25% 9% p<0.001 d=0.686 (0.38,0.991)
optimization
Evaluating an 5 47% 31% <0.01 d=0.441 (0.141,0.742)
4 p
integral
Evaluating limits 8 53% 44% n/s d=0.263 (-0.0354,0.561)
2
Implicit 5 68% 59% n/s d=0.291 (-0.008,0.589)
p
differentiation
Interpreting a 17 75% 72% n/s d=0.169 (-0.129,0.467)
graph
Related rates 8 60% 41% <0.001 d=0.617 (0.313,0.921)
p
Sketching a curve 18 66% 45% <0.001 d=0.726 (0.42,1.033)
g p
Overall 76 57% 42% <0.001 d=0.748 (0.44,1.05)
P

Table S12: Individual item results for Spring 2019 treatment and control sections, with percent
correct for treatment and control sections, as well as the associated p-value, effect size and
confidence intervals.

Maximum | Treatment | Control . 95% CI for
Score n=193 | n=168 | PValue | EffectSize eff. size

Absolute Extrema 6 49% 25% p <0.001 d=0.839 (0.622,1.055)
Applied 9 37% 15% p<0.001 d=0.806 (0.591,1.022)
Optimization
Evaluating an 6 69% 38% p<0.001 d=0.850 (0.633,1.066)
Integral
Evaluating Limits 8 62% 44% p <0.001 d=0.627 (0.414,0.839)
Implicit 5 76% 69% p=0.05646 d=0.203 (-0.005,0.411)
Differentiation
Interpreting a Graph 17 82% 73% p <0.001 d=0.512 (0.301,0.722)
Related Rates 8 55% 38% p <0.001 d=0.438 (0.228,0.648)
Sketching a Curve 18 80% 60% p <0.001 d=0.750 (0.536,0.965)
Overall 77 66% 48% p<0.001 d=0.925 (0.707,1.143)

Table S13: Individual item results for Fall 2019 treatment and control sections, with percent
correct for treatment and control sections, as well as the associated p-value, effect size and
confidence intervals.

3.4: Course success odds ratios
Logistic regression models were carried out to predict odds of success in the course (1: Pass; 0:
DFW). Treatment (1:MPC; 0:non-MPC) was the only independent variable included in the
model. The assumption that the conditional mean of the course success variable was binomial
was considered to be robust given the random nature of the sample (/05). Odds ratios were
calculated using this model separately for three different groups of students: female, Hispanic-
identified, and First-Time-in-College (FTiC) students. When examining each group, the overall
models were significant when compared to the null models (Female-identified: y2 (1) =4.55, p <
0.05; Hispanic-identified: y2 (1) = 14.64, p <0.001; FTiC: y2 (1) =9.28, p < 0.01;). This
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indicates that our models fit the data better than intercept-only models. In addition, given the
significance of the Treatment coefficient in each model, it is concluded that this variable is
reliable in predicting course success.

Estimates with error measures and statistical significance are presented for each group in Tables
S14 — S16. The standard errors indicate the variability associated with the estimates and the z-
values are calculated by dividing the coefficient estimate by the standard error. The estimates
given in the tables represent the average change in the log odds of the response variable (course
success) related to the Treatment variable. For example, for the female-identified model, being in
the MPC group is associated with an average increase of 0.4587 in the logs odds of successfully
completing the course. In other words, being in the MPC group is associated with having a
higher likelihood of passing the course for female-identified students.

The odds ratios between the MPC and non-MPC groups were obtained using the coefficient
estimates for each model. For female-identified students, the odds ratio is €*43%7 = 1.582. This
translates to the odds for a female-identified student in the MPC group passing the course being
about 58% higher than the odds for a female-identified student in the non-MPC group. Similarly,
the odds ratios for the Hispanic-identified and FTiC students are 2.021 and 1.845, respectively.
So, the odds of a Hispanic-identified student passing the course is about 100% higher if they
were enrolled in an MPC section and 85% higher for FTiC students in the MPC group.

Estimate Std. Error z-value p-value
I ] | | ]
(Intercept) 0.7673 0.1501 5.112 3.19e-07%**
Group 0.4587 0.2156 2.128 0.0334*

Signif. codes: ***0.001 **0.01 *0.05
Table S14: Female-identified students

Estimate Std. Error z-value p-value
! | | | !
(Intercept) 0.7328 0.1223 5.992 2.07e-09%**
Group 0.7038 0.1860 3.784 0.000154***

Signif. codes: ***0.001 **0.01 *0.05
Table S15: Hispanic-identified students

Estimate Std. Error z-value p-value
! | | | !
(Intercept) 0.9487 0.1325 7.159 8.13e-13 ***
Group 0.6126 0.2032 3.015 0.00257**

Signif. codes: ***0.001 **0.01 *0.05
Table S16: First-time-in-college students
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