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In this paper, we introduce a novel numerical approach for approximating the Susceptible-
Infectious-Recovered (SIR) model in epidemiology. Our method enhances the existing linearization
procedure by incorporating a suitable relaxation term to tackle the transcendental equation of non-
linear type. Developed within the continuous framework, our relaxation method is explicit and easy
to implement, relying on a sequence of linear differential equations. This approach yields accurate
approximations in both discrete and analytical forms. Through rigorous analysis, we prove that,
with an appropriate choice of the relaxation parameter, our numerical scheme is non-negativity-
preserving; moreover, it is strongly convergent to the true solution. We also extend the applicability
of our relaxation method to handle some variations of the traditional SIR model. Finally, we present
numerical examples using simulated data to demonstrate the effectiveness of our proposed method.
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I. INTRODUCTION

A. Background

In recent years, the world has witnessed the devas-
tating impact of infectious diseases on a global scale.
From the rapid spread of COVID-19 to the resur-
gence of long-standing ailments like measles and in-
fluenza, understanding the dynamics of epidemics
has become crucial for protecting public health. To
gain a deeper understanding of these intricate phe-
nomena, scientists have increasingly relied on mathe-
matical modeling as an influential tool for unraveling
the complex mechanisms governing disease transmis-
sion. Among the various models, the Susceptible-
Infectious-Recovered (SIR) model has emerged as a
fundamental framework, providing valuable insights
into epidemic dynamics; cf. e.g. [7, 12, 16] for its
applications to modeling the influenza, Ebola and
COVID-19.
The SIR model, initially proposed in the early

20th century by Kermack and McKendrick [11], has
since been refined and adapted to address contem-
porary challenges. This model effectively captures
the fundamental dynamics of epidemics by dividing
a population into three distinct compartments: sus-
ceptible individuals, infectious individuals, and re-
moved individuals. By considering the interactions
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between these compartments, the SIR model takes
into account various factors such as transmission
rates, removal rates, and the depletion of susceptible
individuals over time. The“removals” in this context
encompass individuals who are isolated, deceased, or
have recovered and gained immunity. Additionally,
the model assumes that individuals who have gained
immunity or recovered enter a new category that is
not susceptible to the disease.

Consider a homogeneously mixed group of individ-
uals of total size N ≫ 1. Let t ∈ (0, T ) be the time
variable with T > 0 being the final time of observa-
tions. We take into account the following functions:

S (t) = number of susceptibles at time t,

I (t) = number of infectives at time t,

R (t) = number of removals at time t.

Initiated, again, by Kermack and McKendrick in
1927 [11], the evolutionary dynamics of these indi-
viduals can be modeled through the following system
of ordinary differential equations (ODEs):

I ′ (t) = βS (t) I (t)− γI (t) ,

S′ (t) = −βS (t) I (t) ,

R′ (t) = γI (t) .

(1)

Here, the following assumptions are considered.
(A1) The total population size is always N > 0,

meaning that S (t) + I (t) +R (t) = N for all t.
(A2) We know the infection rate β > 0 from the

infection process, and the removal rate γ > 0 from
the removal process.
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(A3) The initial conditions are S (0) = n > 1,
I (0) = a ≥ 1 and R (0) = 0.

The explicit solution of the SIR model, despite its
basic structure, is widely known to be unattainable
due to the exponential nonlinearity of the transcen-
dental equation governing removals. Consequently,
numerous numerical methods have been proposed
to address this fundamental model. The Taylor ex-
pansion method, initially employed by Kermack and
McKendrick in 1927, approximates the exponential
term, leading to an approximate analytic solution.
This technique was utilized to simulate the plague
epidemic of 1905-1906 in Bombay, India, and has
since become a tutorial resource for students at both
undergraduate and graduate levels; cf. [4].

B. Historical remarks

Over the years, many different methods have been
studied to solve the SIR model. Piyawong et al. [23]
introduced an unconditionally convergent scheme
that captures the long-term behavior of the SIR
model, offering improved numerical stability com-
pared to conventional explicit finite difference meth-
ods. Mickens [20] and, recently, Conte et al. [6] pro-
posed and analyzed stable nonstandard finite differ-
ence methods that effectively preserve the positiv-
ity of the SIR solutions. Semi-analytical methods,
such as the Adomian decomposition approach [19],
have also been proposed, alongside other methods
cited therein, to derive approximate analytical solu-
tions. Additionally, the solutions of the SIR model
can be expressed in terms of the Lambert function,
as demonstrated in the publications by [2, 24]. Fur-
thermore, an alternative approach involving para-
metric analysis has been employed to obtain analyt-
ical solutions; see e.g. [9]. While most of these ap-
proaches are local approximations, a recent global
semi-analytical approach utilizing the Padé approx-
imation has been presented in [5].

C. A glance of our relaxation scheme

While the above-mentioned approximation meth-
ods have demonstrated numerical effectiveness, their
convergence theories have received limited investiga-
tion. Some publications discussing discrete methods
focus solely on stability analysis, leaving the global
convergence analysis unexplored. In this study, we
propose a novel numerical approach that guarantees
global convergence. Our approach employs a relax-
ation procedure, derived from the conventional lin-
earization technique, to approximate the SIR model
in a continuous setting. Unlike the classical ver-

sion, our modified procedure introduces a relaxation
term. In the existing literature on partial differ-
ential equations (e.g., [14, 15, 21, 31] and refer-
ences cited therein), this relaxation term mitigates
the local convergence issues encountered by con-
ventional linearization techniques such as Newton’s
method. Consequently, it permits to choose an ar-
bitrary starting point while guaranteeing the global
convergence. Within our specific context, the relax-
ation term facilitates capturing the non-negativity of
solutions while preserving global convergence. It is
worth mentioning that these two features appear to
be important in the designation of many numerical
schemes; cf. e.g. [5, 6, 10, 14, 15, 17, 20, 21, 31, 32]
for different problems taken into account.

By relying only on the dependence of the relax-
ation constant on the removal rate, our approach
accurately captures the long-term behavior of the
system. Furthermore, our explicit and easy-to-
implement approximate scheme is governed by a se-
quence of linear differential equations. The desired
approximate solution can be obtained discretely or
analytically based on individual preference.

D. Organization of the paper

Our paper is four-fold. In section II, we begin by
revisiting the transcendental equation for removals
and discussing the essential properties of the SIR
model. The latter part of this section focuses on
introducing the proposed relaxation scheme and es-
tablishing its theoretical foundations. We prove that
this scheme is globally strongly convergent and pre-
serves non-negativity. Additionally, we derive an er-
ror estimate in C0. In section III, we extend the ap-
plicability of our proposed scheme to some variants
of the SIR model. Then, to validate the effectiveness
of our method, numerical examples are presented in
section IV. Finally, we provide some concluding re-
mark in section V, and the appendix contains the
proofs of our central theorems.

II. RELAXATION PROCEDURE

A. Transcendental equation revisited

It is well known that the SIR model can be solved
from a transcendental differential equation. Here,
we revisit how to get such an equation to complete
our analysis of the proposed scheme below. Let µ =
β/γ be the reciprocal relative removal rate. By the
second and third equations of system (1), we have

dS

dR
= −µS,
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which leads to ln (S) = −µR + c. Therefore, we
arrive at

S (t) = ec−µR(t). (2)

To find c, we set t = 0 in (2) and use (A3). Indeed,
by n = S (0) = ec−µR(0) = ec, we get c = ln (n) and
thus, deduce that

S (t) = ne−µR(t). (3)

Combining this and (A1), we derive the following
nonlinear differential equation for R (t):

R′ (t) = γ
(
N − ne−µR(t) −R (t)

)
. (4)

Remark. To this end, the notation Cm is used to
denote the space of functions with m continuous
derivatives. For the particular C0 space, it is the
space of continuous functions on [0, T ] with the stan-
dard max norm.

Theorem 1. The differential equation (4) admits a
unique C1 non-negative solution R (t). Moreover,
the existence and uniqueness in C1 of positive S (t)
and I (t) to the SIR system (1) follow.

Proof. The positivity of S (t) and I (t) is guaranteed
by the first and second equations of system (1), i.e.

S (t) = n exp

(
−β

∫ t

0

I (s) ds

)
,

I (t) = a exp

(∫ t

0

(βS (s)− γ) ds

)
.

Then, by the third equation of (1), the non-
negativity of R (t) follows.
Cf. [30, Theorem 3.2], since the right hand side

of (4) is globally Lipschitzian, the equation admits
a unique local C1 solution. Moreover, in view of
the fact that

∣∣γ (N − ne−µR(t) −R (t)
)∣∣ ≤ γ |R (t)|+

γ (N + n) for any t ≥ 0, the obtained solution is
global as a by-product of [30, Theorem 3.9]. Ob-
serve that the right hand side of (3) is decreasing in
the argument of R (t). Thereby, the existence and
uniqueness of S (t) follows. We also get the existence
and uniqueness of I (t) in view of the fact that the
total population is conserved; cf. (A1).
Hence, we complete the proof of the theorem.

Observe that if one can approximate R (t) well in
(4), then S (t) and I (t) will be well approximated via
(3) and (1), respectively. Define g (r) = γne−µr+γr
for r ∈ R. We can rewrite (4) as

R′ (t) = γN − g (R (t)) .

Remark. By the first and second equations of the
SIR system (1), we get

dI

dS
= −1 +

1

µS
.

Therefore, using S (0) = n and I (0) = a, we find
that I (t) − a = −S (t) + n + 1

µ ln (S (t)) − 1
µ ln (n).

Equivalently, we deduce that

I (t) =
1

µ
ln (S (t))− S (t) + a+ n− 1

µ
ln (n) .

Since function f (S) = 1
µ ln (S)−S for S > 0 attains

its maximum at S = µ−1, we can estimate the so-
called amplitude, which is the maximum value of I,
in the following manner.

Imax = − 1

µ
ln (µ)− 1

µ
+ a+ n− 1

µ
ln (n) . (5)

B. Derivation and analysis of the numerical scheme

Let {Rk}∞k=0 be a time-dependent sequence satis-
fying, for k = 1, 2, 3, . . .,

R′
k (t) +MRk (t) = γN − g (Rk−1 (t)) +MRk−1 (t) .

(6)
The sequence {Rk}∞k=0 aims to approximate R (t)

in (4) in the sense that Rk will be close to R as
k → ∞ uniformly in time. The accompanying ini-
tial condition for equation (6) is Rk (0) = 0 for any
k ≥ 0. Since our approximate model performs as an
iterative scheme, we need a starting point, R0 (t).
Here, we choose R0 (t) = 0 based on the initial con-
dition of R (t) (cf. (A3)), which is the best informa-
tion given to the sought R (t).

Also, in (6), we introduce a k-independent con-
stantM ≥ γ > 0 for the so-called relaxation process.
This relaxation term plays a very important role.
It allows us to prove the non-negativity of the re-
laxation scheme, while many numerical approaches,
including the regular linearization method, do not
have or cannot prove this feature. Herewith, the
regular linearization method we meant is the scheme
{Rk}∞k=0 in (6) with either M = 0 or only the expo-
nential term in g (r) being linearized.

Formulated below is the theorem showing that the
scheme {Rk}∞k=0 preserves the non-negativity of the
removals over the relaxation process.

Theorem 2. The sequence {Rk}∞k=0 is a non-
negativity-preserving scheme. Moreover, it holds
true that for all M ≥ γ,

0 ≤ g (Rk) ≤ γn+MRk for any k ≥ 0 and t ≥ 0.



4

Proof. We prove this theorem by induction. The
statement holds true for k = 1. Indeed, since
R0 (t) = 0, the equation for R1 (t) reads as

R′
1 (t) +MR1 (t) = γN − γn ≥ 0.

Therefore, we get

R1 (t) =
γ (N − n)

M

(
1− e−Mt

)
≥ 0,

g (R1) = γne−µR1(t) + γR1 (t) ≤ γn+MR1 (t) .

Next, assume that the statement holds true for k =
k0. We prove that it also holds true for k = k0 + 1.
By (6), we have

R′
k0+1 (t) +MRk0+1 (t)

= γN − g (Rk0
(t)) +MRk0

(t) ≥ 0.

Thus, we obtain Rk0+1 (t) ≥ e−MtRk0+1 (0) ≥ 0. As
a by product, we can estimate that

g (Rk0+1) = γne−µRk0+1(t) + γRk0+1 (t)

≤ γn+MRk0+1 (t) .

Hence, we complete the proof of the theorem.

In the following, we formulate the strong conver-
gence result for the scheme {Rk}∞k=0. For ease of pre-
sentation, proof of this result is deliberately placed in
the Appendix. It is worth mentioning that proof of
the strong convergence of the scheme relies so much
on the strict estimation of g′. Such an estimation can
merely be obtained by the aid of the non-negativity
of the scheme.

Theorem 3. The sequence {Rk}∞k=0 defined in (6) is
strongly convergent in C0 toward the true solution
R (t) to Equation (4). In particular, we can find a
number C = C (T,M, γ, n, µ) > 0 independent of k
such that the following error estimate holds true:

max
0≤t≤T

|Rk (t)−R (t)|2 ≤ Ck

k!
max
0≤t≤T

|R (t)|2 .

Our theoretical finding below shows that when
nµ < 1, the scheme {Rk (t)}∞k=0 converges faster
than the case nµ ≥ 1. The proof of the following
corollary is also found in the Appendix.

Corollary 4. Assume that nµ < 1. We can find a
constant c ∈ (0, 1) independent of k such that the
following error estimate holds true:

max
0≤t≤T

|Rk (t)−R (t)| ≤ ck max
0≤t≤T

|R (t)| . (7)

As readily expected, for every step k, we obtain a
non-homogeneous differential equation that can be

effectively approximated in the discrete framework.
Mimicking the proof of Theorem 3 and using Theo-
rem 2, we have

R′
k (t) +MRk (t)

≤ γN − γn+ (M + γnµ− γ)Rk−1 (t) . (8)

Indeed, by (39), for p (r) = g (r)−Mr,

p (0)− p (Rk−1) ≤ |p (Rk−1)− p (0)| ≤ |p′| |Rk−1|
≤ (M + γnµ− γ)Rk−1,

which leads to

−g (Rk−1) +MRk−1 ≤ (M + γnµ− γ)Rk−1 − γn.

Thus, by (8) it follows that

Rk (t)

≤ e−Mt

∫ t

0

eMs (γa+ (M + γnµ− γ)Rk−1 (s)) ds

≤ tγa+ (M + γnµ− γ)

∫ t

0

Rk−1 (s) ds.

By induction and by the choice R0 (t) = 0, we can
show that

|Rk (t)| ≤ γa
k∑

i=1

(M + γnµ− γ)
i−1 t

i

i!
.

Therefore, if we choose γ ≤ M ≤ γ + 1
T , then

|Rk (t)| ≤ Tγa
(
eγnµT − 1

)
. Note that this bound

is independent of k. Thus, by Theorem 1, we get
Rk ∈ C1 for any k with, cf. (8), Theorem 2 and the
choice M ≤ γ + 1

T ,

|R′
k (t)| ≤ γa+ (M + γnµ− γ)Tγa

(
eγnµT − 1

)
≤ γa

(
1 + (γnµT + 1)

(
eγnµT − 1

))
≤ γae2γnµT .

Furthermore, by differentiating both sides of (6)
with respect to time, we can demonstrate that Rk ∈
C2 for any k. Indeed,

R′′
k (t) +MR′

k (t)

=
(
M − γ + γnµe−µRk−1(t)

)
R′

k−1 (t)

≤ (M − γ + γnµ)
∣∣R′

k−1 (t)
∣∣ .

This yields that |R′′
k (t)| ≤ γa

(
γnµ+ 2

T + γ
)
e2γnµT ,

which is a k-independent upper bound. This en-
sures the Euler method’s global error by leveraging
its existing convergence theory. For completeness,
we present below the discrete solution to our pro-
posed scheme.
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Consider the time increment ∆t = T/P for P ≥ 2
being a fixed integer. Then, we set the mesh-point
in time by tp = p∆t for 0 ≤ p ≤ P . We seek Rp

k ≈
Rk (tp) as a discrete solution to equation (6). By
the standard Euler method, Rp

k is determined by the
following equation:

Rp
k +∆tMRp

k

= Rp−1
k +∆t

(
γN − g

(
Rp

k−1

)
+MRp

k−1

)
. (9)

By this way, the global error of the Euler method is
attained in the sense that for every k, there exists a
constant C̃ > 0 such that

max
0≤p≤P

|Rp
k −Rk (tp)| ≤ C̃∆t. (10)

We accentuate that by the above analysis of Rk, i.e.
Rk ∈ C2 for any k, the constant C̃ is independent of
k. Thus, by Theorem 3, we can estimate the distance
between the discrete (approximate) solution Rp

k and
the true solution R at each mesh-point,

max
0≤p≤P

|Rp
k −R (tp)| ≤ C̃∆t+

√
Ck

k!
max
0≤t≤T

|R (t)| .

(11)

Remark. We have the following remarks:

� After obtaining the approximator Rp
k for

R (tp), we can compute S (tp) using (3). Then,
the approximate solution for I (tp) can be de-
termined using (A1), specifically I (tp) = N −
S (tp)−R (tp).

� Both C̃ and C in (11) are independent of P
and k. As a by product, our discrete relax-
ation scheme {Rp

k}
∞
k=0

, as defined in (9), is

globally strongly convergent in C0. Similar to
the proof of Theorem 2, we can demonstrate
that Rp

k is non-negativity-preserving. It is im-
portant to note that many previous approxi-
mations, such as the method of series expan-
sions [5, 19], parametrization method [9, 25]
and finite difference method [23, 29], did not
adequately address the preservation of non-
negativity/positivity. Furthermore, certain re-
cent positive numerical schemes fail to provide
an error bound, as observed in the publications
[6, 13].

� While the application of the Euler method is
initiated, we can further employ higher-order
numerical methods to produce a faster conver-
gent solver for the linear differential equation
of Rk. Among these, the Runge-Kutta method
stands out as the most favorable choice, offer-
ing a convergence rate of order q ≥ 2. Build-
ing upon the analysis of the Euler method

above, we can prove that all derivatives of the
right hand side of (6) exist up to order q and
Rk ∈ Cq for any k. Therefore, we can show
that Rp

k globally converges to Rk with a rate
of O (∆tq); cf. e.g. [8, Theorem 3.4] for the
existing theory on the global convergence of
the Runge-Kutta method, generalizing (10).
Note here that O (x) is the conventional Lan-
dau symbol.

� Similar to (11), the convergence of the Runge-
Kutta method remains unaffected by k. Never-
theless, it is important to emphasize that this
convergence is heavily contingent upon the up-
per bounds of the involved derivatives. Con-
sidering the boundedness of Rk, R

′
k and R′′

k es-
tablished above, it becomes evident that these
bounds tend to increase as the order rises.
Consequently, it is crucial to exclusively em-
ploy variants of the Runge-Kutta method with
appropriately high orders. This perspective
holds true when applying the Runge-Kutta
method directly to the differential equation
(4).

III. EXTENSIONS TO OTHER SIR MODELS

In this section, we briefly discuss the applicability
of the relaxation method to other population mod-
els of SIR type. In particular, we show below how
the proposed approach can be adapted to approx-
imate the SIRD (Susceptible-Infectious-Recovered-
Deceased) and SIRX models; cf. [1, 3, 18] for an
overview of these models.

SIRD model

The SIRD model extends the SIR model by dis-
tinguishing between recovered and deceased individ-
uals. In this framework, the removals in the SIR
model no longer encompass the number of infected
individuals who have passed away. To account for
mortality, a mortality rate σ > 0 is introduced,
representing the rate at which infected individuals
succumb to death. Consequently, the death rate
per unit of time is calculated as the product of the
mortality rate and the number of infected individ-
uals. Additionally, as the number of deceased indi-
viduals is excluded from the removals, the rate of
change of infections over time is adjusted to reflect
the loss caused by mortality. Mathematically, the
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SIRD model reads as
I ′ (t) = βS (t) I (t)− (γ + σ) I (t) ,

S′ (t) = −βS (t) I (t) ,

R′ (t) = γI (t) ,

D′ (t) = σI (t) ,

(12)

where D (t) stands for the number of deceased peo-
ple (after infection) at time t. Assume accordingly
that initially, there is no deceased individual. Conse-
quently, in (12), we apply the following assumptions,
which are modified versions of (A1), (A2), and (A3).
(B1) The total population size is always conserved

with N > 0, meaning that S (t) + I (t) + R (t) +
D (t) = N for all t.

(B2) We know the infection rate β > 0 from the
infection process, the removal rate γ > 0 from the
removal process, and the death rate σ > 0 from the
mortality process.
(B3) The initial conditions are S (0) = n > 1,

I (0) = a ≥ 1, R (0) = 0 and D (0) = 0.

Remark. By the first and second equations of the
SIRD system (12), we see that

dI

dS
= −1 +

γ + σ

βS
.

Similar to the classic SIR model (1), we can thus
formulate the so-called amplitude in the following
fashion:

Imax =
γ + σ

β
ln

(
γ + σ

β

)
− γ + σ

β
+ a+ n− γ + σ

β
ln (n) , (13)

when S reaches γ+σ
β .

Remark. The SIRD model (12) resembles the SIRX
model without containment rate. In the SIRX
model, an additional class called“X”was introduced
to account for the impact of social or individual be-
havioral changes during quarantine. Individuals in
this class, referred to as symptomatic quarantined
individuals, no longer contribute to the transmis-
sion of the infection. Instead of σ, the SIRX model
without containment rate consideres κ > 0 that rep-
resents the rate at which infected individuals are
removed due to quarantine measures. The SIRX
model with the containment rate is not the scope of
our paper since the associated transcendental sys-
tem does not take the same form of (6). Indeed,
the transcendental system governing the full SIRX
model is of an integro-differential equation.

Now, we detail the transcendental equation for
R (t) and the application of the relaxation scheme.

From the second and third equations of system (12),
we deduce that

S (t) = ne−µR(t), (14)

where we have recalled the reciprocal relative re-
moval constant µ = β/γ. Using the same way, the
third and last equations of system (12) give

D (t) =
σ

γ
R (t) , (15)

by virtue of R (0) = D (0) = 0 (cf. (B3)). Then,
plugging (14), (15) and (B1) into the third equation
of (12), we obtain the following differential equation
for R (t):

R′ (t) = γ

[
N − ne−µR(t) −

(
1 +

σ

γ

)
R (t)

]
. (16)

Henceforth, our relaxation scheme in this case be-
comes

R′
k (t) +MRk (t) = γN − g (Rk−1 (t)) +MRk−1 (t) ,

(17)
where g (r) = γne−µr+(γ + σ) r. Similar to the SIR
model, here we rely on (B3) to choose Rk (0) = 0 for
any k ≥ 0 as the initial condition and R0 (t) = 0 as
the starting point.

By choosing M ≥ γ + σ, our sequence {Rk}∞k=0
(defined in (17)) is non-negativity-preserving and
globally strongly convergent to R of the transcen-
dental equation (16). These findings are analogous
to our central Theorems 2 and 3, and therefore, we
omit their formulations. Besides, Theorem 1 is ap-
plied to (16), guaranteeing the global existence and
uniqueness of the C1 solutions to the SIRD model
(12). Indeed, the non-negativity of the solutions to
(12) is obtained, following the fact that

S (t) = n exp

(
−β

∫ t

0

I (s) ds

)
,

I (t) = a exp

(∫ t

0

(βS (s)− γ − σ) ds

)
.

Moreover, the global existence and uniqueness of
these solutions are guaranteed because the right-
hand side of (16) is globally Lipschitzian, and
it satisfies that

∣∣γN − γne−µR(t) − (γ + σ)R(t)
∣∣ ≤

(γ + σ) |R(t)|+ γ (N + n) for any t ≥ 0.

SIR model with background mortality

The SIR model, along with its variants SIRD and
SIRX, assumes a constant population size. These
models, known as epidemiological SIR-type models
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without vital dynamics, are limited in their repre-
sentation of population changes; see (A1) and (B1).
The SIR model with vital dynamics addresses this
limitation by incorporating birth and death rates to
account for population size fluctuations.
In the present work, we explore that the transcen-

dental system governing the SIR model with back-
ground mortality takes the form of (6). With σ being
the death rate, the population experiences changes
over time. Here, individuals from all compartments
can exit through deaths, allowing for a more realistic
representation of population dynamics. Mathemati-
cally, the SIR model with background mortality can
be expressed as follows:

I ′ (t) = βS (t) I (t)− γI (t)− σI (t) ,

S′ (t) = −βS (t) I (t)− σS (t) ,

R′ (t) = γI (t)− σR (t) .

(18)

In this perspective, we make use of the following
assumptions.
(C1) The total population size is dependent of t,

i.e. N = N (t) > 0. It can be computed that N (t) =
S (t)+ I (t)+R (t) = e−σtN0 for some fixed N0 > 0.
(C2) We know the infection rate β > 0 from the

infection process, the removal rate γ > 0 from the
removal process, and the death rate σ > 0 from the
mortality process.
(C3) The initial conditions are S (0) = n > 1,

I (0) = a ≥ 1 and R (0) = 0. This implies that
N0 = n+ a.
Similar to the classical SIR model, we seek the

transcendental equation for R prior to the applica-
tion of our proposed numerical scheme. When doing
so, we define R (t) = eσtR (t) and S (t) = eσtS (t).
By the second and third equations of system (18),
we find that

S
′
(t) = −βS (t) I (t) , (19)

R
′
(t) = γeσtI (t) . (20)

Therefore, we deduce that

dS

dR
= −µe−σtS, (21)

or equivalently, ln
(
S
)
= −µe−σtR+ c̃ (t). Herewith,

we have recalled the reciprocal relative removal rate
µ = β/γ. Henceforth, we have

S (t) = ec̃(t)−µe−σtR(t). (22)

Since S (0) = n and R (0) = R (0) = 0 by (D3),
we find that c̃ (0) = ln (n). Moreover, by taking the
derivative in time of (22), we arrive at

S
′
(t) = ec̃(t)−µe−σtR(t)

[
c̃′ (t)− µe−σt

(
−σ +R

′
(t)

)]
.

(23)

Dividing both sides of (23) by R
′
(t), we find that

S
′
(t)

R
′
(t)

=
ec̃(t)−µe−σtR(t)

[
c̃′ (t)− µe−σt

(
−σ +R

′
(t)

)]
R

′
(t)

.

Then combining this with (21) and (22), we derive
the following differential equation for c̃ (t):

ec̃(t)−µe−σtR(t)
[
c̃′ (t)− µe−σt

(
−σ +R

′
(t)

)]
= −µe−σtec̃(t)−µe−σtR(t)R

′
(t) ,

or equivalently, c̃′ (t) = −µσe−σt. Thus, we obtain
c̃ (t) = ln (n) + µ (e−σt − 1) and

S (t) = neµ(e
−σt−1)e−µe−σtR(t).

Together with the back-substitution e−σtR (t) =

R (t), we thereby get S (t) = neµ(e
−σt−1)e−µR(t).

Now, we note that by (C1) and (C3), eσtI (t) =
N0 − S (t) − R (t) holds true for any t. Plug-
ging this into (20) and using the fact that S (t) =

neµ(e
−σt−1)e−µR(t) = neµ(e

−σt−1)e−µe−σtR(t), we
derive the transcendental equation for R as follows:

R
′
(t) = γ

[
N0 − neµ(e

−σt−1)e−µe−σtR(t) −R (t)
]
.

(24)

By setting ĝ (r) = γneµ(e
−σt−1)e−µe−σtr+γr, our re-

laxation scheme for the SIR model with background
mortality is structured by

R
′
k (t) + M̂Rk (t)

= γN0 − ĝ
(
Rk−1 (t)

)
+ M̂Rk−1 (t) . (25)

Similar to the above-mentioned SIR-based mod-
els, we choose Rk (0) = 0 for any k ≥ 0 as the initial
condition and R0 (t) = 0 as the starting point, based
on the fact that R (0) = R (0) = 0. Also, here we

take M̂ ≥ γ to ensure the non-negativity preserva-
tion and global strong convergence of the sequence{
Rk

}∞
k=0

(defined in (25)) to the sought R of the
transcendental equation (24). As another analog of
Theorems 2 and 3, we omit details of the formu-
lations of the theoretical results for the sequence{
Rk

}∞
k=0

. It is also worth mentioning that Theo-
rem 1 remains true in this case, providing the global
existence and uniqueness of C1 solutions to the SIR
model with mortality (18). Indeed, the solutions to
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(18) are non-negative, since it holds true that

S (t) = n exp

(
−β

∫ t

0

I (s) ds

)
,

I (t) = a exp

(∫ t

0

(βS (s)− γ − σ) ds

)
,

where by the derivation of (19), we know that S(t) =
e−σtS(t). Furthermore, the global existence and
uniqueness results are obtained because the right-
hand side of (24) is globally Lipschitzian, and it is
bounded from above by γ |R(t)|+γ (N0 + n) for any
t ≥ 0.

IV. NUMERICAL EXPERIMENTS

In this section, we verify the numerical perfor-
mance of the proposed relaxation method. Ini-
tially, we employ various approaches to solve the
SIR model (1) for the purpose of comparison. These
include our method (6), as well as the standard
methods: approximate analytic solution, regular lin-
earization procedure, and conventional explicit Eu-
ler method. It is important to note that since the
conventional explicit Euler method is considered in
this comparison, we also apply the Euler method to
our relaxation scheme, as outlined in (9), as well as
to the regular linearization procedure.
Additionally, it is worth mentioning that the ap-

proximate analytic solution for R (t) (referred to as
Ra) can be found in [3, 4, 11]. In particular, it is of
the following form:

Ra (t) =
1

nµ2

[
nµ− 1 + η tanh

(
γηt

2
− ψ

)]
, (26)

where

η =
[
2nµ2 (N − n) + (nµ− 1)

2
]1/2

,

ψ = tanh−1

[
1

η
(nµ− 1)

]
.

The approximate analytic solution mentioned
above corresponds to the solution of the Riccati
equation. However, it is applicable only when µR
is sufficiently small. Furthermore, the conventional
explicit Euler method is expressed as follows:

Rp = Rp−1 +∆t
(
γN − g

(
Rp−1

))
, (27)

where Rp ≈ R (tp) is the discrete solution to the
nonlinear differential equation (4) for tp = p∆t being
the mesh-point in time.

In the second test, we utilize the widely used
Runge-Kutta RK4 method to solve the SIR model
(6) by applying it to our relaxation scheme (1). We
then compare its performance when using the Euler-
relaxation method (9) and when directly applying
the Runge-Kutta RK4 method to (4). For sake
of clarity, we provide the formulation of the RK4
method for solving a differential equation of a gen-
eral type R′ (t) = F (t, R (t)):

Rp = Rp−1 +
1

6
K1

(
tp−1, R

p−1
)
+

1

3
K2

(
tp−1, R

p−1
)

+
1

3
K3

(
tp−1, R

p−1
)
+

1

6
K4

(
tp−1, R

p−1
)
, (28)

where we have denoted the intermediate values by

K1

(
tp−1, R

p−1
)
= ∆tF

(
tp−1, R

p−1
)
, (29)

K2

(
tp−1, R

p−1
)
= ∆tF

(
tp−1 +

∆t

2
, Rp−1 +

K1

2

)
,

(30)

K3

(
tp−1, R

p−1
)
= ∆tF

(
tp−1 +

∆t

2
, Rp−1 +

K2

2

)
,

(31)

K4

(
tp−1, R

p−1
)
= ∆tF

(
tp−1 +∆t, Rp−1 +K3

)
.

(32)

When using our method, it is important to note that for each iteration k, we solve the linear differential
equation R′

k (t) = F (t, Rk (t)), where F (t, Rk (t)) = −MRk (t) + γN − g (Rk−1 (t)) +MRk−1 (t). Notice

that in this equation, the presence of the midpoint tp−1+
∆t
2 , applied to Rk−1 (t) obtained from the previous

step, leads to the following linear approximation:

Rk−1

(
tp−1 +

∆t

2

)
=

1

2
[Rk−1 (tp−1) +Rk−1 (tp−1 +∆t)] . (33)

Denote this approximation by Rp−0.5
k−1 = Rk−1

(
tp−1 +

∆t
2

)
. Thereby, we seek Rp

k satisfying (28) in which the
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intermediate values are given by

K1 = ∆t
(
−MRp−1

k + γN − g
(
Rp−1

k−1

)
+MRp−1

k−1

)
, (34)

K2 = ∆t

[
−M

(
Rp−1

k +
K1

2

)
+ γN − g

(
Rp−0.5

k−1

)
+MRp−0.5

k−1

]
, (35)

K3 = ∆t

[
−M

(
Rp−1

k +
K2

2

)
+ γN − g

(
Rp−0.5

k−1

)
+MRp−0.5

k−1

]
, (36)

K4 = ∆t
[
−M

(
Rp−1

k +K3

)
+ γN − g

(
Rp

k−1

)
+MRp

k−1

]
. (37)

On the other hand, when directly applying
the Runge-Kutta RK4 method to the nonlinear
differential equation (4), we have F (t, R (t)) =
γ
(
N − ne−µR(t) −R (t)

)
.

In the third test, we present the numerical perfor-
mance of the proposed method in solving the SIR-
based models discussed in section III. In particular,
our focus in this test is on

1. the scheme {Rk}∞k=0, defined in (17), for the
SIRD model (12). In this model, the relaxation
parameter satisfies M ≥ γ + σ.

2. the scheme {Rk}∞k=0 computed from
{
Rk

}∞
k=0

(defined in (25)) for the SIR model with back-
ground mortality (18). In this case, we condi-

tion that M̂ ≥ γ.

To evaluate the accuracy of the relaxation scheme,
we assess the proximity of the approximation when
approaching the maximum value of I. It is impor-
tant to recall that explicit expressions for Imax have
been derived for each specific case. The reader is
referred to (5) for the classical SIRD model, and
(13) for the SIRD model. For the SIR model with
background mortality, since the maximum value of
I cannot be found explicitly, we run the simulation
with several values of P and K to verify the numer-
ical stability. When increasing these parameters, we
also identify the numerical amplitude and peak day
to see the performance of our relaxation method in
the Euler and RK4 frameworks.

Test 1

In this test, we compare our Euler-relaxation ap-
proach with the approximate analytic solution (26),
the regular linearization procedure (which arises
when the relaxation parameter vanishes), and the
direct explicit Euler method (27). Alongside assess-
ing numerical stability, we evaluate the performance
of these methods based on the amplitude Imax pre-
sented in (5) and the peak day.

Method

#1 (6) coupled with the Euler method

#2 (6) with M = 0

#3 Analytic solution (26)

#4 Conventional Euler method (27)

#5 (6) coupled with the RK4 method

#6 Conventional RK4 method (28)–(37)

Table I: Numerical methods examined in section
IV.

Method # 1 1 2 2 3 4 4

# of time step P 100 1000 100 1000 None 100 1000

# of iteration K 5 50 2 4 None None None

Amplitude Imax 797 800 800 800 755 793 800

Peak day 25 23 138 35 114 32 25

Table II: Values of the computed amplitude Imax

obtained from different methods and the
corresponding peak days. Method #1: our

Euler-relaxation method (9). Method #2: the
regular linearization method, i.e. our proposed
method (6) but with M = 0. Method #3: the
approximate analytic solution Ra formulated in
(26). Method #4: the conventional explicit Euler
method (27) applied directly to the nonlinear
differential equation (4). By (5), the true
amplitude Imax,true is 800 in this scenario.

Here, we consider a population sample of N =
1000 for the SIR model (1) over the course of one
year (T = 365). Initially, we assume that there are
a = 2 infected people in this sample, leaving n = 998
individuals susceptible to infection. Furthermore, we
choose a removal rate of γ = 0.02 and an infection
rate of β = 0.0004. With these choices, we obtain a
reciprocal relative removal rate of µ = β/γ = 0.02,
indicating that nµ = 19.96 > 1. Additionally, for
our relaxation process, we set M = 0.02.

Our numerical results for Test 1 are presented
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in Table II. Based on the maximum amplitude
(Imax), our proposed method within the Euler con-
text (method #1) outperforms the approximations
obtained from methods #2–4. The first two columns
of Table II demonstrate the numerical stability of our
proposed method, particularly when dealing with
relatively small values of P and K. Remarkably,
when P = 100 andK = 5, our method yields an Imax

value of 797, which is very close to the true value of
800 as shown in (5). In contrast, the Imax obtained
from the approximate analytic solution (method #3)
shows a significant deviation. We also observe that
the amplitude Imax obtained from method #3 re-
mains unaffected regardless of the choice of P .
A comparison between methods #1 and #2 re-

veals that while the regular linearization technique
can provide a satisfactory estimate of Imax (800
when considering P = 100 and K = 2), method
#2 suffers from severe numerical instability as illus-
trated in the second row of Figure 1, particularly
when increasing K to obtain a more accurate graph-
ical representation. Note that to help visualize the
instability better, we deliberately use a log-scale in
the vertical axis.
Furthermore, when P and K are relatively small,

our proposed method shows a slight improvement
over the conventional Euler method (method #4)
within the same Euler context. At a coarse grid level,
method #4 yields a relative error of 0.875%, while

our method achieves a lower relative error of 0.375%.
Upon increasing P to 1000, both methods #1 (with
an increased K = 50) and #4 demonstrate compa-
rable accuracy in terms of amplitude and graphical
representation, as depicted in the first and last rows
of Figure 1.

Our numerical investigation reveals that the true
peak value (Imax,true) is attained on the 24th day by
employing sufficiently large values of P (over 3000)
in both reliable methods #1 and #4. Comparing
the peak days, it becomes evident from the last row
of Table II that our relaxation method outperforms
methods #2 and #3. While our method and method
#4 achieve similar accuracy in terms of graphical
simulation and amplitude, our proposed method de-
tects the peak day earlier and with greater reliability.
Specifically, considering small P and K, our relax-
ation method identifies the peak outbreak on the
25th day, which closely aligns with the true peak
(24th), in contrast to the peak day of 32nd obtained
from method #4. For larger P , our method predicts
an earlier peak occurrence (day 23rd), which proves
advantageous in practical scenarios compared to the
peak day of 25th obtained from method #4. The
ability to predict the peak event of a disease earlier
is of practical significance for decision-makers, en-
abling them to implement and sustain timely public
health measures and interventions aimed at mitigat-
ing the disease risk.

Test 2

Our second test focuses on the numerical com-
parison between two approaches: applying the well-
known Runge-Kutta RK4 method (referred to as
method #5) to our relaxation scheme (6) and ap-
plying it directly to the nonlinear differential equa-
tion (4) (denoted as method #6). Additionally, we
compare the convergence speed of method #5 with
method #1, referred above to as the Euler-relaxation
method (9).

As RK4 is a fourth-order method, we deliberately
choose a large population size of N = 97.47 × 106

and a transmission rate of β = 3× 10−9. Assuming
the initial infected population is a = 11, and the re-
moval rate remains constant at γ = 0.05 throughout
the entire six-month period (T = 180), we can cal-
culate that the simulated disease reaches its peak at
Imax,true = 51367769; cf. (5). Moreover, based on
numerical observations with a sufficiently large value
of P (>2000), we find that this peak is reached on
the 73rd day.

Our numerical results are tabulated in Table III,

accompanied by corresponding graphical illustra-
tions in Figure 2. We see that within the same
RK4 framework, our proposed relaxation method
(method #5) outperforms the direct approach.
When the number of time steps is small (P = 50),
method #5 with K = 20 yields an amplitude Imax

of 51295165 with a relative accuracy of 0.14%, while
method #6 achieves 0.81%. Both methods capture
the peak day (72) well compared to the true value
of 73. Note in this case that we choose K = 20, a
larger value than in Test 1, due to the larger popula-
tion under consideration. Cf. Theorem 3, the choice
of K does affect our error estimation which heavily
depends on the total size of the removal population.

We also see that when increasing P to 2000, our
proposed method #5 with an increased K = 50
precisely achieves the true amplitude, Imax,true =
51367769, while the direct RK4 method produces a
very close approximation of 51367765. Both meth-
ods also identify the peak day as the 73rd day.

Furthermore, we compare our relaxation method
to the Euler and Runge-Kutta frameworks. In terms
of amplitude, although method #1 initially pro-
vides a better value of 51341234 with an accuracy
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(a) Method #1 (P = 100,K = 5) (b) Method #1 (P = 1000,K = 50)

(c) Method #2 (P = 100,K = 2) (d) Method #2 (P = 1000,K = 4)

(e) Method #3

(f) Method #4 (P = 100) (g) Method #4 (P = 1000)

Figure 1: Graphical illustrations of Test 1. Row 1: Euler-relaxation method. Row 2: regular linearization
method. Row 3: approximate analytic method. Row 4: direct Euler method. Note that to help visualize

the instability better, a log-scale in the vertical axis is used in Row 2.
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of 0.05%, it fails to accurately detect the peak day,
significantly deviating from the true value of 73 (pre-
dicting 54 instead). Increasing P to 2000 improves
the amplitude to 51367573, but it still performs
worse than the direct RK4 method’s amplitude of
51367765. Herewith, method #1 achieves an im-
proved peak day of 72. Additionally, based on the
simulation of method #1, we observe that to reach
the true amplitude (Imax,true = 51367769) and the
true peak day of 73, at least P = 19000 andK = 100
are required. Henceforth, our relaxation method in
the RK4 framework, as readily expected, outper-
forms itself in the Euler framework.

Remark. It is essential to select M = γ as the opti-
mal choice, as this helps to minimize the left-hand
side of (42). To verify this, we run method #5 us-
ing a coarse grid of P = 50,K = 20 for different
values of M ∈ {0.1, 0.2, 0.5}. We observe that when
M runs far away from γ = 0.05, the corresponding

amplitude Imax becomes less accurate; compared to
our numerical results tabulated in Table III. We par-
ticularly report that the amplitude Imax drops from
51245377 with M = 0.1 to 41107779 with M = 0.2,
and further to 29834 with M = 0.5.

Since the RK4 framework converges very quickly,
for a fine grid with P = 2000,K = 50, increasing
M to 0.5 does not affect the value of the amplitude
Imax. However, this increase in M shows an adverse
impact on identifying the peak day. For M = 0.5,
the amplitude remains accurate at 51367768, close
to the true value of 51367769. Yet, the peak day
shifts to day 78th, which is 5 days later than the
actual peak day (73rd). When M is increased to
1–20 times larger than the original choice of 0.05–the
approximation to the true value deteriorates signif-
icantly. In particular, for M = 1, the amplitude is
reduced to 564059, and the peak day shifts to day
122nd.

Test 3

As previously mentioned, in our last experiment,
we aim to broaden the scope of the proposed re-
laxation method by applying it to various SIR-type
models: specifically, the SIRD model and the SIR
model with background mortality. These models
share the same input parameters as those used in
Test 1, where we set N = 1000, n = 998, T = 365,
γ = 0.02, β = 0.0004. In the SIRD model (12),
we choose a death rate of σ = 0.01, which implies a
choice of the relaxation parameterM ≥ γ+σ = 0.03.
In the SIR model with background mortality (18),
we use the background death of σ = 0.001 and select
M̂ ≥ γ = 0.02.
Our numerical findings for the SIRD model are

detailed in Figure 3. We specifically investigate the

scenario where M = 0.015, thereby contravening
the relaxation condition (M ≥ 0.03). Consistent
with our theorem concerning non-negativity preser-
vation, we observe that the relaxed solution with
M = 0.015, obtained from both the Euler and RK4
frameworks, fails to maintain non-negativity over
time. This is evident in the first column of Figure
3. When M = 0.03 (a case that adheres to the con-
dition), we also note that the RK4-relaxation out-
performs the Euler-relaxation approach. Given the
Imax,true = 730 (as formulated in (13)), and with a
coarse mesh of P = 200 andK = 10, we observe that
the RK4-relaxation produces an amplitude identical
to the true value. In contrast, the Euler-relaxation
yields a value of 729. It is also worth mentioning
that the accurate amplitude is attained when apply-
ing the Euler-relaxation with P = 800 and K = 10.

Our numerical results pertaining to the SIR model
with background mortality are presented in Figure
4. It is evident that both the Euler and RK4 re-
laxation methods show numerical stability and non-
negativity preservation as we increase the values of
(P,K) from (100, 5) to (1000, 50).

Consistent with our prior tests, the RK4-
relaxation method continues to outperform the
Euler-relaxation method. Leveraging this numerical

stability, we run the RK4-relaxation method using
large values of P and K to determine the numerical
amplitude and peak day. Our findings reveal a nu-
merical amplitude of 777, peaking on the 24th day.
Within the RK4 framework, achieving this numeri-
cal amplitude and peak day requires approximately
P = 300 and K = 20. In contrast, the Euler frame-
work demands a minimum of P = 1700 and K = 20
for similar outcomes.



13

Method # 5 5 6 6 1 1

# of time step P 50 2000 50 2000 50 2000

# of iteration K 20 50 None None 20 50

Amplitude Imax 51295165 51367769 50948480 51367765 51341234 51367573

Peak day 72 73 72 73 54 72

Table III: Values of the computed amplitude Imax obtained from different methods and the corresponding
peak days. Method #5: our RK4-relaxation method (28) applied with (33)–(37). Method #6: the

conventional RK4 method (28)–(32) applied directly to the nonlinear differential equation (4). Method #1:
our Euler-relaxation method (9). By (5), the true amplitude Imax,true is 51367769 in this scenario.

V. CONCLUDING REMARKS

This work presents a novel numerical approach
for solving the SIR model in population dynamics.
While various approximation methods have been
proposed for this classical model, the analysis of
their convergence has been limited and challenging.
Our approach introduces the relaxation procedure
to approximate the continuous model. By carefully
selecting the relaxation parameter, we achieve global
strong convergence of the scheme and effectively pre-
serve non-negativity. The proposed scheme is ex-
plicit and straightforward to implement, enabling us
to obtain the approximate solution at either the dis-
crete or analytical level. Additionally, we showcase
the applicability of our scheme to numerous variants
of the SIR model.

In our future work, we will develop a globally
strongly convergent higher-order scheme based on
the current relaxation method. Additionally, we
plan to apply this method to more complex SIR-
based models, involving multiple compartments and
dimensions, as explored in recent works such as
[22, 26, 27] and references therein. Furthermore,
we will attempt to integrate the method with other
techniques that have been designed to solve frac-
tional systems, as studied in [33–35] and dissipative
systems, as presented in [28].
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(a) Method #5 (P = 50,K = 20) (b) Method #5 (P = 2000,K = 50)

(c) Method #6 (P = 50) (d) Method #6 (P = 2000)

(e) Method #1 (P = 50,K = 20) (f) Method #1 (P = 2000,K = 50)

Figure 2: Graphical illustrations of Test 2. Row 1: RK4-relaxation method. Row 2: direct RK4 method.
Row 3: Euler-relaxation method.

APPENDIX

Proof of Theorem 3

Step 1: Define Ek (t) = Rk (t) − R (t) for k = 1, 2, 3, . . .. It follows from (6) and (4) that Ek satisfies the
following differential equation:
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(a) Violating Euler-relaxation (P = 100,K = 5, M = 0.015) (b) Euler-relaxation (P = 200,K = 10,M = 0.03)

(c) Violating RK4-relaxation (P = 100,K = 5,M = 0.015) (d) RK4-relaxation (P = 200,K = 10,M = 0.03)

Figure 3: Graphical illustrations of Test 3 – SIRD model. Row 1: Euler-relaxation method with violating
and non-violating cases. Row 2: RK4-relaxation method with violating and non-violating cases. These

illustrations serve to highlight a crucial observation: when the relaxation parameter is not suitably selected,
the numerical solution loses its adherence to non-negativity preservation.

E ′
k (t) +MEk (t) = −g (Rk−1 (t)) + g (R (t)) +MEk−1 (t)

= p (R (t))− p (Rk−1 (t)) , (38)

where we have denoted p (r) = g (r) −Mr for r ≥ 0. Herewith, by Theorems 1 and 2, we are allowed to
consider r ≥ 0. We can compute that p′ (r) = −γnµe−µr + γ −M . Then, for M ≥ γ and since r ≥ 0, we
estimate that

γ − γnµ−M ≤ p′ (r) = −γnµe−µr + γ −M < 0,

which shows

|p′ (r)| ≤M + γnµ− γ. (39)

Therefore, the left-hand side of (38) can be bounded from above by

E ′
k (t) +MEk (t) ≤ (M + γnµ− γ) |Ek−1 (t)| .

Using the Hölder inequality, we find that

e2Mt |Ek (t)|2 ≤ (M + γnµ− γ)
2

(∫ t

0

eMs |Ek−1 (s)| ds
)2

≤ (M + γnµ− γ)
2
∫ t

0

e2Msds

∫ t

0

|Ek−1 (s)|2 ds.
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(a) Method #1 (P = 100,K = 5) (b) Method #1 (P = 1000,K = 50)

(c) Method #5 (P = 100,K = 5) (d) Method #5 (P = 1000,K = 50)

Figure 4: Graphical illustrations of Test 3 – SIR model with background death. Row 1: Euler-relaxation
method with different values of P and K. Row 2: RK4-relaxation method with diverse P and K values. In

these illustrations, numerical stability and non-negativity preservation are observed.

Thus, we deduce that

|Ek (t)|2 ≤ 1

2M
(M + γnµ− γ)

2 (
1− e−2Mt

) ∫ t

0

|Ek−1 (s)|2 ds.

By the elementary inequality e−x + x ≥ 1, we obtain the following estimate

|Ek (t)|2 ≤ (M + γnµ− γ)
2
t

∫ t

0

|Ek−1 (s)|2 ds. (40)

Step 2: By induction, we can show that for any 2 ≤ k ∈ N

|Ek (t)|2 ≤ (M + γnµ− γ)
2k
t

∫ t

0

s1

∫ s1

0

. . . sk−1

∫ sk−1

0

|E0 (sk)|2 dskdsk−1 . . . ds1. (41)

It follows from (40) that (41) holds true for k = 2. Indeed,

|E2 (t)|2 ≤ (M + γnµ− γ)
2
t

∫ t

0

|E1 (s1)|2 ds1 ≤ (M + γnµ− γ)
4
t

∫ t

0

s1

∫ s1

0

|E0 (s2)|2 ds2ds1.
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Assume that (41) holds true for k = k0. We show that it also holds true for k = k0 + 1. By (40), we have

|Ek0+1 (t)|2

≤ (M + γnµ− γ)
2
t

∫ t

0

|Ek0
(s)|2 ds

≤ (M + γnµ− γ)
2
t

∫ t

0

(M + γnµ− γ)
2k0 s

∫ s

0

s1

∫ s1

0

. . . sk0−1

∫ sk0−1

0

|E0 (sk0
)|2 dsk0

dsk0−1 . . . ds1ds

≤ (M + γnµ− γ)
2(k0+1)

∫ t

0

s1

∫ s1

0

. . . sk0

∫ sk0

0

|E0 (sk0+1)|2 dsk0+1dsk0
. . . ds1.

Hence, we complete Step 2.
Step 3: By (41), observe that 0 ≤ sk ≤ sk−1 ≤ . . . ≤ s1 ≤ t. Combining this, (41) and the fact that

R ∈ C1 gives

|Ek (t)|2 ≤ (M + γnµ− γ)
2k
tk+1 max

0≤t≤T
|E0 (t)|2

∫ t

0

s1

∫ s1

0

. . . sk−1

∫ sk−1

0

dskdsk−1 . . . ds1

≤ (M + γnµ− γ)
2k t

k+1

k!
max
0≤t≤T

|E0 (t)|2 .

Note that we have the k and time independence of M + γnµ − γ and t ≤ T . Moreover, we know that

E0 (t) = R0 (t)−R (t) = −R (t) by the choice R0 (t) = 0. Therefore, in view of the fact that limk→∞
Qk

k! = 0

for any constant Q > 0, we can always find k > 0 such that for any k ≥ k,

(M + γnµ− γ)
2k T

k+1

k!
< 1. (42)

Hence, we obtain the strong convergence of the sequence {Rk}∞k=0 toward the true solution R.

Proof of Corollary 4

We define Ek (t) = Rk (t) − R (t) and p (r) = g (r) −Mr as above. Multiplying (38) by Ek (t) and using
(39) yield

1

2

d

dt
E2
k (t) +ME2

k (t) = [p (R (t))− p (Rk−1 (t))] Ek (t) ≤
M + γnµ− γ

2
E2
k−1 (t) +

M + γnµ− γ

2
E2
k (t) .

Equivalently, we obtain

d

dt
E2
k (t) + (M − γnµ+ γ) E2

k (t) ≤ (M + γnµ− γ) E2
k−1 (t) .

Notice that by the choice M ≥ γ, it holds true that M > γnµ−γ when nµ < 1. Using the integrating factor
e(M−γnµ+γ)t and taking integration with respect to t, we get

E2
k (t) ≤ e−(M−γnµ+γ)t (M + γnµ− γ)

∫ t

0

e(M−γnµ+γ)sE2
k−1 (s) ds

≤ e−(M−γnµ+γ)t
[
e(M−γnµ+γ)t − 1

]M + γnµ− γ

M − γnµ+ γ
max
0≤t≤T

E2
k−1 (t) .

Henceforth, we obtain

max
0≤t≤T

|Ek (t)| ≤
(
M + γnµ− γ

M − γnµ+ γ

)1/2

max
0≤t≤T

|Ek−1 (t)| . (43)
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By induction and the fact that R0 (t) = 0, we deduce

max
0≤t≤T

|Ek (t)| ≤
(
M + γnµ− γ

M − γnµ+ γ

)k/2

max
0≤t≤T

|E0 (t)| =
(
M + γnµ− γ

M − γnµ+ γ

)k/2

max
0≤t≤T

|R (t)| .

Since M + γnµ− γ < M − γnµ+ γ when nµ < 1, we obtain the target estimate (7).
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