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ABSTRACT

The existence of sex-specific differences in phenotypic traits is widely recognized. Yet they are often ignored in studies looking at
the impact of global changes on marine organisms, particularly within the context of combined drivers that are known to elicit
complex interactions. We tested sex-specific physiological responses of the cosmopolitan and ecologically important marine co-
pepod Acartia tonsa exposed to combined hypoxia and marine heatwave (MHW) conditions, both of which individually strongly
affect marine ectotherms. Females and males were acutely exposed for 5days to a combination of either control (18°C) or a high
temperature mimicking a MHW (25°C), and normoxia (100% O, sat.) or mild hypoxia (35% O, sat.). Life-history traits, as well as
sex-specific survival and physiological traits, were measured. Females had overall higher thermal tolerance levels and responded
differently than males when exposed to the combined global change drivers investigated. Females also showed lower metabolic
thermal sensitivity when compared to males. Additionally, the MHW exerted a dominant effect on the traits investigated, causing
a lower survival and higher metabolic rate at 25°C. However, egg production rates appeared unaffected by hypoxia and MHW
conditions. Our results showed that MHWs could strongly affect copepods’ survival, that combined exposure to hypoxia and
MHW exerted an interactive effect only on CT
major implications for population dynamics. Our results highlight the importance of considering the differences in the responses

nax and that sex-specific vulnerability to these global change drivers could have

of females and males to rapid environmental changes to improve the implementation of climate-smart conservation approaches.
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Men Are from Mars, Women Are from Venus
John Gray, 1992.

1 | Introduction

Intrinsic differences among sexes across the animal kingdom
are widely recognized. Females and males not only differ in
biological, anatomical, and hormonal aspects (Ivan, Daniela,
and Jaroslava 2023), but they can also differ in their life-
history strategies, behavior, and physiology (Ellis et al. 2017;
Gissi et al. 2023). Such sex-specific differences can occur
both in the mean value of a trait as well as in its variation
(Zajitschek et al. 2020; Brand et al. 2023). For example, sev-
eral taxonomic groups display sex-specific differences in their
ability to tolerate starvation (Finiguerra et al. 2013) exposure
to dinoflagellate toxins (Avery, Altland, and Dam 2008), cold,
and desiccation (Andersen et al. 2010). These differences usu-
ally arise from differential selective pressures between sexes,
which are typically linked to the differential cost of reproduc-
tion (Lambert 1978; Roze and Otto 2012), and sexual selection
(Darwin 1888). Nevertheless, most studies looking at marine
species' responses to global change drivers neglect to investi-
gate sex-specific responses (Ellis et al. 2017; Pottier et al. 2021;
Gissi et al. 2023). Yet, the studies that have explicitly ac-
counted for sex in marine species showed generally that an
array of responses are influenced by sex, supporting the idea
that sex-specific responses are prevalent in the marine eco-
system (Gissi et al. 2023). For example, differences between
males and females have been reported for survival, growth
and metabolic rates, thermal tolerance and acclimation poten-
tial (e.g., Hall 2001; Cripps, Flynn, and Lindeque 2016; Sasaki
et al. 2019; Pottier et al. 2021). However, these differences
are not universal. Rather, they appear to be trait-dependent,
condition-dependent, and not systematically biased for the
same sex in all species (Zajitschek et al. 2020; Pottier et al. 2021;
Gissi et al. 2023). Overall, these life-history and physiological
differences between females and males define sex-specific vul-
nerability to global change drivers, with cascading effects on
operational sex ratio (Edmands 2021 and references within;
Brand et al. 2023), demographic trends, population, communi-
ties, and ecosystem dynamics (Ellis et al. 2017; Edmands 2021
and references within; Brand et al. 2023; Gissi et al. 2023).
Disregarding sex in studies investigating species responses to
global change drivers could therefore bias our understanding
of the consequences of these stressors on marine biodiversity.
In turn, this could impact how we implement environmental
management and conservation policies (Gissi et al. 2023) and
climate-smart conservation approaches (Stein et al. 2014).
Specifically looking at the sex-specific life-history and phys-
iological responses to extreme events is particularly relevant,
as the abrupt nature of these events could lead to differential
behavioral or physiological responses in males and females.

In this context, marine heatwaves (MHW—as defined by
Hobday et al. 2016) are of particular interest as they have in-
creased over the past century due to human activities (Oliver
et al. 2018). They are expected to increase in duration, inten-
sity, and frequency in the coming decades (Frdlicher, Fischer,
and Gruber 2018; Oliver et al. 2019) and can have more im-
mediate devastating consequences than progressive chronic

warming (e.g., Wernberg et al. 2013; Sanz-Lazaro 2016; Smale
et al. 2019). The rapid temperature rise during MHW can
cause physiological stress, decreased performance, and ther-
mal damages (Portner 2012; Leung, Connell, and Russell 2017;
Smith et al. 2023). Ultimately, if the rates of temperature
change are too abrupt and exceed a species’ acclimatization
ability, MHWSs can act as a strong selective pressure (Wernberg
et al. 2013; Filbee-Dexter et al. 2020). Species’ range shifts,
tropicalization of ecosystems, invertebrates mass mortality,
and severe loss of habitat-forming species are only some exam-
ples of the drastic consequences of past MHWs (e.g., Wernberg
et al. 2016; Hughes et al. 2017; Garrabou et al. 2022), with
potentially long-lasting consequences on socio-economic sys-
tems (Mills et al. 2013; Smale et al. 2019; Smith et al. 2021).

Despite our growing understanding of MHWSs occurrence
(e.g., Pearce and Feng 2013; Hobday et al. 2016), our compre-
hension of their direct biological impacts is rather limited in
the context of multiple stressors and compound events (Oliver
et al. 2019; Gruber et al. 2021; Smith et al. 2023). Indeed, ma-
rine environments are complex habitats where multiple stress-
ors and extreme events can co-occur (Halpern et al. 2019) and
interact (Piggott, Townsend, and Matthaei 2015; C6té, Darling,
and Brown 2016), eliciting emerging properties (e.g., Dam
et al. 2021; Carrier-Belleau et al. 2023). The combined effect of
MHWs and hypoxia is of particular interest, as hypoxic regions
are spreading rapidly (Diaz and Rosenberg 2008; Vaquer-Sunyer
and Duarte 2011) as a result of warming, anthropogenic activ-
ity, and natural processes (Levin and Breitburg 2015; Breitburg
et al. 2018; Laffoley and Baxter 2019). In addition, evidence of
co-occurrence between MHWSs and hypoxic zones is emerging
(Gruber et al. 2021). This co-occurrence is expected to nega-
tively impact the aerobic metabolism of ectotherms due to the
competing effect of temperature and hypoxia on oxygen demand
and supply (Fry and Hart 1948; Hochachka and Somero 2002;
Portner 2010; Rubalcaba et al. 2020). Yet, the potential for ex-
treme acute temperature events (such as MHW) to elicit different
effects than gradual warming when co-occurring with hypoxia
is poorly documented (Woods et al. 2022; cf. Lucey et al. 2022;
Bowering et al. 2023; Tran and Johansen 2023). Additionally,
systematic studies looking at sex-specific responses to com-
bined hypoxia and MHW are notably lacking. In this sense, it
is paramount to increase our understanding in this area if we
are to develop adequate mitigation and conservation strategies,
particularly in coastal habitats and estuaries, as these environ-
ments could be particularly exposed to combined hypoxia and
MHW (Roegner, Needoba, and Baptista 2011; Woods et al. 2022;
Safonova, Meier, and Groger 2024). In this context, zooplankton
species, and in particular copepods, are ideal model systems.
They constitute the most abundant pelagic metazoans in the
marine environment (Turner 2004), and they play pivotal roles
in food webs and biogeochemical cycles (Dam et al. 1995; Schiel
et al. 2002; Mitra et al. 2014; Steinberg and Landry 2017). High
temperature and hypoxia in isolation are known to be selec-
tive forces for copepods, usually negatively affecting survival,
behavior, and life-history traits (e.g., Marcus et al. 2004; Holste
and Peck 2005; Sasaki et al. 2019), with temperature inducing
lipid remodeling and upregulation of heat shock proteins (HSPs)
(Garzke et al. 2016; Rahlff et al. 2017). Nevertheless, the physio-
logical responses of copepods to combined MHWs and hypoxia
are yet to be unraveled.
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Therefore, the present study aims to examine the sex-specific
life-history and physiological responses of the ubiquitous marine
copepod, Acartia tonsa (Dana 1849) to simultaneous exposure to
hypoxia and MHW under laboratory conditions. Temperature
greatly affects oxygen solubility and availability in the marine
environment (Verberk et al. 2011; Breitburg et al. 2018; Earhart
et al. 2022). Additionally, both temperature and oxygen can
strongly influence ectotherm's physiology (Hochachka and
Somero 2002; Roman et al. 2019). On this basis, we predict that
the combined exposure to hypoxia and MHW will elicit negative
synergistic effects on life-history and physiological traits in A.
tonsa. In addition, based on the existing literature, we predict that
A. tonsa males will be more sensitive to both the single and com-
bined effects of hypoxia and MHW when compared to females.

2 | Materials and Methods
2.1 | Study Species

The Calanoid copepod Acartia tonsa is a dominant species in
coastal and estuaries ecosystems worldwide, including in the
Northwest Atlantic (Cervetto, Gaudy, and Pagano 1999). This
species presents an evident size dimorphism (average size dif-
ference of 0.3 mm), with males' length around 0.7 mm and fe-
males reaching approximately 1 mm at sexual maturity (Sasaki
et al. 2019). This free-spawning species continuously releases
eggs directly in the water that hatch 24-48h after spawning
at 20°C (Mauchline 1998; Marcus and Wilcox 2007). Females
can reproduce multiple times during their lifespan (Parrish and
Wilson 1978). Generation time is temperature-specific, around
14-15days at 18°C (Berggreen, Hansen, and Kierboe 1988).

2.2 | Specimens’ Collection and Maintenance

Specimens of A. tonsa were collected at Esker Point Beach in
Groton, CT, USA (41.320725° N, 72.001643° W) in June 2016 and
reared for 126 generations under current optimal conditions for
A. tonsa in the NE Atlantic: temperature =18°C and pH ~8.2, sa-
linity between 31 and 36, see Dam et al. (2021) for further details
about laboratory conditions. In June 2022, approximately 200 in-
dividuals were sent inside two 500mL bottles placed in an insu-
lated box to the Marine Ecological and Evolutionary Physiology
laboratory (MEEP) at the University of Quebec in Rimouski
(UQAR) (Rimouski, QC, Canada). Experimental stock cultures
were maintained using the same culturing methods as Dam
et al. (2021): see Data S1. Copepods were fed at a food-replete
concentration (i.e., >800ug carbon L1) with a mixture of the
phytoplankters Tetraselmis sp., Thalassiosira weissflogii, and
Rhodomonas salina, cultured semi-continuously in F/2 medium
(Guillard 1975) following the long-standing protocols used in
the Dam laboratory (Feinberg and Dam 1998). These microal-
gae cultures were kept in an environmental chamber (MLR-3515
Sanyo Versatile, Sanyo Electric Co., Ltd., Osaka, Japan) at 18°C
and a 13h light:11h dark photoperiod. To remove potential ma-
ternal and environmental variation effects as much as possible
(Cournoyer 2013; Pereira, Sasaki, and Burton 2017), the cope-
pod stock culture (FO) was kept for one generation under labora-
tory conditions before the start of the experiment, for which the
F1 generation was used.

2.3 | Experimental Design, System, and Protocol

To investigate sex-specific responses to acute exposure to hy-
poxia and MHW in A. tonsa, females and males were exposed
for 5days to one of the four temperature-oxygen treatments, ac-
cording to a factorial experimental design (Figure S1): control
(C—18°C, 100% O, sat. or~9.46 mgL~"), hypoxia (H—18°C and
35% O, sat.or ~3.31mg L~1), marine heatwave (MHW—25°C and
100% O, sat. or ~8.25mgL™") and combined hypoxia and ma-
rine heatwave (HMHW 25°C and 35% O, sat. or ~2.89mgL™).
The control conditions were chosen based on the optimal tem-
perature for recruitment (Dam et al. 2021), as well as the tem-
perature used to rear the copepods since their collection, and
the optimal oxygen saturation level. The value of 35% O, sat.
was chosen as it represents a mild, non-lethal, level of hypoxia
commonly encountered in the area of collection during hypoxic
events (CTDEEP 2016, 2021). Given the relatively shallow depth
of the Long Island Strait and the fact that hypoxia zones can
sometimes reach surface water (CTDEEP 2016), copepods are
exposed to this condition in their natural environment. Finally,
to identify a realistic temperature to mimic a MHW following
Hobday et al. (2016) definition, we used the “heatwaveR” pack-
age (Schlegel and Smit 2018) in R (R Core Team 2022) to detect
past extreme events in the coastal area where copepods were
collected, using the NOA A OISST dataset. The highest SST tem-
peratures recorded during previous recent MHWSs reached 25°C,
hence this temperature was selected for the MHW and HMHW
treatments: see for details Data S2.

All treatments were generated and maintained using four in-
dependent in-house-built recirculating experimental systems
(Figure S1): see Data S3 for details. Briefly, copepods were
maintained in 2 L aquaria (Clarity container, Type A, Toronto,
ON, Canada) placed inside a 121 L holding tank (Clarity con-
tainer, Type A) that served as a water bath. Each experimen-
tal system contained four aquaria, for a total of 16 aquaria:
four per treatment (Figure S1). Each holding tank was con-
tinuously supplied with artificial seawater coming from a
corresponding 26 L header tank (ClearView, Sterilite Ultra,
Portland, OR, USA), that was held at the desired temperature
through a feedback system composed of a temperature probe
and aquarium heaters: see Data S3. To obtain the desired
oxygen levels and ensure a continuous gentle mixing of sea
water, each aquarium was bubbled with ambient air using a
small flexible tube mounted with a glass pipette connected to
an air pump (PT1624, Laguna, Mansfield, MA, USA). Finally,
the aquaria hosting the H and HMHW were equipped with
an O, probe (optical oxygen sensor IKS ODO, IKS Aquastar,
Karlsbad, BW, Germany) that continuously monitored the ox-
ygen concentration inside the aquarium. The probe was con-
nected to the feedback system (IKS Aquastar Industrial, IKS
aquastar) that regulated the addition of pure gaseous N, into
each H and HMHW aquarium.

At the beginning of the exposure period, nine females and nine
males for each aquarium (N=36 individuals per treatment per
sex) were randomly pipetted from the stock culture under the
stereomicroscope (MDF41, Leica, Wetzlar, Germany) and placed
into 500mL beakers halfway filled with artificial seawater. Sea
water was produced by mixing artificial sea salt (Instant Ocean
Sea Salt, United Pet Group Inc., Cincinnati, OH, USA) with

RIGHTSE LI MN iy

30f17

2SUDOIT SUOWIW0)) dANEa1) dqedridde ayy £q pauIdA0S A1k SAOIIE V() $aSN JO SN 10§ AIRIqIT AUIUQ) AS[IAN UO (SUOHIPUOI-PUB-SULI) WO (1M ATeIqIjour[uo//:sdpy) SuonIpuoy) pue swid ], oy 39S [470z/01/5Z] U0 Areiquy auruQ AT ‘€S 1°998/1 111°01/10p/wod Kd[im K1eiqrouruo//:sdny woiy papeojumo ‘01 “+20Z ‘98¥7S9E1


https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1111%2Fgcb.17553&mode=

distilled water to the desired salinity. Each beaker was placed in
a thermal bath (F32 HL, Julabo, Allentown, PA, USA) for 6h to
gradually expose them to their respective treatment until target
temperature and O, level were reached. This was achieved by
decreasing O, sat. via adding small amounts of hypoxic water
coming from the experimental system and/or by increasing the
temperature by 1.2°C h~!: rates between 1 to 2°C h~! are com-
monly used (e.g., Fernandes et al. 2023; Missiondrio et al. 2023).
At the same time, to standardize any effects linked to the manip-
ulations associated with this gradual exposure period, copepods
assigned to the control treatment were also kept inside a thermal
bath kept at 18°C for the same duration. At the end of the pre-
exposure period, copepods were observed under the stereomi-
croscope to detect any mortality. None was observed. Then, they
were gently transferred to their dedicated aquarium inside the
experimental system and maintained under experimental con-
ditions for 5days (Figure S3).

Sea water parameters were monitored throughout the exper-
iment (Table 1) using the same methods described in Data S1
and water was changed every 48-72h. Furthermore, copepods
were fed ad libitum every 48-72h, using the procedures fol-
lowed for the stock culture. No food was added 24 h before the
start of the physiological assays to limit the impact of feeding
and excretion on the reading while avoiding mortality due to
starvation.

2.4 | Copepod Survival

At the end of the exposure period, live females and males were
counted individually under a stereomicroscope (MDF41, Leica)
to determine survivorship in each aquarium and gently pipetted
in a well of a culture plate (12 wells Tissue Culture Plates, VWR,
International LLC, Radnor, PA, USA) for physiological measure-
ment. Sex-specific survival (%) was calculated per aquarium as
Y 100 )

n;

where n; represents the number of live males or females at the
end of the exposure period and n; represents the initial number
of males or females placed in the aquarium.

2.5 | Egg Production Rates

Mean egg production rate per aquarium was determined by
counting under a stereomicroscope (MDF41, Leica) the total
number of laid eggs and hatched nauplii produced by the F1
adults. Eggs and nauplii were collected by gently screening the
aquarium water through a 41 um sieve and transferred to small
plastic containers to be counted under the stereomicroscope.
The daily egg production rate was calculated by dividing the
total number of eggs by the number of females (9) and incuba-
tion days (5).

2.6 | Metabolic Rates

Oxygen consumption, used as a proxy for metabolic rates
(MO,, Ege and Krogh 1914), was measured individually for
an average of four females and four males per aquarium
(N =approximately 16 individual per sex per treatment), using
closed non-invasive optical fluorescence-based respirometry
described in Koster, Krause, and Paffenhofer (2008). Briefly,
the method uses a 24-channel oxygen meter (SDR SensorDish
Reader, PreSens, Regensburg, Germany) to read oxygen con-
centration in hermetic 2mL glass vials equipped with an
oxygen sensor spot at the bottom of the vials (SensorVial SV-
PSt5-2mL, PreSens). The volume of the vial was chosen as it
enabled copepods to swim without constraints, ensuring that
the MO, measurements during the trials were the closest rep-
resentation possible of the copepods’ routine metabolic rates
(RMR) (Harris et al. 2000; Ikeda et al. 2001). Each individual
previously isolated in a well of a culture plate (see copepod
survival) was gently transferred to a glass vial filled with ar-
tificial seawater set to its treatment condition. The vials were
placed on the SDR reader and kept in a dark environmental
chamber (MLR-3515 Sanyo Versatile, Sanyo Electric Co., Ltd)
kept at either 18 (for C and H treatments) or 25°C (for MHW
and HMHW treatments). Oxygen concentration in the vial was
measured every 3 min for 10 h. Four blank vials per SDR plate,
containing water from each treatment, were added to estimate
the potential influence of background microbial respiration/
oxygen production for each run. At the end of the measure-
ments, copepods were observed under the stereomicroscope
(MS5, Leica) to assess any mortality. Only one individual (out

TABLE 1 | Summary of mean values (mean =+ SD) for seawater physico-chemical parameters for each treatment, with different subscript letters

representing significant differences between mean values for the same parameter among different treatments.

Treatment Temperature (°C) 0, (% sat.) Salinity PH 5

C 18.1+0.32 94.3+1.12 27.7+£0.7% 8.15+£0.04
n=20 n=20 n=20 n=10

H 18.1+£0.22 34.7+3.8° 28.0£0.72 8.20+0.132
n=20 n=19 n=20 n=9

MHW 24.6+0.5° 93.3+1.9% 28.0+0.72 8.17+0.05%
n=20 n=20 n=20 n=10

HMHW 24.8+0.2° 35.7+3.8° 27.8+0.7% 8.19+0.09?
n=20 n=19 n=20 n=10

Note: n refers to the number of measurements.
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of 125 individual tested) died during the measurement and
was discarded from the analyses. Copepods were left to rest
for at least 30 min in their treatment condition before under-
taking upper thermal tolerance limit measurements.

Individual RMR (umolh™!) were obtained by calculating the
slope of the decrease in oxygen concentration over time (% air
sat. min~!) using the respR package (version 2.2.0; Harianto
et al. 2019) in R (version 4.2.1). Data were first processed by re-
moving the first 5h of measurements, as oxygen profiles during
this period were non-linear. This likely reflects the time re-
quired for the water to equilibrate to the conditions in the en-
vironmental chamber and for the oxygen sensor dots to become
saturated (Holmes-Hackerd, Sasaki, and Dam 2023). Then,
rolling regressions were calculated for each individual with the
“auto_rate” function, using a window width of 0.5 for the rolling
slopes. Background respiration was subtracted from the individ-
ual rates within the same run using the “concurrent method” in
the “adjusted_rate” function. A minr? (coefficient of determina-
tion) threshold of 0.7 was applied to remove non-linear sections
of the slope, using a histogram of ? values and the proportion of
rejected slopes as function of minr? as diagnostic tools to deter-
mine the threshold (Chabot, Zhang, and Farrell 2021). On this
basis, a total of 15 out of 125 individual tested were thereafter
removed from the database. Then, the mean of the slopes above
the threshold was calculated for each remaining individual, and
rates were converted to umol h~! to be used in further statistical
analyses.

Furthermore, to compare females and males’ thermal sensitiv-
ity, sex-specific Q,, values were calculated for each oxygen satu-
ration level following the van't Hoff's coefficient:

MR, \ 770
=) (

where MR, and MR, correspond to the mean in the specific
metabolic rates in a treatment condition and T, and T, the two
corresponding temperature levels: 18°C and 25°C.

2.7 | Upper Thermal Limit

Copepods' upper thermal limit was determined using the crit-
ical thermal maximum approach (CT,, ), with the loss of lo-
comotor performance (LLP) as the endpoint (Harada, Healy,
and Burton 2019; Healy, Bock, and Burton 2019). Individuals
were transferred to a 1mL glass vial (Clear shell glass, Thermo
Fisher Scientific, Waltham, MA, USA), reduced to a volume of
600 L to facilitate observation. The vials were tightly closed
and placed underwater in a thermal bath (F32 HL, Julabo). A
stereomicroscope (Nikon SMZ645 Stereo Zoom, Amstelveen,
The Netherlands) was placed above the thermal bath to facilitate
the observation of the copepods inside their vial. The tempera-
ture was then raised by 1°C min~' (ramping slopes R?=0.99)
until the last individual reached the LLP (Harada, Healy, and
Burton 2019; Healy, Bock, and Burton 2019). Copepods’ internal
body temperature was considered to be equivalent to that in the
thermal bath considering their microscopic size and surface-to-
volume ratio (Gonzalez 1974). The loss of locomotor performance

was monitored for each individual by gently turning the vial to
generate a swimming response in copepods. The endpoint was
reached when the swimming response disappeared and the
copepod was passively sinking to the bottom of the microtube
(Healy, Bock, and Burton 2019). The corresponding temperature
was identified as the CT,_, for a given individual Two control
vials filled only with sea water and equipped with a thermocou-
ple probe (HH802U, OMEGA, Laval, QC, Canada) were placed
next to the vials holding the copepods to accurately monitor the
temperature in real-time, without stressing the copepods. As
soon as an individual reached its endpoint, it was placed back
at its original treatment conditions for 10 min and was then ob-
served under the stereomicroscope to assess if they were still
alive. Copepods that did not survive the CT . assay (one out of
125 individual used) or for which we did not successfully mea-
sure the weight or were not successfully retrieved from MO, tri-
als (10 individual) were discarded from statistical analyses.

2.8 | Body Length

Following CT,_ . measurements, each copepod was photo-
graphed using a microscope camera (Leica IC90E Integrated
CMOS, Leica) mounted on a stereomicroscope (M60, Leica).
Prosome length (mm) was then determined using the software
ImagelJ (Schneider, Rasband, and Eliceiri 2012), which was then
converted into body mass (ug) using the equation for A. tonsa
(Kierboe, Mohlenberg, and Hamburger 1985):

W =1341L3 3

where W refers to the dry weight (ug) and L to the prosome
length (mm).

2.9 | Statistical Analyses on Life-History
and Physiological Traits

All data collected was regrouped into survival, fecundity and
physiological datasets (Vermandele et al. 2024) for statistical anal-
yses. To test the effects of simultaneous exposure to hypoxia and
a MHW on the life-history and physiological traits in females and
males, a generalized linear mixed model (GLMM, family: bino-
mial, link function: logit) was used for survival data, and linear
mixed models (LMM) were used for egg production rates, RMR
and CT,_ ., using the Ime4 package (Bates et al. 2015). Survival
data were converted into a binomial form by assigning a value of
1 if the individual was alive or 0 if it was dead at the end of the
experiment. “Temperature” and “Oxygen” were used as fixed fac-
tors in the egg production model, while “Sex” was added as a fixed
factor for the other traits. In addition, “Experimental system” and
“Aquarium” (for RMR and CT,, ) were initially added as random
factors to the models. As “Experimental system” was found not to
exert a significant effect and did not improve the models' fit, it was
removed from all the analyses. Finally, “body weight” was included
asacovariate in the RMR and CT,_ models. When evidence of ef-
fects was observed (sensu Muffet al. 2022), post hoc analyses were
performed using multiple comparisons of means with Tukey con-
trast, using the “glht” function of the multcomp library (version
1.4-20; Hothorn, Bretz, and Westfall 2008). To reduce the number
of comparisons in the case of a significant three-way interaction,
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we selected specific pairwise contrasts that were directly linked to
our aims: that is, comparison of the responses of females between
treatments, males between treatments, and females versus males
within each treatment. All P values were adjusted with the Holm
method for multiple comparisons.

Assumptions of linearity between “body weight” and RMR or
CT,..» as well as the homogeneity of the regression slopes were
tested visually. In addition, assumptions of normality and ho-
moscedasticity were verified visually (performance library ver-
sion 0.10.2; Liidecke et al. 2021) and with a Shapiro-Wilk and
Levene's test. Individual RMR and “body weight” were Log,,
transformed to meet the assumptions. In the case of CT, .,
the assumptions of normality and homoscedasticity were not
met, even after a Log,, transformation. Therefore, we decided
to use the untransformed data, as we assume that our model
would tolerate a deviation from the assumptions due to the high
level of replication and experimental design used (Sokal and
Rohlf 1995).

Finally, to test for potential bias in size selection between treat-
ments (i.e., bigger individual being involuntarily selected for
specific treatment), an LMM with “Temperature,” “Oxygen,”
and “Sex” as main fixed factors and “Aquarium” as a random
factor was run on the copepods' length. There was no evi-
dence that specimens’ size was different between temperature
(p=0.9583), oxygen (p =0.4574), or any of the interactions tested
(minimum p =0.1477). However, there was very strong evidence
that females were longer than males (p <0.0001), by 0.13mm on
average, which was to be expected considering the known size
dimorphism of this species (Sasaki et al. 2019).

2.10 | Trait Variability Analyses

Additionally, to distinguish potential differences in response
between females and males, sex-specific trait variability was
calculated for survival, RMR and CT,__ , within each treatment
using the coefficient of variation ratio, following the equation
used in Missionario et al. (2022):

SD;
mean,

SD,
mean,,

InCVR = In|

@

m

where SD; and mean, correspond to the standard deviation and
mean calculated in females and SD_ and mean  correspond to
the standard deviation and mean in males.

2.11 | Multistressor Models Calculation

To characterize the nature of the combined effects and inter-
actions (i.e., additive, synergistic, or antagonistic) between
oxygen and temperature on survival, RMR, and CT,_ ., mul-
tistressor models were calculated using Piggott, Townsend, and
Matthaei (2015) definition of synergies and antagonism: see also
Coté, Darling, and Brown (2016). Namely, we calculated the
magnitude and direction of the effect of each “stressor” (i.e., H,
MHW, and HMHW) relative to the control (C) condition. We,
then, compared the realized effect of the combined treatment

(AB) to a null model corresponding either to a simple additive
effect model (A + B) for the RMR and CT,, data or a multipli-
cative model ((A + B) — (A x B)) for survival. Then, for the traits
in which no interaction between stressors was found (2 or 3-
way interactions not significant in the ANOVA), we looked at
whether one stressor had a dominant effect or an additive effect
(sensu Piggott, Townsend, and Matthaei 2015). When, however,
a three-way interaction term (Temperature x Oxygen X Sex) in
a model for a trait was significant, the effect of the combined
stressors (HMHW) was compared to a null model, for each sex
separately, to identify the antagonistic or synergistic nature of
the interactions (Piggott, Townsend, and Matthaei 2015). Raw
or transformed data were used in accordance with the input
data used in the ANOVA.

All analyses were performed using the R software (version
4.2.1; R Core Team 2022) and results interpretation was con-
ducted using the “language of evidence” guidelines proposed
by Muff et al. (2022) to allow for a more nuanced and rigorous
way to present the results. In more detail, evidence of effects is
described following this range: 0.0001 < p <0.001—very strong
evidence; 0.001 <p<0.01—strong evidence; 0.01<p<0.05—
moderate evidence; 0.05 < p <0.1 weak evidence; 0.1 <p < 1—Ilit-
tle to no evidence.

3 | Results
3.1 | Survival

Our results show that females and males are differentially af-
fected by exposure to hypoxia, as supported by the very strong
evidence for the presence of an interaction between the terms
“Oxygen” and “Sex” for survival (Table 2 and Figure 1la).
Namely, there was weak evidence that females exposed to hy-
poxia had a higher survival than their counterparts kept in nor-
moxic conditions (p=0.06), and there was moderate evidence
for a higher survival when compared to males also exposed to
hypoxia (p=0.03). However, there was little to no evidence of
differences in survival between males at the two oxygen levels
tested, between males and females in the normoxic condition
and between females in the normoxic condition and males in
the hypoxic condition (minimum p=0.19 for all comparisons).
In addition, we report a 27.08% decline in survival in copepods
exposed to 25°C (i.e., MHW and HMHW treatments) in com-
parison to copepods exposed to 18°C (i.e., C and H treatments)
(Figure 1b). This was supported by the very strong evidence that
a 5days exposure to elevated temperature mimicking a MHW
leads to a decrease in survival in A. tonsa (Table 2 and Table S1).
There was, however, little to no evidence that females and males
had different survival rates following the exposure to MHW
conditions in isolation, or when exposed to the combined effects
of hypoxia and a MHW (Table 2 and Table S1).

3.2 | EggProduction Rates

Females produced an average 3-7 eggs females™ days™' under
the different tested conditions (Figure 1c and Table S1). Despite
the lower survival rates reported at 25°C, there was little to no
evidence that egg production rates were affected by exposure to
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TABLE 2 | Summary of the results of the analyses of variance (ANOVA type III) for the effect of “Temperature”, “Oxygen”, “Sex” and their

interactions on copepods' survival, egg production rates, routine metabolic rates (RMR), and the upper thermal limit (CT

) following a 5-day

max-

exposure to the single and combined effects of hypoxia and marine heatwave (MHW) conditions on the marine copepod Acartia tonsa.

Survival
Factor df X Pr(>x?) Evidence
Temperature 1 2217 <0.0001 Very strong
Oxygen 1 0.08 0.78 Little/no
Sex 1 0.47 0.49 Little/no
Temperature: Oxygen 1 2.38 0.12 Little/no
Temperature: Sex 1 0.36 0.55 Little/no
Oxygen: Sex 1 10.91 <0.001 Very strong
Temperature: Oxygen: Sex 1 0.00 0.99 Little/no
Egg production rates
Factor Sum sq df Fvalue Pr(>F) Evidence
(Intercept) 379.82 1 34.27 <0.0001
Temperature 16.54 1 1.49 0.25 Little/no
Oxygen 12.88 1 1.16 0.30 Little/no
Temperature: Oxygen 0.07 1 0.01 0.94 Little/no
Residuals 132.98 12
Routine metabolic rates (RMR)
Factor df x* Pr(>x?%) Evidence
(Intercept) 1 57.44 0.00
Log weight 1 0.08 0.78 Little/no
Temperature 1 15.86 <0.0001 Very strong
Oxygen 1 0.06 0.81 Little/no
Sex 1 0.57 0.45 Little/no
Temperature: Oxygen 1 1.38 0.24 Little/no
Temperature: Sex 1 1.19 0.27 Little/no
Oxygen: Sex 1 0.28 0.60 Little/no
Temperature: Oxygen: Sex 1 0.90 0.34 Little/no
Upper thermal limit (CT,, )
Factor df X Pr(>x?%) Evidence
(Intercept) 1 538.97 0.00
Weight 1 1.81 0.18 Little/no
Temperature 1 8.65 <0.01 Strong
Oxygen 1 1.57 0.21 Little/no
Sex 1 18.34 <0.0001 Very strong
Temperature: Oxygen 1 0.11 0.74 Little/no
Temperature: Sex 1 0.04 0.84 Little/no
Oxygen: Sex 1 0.63 0.43 Little/no
Temperature: Oxygen: Sex 1 4.30 0.04 Moderate
Note: Factors for which we have evidence of effect (p <0.1) are highlighted in bold.
7 of 17
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Thermal sensitivity of metabolic rate expressed in Q,, metric in function of the two O, sat. levels (%) for females (full dot) and males (stripped dot).

hypoxia or MHW conditions, in isolation or combination in A.
tonsa (Table 2).

3.3 | Routine Metabolic Rates (RMR)

RMR was highest at 25°C (3.18 £2.01 umolmg~! h7!) in com-
parison to 18°C (1.39+0.79 umolmg™" h7!), regardless of the
oxygen levels during the exposure (Figure 2a). This difference
was supported by very strong evidence for a positive effect of
temperature on metabolic rates (Table 2). By contrast, there was
no evidence for an effect of hypoxia or any interaction between
factors on RMR. In addition, there was little to no evidence

that the 5-day exposure to the single and combined effects of
hypoxia and a MHW impacted females' and males' RMR differ-
ently (Table 2) as their metabolic rates were comparable across
all conditions tested (Table S1).

Q,, values calculated for females and males at the two oxygen
saturation levels were higher for males than females, with Q,,
values measured after the 5-day exposure to normoxic and
hypoxic conditions being, respectively, 3.93 and 4.09 in males
and 3.4 and 2.33 in females (Figure 2b). Males and females’ Q,
showed different patterns in response to exposure to hypoxia,
with males showing only a 4% increase in Q,, between normoxic
and hypoxic conditions but a 23% decrease in females.
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3.4 | Upper Thermal Limit (CT,, )

Acartia tonsa females had a higher upper thermal limit (average
CT, .=34.72+2.52) than males (average CT,, =31.99+2.19).
In contrast to RMR, the combined effects of hypoxiaand a MHW
on copepod’s CT,_ _differed between females and males, as sup-
ported by the moderate evidence for the presence of a three-way
interaction between temperature, oxygen, and sex (Table 2).
Namely, within most treatments, females showed higher mean
CT,, than males (maximum p <0.019), with females and males
showing comparable mean CT___only in the HMHW treat-
ment (p=0.26; Figure 3 and Table S1). As for the single effects
of temperature and oxygen on females, there was respectively
weak and no evidence that CT,, was higher under MHW
conditions when compared to the control treatment (C-MHW;
p=0.09) or under H conditions when compared to the control
(C-H; p=1.00). Moreover, there was no evidence that females’
mean CT . changed in the HMWH treatment when com-
pared to control (C-HMHW,; p=1.00), or hypoxia (H-HMHW;
p=1.00). In addition, females’ CT,, did not change between
MHW conditions occurring under normoxic or hypoxic water
(MHW-HMHW; p=0.26). Still, there was moderate evidence of
a shift in females’ CT,_,  from H to MHW conditions (H-MHW;
p=0.03) (Figure 3). In comparison, for males, there was moder-
ate evidence that the mean CT, _under the combined condition
(HMHW) was higher when compared to the mean CT, , mea-
sured under H conditions (p =0.04). However, males' CT ___was

max

not different between H-C (p=1.00), H-MHW (p =0.26), as well
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FIGURE 3 | The effect of a 5-day exposure to hypoxia and MHW

conditions on the thermal limit (CT__ ) of females and males of the

max-
copepod A. tonsa. Violin plots represent the distribution of the data for
all combinations of “Temperature”, “Oxygen”, and “Sex” levels. The
black horizontal line and small open circles within the shape correspond
respectively to the mean and individual data points. Lowercase letters
represent evidence of differences between treatments within females,
capital letters showcase evidence of differences between treatments
within males, and squared brackets [*] identify evidence of differences

between sexes within each treatment.

as C-MHW (p=1.00), C-HMHW (p=0.30), and MHW-HMHW
(p=1.00) (Figure 3).

3.5 | Coefficient of Variation Ratio

Traits' variation between sexes was not found to be consistently
biased towards one sex for all traits and treatments, as the InCVR
calculated was not systematically above or below 0 (Figure 4).
Namely, while InCVR for metabolic rates were systematically
below 1 in all treatments, indicating male-biased variation, sur-
vival was only male-biased for the H, MHW, and HMHW treat-
ments, not the control. As for CTmax, a higher level of variation
was observed among females (InCVR > 0) in the hypoxic and the
combined treatments, while males’ CTmax was more variable in
the control and the MHW treatments (Figure 4).

3.6 | Multistressor Models to Identify the Nature
of Combined Stressors Effects

Multistressor models revealed sex-specific differences in the
type of interaction for CT,,  (Figure 5). Namely, in females,
the combined effect of temperature and hypoxia on their CT,_
was lower than the null additive model and lower than the indi-
vidual effect in the same direction, indicating the presence of a
positive antagonistic interaction (sensu Piggott, Townsend, and
Matthaei 2015). Conversely, a positive synergistic effect was ev-
ident for males, as the combined effects of temperature and hy-
poxia on males’ CT . was higher than the null additive model
and higher than any individual effect in the same direction
(sensu Piggott, Townsend, and Matthaei 2015). As for copepod's
survival and RMR, our models showed an effect of dominance
of temperature. Indeed, the effect of the combined stressors was
lower than the null multiplicative or additive model used and
close to the single effect of temperature (Figure S4).

[ C H
Survival ®
MO2 ®
CTmax ° Treatment
= ol
g [ MHW ] HMHW ] MHW
Survival [ ] ® HMHW
MO2 [ ]
CTmax ®

i i
4 biased % biased & biased 2 biased

InCVR
FIGURE 4 | Representation of the level of trait variation for
survival, RMR, and CT,, in A. tonsa’s male and female across the
four treatments: Control (C, light blue), hypoxia (H, dark blue), marine
heatwave (MHW, orange) and the combined treatment (HMHW, red). A
InCVR > 0 indicates that the trait is more variable in females than males
(i.e. female-biased), mean-adjusted.

RIGHTSE LI MN iy

90f17

2SUDOIT SUOWIW0)) dANEa1) dqedridde ayy £q pauIdA0S A1k SAOIIE V() $aSN JO SN 10§ AIRIqIT AUIUQ) AS[IAN UO (SUOHIPUOI-PUB-SULI) WO (1M ATeIqIjour[uo//:sdpy) SuonIpuoy) pue swid ], oy 39S [470z/01/5Z] U0 Areiquy auruQ AT ‘€S 1°998/1 111°01/10p/wod Kd[im K1eiqrouruo//:sdny woiy papeojumo ‘01 “+20Z ‘98¥7S9E1


https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1111%2Fgcb.17553&mode=

,}/

Effect

i

o
Sy

Stressor

[ Hypoxia
Temperature

[ Combined

Null model

NN

T T T T
Hypoxia Temperature Combined Null model

T T T T
Hypoxia Temperature Combined Null model

FIGURES5 | Multistressor models showing antagonistic and synergistic effects of combined hypoxia and a MHW condition on A. tonsa’ s females
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The bar plot represents the single effect of hypoxia (H, in blue) and temperature (MHW, in orange) and the

combined effect of both stressors (HMHW, in red) in comparison with the calculated additive null model (H+MHW, in light grey).

4 | Discussion

Our study provides evidence for the existence of sex-specific re-
sponses in the cosmopolitan and ecologically important Acartia
tonsa following simultaneous exposure to hypoxia and MHW
events. Females appear less vulnerable, having higher upper
thermal limits and lower metabolic thermal sensitivity than
males. Yet, both sexes responded more strongly to the effect
of MHW in isolation, with the exposure to combined stressors
not yielding interactive effects on most of the traits measured.
Overall, our results highlight the relevance of defining the effect
of global change drivers on both sexes. In addition, the observed
dominant effect of temperature on mortality and metabolic rates
in our study supports the idea that MHW events have pervasive
implications for this species. Finally, the absence of strong in-
teraction between hypoxia and temperature might indicate that
potential cross-protection mechanisms are at play.

4.1 | Sex-Specific Responses Lead to Differential
Vulnerability

The complex interplay that temperature, oxygen, and sex play
in affecting copepods' ability to tolerate heat strikingly high-
lights the pivotal influence of sex on physiological traits. Sex
differences in thermal tolerance have been documented on
several occasions in marine organisms (Bradley 1978; Foley
et al. 2019; Sasaki et al. 2019), with a general trend of females
possessing higher thermal tolerance than males in arthropods
(Edmands 2021; cf. Missionario et al. 2022). The greater thermal
tolerance of females combined with their lower metabolic ther-
mal sensitivity (i.e., lower Q, ) we report supports the notion of a
higher male-biased vulnerability to MHW. Interestingly, Sasaki
et al. (2019) also reported higher thermal tolerance in A. tonsa's
females (LD, in two populations living under distinct thermal

regimes following developmental exposure to 18°C and 22°C.
This implies that A. tonsa females could be more thermally tol-
erant than males, both following developmental and acute tem-
perature exposure.

Several mechanisms have been proposed to explain sex-
specific differences, including differences in metabolic rates,
body size, and reproductive investments (Edmands 2021). We
report no significant differences in metabolic rates between
sexes, but males had higher metabolic sensitivity, suggesting
that they are less equipped metabolically to face the intense
and rapid increase in temperature associated with MHW ex-
posure (Seebacher, White, and Franklin 2014). As for the body
size hypothesis, higher thermal tolerance is often correlated to
a smaller body size (Leiva, Calosi, and Verberk 2019). While
this general trend applies within each sex (Figure S5), A.
tonsa females are bigger than males, yet have a higher ther-
mal tolerance. Hence, we posit that the differences observed
here result from true physiological rather than allometric dif-
ferences between the two sexes. These physiological differ-
ences most likely reflect the “live fast and die young” strategy
often adopted by males (Bonduriansky et al. 2008; Ceballos
and Kierboe 2011), making it the “weak sex” in copepods
(Ceballos and Kierboe 2011). Indeed, males have a high mat-
ing energy investment (Burris and Dam 2015a) due to the pro-
duction of spermatophores, a slow and costly process (Burris
and Dam 2015b; Bjerke et al. 2016). This high reproductive
investment can generate a trade-off between reproduction and
maintenance, resulting in the accumulation of oxidative stress
(Rodriguez-Grafia et al. 2010) and a shorter lifespan with
successive mating (Ceballos and Kierboe 2011; Burris and
Dam 2015c). Interestingly, in the copepod Tigriopus californi-
cus, males’ lower tolerance to various stressors has been asso-
ciated with their lower proteolytic capacity (Foley et al. 2019)
and efficiency in generating cellular stress responses (Li
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et al. 2020). Consequently, damaged proteins are not properly
degraded, leading to cytotoxicity and reduced fitness (Foley
et al. 2019). Higher accumulation of oxidative stress in males
has also been observed in A. tonsa due to their lower protein
turnover relative to females (Rodriguez-Graia et al. 2010), but
this has not been tested in the context of combined hypoxia
and MHW. In addition, male copepods could be subjected to
the “mother's curse” (Gemmell, Metcalf, and Allendorf 2004).
As mitochondria are inherited from mothers, mutations that
are neutral or beneficial for females are kept, even if they are
deleterious for males' fitness (Foley et al. 2019; Nagarajan-
Radha et al. 2020). Taken together, the high cost of life for
males combined with their lower ability to repair temperature-
induced cellular damages, could make them particularly vul-
nerable to future MHWs.

This vulnerability seems to extend to hypoxic and combined
conditions. Indeed, the positive antagonistic and synergistic
interactions found for females and males, respectively, re-
veal that the exposure to the combined stressors generates
sex-specific non-additive effects on the upper thermal limit.
Although counterintuitive, the positive antagonistic interac-
tion found in females meets our prediction: CT_,, is highest
under the MHW condition tested, showing that A. tonsa can
rapidly increase its thermal limits through acclimation follow-
ing an acute temperature exposure. Notably, this acute and
ecologically realistic 5-day MHW exposure represents more
than 40% of the generation time in this species. This phenom-
enon is well documented in aquatic organisms (e.g., Calosi,
Bilton, and Spicer 2008; Sasaki and Dam 2021a; Fernandes
et al. 2023). Acartia tonsa specifically, can increase the ex-
pression of HSPs in a matter of hours following a heat shock
(Rahlff et al. 2017). In addition, the non-additive response
we report shows a negative effect of hypoxia on the CT_,,
for females, with mean CT_ under the combined condition
being intermediate between that measured under control and
MHW conditions. Considering the effect of combined tem-
perature and hypoxia on thermal tolerance discussed above,
this effect was expected. Yet, in males, this pattern is not ob-
served, as CT, . under combined conditions was higher than
under hypoxia, reaching similar CT, values as females in
the combined condition. In theory, this positive synergism in
CT,,. in comparison to the positive antagonism found in fe-
males would indicate that males could be less vulnerable to
the combined effects of hypoxia and MHWs events. Yet, when
analyzed together with the higher survival and stronger de-
crease in thermal sensitivity observed in females in hypoxic
conditions compared with males, we suggest instead that fe-
males are more tolerant to the negative effects of hypoxia and
MHW in isolation or combined. The fact that traits’ variability
was mostly male-biased across treatments, but female-biased
for CT,, under hypoxia and combined conditions, suggests a
stronger selective pressure in males under low O, conditions
(Salinas et al. 2019) and explains why males’ CT_, was the
highest in the combined condition.

4.2 | Marine Heatwaves as the Dominant Stressor

As expected, the 5-day exposure to a MHW event affected
both survival and metabolic rates, leading respectively to a

decrease of 27% in survival and an increase of 150% in RMR,
irrespective of sex. Both lethal and sublethal effects following
exposure to MHW have been frequently reported in past lab-
oratory and field studies focusing on copepods (Siegle, Taylor,
and O'Connor 2022; Truong et al. 2022; Semmouri et al. 2023).
In A. tonsa specifically, the higher percentage of mortality sug-
gests that 25°C is beyond its optimal temperature for perfor-
mance. Our results are coherent with those from Sasaki and
Dam (2021b), who reported a 53% survival after 24 h in A. tonsa’
s females raised under similar conditions. High mortality is ex-
pected when the energy imbalance and the cellular damages in-
duced by temperature are so extensive that organisms are not
able to recover (Hochachka and Somero 2002; Sokolova 2013;
Schulte 2015). Previous studies have shown that A. tonsa’s re-
sponds to acute heat stress through the upregulation of HSPs
and lipid remodeling (Garzke et al. 2016; Werbrouck et al. 2016;
Rahlff et al. 2017). We suggest that exposure to a MHW event,
singly or combined with hypoxia, led some individuals to un-
dergo rapid upregulation and cellular remodeling, which may
have granted survival, while the upregulation may have been
too slow to protect other individuals, leading to high mortality.
Altogether, these differences in response prevent the complete
extinction of our lineages. However, the cellular stress response
was not measured here and we cannot confirm this hypothesis.
Yet, the strong temperature-induced metabolic responses and
high values of Q,, we report in comparison to previous studies
(Q,,=1.8-2.1, Tkeda et al. 2001) suggest that A. tonsa is sensitive
to MHWs, both under normoxic or hypoxic conditions, and that
energy costs for maintenance, cellular adjustments, and repro-
duction are high. Additionally, behavioral adjustments leading
to sex-specific differences in activity levels in each treatment
could also have impacted their thermal sensitivity. Indeed, ac-
tivity levels can highly impact routine metabolic rates, including
in copepods (Terry et al. 2024). Hence, measuring how activity
levels may differ between sexes and under different treatments
is an interesting avenue to investigate in the future.

High energy investment in reproduction could explain why
egg production rates were unaffected. Either copepods pos-
sess enough energy to allocate into reproduction, or the
energy investment into reproduction is at the expense of ho-
meostasis and cellular repair, causing accumulation of oxi-
dative damages that can be lethal for some individuals (Zera
and Harshman 2001; Latta, Tucker, and Haney 2019; von
Weissenberg et al. 2022). Another non-mutually exclusive
hypothesis, given the high inter-individual variability we ob-
serve, is that offspring at 25°C were spawned by the surviv-
ing individuals: that is, those able to rapidly enhance cellular
protection mechanisms or had already high constitutive levels
of antioxidants, enabling them to invest energy into reproduc-
tion. As we did not measure egg production daily, we cannot
exclude this hypothesis. Considering that copepods were fed
ad libitum in all treatments, we believe that this non-limiting
access to food could have helped them to support the high en-
ergetic need imposed by temperature: that is, compensatory
feeding (Holmes-Hackerd, Sasaki, and Dam 2023). Still, A.
tonsa females can transfer part of the oxidative damage into
the eggs (Rodriguez-Grana et al. 2010) and egg size can de-
crease following long-term acclimatization to high tempera-
ture (Hansen et al. 2009). Therefore, whether the maintenance
of high levels of egg production rates was at the expense of egg
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size and quality, leading to poor performance in offspring (i.e.,
carry-over effects), or whether protective parental effects were
transmitted to the next generation through the eggs should be
further investigated (Marshall and Uller 2007; Bonduriansky,
Crean, and Davey 2017; Dinh et al. 2021).

4.3 | Cross-Protection Interaction Between
Hypoxia and MHW?

Surprisingly, contrary to our prediction, apart from the upper ther-
mal limit, we report no evidence of an interactive effect between
temperature and oxygen on all traits measured. Instead, survival
and metabolic rate were more strongly influenced by the MHW,
as mentioned above. This might indicate that the mild hypoxic
condition used here was above A. tonsa’s oxygen threshold (P_;)
for sublethal responses and could explain the dominant effect of
temperature reported in this study. While we did not measure P_;,
in this study, exposure to hypoxia alone did not significantly affect
the traits we measured, supporting our hypothesis. In fact, accord-
ing to modelling work by Elliott, Pierson, and Roman (2013) on
A. tonsa, the level of hypoxia used here (3.31 mgL™?) was slightly
above their P, (3.10mgL™") at 18°C. However, it should have
been within the sublethal range at 25°C. Still, previous studies
have also highlighted that oxygen levels may modulate heat tol-
erance in some species, but not ubiquitously, suggesting species-
specific abilities in oxygen uptake regulation (Verberk et al. 2016;
Jutfelt et al. 2018). Notwithstanding, the absence of a synergistic
interaction between hypoxia and MHW on survival, egg produc-
tion rates, and metabolic rates could also indicate that a potential
“cross-protection” mechanism is possible between the two stress-
ors (Rodgers and Gomez Isaza 2021). Cross-protection develops
when prior acclimation to hypoxia or high temperature leads to
improved tolerance to the other stressor (Rodgers and Gomez
Isaza 2021). It usually requires a period of recovery between
stressors (Todgham, Schulte, and Iwama 2005) to enable struc-
tural adjustments to improve oxygen uptake (McBryan et al. 2013;
Anttila et al. 2015), metabolic depression (Somero, Lockwood,
and Tomanek 2017) or trigger the cellular stress response (Ely
et al. 2014) to take place. However, we report no metabolic depres-
sion in our study, and copepods rely on the passive diffusion of ox-
ygen and must molt to enable morpho-functional changes, which
they do not undertake once adult. Thus, they have limited ability
to improve oxygen uptake (Roman et al. 2019). Still, exposure to
the sub-lethal level of hypoxia could have stimulated the produc-
tion of reactive oxygen species (ROS) which, in small amounts,
act as signaling molecules priming the fast activation of cellular
responses (Rodgers and Gomez Isaza 2021). Cross-talk between
the hypoxia-inducible transcription factor-1 (HIF-1), which is in-
volved in organisms' responses to hypoxia (Baird, Turnbull, and
Johnson 2006; Levesque, Wright, and Bernier 2019), and HSPs
have also been suggested as a cytoprotective mechanism leading
to cross-protection in some species (Ely et al. 2014). This mecha-
nism should be further investigated in the future, as it should lead
to antagonistic effects on the biological responses and such effects
were not identified in the present study after 5-day exposure.
However, it could explain why the effects we report under com-
bined conditions were lower than the null models and lower than
the effect of MHW alone, both for survival and metabolic rate
(Figure S4). In addition, behavioral adjustments such as a reduc-
tion in swimming speed to prolong tolerance to hypoxic bottom

waters, a strategy observed in Calanus pacificus under hypoxic
conditions (Wyeth, Griinbaum, and Keister 2022), could be em-
ployed by A. tonsa to reinvest the energy in maintenance instead.

4.4 | Conclusion

We show that A. tonsa is vulnerable to the effects of MHW
alone, particularly males. Interestingly, synergistic and an-
tagonistic effects of combined stressors were only observed
for copepods' upper thermal limits, revealing that potential
cross-protection mechanisms could be involved when these
stressors occur simultaneously. Nevertheless, the sex-specific
differences observed in our study highlight the need to con-
sider sex in future studies. This is particularly relevant to
consider in view of the implementation of climate-smart con-
servation approaches (Stein et al. 2014). The physiological sex-
ual dimorphism observed here is potentially underpinned by
different strategies in cellular stress responses, which appear
to be dependent on the intensity and duration of the exposure.
Therefore, we suggest integrating cellular, physiological and
life-history traits measurements in future studies aiming at
characterizing the simultaneous effect of hypoxia and MHW
events of various intensities and duration to shed light on the
mechanism underpinning the sex-specific vulnerability ob-
served here. Still, the higher vulnerability of males to extreme
events is particularly concerning, as it could reinforce the ex-
isting female-biased sex ratio observed in copepods (Gusmao
and McKinnon 2009; Burris and Dam 2015b), with major re-
percussions for their population dynamics (Gissi et al. 2023).
Considering the paramount ecological importance of copepods
in marine habitats, such changes can have implications for the
functioning of entire ecosystems, as shown for example with
the changes in the distribution and abundance of calanoid
copepods in the North Sea (Beaugrand et al. 2002; Helaouét,
Beaugrand, and Edwards 2013). Given the strong sex-specific
differences observed here for A. tonsa, the question now re-
mains: will extreme events cause an irreversible shift in the
operational sex ratio in this species?
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