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Abstract: Calculus, the study of change in processes and systems, serves as the foundation of 
many STEM disciplines. Traditional, lecture-based calculus instruction presents a persistent 
barrier for students seeking STEM degrees, limits access to STEM professions, and blocks their 
potential to address society’s challenges. A large-scale pragmatic randomized trial was 
conducted to compare two calculus instruction styles: active student engagement (treatment 
condition) versus traditional, lecture-based instruction (control condition). A sample of 811 U.S. 
university students were studied across 32 sections taught by 19 instructors over three semesters 
at a large U.S. Hispanic-Serving Institution. Large effect sizes were consistently measured for 
student learning outcomes in the treatment condition, which demonstrated a new standard for 
calculus instruction and increased opportunities for completion of STEM degrees. 

One-Sentence Summary: A new Standard of Care for Calculus Instruction is proposed, focused 
on student engagement and supported by experimentally confirmed evidence of substantially 
stronger learning outcomes and student success. 
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Main Text: 
Calculus instruction needs significant transformation as it serves as a frequent barrier to STEM 
degree attainment, especially for traditionally underrepresented groups (1–3), depriving both 
individuals and society of the potential benefits of their inclusion. National calls for calculus 
transformation are numerous (4, 5), as failing calculus can contribute to a student’s departure 
from STEM degree programs. Only about 40% of students entering universities with STEM 
degree intentions actually graduate with a STEM degree (6). More concerning is that the odds of 
female students switching out of STEM after a calculus course is about 1.5 times higher than that 
of comparable male students (3). Furthermore, Hispanic and Black/African American students 
had more than 50% higher failure rates than White students in calculus (7, 8).  
 
Evidence-based instruction, implemented in many STEM disciplines, has reliably led to 
profound improvement in student success (9–11). However, common approaches to calculus 
instruction continue to rely on traditional, lecture-based practices, where students are passive 
learners in the classroom, expected to construct their knowledge mostly outside of the classroom, 
on homework, or in recitation sessions (12). Mathematics, as a discipline, thus needs to embrace 
its role in enabling STEM careers that will lead to prosperity for both individuals and society at 
large. “Calculus … must become a pump and not a filter” for the STEM pipeline, as noted by 
Robert White, President of the National Academy of Engineering in 1988 (13). Handlesman, et 
al, (14) recently argue that, “We must fix the classrooms where many students from historically 
excluded communities are discouraged from pursuing STEM” and that “…the continued 
exclusive use of lectures is malpractice at best, or an act of discrimination at worst.” Thus, it is 
imperative that dramatic transformation in calculus instruction takes place to promote more 
equitable learning environments for all students. 
 
We present a large-scale randomized trial carried out to rigorously compare an evidence-based, 
active student engagement calculus course to traditional, lecture-based calculus instruction. The 
work extends prior Calculus research investigations (15–17) by including random assignment of 
students to treatment and control sections as well as anonymized analysis of the identical end-of-
semester learning outcomes. The study utilizes a pragmatic randomized trial (18) design to 
inform on the effectiveness of similar interventions at higher education institutions, reflecting 
real-world classroom constraints. In these contexts, blinding of the treatment and control 
conditions to both students and faculty is not possible, as blinding is only feasible when the 
treatment and control conditions remain unknown to the participants during the period of study 
(such as in a clinical trial drug study). As with some public health or sociological interventions, 
enrollment of participants in this study reveals some aspects of a cohort structure but it is still 
possible to maintain the essential aspects of random assignment, following a modified protocol 
as in Zwarenstein, et al (18). The treatment condition integrated a suite of coherent strategies that 
have been independently found (19, 20) to improve student learning; thus, the treatment was a 
significant departure from traditional instruction, and it was not logically possible for the 
treatment condition to remain hidden from students or faculty after the treatment began. Random 
assignment of faculty to control or treatment conditions would not be possible because an 
individual faculty member’s knowledge, philosophy, and experience with a variety of classroom 
strategies and instructional practices may intersect with the features of the treatment or control 
conditions. The experimental protocol thus included a group of instructors willing to adopt the 
instructional methods in the treatment condition. This comprehensive experimental approach was 
intended to secure the strongest possible evidence for critical stakeholders to sustain the 
treatment beyond the trial. 
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The treatment condition used the Modeling Practices in Calculus (MPC) curriculum and 
pedagogy, and the control condition represented the pre-existing, traditional instructional 
practices at the study institution. MPC integrates the practices of mathematicians as a central 
design tenet throughout the course. Instructors facilitate students application of mathematical 
“habits of mind” (21) that foster deeper understanding of calculus concepts including the 
identifying of patterns, hypothesis development and testing, making connections, and 
communicating ideas precisely to learn calculus throughout the course. Class time is devoted to 
students working collectively in small groups on pre-designed notes and learning activities 
developing their calculus understanding with minimal lecturing. Treatment included Learning 
Assistants (LAs) (22) who are undergraduate peers integrated within the instructional team to 
facilitate student learning and promote culturally responsive instruction. The curriculum 
promotes mathematical practices (sense-making, problem solving, argumentation, etc.) and 
established strategies to optimize student engagement: Cooperative Learning, Argumentation and 
Metacognition, Mathematical Fluency, and a Culturally Responsive Environment (23) (described 
in the Supplementary Materials (SM Section 2)). The MPC design builds on the SCALE-UP 
Calculus (24) model and intentionally embodies well-established recommendations for calculus 
instruction including ambitious teaching practices and strategies promoted by national 
mathematics societies and national reports (12, 20, 25–28).  
 
The study was carried out at Florida International University (FIU) in Miami, Florida, the fourth 
largest public research university in the United States, with 58,787 students, of which 41,795 are 
undergraduates (Fall 2019 (29)). FIU is a Hispanic-Serving Institution as 64% of students 
identify as Hispanic/Latino/a/. Moreover, 79% of the students identify as members of historically 
underrepresented racial/ethnic minority groups, and 57% are women. The institution’s size 
provided a unique opportunity to carry out this study, as there are 18-34 40-student sections of 
Calculus 1 being taught each semester and primarily serving STEM majors. Furthermore, 
institutional conditions created urgency to transform calculus, as historic pass rates in 
introductory calculus averaged 55% (range of 13%–88%) over the six semesters prior to the 
project’s pilot. 
 
Research Design: A pragmatic randomized trial (30–32) of the MPC approach was carried out 
during the Fall 2018, Spring 2019, and Fall 2019 semesters to rigorously test student outcomes. 
Students were randomly assigned individually to treatment and control conditions at the 
beginning of the semester, after enrolling in sections based on their scheduling preferences using 
the institution’s enrollment system. To accommodate the randomized assignments, each of the 
experimental sections doubled in size from the usual 40-seats to 80-seats prior to enrollment 
opening. Instructor names and section sizes were invisible to students throughout the enrollment 
phase. Just before each term, the 80-seat sections were split into two 40-seat sections by 
assigning each student at random to either a treatment or control section.  
 
Once assigned, the treatment sections implemented the MPC approach while the control sections 
were unchanged. After assignment, students were free to change/drop/add course sections up 
until the regular institutional drop/add deadline (seven days after classes begin). To account for 
such changes, enrollments were monitored and only students who were randomly assigned to 
either a treatment or control section and remained in that section through the regular, non-penalty 
drop/add deadline were included in the data for the experimental study reported below. In total, 
1,019 students were randomly assigned to either the treatment or control groups. Of these, 516 
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students were assigned to the treatment group and 417 remained in the section at the drop/add 
deadline. At the same time 503 students were assigned to the control group and 394 students 
remained in the section at the drop/add deadline. The study follows the Consolidated Standards 
for Reporting Trials (CONSORT) (18, 33, 34). The specifics of recruiting, enrollment, 
assignment, and completion for the trial are in SM Sections 1.3 and 3.1. The randomization 
process produced comparable groups by mathematical background and demographics; class sizes 
were typical for the course (SM Section 3). 
 
Faculty participating in the study included seven individuals teaching 16 treatment sections along 
with 12 individuals teaching 16 control sections. Faculty recruited to teach the treatment sections 
indicated a willingness to adopt and implement the MPC approach, replicating the authentic 
condition of faculty reforming their classroom practice under the study design. To prepare for the 
new instructional approach, faculty participated in a two-day, pre-semester professional 
development workshop and were provided with the MPC curricular materials. Consistency of the 
MPC treatment was monitored through weekly preparation meetings where the course objectives 
and pacing were discussed. In-class monitoring by the project team was deemed overly intrusive 
and disruptive to classroom engagement. Control-section faculty were not guided to use any 
particular practices and chose their normal instructional practices, best described as traditional 
lecture format with at most limited student engagement. Potential effects of instructor differences 
on learning outcomes were investigated, presented in SM Section 3, and summarized below.  
 
The student outcome measures reported include identical end-of-semester learning measures as 
well as course success data (i.e. course grades). The end-of-semester learning measures focused 
on evaluating learning using a set of identical assessment items (problems) developed by 
instructors spanning all calculus sections and spanning the major learning objectives of a 
Calculus 1 course. The aim was to determine how well students understood essential elements of, 
and exhibited fluency and technical competency in, calculus at course end. Assessment items 
aligned to both local and national standards(35), were embedded in a cumulative final exam, and 
were administered to all students in each treatment and control section. To ensure fidelity and 
fairness to both treatment and control sections, control and treatment faculty collaboratively 
developed a set of items to be administered to both conditions in identical format and wording. 
This set of identical items formed roughly two-thirds of the total final exam content, with the 
remaining items added by individual faculty in a separate section of the exam, allowing them to 
address their specific instructional goals. Furthermore, the exams and problems were formatted 
identically and without course section identifiers to allow completely anonymized evaluation 
during the subsequent comparative analysis. The identical items covered core calculus topics 
including evaluating limits, identifying extrema, curve sketching, related rates, and evaluating 
indefinite integrals. For the second and third semesters, additional items focusing on implicit 
differentiation and optimization were added to the identical set of items. Details are included in 
SM Section 3.3. Course success data (grades) reflect the overall assessment of students as 
assigned by each section’s instructor. Course grade policies were established by individual 
instructors following departmental syllabus guidelines and were broadly consistent across 
sections and semesters. 
 
Analysis of the end-of-course learning measures utilized a rubric for each problem, with five 
researchers testing the initial rubric on a subset of exams to establish inter-rater reliability. The 
final rubric represented consensus on all elements and accounted for initial ambiguity or 
disagreement. The analysis was carried out by a team of 10 trained evaluators, each of whom 
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evaluated a completely anonymous set of student solutions. An average of two evaluators 
reviewed each solution for correctness on a scale from 0-100%. The evaluators were very 
consistent with high inter-rater reliability (Cohen’s kappa 0.827 in Fall 2018 and 0.797 in Spring 
2019) (36, 37). The same rubric was applied to the Fall 2019 data given its high degree of 
agreement. Once all problems were evaluated, the research team de-anonymized and sorted the 
results by treatment and control sections for the comparative analysis.  
 
Results: The results indicate significant improvements in student learning for the MPC group 
across all three semesters. Students in the treatment group showed substantially higher scores on 
the identical end-of-semester learning outcomes: (Fall 2018: d=0.505, p<0.01; Spring 2019: 
d=0.748, p<0.001; Fall 2019: d=0.925, p<0.001) when compared to the control group. 
Combining results from all three semesters of trials (i.e., 32 sections and 811 total students), the 
overall difference between treatment and control is d=0.774 (95% confidence interval 0.618 to 
0.930), a medium/large effect size (36, 37). Overall, treatment group students show more 
consistency in applying the tools of calculus to optimization problems, using derivatives to 
sketch graphs of functions, evaluating limits, and evaluating integrals. 
 

 
Fig. 1: Overall end-of-semester learning measures effect sizes broken out by major, 
race/ethnicity, and gender. Error bars indicate the 95% confidence interval for effect size for 
each group.  
 
The success of the MPC intervention occurs across racial and ethnic groups, majors and 
academic pathways, and genders (Fig. 1). Similar medium/large overall effect sizes were 
observed for students in the treatment condition who identified as Black/African-American 
(d=0.882, p<0.001) or Hispanic/Latino/a (d=0.772, p<0.001) when directly comparing the 
identical learning measures to their counterparts in the control condition. While all STEM majors 
showed significantly improved learning, there were larger effect sizes for Biology majors in the 
treatment group (d=0.925, p<0.001). Students matriculating onto campus as both First Time in 
College (FTiC) and Transfer students showed medium/large effect sizes, and the majority were 
FTiC. 
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Furthermore, students of the MPC treatment condition had improved course grades. Average 
grades were significantly higher by ~0.4 points (4.0 grade point scale) in MPC sections across all 
semesters of the study (p<0.001, d=0.295). This translated to success rates (A/B/C grades) 
averaging 11% higher in MPC sections compared to traditional sections (p<0.001, d=0.251, Fig. 
2). Outcomes were consistent across the three semesters of the experiment, Fig. 3. Moreover, the 
MPC sections also had lower course late drop rates (departure after the regular drop/add period 
ends) across all three semesters (p<0.05, d=0.141), suggesting students more clearly perceived 
they were likely to succeed in the course. 
 

 
Fig. 2: Overall course success (i.e., earned grades of A, B, or C) effect sizes broken out by 
major, race/ethnicity, and gender. Error bars indicate the 95% confidence interval for effect size 
for each group. 
 
The trend of improved outcomes in course success is also observed for demographic subgroups, 
seen in Fig. 2. A logistic regression model of success using gender identification, FTiC status, 
and Hispanic identification as independent variables showed the odds of a female-identified 
student in the treatment group passing the course to be 58% higher than the odds of a female-
identified student in the control (b1=0.46, p<0.05). Hispanic students’ odds of passing the course 
were almost double that of their counterparts in the control (b1=0.70, p<0.001). The likelihood of 
FTiC students in the treatment passing the course saw an increase by about 85% when compared 
to these students in the control (b1=0.61, p<0.01). Details are included in SM Section 3.4.  
 
Potential biases arising in the random student assignment and faculty selections were 
investigated for hidden level effects or confounders to establish limitations of the study (see SM 
Section 3). The randomization process showed equivariance in the demographics of student 
allocation. Analyses showed that allowing students to drop/add sections during the open 
registration period after the initial assignment did not impact the measured outcomes. Faculty 
characteristics were compared and found to be similar in both background and prior course 
student grade distributions. A mixed effects model with student fixed effects and random cluster 
effects due to section and instructor levels was fit (SM Section 3.2.4.1) with tests of fixed effects 
computed using Satterthwaite approximations to control for Type I errors. The explanatory 
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power of the model was found to be high (conditional R2=0.39) and the portion related to the 
fixed effects was 0.303. The effect of Treatment was statistically significant, and explanatory of 
0.119 (semi-partial R2) of the outcome variance. This implies an estimated effect size of Cohen’s 
f=0.371 with covariates and cluster level effects present. Random effects explain 0.0852 of 
outcome variance with an intraclass correlation of 0.14. A sensitivity analysis showed (SM 
Section 3.2.4.2) that unmeasured confounders would need to be four times more powerful than 
any measured covariate including student mathematics background to be responsible for the 
observed effect.  
 

  
Fig. 3: Final course grade outcomes broken out by term and curriculum, including Success 
(earned grades of A, B, or C), Fail (earned grades of D or F), and Late Drops (withdrawals or 
drops after the institution’s drop/add deadline). Vertical scale is percent by outcome, error bars 
indicate the 95% confidence interval for the mean percentage of students in each outcome group 
over all sections in a term. 
 
Discussion and Conclusion: This pragmatic randomized trial demonstrates that student learning 
outcomes were significantly improved in the treatment condition. Contrary to previous research 
(38), this study shows that when students are expected to engage with calculus concepts 
collaboratively, using intentional, evidence-based teaching strategies, they develop a better 
understanding of calculus concepts and techniques. Importantly, the benefits of the MPC 
curriculum and pedagogy are realized regardless of racial/ethnic group, gender, or 
major/academic pathway. These trends suggest that the treatment includes culturally responsive 
and equitable strategies. Specifically, the MPC learning environment is designed to promote 
learning communities that provide ongoing support for learning mathematics through 
collaborative engagement and ongoing formative feedback. This aims to promote inclusion and 
increases access for students with different mathematical backgrounds, different cultural 
identities, and different life experiences by allowing them to utilize their mathematics skills in a 
supportive, non-threatening environment. 
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The improved learning and course success for Modeling Practices in Calculus reported in this 
study have profound implications for calculus instruction. This study demonstrates the 
substantial benefit to students of the MPC approach designed around established, evidence-based 
principles and should motivate educators in mathematics and other STEM disciplines to adopt 
the same or similar approaches and conduct similar studies to replicate these findings. Improved 
student success also leads to more efficient student progress to graduation and boosts 
institutional effectiveness. Applying this study’s 11% average improvement in pass rate to all 
2,000 first-time calculus students at FIU, would translate to 220 additional students succeeding 
in calculus annually and reducing the instructional load by five sections annually. Extending this 
strategy to the roughly 300,000 students across the nation taking Calculus 1 each year, these 
results translate to a potential of an additional 33,000 students passing calculus each year, saving 
students an estimated $23.9M in tuition (based on a 3-credit course at the average public 
college/university tuition rate of $242/credit (39, 40). Pragmatic randomized trials provide 
guidance on what can be achieved by engaging faculty willing to change their instruction. These 
results potentially represent a lower bound on the long-term effects, as faculty likely develop 
additional expertise through continued instruction and realize improved outcomes. The measured 
effect size provides rationale to stop the control due to treatment benefit, if one follows medical 
research protocols (41, 42).  
 
The experimental methodology establishes a new Standard of Care for calculus instruction and a 
high standard of evidence to bear on understanding the impacts on student learning. Improved 
learning of calculus aims to foster higher success in future STEM courses and develop the STEM 
“habits of mind” students take with them into their future careers. Further, MPC shows potential 
to address the disparities that differentially impact historically underrepresented groups, thus 
offering a mechanism to address Handelsman, et al (14)’s call to promote the success of 
historically excluded communities. We envision a mathematics experience for all students built 
on this approach and advocate that active student engagement must be deployed across all STEM 
disciplines to improve our development of future STEM professionals from all backgrounds. 
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Materials and Methods 
 
1:  Experimental Design 
 
 1.1:  Historic Calculus Development and Approach 
Calculus courses and their impact on student progress in post-secondary settings have been a 
significant focus of pedagogical study and policy debate for several decades. This study builds 
on prior calculus work and advances the understanding of the impact of instructional change on 
student learning by randomizing a large sample of students at the individual level into 
comparable control and treatment groups over three semesters, utilizing a comprehensive set of 
curricular and pedagogic instructional materials in the treatment condition, and then carrying out 
blinded evaluation of the student outcomes. The study design and pedagogic strategies are 
motivated by and built on the experiences emanating from the Tulane conference (43, 44) that 
inspired efforts to reform calculus in the 1990s (4, 15–17, 45–48) and continuing into the work 
of the CSPCC (26, 39), PtC (12), and SEMINAL projects more recently(49, 50). These concerns 
have persisted (5, 51) and a great deal of research has identified group work (52), inquiry-based 
learning (IBL) (53), and active learning approaches in mathematics (ALM) (19, 50, 54) as 
primary levers of change that could lead to the significant improvements in student learning 
generating outcomes that national calls have sought. Much of the prior work refocused the 
calculus curriculum on conceptual foundations. These include Project Calc at Duke (15) the 
calculus projects at DePaul University (45), the University of Michigan (16, 55), and Baylor 
University (17) used the text developed by the Harvard Consortium (56). Some incorporated 
strong technological supports (15) and others incorporated laboratory or recitation components 
(16).  
 
Randomization at the student level was not a common strategy in prior studies. One study that 
included randomization (57) had 37 total participants taught in two sections by the same 
instructor and did not control for potential internal bias of the instructor towards either condition. 
There are no registered post-secondary calculus studies in the What Works Clearinghouse (58) 
used by the U.S. Department of Education to evaluate instructional effectiveness and 
experimental techniques. A central motivation for this study was to carry out a rigorous 
randomized trial and address the concerns that have limited the propagation of the broader 
calculus instructional improvement efforts and that would meet the WWC “without reservations” 
standard (58). In developing the experimental protocol, the randomization process aimed to 
ensure equivariantly distributed student characteristics as well as address concerns such as time 
of day / day of week levels which had been critiques of prior studies.  
 
 1.2:  Pragmatic Randomized Trial Approach 
This study intentionally utilized a pragmatic randomized trial approach (30, 31) designed to 
replicate real-world conditions in order to inform institutions of higher education considering 
similar interventions and adapting to the inherent nature of classroom education research 
interventions. The study protocol integrates random assignment of students to treatment and 
control sections, as well as blind analysis of the end-of-semester learning measures. Random 
assignment of students to treatment and control sections removes effects that could arise from 
students intentionally selecting treatment or control conditions. The random assignment occurred 
after students selected a day/time meeting pattern to remove any potential bias due to time of 
day. As the complete blinding to study participants is not possible in an education study, the 
outcome measures were objective and not open to subjective interpretation, following (18, 30, 
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31). Analysis of the end-of-semester learning measures, the outcome measures, was blinded to 
the researchers to minimize bias.   
  
The aim of the intervention was to establish a novel calculus instructional paradigm, one that 
promoted significantly improved student learning and course achievement; thus, the design 
integrated multiple research-driven strategies into a coherent classroom approach. These 
strategies included the curriculum (class notes, in-class learning activities, homework 
assignments, and exams) as well as the pedagogic practices (group work, white-boarding 
sessions, instructor and Learning Assistants (22) in-class facilitation. and other classroom 
norms), with coherence arising through the consistent themes across all curricular elements and 
classroom language that mutually reinforce each other. This intervention contrasts with a 
piecemeal approach to intervention where individual elements are changed over time leading to 
limited impact, cognitive dissonance among students, ambiguous results and/or overlooked 
potential synergies across course elements. The approach mimics a real-world application where 
an institution brings together multiple promising practices with the goal of dramatically 
improving student outcomes, as a large effect is a mechanism that enables sustained change. 
  
Randomly assigning faculty to control or treatment conditions was not feasible or appropriate, as 
it could implicitly or explicitly introduce biases in favor/against the treatment or control 
conditions if faculty were forced to teach using strategies that conflicted with their instructional 
preferences. An individual faculty member’s knowledge, philosophy, and experience with a 
variety of classroom strategies and instructional practices may intersect with the features of the 
treatment or control conditions. Further, a design that incorporates the same instructor teaching 
both treatment and control sections in the same semester could introduce similar implicit or 
explicit biases. Recognizing that biases arising from either of these two strategies could not be 
reliably measured, thus neither of the approaches were utilized in the study. The potential 
limitations due to faculty awareness of the intervention and not being assigned both conditions 
simultaneously are consistent with related investigations of public health or sociological 
interventions. The experimental protocols aimed to reduce the impact of instructor biases and 
investigated as detailed in Section 3 below. The protocol intentionally compared instructors 
willing to change instructional methods, with a range of prior active learning experience, as it 
more genuinely replicates the state of faculty in mathematics departments across the nation.   
 
Students were randomly assigned to treatment or control conditions in the same meeting pattern 
just prior to each semester, but treatment students likely realized their course was reformed in 
their initial class meeting. In educational research studies, both the students and the instructor are 
keenly aware of the historic instructional norms in classrooms. College students are most likely 
to experience traditional univocal/direct instruction throughout their pre-college studies as well 
as in the majority of their college courses, thus students would easily detect the obvious 
differences in a treatment section and could never be ‘blind’ to the treatment. Students dropping 
the course or switching to a different section of the course (by institution’s official drop 
deadline) were removed from the analysis, preventing bias from their choices while following 
the pragmatic educational constraints. It would have been unethical and impractical to require 
students to remain in the assigned sections for the duration of the semester, as their schedules 
need to accommodate changes in other courses, work schedules, and family responsibilities. 
Overall, 80% of the randomly assigned students remained in their sections beyond the drop date 
and are included in the study. Roughly 12% of the randomly assigned students switching 
sections prior to the drop date, the majority of which selected a different class meeting pattern. 
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Less than 3% of the randomly assigned students swapped treatment for control, or vice versa, 
with roughly equal swaps from treatment to control as control to treatment and were excluded 
from the study. The remaining 8% of the randomly assigned students dropped the course for the 
semester before the drop date. Complete details of the student enrollment patterns are in Table 
S1. Potential biases arising in the student participant allocations were investigated for hidden 
level effects(59, 60) or confounders to establish limitations of the study and documented in 
Section 3 below.  
  
The pragmatic randomized trial strategy extended to the outcome measures as well. The 
assessment of student learning outcomes strove to generate knowledge on students’ 
understanding of the overall calculus course, following the coherent instruction strategies. The 
end-of-semester learning measures assessed the learning objectives common to many courses 
across the nation, documented in (26, 35) and described in the End-of-Semester Learning 
Measures Overview section below. The end-of-semester learning measures are therefore limited 
to providing insight on the whole of the course instruction and are the most valuable for 
institutions seeking to implement similar transformations. Ascribing effect to any of the 
individual instructional strategies with these measures is ineffective given the grain size of the 
measure as well as likely interference effects coming from their combination. Further, 
accounting for the complexities of human experiences and interactions prior to, and during the 
15-week intervention (both within the class and external to the class), would significantly limit 
the conclusions drawn from a more precise investigation. 
 
 1.3:  CONSORT Protocol Discussion 
In enrolling and assigning students to the study, the Consolidated Standards for Reporting Trials 
(CONSORT) (18, 33, 34, 61) framework was followed for pragmatic randomized trials and 
collected measures for that protocol. Following the checklist for that framework, the title and 
abstract (Item 1) references to the randomized nature of the trial and a brief description of the 
intervention.  
 
Introduction. The background for the study (Item 2) is described in the main body of this paper 
as well as in the methods section. It focuses on determining whether or not the use of the 
comprehensive Modeling Practices of Calculus active learning approaches in a calculus 
classroom results in increases in student learning over traditional instructional methods that can 
be measured.  
 
Methods. In the methods section the setting for the study is described as an urban, Carnegie 
classification Research-Very High, minority serving institution with a large population of 
students in general as well as in the mainstream Calculus 1 course offered on campus. Data were 
collected from both institutional research (for demographics and enrollment data) as well as from 
administered assessment tools that were offered to students in their classroom settings. Students 
who chose to enroll in Calculus 1 in a given term and who had no registration holds or other 
administrative issues that prevented participation were enrolled in the trial. These students were 
then randomly assigned to either the treatment group or the control group (Item 3). 
 
Students in the treatment group were assigned to sections of the course at the same day and time 
as their original choice mirroring those in the control group. The treatment sections were then 
conducted using the active-learning curriculum and pedagogy implemented in the Modeling 
Practices in Calculus approach as described in detail in the Methods section. Instructors were 
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selected for these treatment sections and provided professional development to support the 
implementation of this curriculum. Control students received instruction using the historical 
methods employed by the instructors who were assigned to their sections using normal 
departmental processes (Item 4). The objective of this process was to provide students access to 
different instructional practices that would improve their student learning outcomes and to 
measure these outcomes using a blinded assessment protocol (Item 5). The hypothesis is that the 
treatment curriculum will improve student learning. 
 
Outcomes were measured by refining a set of identical end-of-semester learning measures 
included as embedded final exam questions based first on the departmental practice of 
administering an identical final exam to all students in Calculus 1. The identical measures were 
based on items developed collaboratively by department faculty that were aligned to existing 
learning outcomes established for calculus and used in university accreditation processes. 
Historical exam questions were reviewed by a group of instructors drawn from both treatment 
and control sections during the project and sets of assessment items were agreed upon to be used 
in a commonly administered final exam. Exam items were aligned to national standards. Exams 
were administered to all students in calculus sections and so any student in the trial who 
completed the semester in their assigned sections were administered an exam that included the 
blocks of items and these questions were identical for both groups. The exams administered to 
treatment and control students were then blinded and assessed using a rubric by multiple 
independent evaluators (Item 6). Evaluators cross-calibrated their scoring and the end-of-
semester learning measures scores from all evaluators were recorded and averaged. Additional 
outcomes were measured using pre- and post-surveys administered in the classrooms.  
 
In total, 1,058 students were assessed for eligibility after having enrolled in a calculus 1 section 
designated for randomization. Of these, 1,019 were able to be included in randomization and 
were assigned to either the treatment or control groups. Subsequently 516 students were assigned 
to the treatment group and 417 remained in the treatment section at the drop/add deadline while 
99 left either for a different calculus section or left calculus altogether before the date when 
students could change schedules with no impact on grade assignment. At the same time 503 
students were assigned to the control group with 394 remained in the treatment section at the 
drop/add deadline in the control condition. Finally, 44 students in treatment group did not 
complete a final exam and are designated “lost to follow-up,” leaving 373 students with 
analyzable outcomes. In the control group, 84 students did not complete a final exam and are 
designated “lost to follow-up,” leaving 310 students with analyzable outcomes in the control 
group. The sample size was dependent on student enrollment for the initial population of eligible 
participants and was limited by administrative factors such as academic holds. After assignment, 
treatment and control populations were limited by student departure from the calculus course 
altogether or student movement to other sections of calculus. These data are reported in the 
Methods section and in the flowchart in Fig. S1 (item 7). Randomization was performed by a 
team member not involved in course administration, content or measure development, or student 
enrollment and was performed using R (62) after obtaining lists of students who had enrolled in 
offered calculus sections in a given term. No restrictions were applied. The randomization 
resulted in enrollment lists provided to the registrar for assignment to treatment sections. These 
lists were hidden from research team members and from instructors until after classes began. 
Once enrolled in their courses, instructors and students were no longer blind to the intervention 
as it is impossible to mask the actual curriculum during implementation (Items 8, 9, 10 and 11).  
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Outcomes from the study were analyzed to determine effect size (Cohen’s d) for any difference 
in the identical end-of-semester learning measure item scores as well as using a fixed-effects 
model and comparison of paired section means to identify any level effects related to course or 
instructor levels within the study (Item 12).  
 
Results. Participant flow, recruitment, baseline data (Items 13, 14, and 15) are described in the 
methods section. The number of participants in each group included (Item 16) in the analysis are 
also in the Methods section as well in the Supplementary Materials information below with the 
outcomes and estimation (Item 17) along with subgroup analysis (Item 18). Any adverse events, 
mostly related to the assignment of students who had academic holds or other departure events, 
are described in the Methods section (Item 19).  
 
Discussion. A discussion of the main results, generalizability and overall evidence (Items 20, 21, 
and 22) are provided in the main paper and in more detail in Sections 3.2.1 to 3.2.4 of the 
Supplementary Materials, below. 
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Fig. S1: CONSORT 2010 Flow Diagram with Trial Enrollments, Assignments, and 

Analysis Outcomes for Participants 
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2: Materials 
 
 2.1: Modeling Practices in Calculus Pedagogy and Curriculum Overview 
The study utilized a newly developed collection of pedagogic strategies and classroom materials 
that implemented active learning centered classroom practices in the treatment intervention. The 
Modeling Practices in Calculus (MPC) approach is designed to bring the authentic practices of 
mathematicians into the classroom, by facilitating active student engagement in the practices of 
mathematicians to learn calculus in a student-centered environment. The pedagogy and 
curriculum followed recommendations established by the major mathematical organizations (21, 
63) and draws on best practices from across the mathematical education research spectrum, 
discussed below. The MPC approach is a conceptual framework for learning introductory 
calculus. Students begin with a fundamental model of mathematical behavior, such as limits, and 
continually develop and expand their model based on additional considerations, such as 
continuity. The MPC approach incorporates five essential features:  
 

1. Practices of Mathematicians. The core of the MPC approach is the process of students 
developing their understanding of calculus by engaging in the practices of 
mathematicians, including: sense making and constructing an understanding of 
mathematical concepts; solving mathematical problems; adaptive reasoning; modeling 
with mathematics; using appropriate tools strategically; building mathematical 
communication skills; and connecting mathematics with other disciplines. These 
practices of mathematicians are centered around the published recommendations for 
curricula and pedagogy from professional mathematical associations (21, 64, 65). 

2. Cooperative Learning. Students work in small groups cooperatively to accomplish 
shared learning goals while providing each other with formative feedback (52, 66–70). 
Students work together to complete structured learning activities that involve sharing 
ideas, improving skills, developing interpersonal skills, and evaluating group 
performance.  

3. Argumentation/Metacognition. Students engage in mathematical argumentation on 
course problems and topics, a process of dynamic and meaningful social discourse for 
discovering new ideas, providing justifications, convincing others, and evaluating claims 
in both group and whole-class discussions (71–73). The inclusion of instruction 
promoting mathematical argumentation can provide a deeper understanding of 
mathematics as students become generators of knowledge out of their reasoning and 
sense-making (73).  

4. Mathematical Fluency. Mathematical fluency includes being able to solve problems 
accurately, efficiently, and with flexibility (64). Students build fluency, by noticing 
mathematical relationships and using strategies through the study and small group / 
whole class discussions of various concepts in course learning activities, as well as 
through tasks that promote reasoning and problem-solving.  

5. Culturally Responsive Environment. The MPC model is centered around Ginsberg and 
Wlodkowski’s (74) four motivational conditions for culturally-responsive teaching: 
establishing inclusion(75), developing attitude, enhancing meaning, and engendering 
competence in all proposed activities. Students are provided with an immersive, 
transformation learning experience that allows them to construct their understanding by 
working with each other (76), Learning Assistants (LAs), and faculty. LAs, 
undergraduate near peers prepared to foster learning (22, 74), are integrated into the 
classroom to facilitate learning with the groups. The MPC approach offers a classroom 
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environment conducive to learning by allowing students to try out their ideas in a low-
stakes environment with peers, receive ongoing formative assessment, and participate in 
a learning community(23, 77). The LAs are natural agents of this learning community, as 
their demographics are that of the students (i.e., all LAs are undergraduates), who provide 
insights and connections from the point of view of a recent participant in the course. As 
former students successful in calculus, LAs use their own backgrounds and experiences 
to promote students’ success(78).   

  
There are two immediate antecedents of the Modeling Practices in Calculus approach: Modeling 
Instruction in Physics (79) and SCALE-UP Calculus (24). Modeling Instruction in Physics in 
university physics instruction has been taught by numerous faculty at Florida International 
University since 2003. Modeling Instruction in Physics is organized as an integrated, studio-
based, lecture-free environment where students develop their understanding of physics by 
modeling the practices of physicists. These practices include carrying out experiments to 
discover the underlying physics, comparing results with others to form consensus on the rules 
and laws of physics, negotiating shared meaning (including terminology, physical concepts and 
quantities, and relations) and then refining understanding through additional practice and 
experimentation. Modeling Instruction in Physics has been institutionally sustained for almost 
two decades due to evidence of its profound impact on students including those from historically 
underrepresented groups. Evidence includes: 1) significantly improved conceptual understanding 
and course outcomes overall and across gender, race, and ethnicity groups, when compared to 
traditional instruction (80, 81); 2) the first improved favorable attitudes towards physics and 
physics learning measured in an introductory physics course (82, 83); 3) and increased access to 
physics degree by underrepresented groups (84). It was also part of programmatic efforts that 
lead to dramatic increases in the number of physics majors and graduates at FIU, thus serving as 
inspiration for the current project. The other root of the MPC approach is SCALE-UP Calculus 
(24) which was developed and taught for many years at Clemson University (including two of 
the current authors). SCALE-UP Calculus also uses a studio-based approach complementary to 
Modeling, while relying on mini, or targeted, lectures. The development of the MPC curriculum 
began with much of the SCALE-UP topical coverage and integrated Modeling Instruction-based 
pedagogical approaches into the curriculum. Refinement of MPC based on student experience 
and formative feedback from instructors and LAs has continued every semester since the project 
began. 
 
MPC implements ambitious teaching practices (20, 26, 85) for developing conceptual 
understanding, procedural fluency, strategic competence, adaptive reasoning, and productive 
dispositions and as outlined specifically for Calculus in the Mathematics Association of 
America’s 2015 report MAA National Study of College Calculus (26). Elements of both good and 
ambitious teaching practices are outlined and observed in the MAA Characteristics of Successful 
Programs of College Calculus study (26), Bressoud and Rasmussen’s Seven Characteristics of 
Successful Calculus Programs (86), and additional studies (27, 87, 88). Many of these practices 
form the core of the MAA Instructional Practices Guide (20). The development and 
implementation of the MPC reflect an integration of multiple aspects from these studies as well 
as multiple semesters of development and revision. 
 
 2.2: Modeling Practices in Calculus: Classroom Learning Strategies 
The MPC model was developed to engage students in the practices of mathematicians and 
potentially experience the joy of mathematics. The curriculum is offered in studio classroom 
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environments with minimal lecturing, with most of the class time devoted to students working in 
groups at small tables to collectively develop their understanding through guided notes, complete 
pre-designed learning activities, write-up solutions on whiteboards, and conduct board meetings. 
The curriculum is based on Scale Up Calculus (24), which includes guided inquiry notes and 
structured learning activities but modified to promote practices of mathematicians as well as a 
culturally responsive environment. 
 

 

Fig. S2: The Modeling Practices of Calculus Learning Cycle 

 
The MPC curriculum is organized as a set of units divided into learning cycles which span 
multiple class sessions. The learning cycle is illustrated in Fig. S2 and described in the following. 
MPC units begin with a New Concept Initiation phase (top of Fig. S2, that can include a brief 
introduction of a new concept or a review of a previous class topic and may include a set of 
warm-up question for the students. Then, students, working in groups, actively work through a 
set of guided inquiry notes that develop their understanding of the core calculus concepts, such 
as limits, rates of change, related rates, optimization, and integration. The notes are presented as 
a series of mathematical investigations, where students proceed through concept development 
with designed questions and problems that lead them to important insights and challenge (and 
build) their mathematical toolset.   
 
In the Engaged Learning phase (right of Fig. S2), students work through Learning Activities in 
groups in order to build their knowledge while working through a set of problems designed to 
develop mathematical practices and skills. During these learning activities, students are asked to 
reflect on the mathematical concepts of the day, describe these concepts to their peers in their 
own words, choose appropriate problem-solving strategies, and validate peers’ ideas within their 
groups. Thus, the MPC pedagogy promotes social metacognition through meaningful and 
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structured learning activities that encourage discussions about misconceptions and construction 
of shared knowledge.  

 
In the Coalescing Knowledge and Building Understanding phase (bottom of Fig. S2), students 
summarize the knowledge they have developed on portable whiteboards, participate in group 
discussions and/or test their knowledge on group quizzes. This coalescing of knowledge allows 
students to work collaboratively to write up and present solutions they developed on 
whiteboards, a practice perceived by students as analogous to preparing a publication. The social 
metacognition continues as group members must monitor each other’s thinking and make 
suggestions to prepare their group whiteboard.  
 
In the Reflection and Communication phase (left of Fig. S2), students present their whiteboards 
to the whole class and/or participate in faculty-led class discussions. Board meetings are where 
groups present their findings to the whole class, akin to publishing or presenting results to the 
community. Lessons learned are codified through the board meetings when multiple groups 
come to consensus on their findings. Spurious or unexpected results lead to dynamic 
conversations that can identify common misconceptions or prime for future learning. For 
instance, when students transition from evaluating limits with a graphical representation to 
computing limits without a visual representation, board meetings allow groups to check and 
validate other group members’ way of thinking and writing up solutions, since misconceptions 
regarding limit notation, algebra and simplification often arise when computing limits. 

 
Immersed throughout all phases of the learning cycle is persistent guidance and formative 
feedback, thus promoting a culturally responsive learning environment. Students become 
accustomed to trying out their ideas in a low-stakes environment, receive ongoing formative 
feedback from their peers and the instructional team, and participate in a community of learners. 
Grades are assigned based on an absolute scale, with no curve, thus it is in the best interest of all 
students to develop their knowledge through cooperative learning. The instructor promotes the 
safe learning environment by regularly messaging the value of making mistakes and asking 
questions as a central element of learning mathematics. The low-stakes environment is also 
enhanced as Learning Assistants (LAs), or trained undergraduate classroom facilitators, are 
integrated into the classroom to support learning with groups and provide valuable information 
to instructors about student interactions (22, 89). LAs help to center mathematical discussions in 
and between groups, as they constantly interact with groups and have multiple opportunities to 
redirect students’ questions and comments to the groups. LAs are natural agents of this culturally 
appropriate model, as their demographics are that of the students, who provide insights and 
connections from the point of view of a former student in the course. LAs serve to mitigate 
‘blind spots’ that experienced mathematicians bring into dialogues, which helps to increase the 
flow of ideas from the students to instructors, so that discussions are more strongly centered on 
students’ points of view. They also help students develop skills, such as creating and defending 
ideas, making connections between concepts, and solving conceptual problems (90). The 
classroom strategies draw out student interaction in this way intentionally to enhance the 
connection of mathematical thought and concept development to the student experience. 
Through the ongoing dialogues, faculty and LAs have a portal into student ideas and are 
constantly adapting to their needs. 
 
It is useful to note that not all class sessions follow the same pattern, as there are times the 
faculty recognizes or identifies a need to delve deeper into a topic and adds additional learning 
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activities before proceeding into a new unit. Faculty may also want to refine knowledge and have 
students expand upon their whiteboard summaries and re-discuss one or more topics. These 
adaptations are illustrated as the dashed line bounded segments in the middle of Fig. S2. In these 
transitions a facilitator may choose to regroup around an idea, have students revise their 
understanding and try again, or bridge from one portion of a concept to another. There are also 
accommodations related to the scheduled class periods, including adjusting activities to fit within 
the allocated time slot. A Learning Activity may be split into two parts so that the first is 
completed one day and the second is completed in the following class meeting. 

 
Faculty in the treatment group participated in professional development activities to prepare for 
their MPC implementation. They participated in a 2-day summer professional development 
workshop that highlighted the MPC approach, provided the curricular structure and summarized 
the pedagogy. They were given access to the full set of MPC learning materials including basic 
day-to-day pacing guides, a sample course syllabus with learning outcomes and a course 
schedule, guided instructor notes for student learning facilitation, and learning activities to build 
skills and understanding within topic areas. Weekly preparation sessions were held to provide 
ongoing guidance on instructional strategies, following the usual practice for FIU faculty using 
active learning. Faculty met to discuss ongoing progress, prepare for upcoming topics, 
collaborate on assessments, and adapt to changing course demands during the semester. MPC 
materials were situated in an online repository with authenticated access provided to faculty 
individually each term. Materials were provided to students in hard copy form during class time 
on a daily basis depending on the scheduling of topics. The project placed no restrictions on 
preparation or classroom materials for faculty in the control group. They were free to prepare as 
individuals or in groups and utilize any learning materials of their choosing. They were not 
provided with access to the MPC materials. 
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3: Methods 
 
This study carried out a large-scale pragmatic randomized trial to establish a new standard of 
care for calculus instruction. As described in the main body of the paper, the treatment group 
used the Modeling Practices of Calculus (MPC) pedagogy and curriculum with the control group 
employing pre-existing instructional practices (primarily traditional lecture). Identical end-of-
semester learning measures were used to rigorously assess student learning outcomes in the two 
conditions in the randomized trial. Sets of open answer, learning measure questions were 
collectively developed (see Section 3.3.1) and embedded as part of the identical end-of-semester 
learning measures given each semester to the treatment and control sections in the MPC Calculus 
1 trials in order to assess end-of-course student learning in each of the groups.  
 
The Methods section includes investigations of potential bias in the student participants and 
instructors, end-of-semester learning outcome measures with samples and analyses, and odds of 
success ratios calculations for students by group in the course, The participant investigations 
include: 1) student participant randomization and enrollment patterns, 2) equivalence of student 
populations 3) comparison of instructor participant characteristics, 4) student and instructor 
differences within clusters, 5) a full mixed effect model to estimate variance in learning outcome 
measures, and 6) a sensitivity analysis to investigate possible unmeasured confounders. 
 
 3.1: Student Participant Randomization and Enrollment  
 
Student participants in the study were students that enrolled in a number of pre-designated 
sections of the Calculus 1 course (3, 5 and 8 sections over the 3-semester experiment) using the 
Institution’s class registration system. To accommodate the randomized assignments, each of the 
experimental sections doubled in size from the usual 40-seats to 80-seats prior to enrollment 
opening. Instructor names and section sizes were invisible to students throughout the enrollment 
phase. Just prior to the start of the semester, students that were enrolled in the 80-student sections 
were randomly assigned to the treatment and control conditions by randomly selecting half of the 
enrolled students in each designated section and assigning them to treatment sections (with new 
section numbers), with the original sections serving as control. Enrollment capacity in both 
treatment and control sections followed the institutional standards for the course. After 
randomized assignments were completed, all sections were open to additional enrollment and 
course changes as is the usual, customary institutional practice. Students changing sections or 
leaving the course prior to the institutional drop deadline (7 days into the semester) were 
excluded from the study. 
 
Randomization of assignment was performed for all students in each 80-seat section who did not 
have an academic or other hold preventing a registration change. Students with holds or other 
constraints were excluded as noted in the CONSORT flow chart for participants (Fig. S1) and 
summarized in Table S1. If a student was excluded, additional students were randomly chosen to 
replace them in their assignment in order to balance the populations according to the number 
currently enrolled in the open 80 seat section. In the Fall of 2019, a group of students were 
randomly chosen for assignment to the treatment group to compensate for students who were 
excluded in this way while the total enrolled population decreased in the 80-seat sections. This 
resulted in a small differential between the treatment (N=270) and control (N=257) populations 
for that semester. These students were included in the assigned treatment group as they were 
randomly assigned to treatment from the total population.  
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In Fall 2018, 115 students were randomly assigned to the control (3 sections) group and 115 
students were randomly assigned to the treatment (3 sections) group. Of those, 88 students in the 
control group and 91 in the treatment group remained enrolled at the drop/add deadline and had a 
grade outcome on the class roster of their respective section. In the Spring semester of 2019, 130 
students were randomly assigned to the control (5 sections) group, and 131 to the treatment 
group (5 sections). Of the students in this term, 97 students in the control group and 108 in the 
treatment group remained enrolled at the drop/add deadline and had a grade outcome on the class 
roster of their respective section. In the Fall semester of 2019, 257 students were randomly 
assigned to the control (8 sections) group, and 270 to the treatment group (8 sections). In this last 
term of the study, 209 students in the control group and 218 in the treatment group enrolled at 
the drop/add deadline and had a grade outcome on the class roster of their respective section. 
 
Across all three semesters of study, the within-groups outcomes (e.g. within the treatment or 
control groups) were highly consistent and were also consistent with the complete section data 
(e.g. counting all students who enrolled in each section, regardless of trial eligibility, looks 
largely the same as the trial-only analysis reported here), indicating that allowing students to 
drop/add sections during the regular, open registration period after the initial assignment did not 
impact the measured outcomes. Specific details of enrollment, exclusion, assignment, and 
completion for both groups are included in the CONSORT protocol discussion in Section 1.3 
above. 
 
Instructors were assigned to the treatment and control course sections before randomization of 
student enrollment. Treatment section instructors were faculty open to adopting and 
implementing the MPC curriculum and pedagogy. They were assigned to treatment sections, 
participated in professional development, and had access to the full MPC curricular materials. 
Identification of control instructors was only dependent on instructor preference of course time, 
with control faculty using their traditional instructional practices. 
 
Table S1 summarizes the randomized trial allocations, enrollment patterns and success summary 
observed for students in the three terms of the study. This clarification is provided as registration 
procedures may vary across institutions. The institutional procedures allow for registration 
changes, i.e., drops and adds, freely and without penalty for 7 days after the first day of the 
semester. After that date, students may request enrollment changes and approved changes are 
designated as late drops or withdrawals on the course roster and student’s transcript. There were 
811 Study Participants, i.e., students who were randomly assigned to a treatment or control group 
and then remained in their assigned section through the institution’s regular drop/add deadline. 
They either received a course grade or were assigned a late drop or withdrawal indicator for 
leaving the course after the institutional drop/add period deadline. The remainder of the students 
dropped their assigned section during the institution’s drop/add period. Students who switched to 
another Calculus 1 section in the same term during the drop/add period are identified as 
switchers. Students who departed calculus for the semester after being assigned to treatment or 
control conditions are identified as departers.   
 
Table S1 illustrates that no unusual enrollment patterns existed for treatment or control sections. 
Roughly 80% of all students assigned to treatment or control sections remained in those sections 
past the drop/add deadline. Twelve percent of the students in treatment and control sections 
switched to a section in the same semester, 75% of which selected a different meeting pattern. 
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The remaining 8% of students in treatment or control sections left their section for the semester. 
These enrollment patterns are typical for the institution’s introductory courses and are often the 
result of switching into other classes, job schedule changes, and/or adapting to family 
responsibilities. Treatment and control sections showed similar enrollment patterns, thus it is not 
likely the enrollment patterns biased the results. 
 

Randomized Allocations, Enrollment Patterns and Success Summary 

  Treatment Control Total 

Enrolled at Randomized Allocation - - 1058 

Excluded from Assignment - - 39 

Randomly Allocated to Treatment or Control 516 503 1019 

Study Participants: Remained in Assigned 
Section at Add/Drop Deadline  417 (81%) 394 (78%) 811 (80%) 

Succeeded with A/B/C in Course 332 (80%) 270 (69%) 602 (74%) 

Left Assigned Section for Another in Same 
Term (Switcher) 60 (12%) 64 (13%) 124 (12%) 

Left Assigned Section for Different Day/Time 47 49 96 

Left Assigned Section for Same Day/Time 13 15 28 

Left All Calculus 1 Sections in Term (Departer)  39 (8%) 45 (9%) 84 (8%) 
 

Table S1: Table of Randomized Trial Allocations, Enrollment Patterns, and Success Summary 
 

3.2: Equivalence of Student Populations and Investigation of Potential Demographic, 
Section or Instructor Level Effects on Outcomes  

Recognizing that student enrollment may change after randomization, faculty preferences 
regarding teaching must be taken into consideration for assignments, as well as the inability in a 
pragmatic randomized trial to blind the control or treatment conditions to students or instructors 
could introduce unexpected biases / contamination into the study, investigations into possible 
sources of unexpected biases were carried out. Demographics and academic backgrounds of 
treatment and control participants were evaluated for significant differences between populations 
that might have impacted outcomes, and characteristics of instructors in control and treatment 
groups were compared in an effort to identify any significant differences. Student learning 
outcomes in the study were measured using a collection of embedded end-of-semester learning 
measure questions as discussed in SM Section 3.3. These questions were scored anonymously, 
and student outcomes converted to a scaled score from 0 to 100 percent. This measure, 
LearningOutcome, is then used as the dependent variable to analyze student learning outcomes in 
the study. Multiple investigation of level effects related to individual sections were carried out 
from both the student and instructor perspectives including paired section mean analyses and 
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mixed-effect analyses as described here. No significant differences were found between groups, 
as detailed below. 
 

3.2.1: Comparison of Student Demographics and Academic Backgrounds  
Randomizing the assignment of participants to treatment and control groups seeks to ensure that 
underlying population characteristics are equivalent in each group. In this section, distributions 
of participant gender, race, ethnicity and university level in the treatment and control groups are 
examined for statistically significant differences (presented in Tables S2 and S3). In addition, 
participants’ incoming mathematics backgrounds as represented by high school grade point 
average (HSGPA), SAT mathematics score, ACT mathematics score, and university assigned 
Mathematics Placement Score (MPS) were examined and presented in Table S4. Equivalence 
was found in all measures across treatment and control groups. 
 

Demographics of Randomly Assigned Students 

  Treatment Control 

  Count Percent Count Percent 

Gender         

Female 283 55% 263 52% 

Male 225 44% 235 47% 

No Data Available 8 2% 5 1% 

Race or Ethnic Group         

Black or African American 59 11% 62 12% 

Asian Or Pacific Islander 34 7% 32 6% 

Hispanic 389 75% 380 76% 

Non-Resident Alien 24 5% 23 5% 

White / Not of Hispanic 
Origin 55 11% 52 10% 

Other 15 3% 9 2% 

No Data Available 13 3% 12 2% 

University Level         

College First Year 80 8% 106 10% 

College Sophomore 200 20% 188 18% 

College Junior 150 15% 123 12% 

College Senior 82 8% 79 8% 
Table S2: Table of Demographics (Gender, Race/Ethnicity, Class Standing) for Randomly 
Assigned Students in Treatment and Control Groups 
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To confirm the similarity of the various demographic and background indicators within the 
assigned populations, the demographics of those students assigned to treatment and control 
groups of the trial were compiled. The two groups were compared in total and across each 
semester with respect to demographic variables of gender, academic standing, and race/ethnicity 
(Tables S2 and S3). No significant differences were found in the assignments for control and 
treatment in any category, implying that the randomization introduced no unexpected bias. 
 
 Fall 2018 Spring 2019 Fall 2019 Total 

  Treatment Control Treatment Control Treatment Control Treatment Control 

Race or  
Ethnicity  N %  N %  N %  N %  N %  N %  N %  N % 

Asian 7 8 5 6 4 4 5 5 12 6 11 5 23 6 21 5 

Black or African 
American 12 13 11 13 16 15 13 13 23 11 30 14 51 12 54 14 

Hispanic 74 81 70 80 83 77 74 76 164 75 158 76 321 77 302 77 

White / Not of 
Hispanic Origin 6 7 5 6 11 10 15 16 32 15 20 10 49 12 40 10 

Gender                                 

Female 47 52 50 57 63 58 44 45 124 57 108 52 234 56 202 51 

Male 44 48 38 43 45 42 53 55 94 43 101 48 183 44 192 49 

University Level                                 

College First Year 22 24 23 26 6 6 10 10 40 18 52 25 68 16 85 22 

College Sophomore 32 35 36 41 42 39 35 36 91 42 78 37 165 40 149 38 

College Junior 20 22 19 22 40 37 27 28 62 28 53 25 122 29 99 25 

College Senior  17 19 10 11 20 19 25 26 25 12 26 12 62 15 61 16 

Total 91  88  108  97  218  209  417  394  

Table S3: Table of Demographics (Gender, Class Standing, Race/Ethnicity) by Semester for 
students in the study (i.e., enrolled at the end of the drop/add period on day seven of the 
semester). 
 
The university computes an institutional Math Placement Score (MPS) to guide course 
placement. This score is developed as a regression on student outcomes in mathematics courses 
and other student demographics including Pell grant eligibility, transfer student status, prior 
mathematics course outcomes, SAT and ACT mathematics subscores, and other available 
mathematics placement scores such as the ALEKS placement test. The MPS score assigns a 
student to a course where the regression model predicts at least a 70% likelihood of success 
(A/B/C) in the course. This data is included in Table S4. 
 
To measure student mathematics backgrounds using factors specific to externally comparable 
academic outcomes, a comprehensive Mathematics Background Score (MBS) was computed for 
students in the treatment and control groups. Here, the combined academic background data 
from SAT mathematics and ACT mathematics subscores with unweighted high school GPA and 
the institutional MPS by first scaling these scores to a range from 0 to 100 based on the 
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population mean and range of each measure and then taking the mean of all available scaled 
scores, ignoring data that was not available for a given student. The Mathematics Background 
Score was computed for 95% of student participants in the control and treatment groups and is 
included in Table S4.  
 

Mathematics Background of Randomly Assigned Students 

  Treatment Control 

Mean HSGPA Math 3.42 3.45 

% students with score 89 86 

# students with score 455 434 

Mean Math Placement Score 65.00 67.07 

% students with score 62 62 

# students with score 320 314 

Mean Math Background Score 65.02 65.97 

% students with score 95 95 

# students with score 490 478 

Total Possible Students 516 503 
Table S4: Table of Mathematics Background Information for Students in the Trial  

 
Finally, to develop a more comprehensive understanding of student mathematics backgrounds as 
they entered one of the study sections, in the Spring and Fall 2019 semesters, the Precalculus 
Concept Assessment (PCA) inventory (91) was collected at the beginning of the semester in both 
the treatment and control sections. The mean scores of that pre-assessment for both groups are 
also reported in Table S5. Within these data, students in the treatment and control groups have 
almost identical demographic characteristics as well as mathematical backgrounds, as expected 
with a randomized study. This consistency is evident in the total populations from all three 
semesters combined as well as within each semester.  
 

 Fall 18 Spring 19 Fall 19 

 CN TR p-value CN TR p-value CN TR p-value 

Unweighted 
HSGPA 

3.46 3.45 p = 0.8976 3.38 3.32 p = 0.1647 3.48 3.46 p = 0.5915 

PCA Prescore    9.3 8.7 p = 0.2783 9.8 9.5 p = 0.4379 

Table S5: Term-by-term comparisons (and the associated p-values from t-test comparisons) of 
control and treatment groups on students’ academic background information indicating 
mathematical preparation. The information includes means of their reported unweighted high 
school GPAs, and prescores on the PCA inventory on a 0 to 25 point scale. (CN = control 
sections; TR = treatment sections) 
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Examining all measures, no statistically significant differences between control and treatment 
populations are observed in the overall or semester-by-semester demographic or mathematics 
background data sets. No statistically significant differences are seen in reported unweighted 
High School GPAs, institutional Math Placement Scores, Mathematics Background Scores or 
PCA prescores. Finding no significant differences in the allocations for control and treatment in 
any category leads to the conclusion that the randomization introduced no unexpected bias. In 
the section below discussing the paired means of student mathematical background data, 
investigations of the differences in the mathematics backgrounds of students are examined and 
show no statistically significant difference even at the paired section level. 
 

3.2.2: Comparison of Instructor Characteristics 
Characteristics for faculty teaching both control and treatment sections were compared as groups 
and to the total group of faculty teaching calculus prior to the beginning of the trial to identify 
any potential biases. Instructors in treatment and control sections included mathematics 
department faculty and all were allowed to request specific course sections, following the 
department’s customary practice. Prior to beginning of each semester, both control and treatment 
instructors were assigned to sections based on their availability, other teaching obligations, and 
scheduling preferences, but not added to the course rosters. Faculty willing to implement the 
Modeling Practices of Calculus curriculum and pedagogy were recruited and prepared to teach 
the treatment sections, as noted above. The experimental sections were double the standard 
capacity and split into two sections at standard capacity (one for the control and one for the 
treatment section). Once the randomization of students was complete and these sections were 
split, both treatment and control faculty names were added to the section rosters. This process 
produced comparable faculty groups in both treatment and control conditions, when compared 
across a number of faculty characteristics.  
 
Faculty in both groups included full-time tenured/tenure-track (TT) and non tenure-track (NTT). 
All of the control faculty were full-time TT and NTT faculty. The treatment group consisted of 
full-time TT and NTT faculty and one part-time adjunct faculty. Faculty backgrounds were 
collected from surveys and institutional sources to develop categories that expressed the teaching 
experience, gender, active learning experience, and rank and are summarized in Table S6. Also 
tracked was the number of times a faculty member taught in each condition. There was one 
instance of one person teaching in the treatment group after having taught in a control section, 
but no faculty member who taught in the treatment group subsequently taught in the control 
group again. To examine for outliers in faculty instructor practice, historic student grade 
outcomes were compared across the treatment and control sections. Historic student success data, 
represented as the percent of assigned A/B/C grades in a course, for either Precalculus, Calculus 
I, or Business Calculus were collected for all faculty (treatment, control, or any other group) for 
the four semesters prior to the experiment (fall and spring semesters Fall 2016 to Spring 2018). 
These three courses were used to provide a representative student response to faculty 
effectiveness at the time of the experiment using similar level mathematics courses. Student 
outcome data from the prior 4 semesters and three courses was used to establish a comparative 
index for all faculty. 
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 Treatment Control 
Teaching Experience     

Less Than Five Years 11 3 
Five to Ten Years 0 2 

More Than Ten Years 5 11 
Gender     

Female 4 9 
Male 12 7 

Active Learning Experience     
None 5 3 
Low 4 9 

Medium 4 4 
High 3 0 

Rank     
Adjunct 1 0 

Non tenure-track (NTT) 12 11 
Tenured or Tenure-Track  3 5 

     
Total 16 16 

Student Success (A/B/C 
grades) percentage in 
Precalculus, Calculus I, and 
Business Calculus, Fall 2016 
to Spring 2018 

54% (N=643) 55% (N=2,514) 

 
Table S6: Treatment and Control Faculty Characteristics for the 16 treatment and 16 control 
sections. Instructor characteristics represent accumulated individual instances of instruction for 
each condition over the three-semester experiment counting repeated instances of faculty. 
Student success in prior courses is computed as an A/B/C grade in an instance of Precalculus, 
Calculus or Business Calculus for an instructor during Fall 2016, Spring 2017, Fall 2017, and 
Spring 2018 prior to the beginning of the trial. 
 
Overall, the faculty characteristics are generally similar. The most significant departure is the 
number of years of experience teaching. Faculty teaching treatment sections were typically less 
experienced, but both groups included a sample of experienced as well as comparable numbers 
of tenured research faculty. This may suggest that faculty new to the field are more open to 
trying new instructional techniques, though two treatment group faculty had substantial prior 
teaching experience. Student success rates for faculty in treatment and control were not 
statistically different, indicating neither group had unusually high or low passing rate histories. 
An investigation of instructor level effects on student outcomes was carried out and presented in 
Section 3.2.4 below. 
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3.2.3: Student and Instructor Differences Within Clusters 
Analyses of section level differences for student backgrounds and student end-of-semester 
learning measures was carried out to check for equivalence at the section level. The first analysis 
in Section 3.2.3.1 explores the variability of the student mathematics backgrounds within time of 
day and day of week section clusters, and the second in Section 3.2.3.2 examines the learning 
measure data within those same course pairings that resulted from the random allocation of 
students to different conditions.  
 
Section 3.2.3.3 compares end-of-semester learning measures data to the prior course student 
success data for instructors teaching in the study arms collected from institutional data during the 
two years prior to the study in Precalculus, Calculus I, and Business Calculus. These 
relationships are then investigated for covariation with outcomes before moving to the full mixed 
effects model in Section 3.2.4.  
 

3.2.3.1: Paired Means of Student Demographic Variables 
In a randomized trial, randomization is expected to create equal variation of the characteristics of 
the populations in each group, and as noted earlier in Section 3.2.1, the treatment and control 
student groups have equivalent distributions of all measured demographics an no unusual 
patterns of enrollment are observed. As an initial investigation, the High School Grade Point 
Averages (HSGPA) and Mathematics Background Scores (MBS) of students in paired sections 
created by the randomization process were analyzed to determine how the student populations 
were distributed within that level. The paired means of the unweighted high school GPA 
(reported in Table S4) were examined and no significant difference was found (t(15)=-0.76, 
p=0.46, n=16) in the incoming backgrounds of students in the treatment and control groups by 
section. These paired means are shown in Fig. S3 (left). 
 

 
Fig. S3: Paired Section Means for Unweighted HSGPA (left) and Math Background 

Scores (right) by Treatment Group 
 

Similarly, paired means of the scaled composite Math Background Scores (reported in Table S4) 
were examined and no significant difference was found (t(15)=-0.93, p=0.37, n=16) for students 
in the treatment and control groups by section. These paired means are shown in Fig. S3 (right). 

 
Additionally, sample distributions for student mathematics background score (MBS) data 
computed (above) were compared using Kolmogorov-Smirnov tests and Wilcoxon rank sum 
tests (92, 93) with continuity correction for both the total populations in treatment and control as 
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well as the subpopulations in paired sections. In all cases, both tests found the sample 
distributions to be the same for treatment and control. Indeed, the paired samples were found to 
be more similar distributionally due to their structural association.  
 
Direct comparisons as well as Kolmogorov-Smirov and Wilcoxon tests show that randomization 
of treatment and control section assignments allocated students equivariantly both within those 
constraints, as well as across the entire study population, as intended. This confirms that student 
mathematics backgrounds were equivalent at the time of condition assignment, which would be 
expected for randomized assignment. 
 

3.2.3.2: Paired Means of Section Level Student Outcomes 
A visual inspection of the paired section means of the end-of-semester learning measures for the 
treatment and control groups, along with a t-test of the within pair section means, confirms the 
overall differences in outcomes for the two populations. The paired section means were found to 
be statistically significantly different ( t(15)=5.57, p<0.0001, n=16 ) and the within-pair section 
means reflect the overall general trend found in the data set as shown in Fig. S4.   

 
 

Fig. S4: Paired Section Means for Identical End-of-Semester Learning Outcome 
Measures, with significant difference indicated by the top line. 

 
 

3.2.3.3: Instructor Level Effects on Outcomes 
Instructor instructional practices and their potential impact on outcomes were also investigated to 
determine whether or not instructors in the treatment or control conditions exhibited historical 
instructional patterns that were consistent or not with each other and with historical departmental 
patterns. Historic student success rates (grade of A, B or C in the course) were used as a proxy 
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for faculty instructional impact on students at the time of the experiment. Institutional data were 
collected for all Calculus 1 instructors’ Precalculus, Calculus I, or Business Calculus sections for 
the fall and spring semesters from Fall 2016 to Spring 2018. During this time, 51 distinct 
instructors taught 9,095 students in 90 sections over four semesters. For comparison, 9 of the 12 
control group instructors taught 2,514 students in 37 sections while 5 of the 7 distinct treatment 
group instructors taught 643 students across 10 sections.  
 

   
Fig S5: Historic percentage of students with A/B/C grades (passing rate) in sections of 
Precalculus, Calculus I and Business Calculus for all math faculty, treatment, and control 
instructors prior to the beginning of the trial. Lower and upper box boundaries correspond 
to 25th and 75th percentiles. Mean for groups indicated by solid dot with vertical error 
bars equal to two standard deviations. 

 
The box with scatter plot shown in Fig. S5 illustrates the historic relationship of the student 
course success outcomes for the three groups. Note that both treatment and control section 
instructors were representative of the existing instructional outcomes in these mathematics 
courses. To quantify any potential relationships between the historic student success rates in 
Precalculus, Calculus 1, and Business Calculus sections for these instructors with the end-of-
semester learning measures score outcomes in the assignment group of students in the trial, the 
difference, SuccessVar, between each instructor’s success percentage in each section they taught 
during this time period and the overall departmental success rate in the three courses (=57.1%, 
sd=15.4) was computed. No significant differences (t(524.72) = 1.2716, p = 0.2041) between the 
success rates of the treatment (=54.8%, sd=13.6) and control group (=56.4%, sd=10.2) 
instructors is observed, and no statistically significant effects of this variable, SuccessVar, are 
observed on the outcome variable LearningOutcome (F(226,1) = 0.5097, p = 0.4757). 
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3.2.4: Full Models of Study Outcomes and Effect Analyses 
The primary goals of the study included collecting measures of student learning that could be 
used to quantify the extent to which the treatment condition impacts those outcomes represented 
by the anonymously scored end-of-semester learning measures. These data also provide insight 
into the extent to which that impact might be expected to be repeatable in other circumstances 
(94, 95). 
 
The main document reports the effect size measured for the study taken as a whole. The 
following provides models and analyses of variance to investigate the ways in which covariates 
and other regressors impact the relationship of the learning outcome measure with the treatment 
condition. Models are presented that analyze student learning outcomes measured using the 
identical end-of-semester student learning measures by constructing mixed-effects models of that 
outcome dependent on existing student demographic data with random effects from section and 
instructor level factors. Sensitivity analyses are provided to characterize possible confounding 
within these results. 
 

3.2.4.1 Mixed-Effects Model of Student Learning Outcome 
Institutional data were collected and used to construct the Mixed-Effects Model (MEM) below 
with student demographics as fixed effects, the treatment condition as a fixed effect, and the 
section levels (Section), time of day/day of week levels (SecPair), and instructor levels (TIDw) 
as random effects. Student demographic variables included student mathematics background 
score (MBS), gender (Gender), and race and ethnicity (RE). A description of all the variables 
involved the model is shown in Table S7. 
 
Interactions between Treatment and MBS along with Treatment and Gender were initially 
included to control for possible dependence on those factors. Both interactions were found to be 
statistically nonsignificant (t(658.9)= –0.250, p=0.803 and t(646.0)= –0.099, p=0.921, 
respectively), and so the model with no interactions was used. Linearity, normality, and 
homogeneity of variance assumptions were all assessed through visual inspection of the 
residuals, finding no significant violations. Homogeneity of variance was further confirmed 
using a Levene’s test (F(31) = 0.991, p = 0.483). Considering the cluster level effects of Section, 
SecPair, and TIDw as random effects, the mixed effects model below was constructed to explore 
cluster level random effects in the study data as it models section clustering, time of day/day of 
week effects and instructor effects in the data: 
 
𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑖,𝑗𝑘𝑙 ~ (𝛽0 + 𝛾𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝑖𝑗 + 𝛾𝑆𝑒𝑐𝑃𝑎𝑖𝑟𝑖𝑘 + 𝛾𝑇𝐼𝐷𝑤𝑖𝑙) + 𝛽1𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 + 𝛽2𝑀𝐵𝑆𝑖

+ 𝛽3𝐺𝑒𝑛𝑑𝑒𝑟𝑖 + 𝛽4𝑚𝑖𝑅𝐸𝑚𝑖 + 𝜖𝑖  
 
𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑖 is the 𝑛𝑖𝑥1 vector of students’ scores. Table S8 shows the model structure 
for the full model with all demographic covariates on the left and the model with only the 
Treatment fixed effect on the right for comparison. 
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Field Description Type 
𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑀𝑒𝑎𝑠𝑢𝑟𝑒 Anonymously scored measures of calculus 

understanding from the end-of-semester 
learning measure scaled to [0,100] 

Outcome; 
continuous 
variable  

𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 Assigned group as 0=control or 1=treatment Randomized 
Assignment; 
categorical with 
two levels 

𝑀𝐵𝑆 Math Background Score scaled to [0,100] Demographic 
Continuous 

𝐺𝑒𝑛𝑑𝑒𝑟 Self-Identified Gender as 0=male or 
1=female if reported 

Demographic  
categorical with 
two levels 

𝑅𝐸𝑢  Race or Ethnicity encoded as 0 or 1 for 
RE1=Black or African American, 
RE2=Hispanic or Latino/Latina, RE3=White, 
RE4=Others Combined Due to Low 
Numbers 

Demographic 
categorical with 
four levels 

𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝑗 
 

Section assignment induced by Course Split 
Random Assignment with 𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝑗  = 0 or 1 
depending on student presence in cluster 
level j=1 to 32 

Cluster; 
Categorical with 
32 levels   

𝑆𝑒𝑐𝑃𝑎𝑖𝑟𝑘 Section pairing induced by Time of 
Day/Day of week chosen for registration by 
student prior to course split random 
assignment with 𝑆𝑒𝑐𝑃𝑎𝑖𝑟𝑘  = 0 or 1 
depending on student presence in cluster 
level k=1 to 16 

Cluster; 
Categorical with 
16 levels   

𝑇𝐼𝐷𝑤𝑙 Instructor of record for course with 𝑇𝐼𝐷𝑤𝑙  
 = 0 or 1 depending on student presence in 
cluster level l=1 to 19 

Cluster; 
Categorical with 
19 levels   

   
Table S7: Demographic and Other Study Data utilized in MEM Analyses 

 
  



Submitted Manuscript 
 

43 
 

 
 Full Model Reduced Model 

Predictors Estimates std.  
Error p Estimates std.  

Error p 

(Intercept) 0.69 
(-9.39 – 10.78) 

5.14 0.892 47.75 
(43.11 – 52.40) 

2.37 <0.001 

Treatment [TR] 15.79 
(10.36 – 21.22) 

2.77 <0.001 15.37 
(9.44 – 21.29) 

3.02 <0.001 

MBS 0.78 
(0.66 – 0.90) 

0.06 <0.001 
   

Gender [F] -3.80 
(-6.44 – -1.15) 

1.35 0.005 
   

RE [2] -9.30 
(-16.14 – -2.47) 

3.48 0.008 
   

RE [3] -2.26 
(-7.27 – 2.74) 

2.55 0.374 
   

RE [4] -0.29 
(-6.71 – 6.14) 

3.27 0.930 
   

Random Effects 
σ2 288.60 365.39 
τ00 17.36 Section 27.76 Section  

13.38 TIDw 11.85 TIDw  
12.44 SecPair 21.73 SecPair 

ICC 0.13 0.14 
N 32 Section 32 Section  

19 TIDw 19 TIDw  
16 SecPair 16 SecPair 

Observations 671 671 
Marginal R2 /  
Conditional R2 

0.303 / 0.394 0.121 / 0.247 

AIC 5746.537 5911.859 
log-Likelihood -2862.269 -2949.929 

 
Table S8: Mixed Effects Model with Random Intercepts for Section clusters – Full Model with 
all Demographic Covariates (left) and Reduced Model with Treatment Fixed Effect only (right) 

 
Restricted maximum likelihood fitting was used for these models with the lme4 (96) package in 
R. Tests of fixed effects were conducted using t-tests with Satterthwaite degrees of freedom 
approximations computed with the lmerTest package (97). Satterthwaite degrees of freedom 
were used to control for Type I error rates in the multilevel models employed (98). The total 
explanatory power of the model is substantial (conditional R2 = 0.39) and the part related to the 
fixed effects alone (marginal R2) was found to be 0.30. Within the model, the effect of Treatment 
[TR] is statistically significant and positive ( = 15.79, 95% CI [10.36, 21.22], t(660) = 5.71, 
p < 0.001), in the presence of the effect of MBS (statistically significant and positive,  = 0.78, 
95% CI [0.66,0.90], t(660) = 12.68, p < 0.001), the effect of Gender [F] (statistically significant 
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and negative,  = -3.80, 95% CI [-6.44, -1.15], t(660) = -2.82, p = 0.005), and the effect of RE 
[2] (statistically significant and negative, = -9.30, 95% CI [-16.14, -2.47], t(660) = -2.67, p = 
0.008). Confidence Intervals (CIs) and p-values were computed using a Wald t-distribution 
approximation.  
 
In the reduced model, the intercept in the Treatment only fixed effects is 47.75 and the 
coefficient of Treatment is found to be 15.37. The random effect variance describing how section 
levels vary is 365.39. The value of the adjusted R2 for the fixed effects portion of the full model 
was computed as 0.303 which implies (99) an effect size of Cohen’s f = 0.659, close to that of 
the total study effect observed. The adjusted R2 for the random effects in the full model is 0.085 
which implies an effect size of 0.305 for the random portion. Computing the same terms for the 
reduced model to approximate the portion of the variance related to the Treatment effect, the 
model indicates an adjusted R2 = 0.121 for the fixed effects portion which implies an estimated 
effect size of 0.371 (small-medium) in the presence of random section level intercepts. Using the 
methods from (99, 100) and (101) to compute the adjusted R2 values for the fixed effects in the 
model, the variance explained by the fixed effects are shown in Table S9. 

Term 
Partial R2 
estimate CI lower CI upper 

Full 0.303 0.23 0.396 
Treatment 0.119 0.04 0.213 
MBS 0.150 0.07 0.244 
Gender 0.010 0 0.116 
RE 0.012 0 0.118 
Table S9: Estimates of partial R2 for Fixed Effects Terms in Full Model 

 
Using these values, the effect of treatment within the full mixed effects model is found to be 
Cohen's f = 0.368 with 95% CI [0.197,0.520], consistent with the reduced model. The study is 
powered to detect a difference of means (t-test) to an effect size of Cohen's f = 0.109 with the 
unbalanced sample sizes observed and so there is a 95% likelihood that the effect of the 
treatment will be observed in this interval. 
 
In models with the type of cluster levels observed here, it can be a concern that the variance in 
the independent variable may differ greatly in different cluster levels. To determine if this type of 
heteroscedasticity was a concern, the variances of the residuals for the full model between cluster 
levels were compared and tested using Levene’s test. Variances of model residuals for the total 
model were not significant within the Section levels (F(31) = 0.991, p = 0.483). Overall, 
variance of the model residuals between the two Treatment levels were also not significantly 
different (F(1) = 1.406, p=0.236) and so the model estimates can be considered reliable 
computed with the random effects for the cluster levels included. Quantile-Quantile plots of the 
random effects of the section levels and the residuals confirm the fit of the model. 
 
The model fit confirms the significance of Treatment. The variance due to random and fixed 
effects, and the portion of this variance that is due to the Treatment effect in the presence of the 
random instructor and section effects suggest that the effect is significant and that a substantial 
portion of that effect is due to other factors beyond instructor and time of day/day of week 
effects.  
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3.2.4.3 Sensitivity Analysis and Unmeasured Confounders 
To check for the possible existence of an unmeasured confounder, a sensitivity analysis (SA) 
was conducted. Let U be a confounder that could be responsible for the effect of Treatment 
measured on LearningMeasure in the study. Using the approach to identify the impact of 
unmeasured confounders developed in (102), the SA was implemented in the R package 
treatSens with a linear analysis of a possible confounder U whose output is provided in 
Fig. S6. 
 
In the Fig. S6 plot, the level curves show that, for an unmeasured confounder with a coefficient 
of 𝜁z = 1 in the model developed in (102) as 
 

LearningMeasure|X, U, Treatment ∼ N(𝛽𝐿𝑀𝑋 +  𝜁𝐿𝑀U+𝜏Treatment, 𝜎𝑦
2) 

Treatment ∣ X,U ∼ Bernoulli(Φ(X𝛽z +𝜁zU)) 
 
where U is the unmeasured confounder, X is the matrix of the covariates of Treatment, and 𝜏 is 
the treatment effect, the outcome variable would need to have a coefficient 𝜁𝐿𝑀 >> 35 in the 
model to reduce the effect of Treatment on that variable LM = LearningMeasure to insignificant 
levels. If 𝜁𝑍 is closer to the observed values in this plot less than 0.25, the outcome coefficient 
would need to be close to the maximum value of LM, that is near or greater than 100. Both of 
these configurations are inconsistent with the observed data. All other covariates including the 
appear near the vertical axis in this plot with horizontal components close to zero and with no 
vertical components larger than 7. This output indicates that the hypothetical unmeasured 
confounder would need to more than four times larger than all other measured effects, including 
student mathematical background even if collinear with Treatment. 
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Fig. S6: Sensitivity Analysis for Fixed Effects in MEM 

 
 3.3: End-of-Semester Learning Measures Overview 
The end-of-semester learning measures were designed to span the major learning objectives of a 
Calculus 1 course to determine how well students understood essential elements of, and could 
exhibit fluency and technical competency in, calculus at the end of the course. The assessment 
strategy followed the national consensus on best assessment practices. Gleason et al., (48) note 
that introductory calculus is rich in conceptual topics derived from the interactions between 
algebraic, tabular, and graphical representations of function and data such as limits, continuity, 
integration, and the concept of the derivative itself. Substantial prior work in the teaching and 
learning of calculus has reinforced the importance of the development of conceptual 
understanding as a primary goal of calculus (49). To further understand what students should 
know and be able to do upon completion of introductory calculus, (50) developed a framework 
of essential end goals based on the shared views of 24 calculus experts’ views on what it means 
to understand first-year calculus. Collectively, these experts agreed that first-year calculus 
students must demonstrate the mastery of fundamental calculus concepts and skills, build 
connections and relationships between these concepts and skills, and the ability to apply calculus 
ideas to solve problems. 

 
The identical learning measure questions used in this study consisted of six questions for the 
initial Fall 2018 semester and eight questions in the following two semesters. The topics of the 
questions included the following: interpreting a graph, evaluating limits, implicit differentiation, 
related rates, absolute extrema, applied optimization, using derivatives to sketch a curve, and 
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evaluating an integral. Selection of these topics was driven by both the local conditions and 
national consensus. All sections of calculus follow a department established list of concepts and 
topics along with a similar set of assessment practices, established by the department, thus 
ensuring that the topics are included in both treatment and control sections. The introductory 
Calculus 1 course is based on George Thomas’ Calculus and Analytical Geometry (103) outline 
which has been widely used since the 1950s and focuses on limits and continuity, derivatives, 
applications of derivatives, and integration (35, 39). The items in the study’s identical assessment 
block align with the findings of the experts interviewed by (104) who shared complete agreement 
that limits, derivatives, applications of the derivative, and integrals are core concepts for 
introductory calculus students. The analysis showed less agreement between experts that 
approximation and sequences and series serve as fundamental calculus concepts, thus assessment 
of approximation and sequences topics was not included in the end-of-semester learning 
measures.  
 

3.3.1: Development of Identical End-of-Semester Learning Measure Questions 
The identical end-of-semester learning measures were questions collectively developed and 
embedded in identical cumulative final examinations across both treatment and control sections. 
Development of the identical questions seamlessly integrated into established departmental 
practices. The introductory calculus courses were collectively organized by a committee of 
instructors responsible for choosing an official textbook and homework platform, preparing a 
course outline with topics, and developing the final exam.  

 
The learning measure questions were developed initially by a final exam working group 
consisting of a subset of instructors currently teaching the course and representing both the 
treatment and control conditions. After agreeing to topics for each of the identical questions, 
individual members would develop questions and share with the working group for review and 
feedback. Revisions were then made and shared with the entire group of faculty teaching the 
course for feedback iteratively until all instructors approved of the questions. This process 
ensured that the language in the questions was appropriate for students in all sections of the 
course. Once all questions were finalized, multiple versions of each question were created by 
making minor modifications to the questions that did not change their essential difficulty in order 
to accommodate departmental exam administration protocols. Questions shared across all 
versions and sections represented roughly two-thirds of the final exams, allowing individual 
faculty to cater the remainder of the exams to their instructional goals. Further, the exams and 
questions were formatted consistently and without course section identifiers to allow completely 
anonymized evaluation of these portions during the subsequent comparative analysis. 
 

3.3.2: Characteristics of End-of-Semester Learning Measure Questions 
As noted above, end-of-semester measures of student learning outcomes were embedded in 
course final exams. The basic framework for the identical final exam questions used came from 
department course assessment practices aligned to content required for all Calculus 1 courses in 
the state. The embedded exam questions use arose from normal question types developed as a 
departmental norm over time and refined by the instructional team that included both treatment 
and control section instructors. In order to ensure that the assessments would maintain the prior 
emphasis on traditional calculus skills and concepts while also providing feedback on student 
learning that aligned with nationally accepted standards for calculus, faculty teaching calculus 
across all sections worked to refine the items and determine their correspondence with the 
framework established by Tallman, et al in (35). Table S10 provides the characteristics of the 
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end-of-semester learning measure questions based the Exam Characterization Framework (35) 
there which characterizes exam items by three attributes: item orientation, item representation, 
and item format. The item orientation dimension contains seven categories of intellectual 
behaviors needs to respond to an item: remember, recall and apply procedure, understand, apply 
understanding, analyze, evaluate, and create. Items were also coded by their representation type: 
applied/modeling, symbolic, tabular, graphical, definition/theorem, proof, 
example/counterexamples, and explanation. The third dimension characterizes exam items by 
their format based on three categories: multiple choice, short answer, or broad open-ended. 
Under the item format dimension, items were also subcategorized based on whether the item 
required students to provide justification, an explanation, or solve a word problem. Research 
team members reviewed the identical embedded exam items used in all versions and sections 
during the study and coded them using the ECF. Multiple team members evaluated the questions 
and aligned results to ensure consistent characterizations within the framework. 
 
The results from coding the end-of-semester learning measure using the item orientation 
taxonomy showed that three of the exam items require students to apply or demonstrate their 
understanding. One of the eight items required students to create a graph using their 
understanding of derivatives. Four out of eight of the exam items require students to evaluate or 
recall and apply a procedure. This is evidence that the final exam requires students to apply a 
range of cognitive skills to solve the problem.  

 
The results from coding the identical question items using the item representation taxonomy 
revealed that the majority of items (63%) were stated symbolically. No items asked students for 
information in the form of a table. These results are consistent with Tallman et al.’s (35) 
findings. It is important to note that the remaining three items were stated exclusively as “applied 
modeling” or “graphical” items. Increased emphasis was placed on these items since they 
covered more than one calculus concept. For example, the related rates item involves the 
application of the derivative, but a foundational understanding of implicit differentiation is also 
needed.  

 
The results from coding the identical question items using the item format taxonomy revealed 
that three-fourths of the items were coded as short answer. While a majority of the items were 
coded as short answer, students were still required to justify their solution on four of six items in 
the “short answer” format category. No exam items were coded as multiple-choice format items. 
Two of the items, related rates and applied optimization, were coded as “broad, open-ended” 
items because these problems were stated in a real-world context. It is noteworthy that the set of 
question items meets the Tallman et al.’s (35) coding threshold of having more than 10% of the 
exam items classified as a word problem in the “broad, open-ended” category. The learning 
measure questions presented opportunities for students to demonstrate their ability to apply their 
understanding of derivatives to real-world applications, something that Tallman et al. (35) noted 
as lacking when examining over 150 randomly-selected Calculus I final exams studied from 
various post-secondary U.S. institutions. This data shows that the set of identical questions 
embedded in the final exam used in this study does not focus solely on students’ ability to 
memorize and apply a procedure. 
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Learning Measure  
Item Topic 

Item  
Orientation 

Item  
Representation 

Item  
Format (sub-code) 

Interpreting a graph Understand Symbolic Short answer 

Evaluating limits Evaluate Symbolic Short answer 
(justify) 

Implicit 
differentiation 

Recall and apply 
procedure Symbolic Short answer 

Related rates Apply understanding Applied/modelin
g 

Broad open-ended 
(word problem) 

Absolute extrema Recall and apply 
procedure Symbolic Short answer 

(justify) 

Applied optimization Apply understanding Applied/modelin
g 

Broad open-ended 
(word problem) 

Sketching a curve Create Graphical Short answer 
(justify) 

Evaluating an 
integral Evaluate Symbolic Short answer 

(justify) 
 
Table S10: Characteristics of the learning measure questions based on Tallman et al.’s Exam 
Characterization Framework (35). 
 

3.3.3: Sample End-of-Semester Learning Measure Questions by Topic 
Figs. S7 – S9 present a representative sample of the identical end-of semester learning measure 
questions by topic. These are typical of the types of problems seen by students in Calculus 1 
courses. Question format, terminology, and notation were agreed upon by instructors of control 
and treatment sections to ensure fairness across all sections. Also, to discourage and detect any 
academic dishonesty, the questions were versioned by varying the order of the problems and 
making minor modifications (e.g., changing constants, values or functions) while keeping the 
difficulty of the problem consistent.  
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Fig. S7: End-of-semester Learning Measures Item - Interpreting a Graph 
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Fig. S8: End-of-semester Learning Measures Items - Evaluating Limits, Implicit Differentiation, 

Related Rates, Absolute Extrema and Applied Optimization 
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Fig. S9: End-of-semester Learning Measures Items - Curve Sketching, and  

Evaluating an Integral 
 

3.3.4: End-of-Semester Learning Measure Questions - Individual Item Results 
Tables S11 – S13 provide the performance of students assigned to the treatment and control 
sections on the individual embedded identical end-of-semester learning measures items for all 
three semesters of the study. Note that results reported below are in all cases consistent with the 
results for all students enrolled in these course sections. That is, when including students who 
were not randomly assigned but enrolled in the treatment and control sections after the 
randomized assignment, the findings are identical in nature. 
 

Fall 2018 Maximum 
Score 

Treatment 
n = 83 

Control 
n = 63 p-value Effect Size 

95% Confidence 
Interval for eff. 

size 
Absolute 
extrema 

5 62% 38% p < 0.001 d = 0.739 (0.398,1.08) 

Evaluating an 
integral 

6 50% 54% n/s d = -0.095 (-0.426,0.235) 

Evaluating 
limits  

5 65% 58% n/s d = 0.233 (-0.098,0.565) 

Interpreting a 
graph  

20 85% 76% p < 0.01 d = 0.469 (0.135,0.804) 

Related rates 6 11% 10% n/s d = 0.086 (-0.244,0.417) 
Sketching a 
curve 

23 66% 52% p<0.01 d = 0.520 (0.184,0.855) 

Overall 65 65% 55% p <0.01 d = 0.502 (0.166,0.837) 
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Table S11: Individual item results for Fall 2018 treatment and control sections, with percent 
correct for treatment and control sections, as well as the associated p-value, effect size and 
confidence intervals. 
 

Spring 2019 Maximum 
Score 

Treatment 
n = 100 

Control 
n = 79 p-value Effect Size 

95% Confidence 
Interval for  
effect size 

Absolute extrema 6 48% 25% p < 0.001 d = 0.757 (0.449,1.064) 
Applied 
optimization 

9 25% 9% p < 0.001 d = 0.686 (0.38,0.991) 

Evaluating an 
integral 

5 47% 31% p < 0.01 d = 0.441 (0.141,0.742) 

Evaluating limits  8 53% 44% n/s d = 0.263 (-0.0354,0.561) 
Implicit 
differentiation 

5 68% 59% n/s d = 0.291 (-0.008,0.589) 

Interpreting a 
graph  

17 75% 72% n/s d = 0.169 (-0.129,0.467) 

Related rates 8 60% 41% p < 0.001 d = 0.617 (0.313,0.921) 
Sketching a curve 18 66% 45% p < 0.001 d = 0.726 (0.42,1.033) 
Overall 76 57% 42% p < 0.001 d = 0.748 (0.44,1.05) 

Table S12: Individual item results for Spring 2019 treatment and control sections, with percent 
correct for treatment and control sections, as well as the associated p-value, effect size and 
confidence intervals. 
 
 

 Maximum 
Score 

Treatment 
n = 193 

Control 
n = 168 p-value Effect Size 95% CI for 

eff. size 
Absolute Extrema 6 49% 25% p < 0.001 d = 0.839 (0.622,1.055) 
Applied 
Optimization 

9 37% 15% p < 0.001 d = 0.806 (0.591,1.022) 

Evaluating an 
Integral 

6 69% 38% p < 0.001 d = 0.850 (0.633,1.066) 

Evaluating Limits 8 62% 44% p < 0.001 d = 0.627 (0.414,0.839) 
Implicit 
Differentiation 

5 76% 69% p = 0.05646 d = 0.203 (-0.005,0.411) 

Interpreting a Graph 17 82% 73% p < 0.001 d = 0.512 (0.301,0.722) 
Related Rates  8 55% 38% p < 0.001 d = 0.438 (0.228,0.648) 
Sketching a Curve 18 80% 60% p < 0.001 d = 0.750 (0.536,0.965) 
Overall 77 66% 48% p < 0.001 d = 0.925 (0.707,1.143) 

Table S13: Individual item results for Fall 2019 treatment and control sections, with percent 
correct for treatment and control sections, as well as the associated p-value, effect size and 
confidence intervals. 
 
 3.4: Course success odds ratios 
Logistic regression models were carried out to predict odds of success in the course (1: Pass; 0: 
DFW). Treatment (1:MPC; 0:non-MPC) was the only independent variable included in the 
model. The assumption that the conditional mean of the course success variable was binomial 
was considered to be robust given the random nature of the sample (105). Odds ratios were 
calculated using this model separately for three different groups of students: female, Hispanic-
identified, and First-Time-in-College (FTiC) students. When examining each group, the overall 
models were significant when compared to the null models (Female-identified: χ2 (1) = 4.55, p < 
0.05; Hispanic-identified: χ2 (1) = 14.64, p < 0.001; FTiC: χ2 (1) = 9.28, p < 0.01;). This 
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indicates that our models fit the data better than intercept-only models. In addition, given the 
significance of the Treatment coefficient in each model, it is concluded that this variable is 
reliable in predicting course success.  
 
Estimates with error measures and statistical significance are presented for each group in Tables 
S14 – S16. The standard errors indicate the variability associated with the estimates and the z-
values are calculated by dividing the coefficient estimate by the standard error. The estimates 
given in the tables represent the average change in the log odds of the response variable (course 
success) related to the Treatment variable. For example, for the female-identified model, being in 
the MPC group is associated with an average increase of 0.4587 in the logs odds of successfully 
completing the course. In other words, being in the MPC group is associated with having a 
higher likelihood of passing the course for female-identified students.  
 
The odds ratios between the MPC and non-MPC groups were obtained using the coefficient 
estimates for each model. For female-identified students, the odds ratio is e0.4587 = 1.582. This 
translates to the odds for a female-identified student in the MPC group passing the course being 
about 58% higher than the odds for a female-identified student in the non-MPC group. Similarly, 
the odds ratios for the Hispanic-identified and FTiC students are 2.021 and 1.845, respectively. 
So, the odds of a Hispanic-identified student passing the course is about 100% higher if they 
were enrolled in an MPC section and 85% higher for FTiC students in the MPC group.  
 

 Estimate Std. Error z-value p-value 

(Intercept)    0.7673 0.1501 5.112 3.19e-07*** 

Group 0.4587   0.2156 2.128 0.0334* 

Signif. codes: ***0.001 **0.01 *0.05 
Table S14: Female-identified students 

 

 Estimate Std. Error z-value p-value 

(Intercept)    0.7328 0.1223 5.992 2.07e-09*** 

Group 0.7038 0.1860 3.784 0.000154*** 

Signif. codes: ***0.001 **0.01 *0.05 
Table S15: Hispanic-identified students 

 

 Estimate Std. Error z-value p-value 

(Intercept)    0.9487 0.1325 7.159  8.13e-13 *** 

Group 0.6126 0.2032 3.015  0.00257** 

Signif. codes: ***0.001 **0.01 *0.05 
Table S16: First-time-in-college students 


