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Abstract 1 

The study analyzed the survey data from the 2018 Portland E-scooter Pilot Program and aims to 2 

determine (i) who uses shared e-scooters and why they use them, and (ii) whether there is any 3 

association between e-scooter usage and the usage of other modes of transportation. To accomplish 4 

the first objective, the study identifies the users of shared e-scooters based on their travel behavior 5 

using an unsupervised machine learning approach, latent class analysis (LCA). The LCA model 6 

grouped e-scooter users into three distinct classes: Class 1 (Recreational Enthusiasts) -occasional 7 

and frequent users for recreation, Class 2 (Commute Riders) -frequent users for work, and Class 3 8 

(Intermittent Joyriders) -occasional and one-time users for recreation. Furthermore, a set of 9 

ordered logit models is employed to determine the second objective based on the identified classes 10 

of e-scooter users, their socio-demographic characteristics, and the built environment variables. 11 

The results of ordered logit models revealed that compared to Commute Riders, both Recreational 12 

Enthusiasts and Intermittent Joyriders exhibit less interest in increasing the usage of available 13 

transportation modes after adopting e-scooters. Notably, low-income e-scooter users show a higher 14 

probability of increasing their usage across various transportation modes, including public 15 

transportation, driving, shared mobility services, personal bikes, shared bikes, and walking. The 16 

study offers valuable insights to guide city planners and policymakers in developing effective 17 

strategies for the deployment of e-scooters, targeting each group of users. 18 

 19 

 20 

Key Words: E-scooters, Shared micromobility, User Segmentation, Latent Class Analysis, 21 

Ordered Logit Model.  22 

 23 

 24 

 25 
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1. Introduction 1 

Shared e-scooters have rapidly grown in popularity as a fun and flexible means of transportation 2 

for first and last trips. E-scooter sharing services have become more popular than bikesharing in 3 

many cities, after being launched in the US in September 2017 (Anderson-Hall, 2018). In 2019, 4 

shared micromobility journeys increased by 136 million, with e-scooter rides accounting for the 5 

majority (NACTO, 2020). The introduction of e-scooters and the rise of shared micromobility 6 

journeys have led cities to reevaluate how to govern these new services to maximize benefits for 7 

the public. To preserve the public right of way, boost mobility, and ensure everyone benefits from 8 

this new mobility alternative, it is crucial to understand shared e-scooter usage patterns and their 9 

impact on other transportation modes.  10 

Research on shared electric scooters that uses travel information from micromobility 11 

providers is growing rapidly. Several recent studies have focused on extracting the characteristics 12 

and travel patterns of e-scooter users from survey responses or by mining e-scooter trip data (Laa 13 

& Leth, 2020; Jiao & Bai, 2020; Guo & Zhang, 2021; Raptopoulou et al., 2021). However, less 14 

attention has been given to analyze the effect of this new mode of micromobility based on the user 15 

characteristics and travel behavior of specific groups of shared e-scooter users, in contrast to the 16 

more thoroughly studied auto (Morency et al., 2007), bike (Shelat et al., 2018), transit (Rafiq & 17 

McNally, 2021), and ridesharing systems (Soria et al., 2020). A well-defined segment-based 18 

analysis of shared e-scooter users is needed, considering travel behavior, socio-demographic, and 19 

land use characteristics, to better understand the usage of this new mode of micromobility as well 20 

as how this new mode impacts on the usage of other modes of transportation. Policymakers have 21 

limited information on the usage patterns of e-scooters and their impact on other transportation 22 
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modes, making it challenging to create more effective laws or promote shared e-scooters (Guo & 1 

Zhang, 2021). 2 

Therefore, this study attempts to address the need by using the responses to the E-scooter 3 

Pilot User Survey (2018) (PBOT, 2018) conducted by the city of Portland. The analysis of this 4 

study mainly focuses on two specific research questions:  5 

R1. Who are the e-scooter users, and why are they using them? 6 

R2. Is there any association between e-scooter usage and the usage of other transportation 7 

modes?  8 

The study contributes significantly to existing literature in two main ways. Firstly, it 9 

employs latent class analysis (LCA), an unsupervised machine learning approach, to categorize e-10 

scooter users based on their travel behavior. Unlike prior studies that rely solely on e-scooter trip 11 

data for classification (Degele et al., 2018; Ushijima et al., 2021), this research utilizes user survey 12 

data. While trip data captures usage patterns, it may lack the depth needed to understand the 13 

underlying reasons for user choices. By incorporating survey data into clustering, the study aims 14 

to develop more informed and targeted strategies, addressing the diverse needs of distinct user 15 

segments. This contributes to the formulation of more effective and user-centric e-scooter 16 

deployment plans. 17 

Moreover, the LCA model employed in this study proves especially suitable for categorical 18 

data, enhancing effectiveness in handling variables that represent distinct categories or groups 19 

(Sasidharan et al., 2015). Notably, various studies on transportation user clustering, such as Rafiq 20 

& McNally (2021) and Alemi et al. (2018), have adopted the LCA method. This probabilistic 21 

cluster analysis offers the advantage of selecting the optimal number of clusters based on statistical 22 

criteria. 23 
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Secondly, the study extends beyond the scope of previous research, which primarily 1 

focused on users shifting from specific transportation modes to e-scooters. Instead, it investigates 2 

changes in the usage patterns of seven transportation modes (public transportation, car, rideshare 3 

services, personal bike, rental cars, shared bikes, and walking) following e-scooter use. This 4 

analysis considers the identified e-scooter user clusters, socio-demographic factors (age, gender, 5 

education, income, and race), and built environment characteristics (population density, land use 6 

entropy, and employment density). The comprehensive approach provides a nuanced 7 

understanding of the association between e-scooter adoption and the usage of various 8 

transportation modes, offering valuable insights for urban planning and policy development. 9 

The rest of this paper is organized as follows. Section 2 summarizes the literature on e-10 

scooter usage, user characteristics, and the modes substituted by the e-scooters. Section 3 includes 11 

the description of the study area and considered variables, and Section 4 describes the 12 

methodological framework of this study. Section 5 presents and discusses all the modeling results. 13 

Finally, Section 6 concludes the paper, acknowledges the limitations, provides directions for 14 

future studies, and offers policy implications. 15 

 16 

2. Literature Review 17 

This section reviews the literature related to factors that influence e-scooter usage and mode 18 

substitution. Research on e-scooter sharing is still sparse as it is a more recent form of 19 

transportation. In this section, we summarized existing studies based on trip purpose, user 20 

characteristics, and potential mode substitution by e-scooters. A summary of relevant literature is 21 

presented in Table 1. 22 

 23 

https://www.sciencedirect.com/science/article/pii/S1361920921002893#s0010
https://www.sciencedirect.com/science/article/pii/S1361920921002893#s0025
https://www.sciencedirect.com/science/article/pii/S1361920921002893#s0065
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2.1 E-scooter Usage and Trip Purpose 1 

The rapid growth of e-scooters as a new shared micromobility mode has prompted researchers to 2 

investigate the purposes for which they are being used. For example, Raptopoulou et al. (2021) 3 

analyzed responses to an e-scooter survey in Greece to evaluate the behavior and attitudes of e-4 

scooter users and found that they were primarily used for recreational purposes rather than 5 

commuting. Other researchers (Bai & Jiao, 2020; Mathew et al., 2019; McKenzie, 2019, Bieliński 6 

& Ważna, 2020) have also suggested that most e-scooter trips are related to leisure activities. 7 

However, Caspi et al., (2020) observed that e-scooter usage was more likely to begin and end in 8 

residential, business, and industrial sectors rather than in recreational locations.  9 

In contrast, Guo & Zhang (2021) conducted an e-scooter survey in Florida and observed 10 

that e-scooters were being used for commuting, going to restaurants, or for leisure trips. Another 11 

study conducted in Seoul, South Korea (Lee et al., 2021), found two types of e-scooter users in 12 

terms of their trip purposes. One group used e-scooters for commuting, while another group 13 

preferred e-scooters for making their first-mile and last-mile trips. Moreover, Ushijima et al. 14 

(2021) used an unsupervised learning approach to cluster the trip data to classify the movement 15 

behavior of the micromobility users. They found that e-scooters were mainly used for commuting, 16 

going to restaurants, and recreation-related trips. Through an analysis of dockless e-scooter user 17 

behavior, Li et al. (2022) inferred that e-scooters were being used for a range of purposes, including 18 

daily commuting, sightseeing, and university studying. Similarly, using a 4-month long trip data 19 

of Minneapolis, Tokey et al. (2022) found that e-scooters were mainly used for a variety of 20 

activities, such as commuting, campus travel, and first-mile/last-mile trips.  21 

The findings from multiple studies on e-scooter usage patterns highlight the versatility of 22 

e-scooters as a mode of transportation. The observed patterns underscore the adaptability of e-23 

scooters to meet the varied needs of users, including first-mile/last-mile trips, leisure, and 24 
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commuting, reflecting their multifaceted role in urban mobility. However, creating distinct policies 1 

for every individual user is impractical for policymakers. To effectively implement targeted 2 

approaches and strategies tailored to specific user groups, it is crucial to categorize users based on 3 

their usage behaviors and trip purposes. 4 

 5 

2.2 Socio-demographic Characteristics of E-scooter Users 6 

Travel surveys on e-scooters can reveal insightful findings on the socio-demographic 7 

characteristics of the e-scooter users that can be helpful for the e-scooter companies to capture the 8 

shared micromobility market according to the user group. For example, considering the behavioral 9 

and demographic characteristics of e-scooter users, Degele et al. (2018) followed a hierarchical 10 

clustering approach to identify potential free-floating e-scooter customers. The study classified the 11 

user into four segments and the class characteristics varied according to age, time, distance, and 12 

revenue per customer. The study, however, did not take into account the purpose of the trips or 13 

other socio-demographic (such as income, gender, education, etc.) and built environment factors. 14 

Again, the study did not consider conducting any survey to the users of the e-scooters to analyze 15 

their trip purpose or travel behavior. However, through an ethnographic study in Paris, Tuncer and 16 

Brown (2020) found that most of the survey respondents who use e-scooters (renters and owners) 17 

are male with ages between 25 to 35 years old. Surveying both e-scooter renters and owners, Laa 18 

& Leth (2020) found e-scooters (renters and owners) to be young, male, and highly educated in 19 

both groups. Similarly, Laa & Leth, (2020), Jiao & Bai, (2020), Bieliński & Ważna, (2020), and 20 

Curl & Fitt, (2020) sense a predominance of male riders on e-scooter usage. Moreover, Sanders et 21 

al. (2020) observe a noticeable racial variation in using e-scooters. In comparison to non-Hispanic 22 
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white respondents, African American and non-white Hispanic respondents are found to be more 1 

intended to try e-scooters and to be dissatisfied with their current mobility options. 2 

Jiao & Bai (2020) also discover a positive association between lower income and higher e-3 

scooter usage. According to Caspi et al. (2020), low-income areas with more students experience 4 

higher rates of E-scooter rides than low-income areas with fewer students. However, Fitt and Curl 5 

(2019) observed a higher e-scooter usage among the New Zealand Europeans with higher incomes. 6 

Similar findings have been observed by Tuli et al. (2021) who employ a random-negative binomial 7 

model using Chicago data and find a positive association between income and e-scooter usage. 8 

The study claims that the lower availability of e-scooters in low-income areas is responsible for 9 

making contradictory results. Besides, performing a causal effect analysis, Frias-Martinez et al. 10 

(2021) find low income being one of the causes behind the difference in e-scooter use, with low-11 

income residents associated with a lower number of e-scooter trips. 12 

2.3 E-scooter Usage and Built Environment  13 

Trip data is the foundation for earlier studies (e.g., Caspi et al., 2020; Jiao and Bai., 2020; Tuli et 14 

al., 2021; Younes and Baiocchi, 2022) that identify the built environment factors influencing the 15 

use of shared e-scooters. This research looked at how shared e-scooter use is influenced by the 16 

built environment, land use, and socio-demographics of an area. A spatial regression model is 17 

employed by Caspi et al. (2020) to analyze the relation of using e-scooters in respect of the built 18 

environment, land use, and demographics. Using data from the City of Austin, the study observed 19 

more e-scooter usage in the areas with higher employment density. Studies (Jiao and Bai, 2020; 20 

Tuli et al.,2021) also found higher e-scooters usage in areas with high population density and 21 

mixed land uses. Comparing the e-scooter ridership of two cities, Austin and Minneapolis, Bai and 22 

Jiao (2020) suggest that boosting e-scooter use might not require a balanced land-use structure; 23 
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instead, a larger variety of land-use types in a location usually generates more Points of Interests 1 

(POIs) that visitors could ride to or from. Applying a Generalized Additive Modeling (GAM) 2 

approach in Louisville, Kentucky, Hosseinzadeh et al. (2021) found a positive relationship 3 

between the high employment and commercial land use zones with the e-scooter trips. Through 4 

the study in Minneapolisolis, Tokey et al. (2022) state that e-scooter usage is substantially 5 

correlated with a higher share of residential, commercial, and institutional land uses, a higher land 6 

use mix, high-valued parcels, and more Points of Interests (POIs) pertaining to food. 7 

The existing literature indicates a strong relationship between the socio-demographic 8 

characteristics of the e-scooter users, the built environment, and the usage of e-scooters. However, 9 

policymakers require a linkage between the nature of e-scooter usage and the specific user profile 10 

so that strategies can be made based on the potential neighborhood characteristics. 11 
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Table 1: Summary of related recent literature on e-scooter trip purposes, mode substitution, and user characteristics. 1 

Author 

Year of Data 

Collection; 

City/Country 

Trip Purpose Mode Substitution 

User Characteristics 

(Demographics & Built 

Environment) 

Tuncer and Brown 

(2020) 

 

2018-2019; 

A video-ethnographic 

study in Paris, France. 

Rarely used for commuting due to 

lack of availability to plan the trip 

in advance. 

E-scooters can substitute public 

transit and walking; some 

enthusiastic e-scooter users 

replace their car dependency. 

Most of the users are male 

aged between 25 years to 35 

years. 

Curl and Fitt (2020) 

 

2019; A survey of e-

scooter users and non-

users in Aotearoa, New 

Zealand. 

N/A N/A Mostly male, European, 

earning more than $100k and 

ages less than 34 years. 

Bieliński & Ważna, 

(2020) 

 

2019; 

A survey in Tricity, 

Poland. 

Mainly used for recreation rather 

than commuting. 

N/A Male dominated, mostly 

younger with median monthly 

income 3205 PLN (720 

USD). 

Guo and Zhang (2021) 

 

2019; 

A survey in Tampa, 

Florida. 

For dining, sightseeing, recreation, 

and commuting purposes. 

Potential substitution for TNC/ 

Taxi. 

Male dominated; More than 

70% of users have more than 

one household vehicle, and 

65% of users have a 

household income of above 

$74,999. 

Laa and Leth (2020) 

 

2019; 

An online survey of e-

scooter users in Vienna, 

Austria. 

N/A Owners of e-scooters exhibit a 

significant mode shift from 

personal vehicle travel. 

However, both owners of 

private scooters and users of 

sharing schemes replace their 

walking and public transport 

trips. 

Users of e-scooters are more 

likely to be male, middle-

aged adult, and highly 

educated, as well as to live in 

Vienna. 

Sanders et al. (2020) 

 

2019; 

A survey among the 

Arizona State 

University (ASU) staffs 

in Tempe, Arizona. 

Mainly used for leisure, 

transportation mode, commuting 

mode, socializing 

E-scooter trips replace walking 

trips by a disproportionate 

amount compared to car travels. 

African American and non-

white Hispanic users are 

significant; Higher percentage 

of male, ages between 25-34 

years, with annual household 

income $50,000-$99,000. 

Caspi et al. (2020) 

 

2019; 

Austin, Texas. 

E-scooters are used for activities 

other than commuting. 

N/A E-scooters are popular among 

students with lower income. 

Higher uses in areas with high 
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Author 

Year of Data 

Collection; 

City/Country 

Trip Purpose Mode Substitution 

User Characteristics 

(Demographics & Built 

Environment) 

land use mix with higher 

employment density. 

Tuli et al. (2021) 

 

2019; 

Trip data from a shared 

e-scooter pilot program 

in Chicago. 

Riders commuting by public 

transportation produce e-scooter 

trips. 

N/A Young, male, higher median 

income riders from areas of 

high population density and 

mixed land use are mainly the 

users of e-scooters. 

Hosseinzadeh et al. 

(2021) 

 

2018 – 2020; 

E-scooter trip data in 

Louisville, Kentucky. 

Mostly recreational trips. E-scooters do not completely 

replace bike trips. 

Higher percentage of 

commercial land use and high 

employment density 

Christoforou et al. (2021) 

 

2019; 

A face-to-face road 

survey among e-scooter 

users in Paris, France. 

The primary uses of e-scooters are 

for leisure, strolling, and visiting to 

friends and family, less often being 

used for commuting and shopping. 

E-scooters substitute walking 

and public transportation. 

Mostly men, aged between 

18-29 years, with higher 

education. 

 1 

 2 
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2.4 E-scooter Usage and Mode Substitution 1 

Survey results from various cities suggest that shared e-scooters hold promise as substitutes for 2 

car journeys, encompassing private vehicle use and taxi services. However, a user survey in Vienna 3 

by Laa and Leth (2020) reveals that the rapid popularity of e-scooters may also pose a threat to 4 

other modes of transportation. Analyzing an online e-scooter user survey in Canada, Mitra and 5 

Hess (2021) find that e-scooters replace transit trips in urban areas while substituting short car trips 6 

in suburban neighborhoods. Sanders et al. (2022) claim, based on a survey among university staff 7 

in Arizona, that users from car-oriented areas and/or places with a hot climate are more likely to 8 

switch from taking a car to taking an e-scooter. Moreover, Guo and Zhang (2021) find e-scooters 9 

to be a potential mode to substitute taxi trips for social and entertainment purposes. Similar trends 10 

are observed in findings from trip data analysis. For instance, a study with trip data in Chicago by 11 

Smith and Schwieterman (2018) concludes that e-scooters would be a notably effective alternative 12 

to private cars for trips between 0.5 and 2 miles. Therefore, an analysis of both survey and trip 13 

data indicates the effectiveness of e-scooters as an alternative to private cars for short-distance 14 

travel in urban and suburban areas. 15 

In the USA, e-scooters have replaced traditional last-mile or commuting routes (NACTO, 16 

2020), and according to Baek et al. (2021), this new mode of micromobility has the potential to 17 

eventually replace transit trips. On the other hand, through an intensive literature review, Wang et 18 

al. (2023) state that, compared to other means of transportation, shared e-scooters are more likely 19 

to replace walking trips. Findings from both user surveys and trip data on the impact of e-scooters 20 

on replacing other modes of transportation align with similar conclusions. For example, a face-to-21 

face survey among e-scooter users in Paris by Christoforou et al. (2021) claims that e-scooter users 22 

shift their walking and public transportation usage toward e-scooters because this new mode of 23 

micromobility saves travel time and money. In a survey in Singapore, Cao et al. (2021) observe 24 
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that e-scooters are more likely to be adopted when there are more transfers, longer access-egress 1 

walks, and higher transport indirectness levels. On the other hand, using trip data from Bird e-2 

scooter company, Luo et al. (2021) consider the trip data in Indianapolis and find that around 27% 3 

of e-scooter rides could possibly compete with bus service, potentially reducing bus ridership. 4 

However, Espinoza et al. (2019) observe a small connection between the usage of e-scooters and 5 

public transportation, mainly because e-scooters come at a rather high additional cost. Nonetheless, 6 

through a spatio-temporal analysis, Yan et al. (2021) discover that e-scooters affect bikeshare and 7 

public transportation in both substitutive and complementary ways.   8 

While existing literature offers valuable insights into how e-scooters replace other 9 

transportation modes, there is a research gap in understanding the characteristics of e-scooter users 10 

who substitute the usage of all other available transportation modes with e-scooters. Further 11 

research is needed to examine the explicit trip functions of e-scooters, such as their ability to 12 

supplement or replace other means of transportation based on specific user groups, trip purposes, 13 

and the built environment. Generally, the introduction of a new mode of transportation could have 14 

an impact on how supply and demand are managed for mobility (such as by generating new 15 

demands and modal substitution), especially for shared mobility since ownership is not necessary 16 

for use (Kazemzadeh & Sprei, 2022). Therefore, policymakers should identify the group of users 17 

who use e-scooters as a supplement and/or substitution for other modes of transportation. 18 

 19 

2.5 Summary 20 

Each subsection of the literature review provides a partial picture of e-scooter usage, as previous 21 

studies on shared e-scooters separately examined the trip purposes, user profiles, built 22 

environment, and mode substitution by the e-scooters. Therefore, this study aims to present a 23 
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combined understanding of e-scooter usage based on the clusters of its users. Moreover, 1 

aforementioned studies emphasize the significant role of e-scooters as a viable mode of 2 

micromobility that has the potential to replace other modes to a certain extent. However, regulators 3 

need to have a thorough understanding of the users who switch to e-scooters from other forms of 4 

transportation, as well as their underlying trip purposes. In order to answer these questions, this 5 

work makes an effort to apply an unsupervised clustering method called Latent Class Analysis 6 

(LCA) to properly capture the e-scooter user groups with particular travel patterns. Moreover, 7 

previous studies primarily focused on limited types of modes (public transportation, personal 8 

automobile and walking) to analyze the effect of e-scooters usage on other transportation modes. 9 

This study aims to capture the impact of cluster-specific e-scooter usage on a range of existing 10 

transportation options (i.e., public transportation, car, rideshare services, personal bike, rental cars, 11 

shared bikes, and walking). The findings from this study can lead to the discovery of more effective 12 

consumer enticement strategies, as well as modifications to the business model, increasing scooter 13 

utilization, and consequently, the revenue of e-scooter suppliers. 14 

 15 

3. Data and Variables 16 

3.1 E-scooter Pilot Survey  17 

The city of Portland conducted an e-scooter pilot user survey for 120 days, from July 23, 2018, to 18 

November 20, 2018, in order to evaluate the performance of shared e-scooters from the perspective 19 

of users. The data used in the current study was obtained from the e-scooter pilot survey of Portland 20 

residents, which was provided by the Portland Bureau of Transportation (PBOT) (PBOT, 2018). 21 

The PBOT focused on ensuring that e-scooters aligned with Portland's core policy values while 22 

simultaneously providing residents with access to this new mode of transportation. The pilot 23 
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implemented a permitting framework that aligned the business practices of e-scooter companies 1 

with four important City of Portland policies, with the goal of determining whether and how e-2 

scooters could help meet Portland's transportation needs (PBOT, 2018). Five companies applied 3 

for permits, but only three (Bird Rides Inc., Lime, and Skip Transport Inc.) were approved to 4 

operate their e-scooters. As the survey data is not publicly available, the study obtained it by 5 

requesting it from the PBOT via an online portal. During the pilot phase, PBOT emailed the users 6 

of e-scooters in Portland to participate in a user survey. The survey required approximately 10 to 7 

14 minutes for completion. Participation in the survey was open to both local residents and visitors 8 

using e-scooters in the pilot area. A total of 3447 observations from the residents of Portland were 9 

downloaded, but observations with missing values were excluded before analyzing each model. 10 

Hence, the clustering model has been developed with 2183 observations. 11 

 12 

3.2 E-scooter User Data 13 

Trip Related Information of E-scooter Users 14 

To capture the groups of e-scooter users based on their travel behavior, the study considers 15 

following two trip related questions from the e-scooter pilot survey in Portland (PBOT,2018).  16 

E-scooter trip frequency - The study classifies e-scooter users into three categories based 17 

on their response to the question, 'How often do you ride e-scooters?' These categories are 18 

Frequent, Occasional, and Once. Frequent e-scooter users are defined as individuals who use e-19 

scooters at least once a week. Occasional users are those who use e-scooters less than once a week, 20 

and one-time users are those who have used e-scooters only once in their life. For simplicity in 21 

presenting the model results, the study recategorized the responses for Frequent users (38.93%) 22 

by merging options such as using e-scooters 1-3 times per week, 3-6 times per week, daily, and 23 
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more than once per day. However, the proportions for Occasional (41.96%) and One-time users 1 

(19.11%) remained unchanged as reported in the survey. 2 

E-scooter trip purpose - To capture the primary purpose of e-scooter usage, this study 3 

considered only the first of the top three reasons for the question” What are the top three trip types 4 

for which you use shared e-scooters?”. The responses on the options to or from work and to or 5 

from work-related meetings/appointments are merged and named as work in the model. Similarly, 6 

the options fun/recreation and social/ entertainment were combined and named fun. 7 

 8 

Socio-demographic and Built Environment Characteristics of E-scooter Users 9 

This study focuses on the socio-demographic profile and built environment characteristics 10 

of individuals who made changes in their usage of other modes due to the introduction of e-11 

scooters. The e-scooter pilot survey by PBOT (PBOT, 2018) provides the socio-demographic 12 

information of the users, such as age, gender, income, education, race, and car availability. 13 

Moreover, the study integrates the built environment variables, which are collected based on the 14 

home zip code of the users as provided by PBOT. To classify the age variable of the e-scooter 15 

users, the study followed the definition of Dimock (2019). The study included the variable age as 16 

three categories: Millennials and younger, which refers to those aged less than 37 (born 1981 or 17 

later); Generation-X, which refers to those aged between 38 and 53 (born 1965-80); and Baby 18 

boomers and older, which refers to those aged 55 or older (born 1964 or before).  19 

To gauge the automobile dependency of e-scooter users, PBOT posed the question, "Have 20 

you reduced the number of automobiles you (or your family) own because of e-scooters?" This 21 

study specifically examined this question to uncover implicit information about the car ownership 22 

status of the survey respondents. For instance, if the response was "N/A, I didn't own an automobile 23 
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before using e-scooters and currently don't own one," it signified that the respondent did not 1 

possess a car before adopting e-scooters. Conversely, responses such as "No," "No, but I’ve 2 

considered it," or "Yes" indicated that the respondent had at least one car. 3 

The study also considered population density, employment density, and land use entropy 4 

as built environment variables. Based on the home zip code provided by PBOT, population density 5 

was calculated by downloading data from the American Community Survey (2018) at the zip code 6 

level. The Longitudinal Employer-Household Survey (United States Census Bureau, 2015) 7 

provided data for employment density based on the home-zip code of the users. Moreover, the 8 

study collected the map of land use categories from the City of Portland and using ArcGIS Pro 9 

calculates the land use entropy index as (Cervero & Kockelman,1997)- 10 

Land use entropy index = 
−[∑ 𝑃𝑗∗ 𝑙𝑛(𝑃𝑗)𝑘

𝑗=1 ]

𝑙𝑛(𝑘)
         (1) 11 

Here, the variable 'j' serves as the index to categorize land-use types, ranging up to 'k' values 12 

(k= 9 here: residential, commercial, industrial, institutional, single-family residential, mixed-13 

family residential, commercial, open space, and employment). The variable 𝑃𝑗  denotes the 14 

percentage of land use in the jth land-use class. The entropy index ranges from 0 to 1, with higher 15 

values indicating a more balanced layout of land use mixes, while a value of 0 indicates a single 16 

land-use type. 17 

 18 

4. Methodology 19 

The modeling framework employed in this study comprises a two-stage structure. In the initial 20 

stage, a Latent Class Analysis (LCA) is conducted to delineate e-scooter user groups based on their 21 

travel behavior with e-scooters. Subsequently, in the second stage, a series of Ordinal Logit Models 22 
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(ORL) are constructed, incorporating the identified clusters from the LCA model along with socio-1 

demographic and built environment characteristics of the e-scooter users. (Figure 1). 2 

 3 

4.1 Latent Class Analysis (LCA) 4 

This study performed a latent class analysis (LCA) to cluster the e-scooters users based on their 5 

e-scooter travel behavior. LCA, also known as a finite mixture model, classifies the observations 6 

(known as population) into mutually exclusive and exhaustive latent classes according to an 7 

underlying unobserved categorical variable (Lanza & Rhoades ,2013).  8 

Latent Class Analysis (LCA) serves as a statistical methodology employed for the 9 

discernment of distinct subgroups within populations that exhibit specific shared characteristics 10 

(Hagenaars & McCutcheon, 2002). These subgroups, often denoted as latent groups or classes, are 11 

identified by examining responses to categorical indicator variables from participants in a study. 12 

In cases where the indicators exhibit a continuous nature, a parallel statistical technique known as 13 

latent profile analysis is utilized (Weller et al., 2020). The foundational assumption of LCA lies in 14 

the idea that belonging to unobservable classes can be a causal factor or explanatory mechanism 15 

for patterns observed in scores across survey questions, assessment indicators, or scales. In line 16 

with statistical theory, an individual's scores on a set of indicator variables are influenced by their 17 

membership in a particular class (Wolke et al., 2013). Latent class analysis is also recognized for 18 

its advantages over traditional cluster analysis methods. These include the presence of multiple 19 

statistical criteria in LCA output, enabling the determination of the optimal number of clusters 20 

(Vermunt & Magidson, 2002).  21 
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 LCA estimates these classes based on a set of observed variables that are known as indicators. 1 

Given an observation set of N e-scooter users, let each e-scooter user 𝑖 can be characterized with 2 

any values from a set of 𝐾𝑗 possible outcomes of 𝐽 set indicator variables (where, 𝑗 = 1, … , 𝐽). 3 

Therefore, the indicator function 𝑌𝑖𝑗𝑘 =1, if the user 𝑖 gives 𝑘-th (𝑘 ∈  𝐾𝑗) response to the 𝑗-th (𝑗 ∈4 

 𝐽) indicator, otherwise equals zero (Rafiq & McNally, 2021, Sasidharan et al., 2015). Let, 𝜌𝑐 5 

represents the ‘prior’ probability of class membership that a user belongs to a certain class 𝑐 and 6 

𝜋𝑗𝑐𝑘 represents the class-conditional probability that the user of class c results in kth outcome on 𝑗-7 

th variable. A weighted sum of class conditional probabilities produces the probability density 8 

function across all classes- 9 

𝑃(𝑌𝑖|𝜋𝑗𝑐𝑘 , 𝜌𝑐   ) = ∑ 𝜌
𝑐 ∏ ∏ (𝜋𝑗𝑐𝑘)

𝑌𝑖𝑗𝑘 
𝑘∈ 𝐾𝑗𝑗∈ 𝐽

𝐶
𝑐=1        (2)          10 

 11 

Figure 1: Model framework. 12 
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The study used the poLCA (Polytomous Variable Latent Class Analysis) package in the 1 

programming language R that estimates the values of the parameters 𝜌𝑐 and 𝜋𝑗𝑐𝑘  by utilizing 2 

Expectation-Maximization (EM) and Newton-Raphson algorithms. With the estimated parameters 3 

𝜌𝑐̂ and 𝜋𝑗𝑐𝑘̂ of 𝜌𝑐 and 𝜋𝑗𝑐𝑘, respectively, the posterior probability of belonging user 𝑖 to a certain 4 

class 𝑐 is calculated using Bayes’ formula (19): 5 

𝑃̂(𝑐𝑖| 𝑌𝑛) =
𝜌𝑐̂𝑓(𝑌𝑖;𝜋𝑐̂)

 ∑ 𝜌𝑐̂𝑓(𝑌𝑖;𝜋𝑞̂)𝐶
𝑞=1

                                     (3) 6 

However, one known limitation of the EM algorithm is its sensitivity to initial parameter 7 

values in the first iteration, which can lead to finding local maxima instead of the global maximum 8 

of the log-likelihood function (McLachlan and Krishnan, 1997). To mitigate this issue, it is 9 

recommended to run poLCA multiple times until there is a reasonable certainty that the global 10 

maximum log-likelihood has been identified (Linzer & Lewis, 2011). 11 

To address the challenge of local maxima, poLCA offers the option to use the argument 12 

"probs.start," allowing users to input the starting values of the class-conditional probabilities as 13 

for the estimation algorithm. The default is set to NULL, which generates random starting 14 

values.Alternatively, poLCA provides another approach by introducing the "nrep" parameter, 15 

representing the number of times to estimate models with different values of "probs.start." Setting 16 

"nrep" to a value greater than one enables users to estimate the latent class model multiple times 17 

within a single poLCA call. This facilitates an automated search for the global maximizer, 18 

increasing the likelihood of finding the optimal solution (Linzer et al., 2022). In our study, we 19 

adopted this latter approach by setting "nrep" greater than one to ensure the identification of the 20 

global maximum log-likelihood. 21 
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To find the latent classes of e-scooter users, this study considered two travel behavior 1 

related variables (i.e., frequency of using e-scooters and e-scooter trip type) as indicator variables 2 

and ran 10 models (Class 1 to Class 10) to find the optimum number of clusters. Each of those 3 

LCA models was estimated 50 times, and the global maximum log-likelihood was found within 4 

10 attempts. The value of the global maximum log-likelihood for these 10 models ranged from -5 

5450.94 to -5332.04. 6 

 7 

Number of Cluster Selection 8 

To select the ideal number of clusters, several goodness of fit measures were used. Pearson’s 𝜒2 9 

with degrees of freedom and likelihood ratio chi-square statistics (𝐺2) were used to estimate the 10 

goodness of fit of the models. The Pearson chi-square statistic (𝜒2) is computed by squaring the 11 

difference between observed and expected frequencies. In contrast, the likelihood-ratio chi-square 12 

statistic (𝐺2) is derived from the ratio of observed to expected frequencies. The likelihood-ratio 13 

chi-square (𝐺2) is an alternative of the Pearson chi-square test (𝜒2). In the case of large samples, 14 

it is identical to Pearson (𝜒2). This method is particularly recommended for small sample sizes 15 

(Howell, 2011). However, in the cases with sparse dataset or having a large number of possible 16 

response patterns, the asymptotic 𝜌-values can no longer be trusted (Sun et al., 2019). In our case, 17 

since the indicators consist of multiple categories, resulting in a diverse enough response pattern 18 

compared to the entire dataset, the chi-square statistic is unlikely to follow the chi-square 19 

distribution. (Shelat et al., 2018). Another elegant method of estimating the optimality of the 20 

clusters is the use of information criteria, such as Akaike Information Criterion (AIC), Bayesian 21 

Information Criterion (BIC), Consistent Akaike Information Criterion (cAIC) and adjusted 22 

Bayesian Information Criterion (aBIC). Even BIC and AIC are more straightforward to interpret 23 
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compared to chi-square statistics. Lower BIC or AIC values indicate better-fitting models, 1 

considering the balance between fit and complexity (Shelat et al., 2018). The lowest value of these 2 

criteria indicates the optimal balance between the model fit and parsimony (Lanza & Rhoades 3 

,2013). Moreover, an entropy measure, ranging from 0 to 1, estimates the extent to which the 4 

identified clusters are distinct from one another. Larger entropy value indicates better class 5 

separation (Ramaswamy et al., 1993).  6 

 7 

4.2 Ordered Logit Model 8 

To analyze the association between e-scooter usage and the usage of other transportation modes, 9 

this study utilized a modeling approach. The analysis focused on investigating the changes in the 10 

usage of different transportation options since participants first started using shared e-scooters. We 11 

employed an ordered logit regression (OLR) framework to examine these changes. The responses 12 

for this analysis were categorized into three ordered levels: 'less often,' 'about the same,' and 'more 13 

often.' The study employed a total of seven ordered logit models—one for each transportation 14 

mode (public transportation, car, rideshare services, personal bike, rental cars, shared bikes, and 15 

walking). The socio-demographic characteristics of e-scooter users, along with defined clusters 16 

from latent class analysis (LCA) models, served as explanatory variables in our analysis.  17 

The dependent variable 𝑌𝑖 is an ordered discrete variable (with three ordered categories) 18 

which is a function of an unobservable latent variable 𝑌𝑖
∗. The relationship between 𝑌𝑖

∗ and 19 

𝑌𝑖
∗depends on a particular threshold value which can be shown by the following formulas:  20 

𝑌𝑖 = 1 , 𝑖𝑓  𝑌𝑖
∗ ≤ 𝛼1 , represents less often usage of a specific transportation mode since 21 

first using shared e-scooters. 22 
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𝑌𝑖 = 2 , 𝑖𝑓  𝛼1 < 𝑌𝑖
∗ ≤ 𝛼2 , represents about the same usage of a specific transportation 1 

mode since first using shared e-scooters. 2 

𝑌𝑖 = 3 , 𝑖𝑓  𝛼2 < 𝑌𝑖
∗, represents more often usage of a specific transportation mode since 3 

first using shared e-scooters. 4 

Therefore, the continuous latent variable 𝑌𝑖
∗ can be expressed as: 5 

𝑌𝑖
∗ = ∑ 𝛽𝛼𝑋𝛼𝑖

𝛼

𝛼=1

+ 𝜀𝑖                                    (6) 6 

Where, 𝛽 represents the correcting parameter to be estimated by the Maximum Likelihood method 7 

and 𝜀𝑖 is a random error that is normally distributed (Bellizzi et al., 2018; Ma et al., 2020). The 8 

statistical significance of the variables depends on the 𝑝 -values of the Wald tests (Williams,2006). 9 

In the context of OLR models, a pivotal assumption revolves around the stability of ordinal 10 

odds. This implies that parameters must remain consistent across various categories (Lu, 1999). 11 

Essentially, the correlation between the independent variable and the dependent variable should 12 

remain constant across the categories of the dependent variable, and the parameter estimates for 13 

cut-off points should not fluctuate. This assumption posits that the categories of the dependent 14 

variable are parallel to each other. When this assumption is not fulfilled, it indicates a lack of 15 

parallelism among the categories (Fullerton and Xu, 2012). 16 

The "brant" command in STATA provides both a global test to determine if any variable 17 

violates the parallel-lines assumption and individual testing of the assumption for each variable 18 

(Williams, 2006) in the OLR model. The model successfully passed the Brant test (Brant, 1990), 19 
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demonstrating that the assumptions regarding proportional odds and parallel lines of the ordered 1 

logit model were satisfied (Liu, 2009). 2 

5. Results and Discussion 3 

5.1 Who are Shared E-scooter Users, and Why are They Using Them? 4 

The following section will discuss the findings of the analysis that has been conducted to answer 5 

the first research question (R1).  6 

LCA Model Estimation and Fit Statistics 7 

As the indicators of the LCA model, the study considered responses from the trip related 8 

information of the e-scooter users in the PBOT survey: e-scooter trip type, and riding frequency 9 

on e-scooters.  10 

 11 

 12 

Figure 2: Number of classes identified for shared e-scooter users (N=2,183) 13 
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To identify the optimum number of e-scooter user classes, this study varied class sizes from 1 

1 to 10 and ran the models with the full set of indicators. The values of BIC, AIC, cAIC, and aBIC 2 

were considered as fit statistics to select the ideal number of the classes. As all four information 3 

criteria (BIC, AIC, cAIC, and aBIC) reach their lowest in the model with three classes (Figure 2), 4 

the study accepted the class-three model to analyze the e-scooter user clusters. Moreover, among 5 

the different class sizes, cluster three had the greatest entropy value (0.76), indicating that the 6 

clusters were distinct enough. Table 2 describes the class profiles according to the indicators; 7 

frequency of using e-scooters and e-scooter trip type. The clusters were given a name based on the 8 

distribution of the indicator variables. 9 

Table 2: Class-conditional probabilities for indicator variables. (N= 2,183) 10 

  

Class 1 

Recreational 

Enthusiasts 

Class 2 

Commute  

Riders 

Class 3 

Intermittent 

Joyriders 

No of observations 933 630 620 

Class Probability 0.4274 0.288 0.284 

Indicators    

E-scooter trip type   

 Bus 0.0724 0.1133 0.016 

 Recreation 0.4508 0.0113 0.6764 

 Restaurant 0.1508 0.1191 0.1017 

 School 0.0132 0.0378 0.0172 

 Shopping 0.131 0.1118 0.0645 

 Work 0.1818 0.6069 0.1242 

Riding frequency on e-scooters 

 Once 0.0301 0.0236 0.4383 

 Occasionally 0.686 0.1152 0.3656 

 Frequent 0.2838 0.8612 0.1961 

Note: LCA determines the class probability as the probability of an individual belonging to a particular class. The 11 
indicators are assigned to the latent classes with higher posterior probability (in Bold numbers) 12 

Classification of E-scooter Users 13 

The first class, referred to as Recreational Enthusiasts, represents the largest percentage (42.7%) 14 

of the total observations. Within this group, users engage in occasional (68.6%) and frequent 15 

(28.38%) e-scooter rides, primarily for recreational (45.08%) purposes. 16 
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The members of the second group are Commute Riders. This group constitutes 28.8% of 1 

the total observation who use e-scooters frequently (86.12%) as a commuting mode (60.69%). 2 

The third class is identified with Intermittent Joyriders which covers 28.4% of the total 3 

observations. The members of this class use e-scooters mainly for recreation (67.54%) either 4 

occasionally (36.56%) or used them once (43.83%). 5 

 6 

5.2 Is There Any Association between E-scooter Usage and the Usage of Other Transportation 7 

Modes? 8 

The study used descriptive analysis and seven ordered logit models to answer the second 9 

research question based on the results of the latent class analysis. The following sections discuss 10 

the results. 11 

Changes in the Usage of Other Modes of Transportation 12 

This section summarizes the findings related to changes in the usage of other transportation modes 13 

after starting e-scooter usage among the three identified classes of e-scooter users. Figure 3 shows 14 

the percentage changes in usage of different modes (public transportation, car, rideshare services, 15 

personal bike, rental cars, shared bikes, and walking) among three clusters. The changes are 16 

explained in terms of three ordered responses: less often, about the same, and more often.  17 

 18 
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Figure 3. Changes in the usage of other modes among different classes of e-scooter users (N=2,183) 1 
Notes. Class 1: Recreational Enthusiasts; Class 2: Commute Riders; Class 3: Intermittent Joyriders 2 
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Based on Figure 3a, 28.6% of Commute Riders reduced their public transportation usage 1 

after they started using e-scooters. This percentage is the highest compared to other classes where 2 

a reduction in public transportation usage was observed. Again, Fearnley (2022) found that the 3 

longer an e-scooter trip lasted, the more e-scooters substitute public transportation. This suggests 4 

that individuals in Portland may be choosing e-scooters as a preferred mode of transportation, 5 

particularly when faced with longer commuting distances. 6 

Figures 3b and 3c reveal a noteworthy trend among the three identified classes, 7 

highlighting that Commute Riders have notably reduced their dependency on both automobiles 8 

(59.20%) and rideshare services (62.69%) for commuting purposes. Guo and Zhang (2021) claim 9 

that challenges in parking availability serve as a motivating factor for reducing car dependency for 10 

e-scooter users. Therefore, parking issues can be a possible reason to reduce driving a car to 11 

commute for the Portlanders.  12 

Furthermore, Guo and Zhang (2021) also suggest that the lower cost associated with shared 13 

e-scooters appears to be a motivating factor driving users to substitute ridesharing vehicles. 14 

Therefore, the cost-effectiveness can be a possible reason for the e-scooter users to transition away 15 

from rideshare services for their daily commuting needs in Portland. 16 

The pattern of Figure 3d reveals that all the latent e-scooter user classes carry more than 17 

73% share of ‘about the same' category in the case of using bikes. Therefore, there is an indication 18 

that the e-scooter users are not interested in substituting the bicycle trips in Portland.  19 

Moreover, around 75% of Recreational Enthusiasts and Intermittent Joyriders are reluctant 20 

to change their usage of rental cars, even 58% of Commute Riders also responded for the ‘about 21 

the same’ category (Figure 3e).  22 

https://www.sciencedirect.com/science/article/pii/S0739885923000197#bib6
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Similar to the pattern of using bikes, users of e-scooters do not change their use of 1 

BIKETOWN (a mode of shared micromobility) where Recreational Enthusiasts and Intermittent 2 

Joyriders both hold more than 76% share of members who selected the ‘about the same’ option. 3 

(Figure 3f).  4 

E-scooter users of Class 2 (Commute Riders) (13%) walk more compared to other classes. 5 

On the other hand, only 8% of Recreational Enthusiasts and 9% of Intermittent Joyriders walk 6 

more than they used to before using e-scooters (Figure 3g).  7 

To find the effect of e-scooter usage on the reduction of automobile ownership, this study 8 

considers the responses to the PBOT survey on “Have you reduced the number of automobiles you 9 

(or your family) own because of e-scooters?”. Obviously, the responses with “N/A, I didn't own 10 

an automobile before using e-scooters and currently don’t own one” represent the zero car owners. 11 

Therefore, those responses are omitted for this specific analysis only. Among the rest of the 12 

responses (2,119), 10.82% of Commute Riders have reduced their automobile ownership and 13 

moved to the greener transportation mode mainly to commute (Figure 4). 14 

 15 
Figure 4. Changes in the ownership of automobiles due to the usage of e-scooters. (N=2,119) 16 
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Results of Ordered Logit Model 1 

Table 3 provides the summary statistics of socio-demographic and built environment variables 2 

according to each class, where the modal assignment from LCA measures class size. The 3 

study excluded observations with missing home zip codes in order to include the land use entropy 4 

of each e-scooter user's home location in the ORL model. As a result, the ORL model's total 5 

number of observations decreased to 1,988 (for each of the models).  6 

To address the second objective, the study analyzed responses from e-scooter users 7 

regarding changes in their transportation choices since they started using shared e-scooters. In 8 

Table 4, the study explains the results of the seven ORL models, each corresponding to a specific 9 

transportation mode (public transportation, car, rideshare services, personal bike, rental cars, 10 

shared bikes, and walking), with a consistent sample size of 1,988 observations. The results of the 11 

ORL model are summarized in Table 4.  12 

Table 3. Class-wise summary statistics for socio-demographic and built environment variables. 13 

 
Recreational 

Enthusiasts 

(Class1) 

Commute 

Riders 

(Class 2 

Intermittent 

Joyriders 

(Class 3) 

No. of observations  910 613 604 

Socio-Demographic Variables    

 Gender                           Man 40.97% 33.43% 25.60% 

 Woman 45.57% 20.08% 34.35% 

 Other 45.35% 34.88% 19.77% 

Race                               White 43.16% 28.89% 27.96% 

 Non-White 41.18% 28.76% 30.07% 

Age                     
Millennials and                                             

Younger (less than 37 years), 
43.01% 28.70% 28.29% 

 Generation X (38 to 53 years) 43.89% 29.04% 27.06% 

 Baby Boomers (54 years and above) 32.04% 30.10% 37.86% 

Income                            Under $15k 35.48% 25.81% 38.71% 

 Between $15k and $30k 44.54% 27.95% 27.51% 

 Between $30k and $50k 43.96% 26.42% 29.61% 

 Between $50k and $75k 43.38% 29.49% 27.14% 

 More than $75k 43.43% 31.04% 25.53% 

Education                        Less than a college degree 40.86% 29.99% 29.15% 

 Having at least 4-year college degree 43.66% 28.31% 28.04% 
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Auto ownership              Yes 43.68% 26.71% 29.60% 

 No 37.14% 41.59% 21.27% 

Built Environment Variables    

Mean of Population Density 9.984 10.70 9.49 

Mean of Employment Density 6.20 9.18 0.803 

Mean of Land-use mix 0.636 0.663 0.622 

 1 

The result of the ORL model suggests that low-income e-scooter users are more likely to 2 

increase their public transportation usage. This is not surprising as previous studies found that low-3 

income people preferred shared e-scooter services for their first and last miles when traveling in 4 

university districts (Lee et al., 2021). However, Recreational Enthusiasts and Intermittent 5 

Joyriders are less interested in increasing their usage of public transportation. This indicates that 6 

the e-scooter is not a totally complementing mode to the public transportation who use e-scooters 7 

for recreational purposes.  8 

At the same time, users from low to mid-income and living in areas with higher 9 

employment density show a significantly higher likelihood of increasing car use. There is no 10 

surprise that the result also finds a lower probability of zero auto owners elevating their car use. 11 

Even individuals using e-scooters from Generation X (aged 38 to 53) are less inclined to increase 12 

their reliance on cars. Moreover, e-scooter users from Generation X (38 to 53 years) from 13 

Recreational Enthusiasts and Intermittent Joyriders are less likely to increase their use of cars for 14 

recreational purposes. 15 
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Table 4: Results of Ordered Logit Model (Less often, About the same, and More often) 1 

   

Public 

Transportation Car Rideshare Rental car Personal bike Shared bike Walk 

Socio-Demographic Variables 

Gender (baseline: Man) 

 Woman -0.148 0.001 -0.050 -0.309** -0.075 -0.362** 0.001 

 Other  -0.422 -0.261 0.003 -0.460* -0.015 -0.543* -0.185 

Race: Non-white 0.172 -0.002 0.076 0.366** 0.435*** 0.386** 0.322* 

Age: (baseline: Millennials and Younger, age less than 37 years) 

 Generation X (38 to 53 years) -0.024 -0.232** -0.351** -0.101 -0.161 -0.220* -0.136 

 Baby Boomers (54 years and above) -0.615 -0.354 -0.920*** -0.095 -0.013 -0.167 -0.277 

Income (baseline: More than $75k) 

 Under $15k 1.137*** 0.570*** 0.401** 0.637*** 0.825*** 0.914*** 0.372* 

 Between $15k and $30k 0.463* 0.054 0.173 0.198 0.370* 0.296 0.297 

 Between $30k and $50k 0.471** 0.233* 0.091 0.188 0.371** 0.312** 0.046 

 Between $50k and $75k 0.365** 0.019 -0.032 0.353** 0.0280 0.340** 0.059 

Education: Having at least 4-year College degree -0.146 -0.011 -0.301** -0.445*** -0.617*** -0.384** -0.215* 

Zero auto ownership -0.007 -0.453*** 0.096 0.284** -0.099 -0.093 -0.073 

Built Environment Variables 

Population Density 0.002 0.016* 0.019** -0.012 0.003 0.018* 0.006 

Employment Density -0.001 0.005** 0.002 -0.004 0.001 0.001 -0.001 

Land-use mix  0.112 0.162 0.329 0.268 0.181 0.072 -0.754** 

Identified Classes (baseline: Commute Riders) 

 Recreational Enthusiasts -1.109*** -1.201*** -1.156*** -0.688*** -0.581*** -0.403*** -1.105*** 

 Intermittent Joyriders -1.169*** -1.195*** -1.447*** -0.852*** -0.432** -0.525*** -1.075*** 

𝛼1(threshold)  
0.870 -0.605 -0.342 0.580 1.042 0.787 -0.105 

𝛼2(threshold)  
2.822 3.494 4.892 5.601 3.807 4.296 1.008 

LR (𝜒2)  149.08 167.09 221.54 130.19 106.62 103.13 128.00 

No of observations   1,988 

Note: *, **, and *** indicate statistical significance at 10%,5%, and 1%, respectively2 



 

33 
 

Low-income e-scooter users are found to have a similar propensity to use more ridesharing 1 

services after using e-scooters. Besides, e-scooter users from the older group (Generation X: 38 to 2 

53 years) and baby boomers: more than 57 years) are less likely to increase rideshare usage 3 

compared to the Millennials (age less than 37 years). As ridesharing services demand smart 4 

technologies which are more adopted by the younger generation than older adults (Wang, 2017), 5 

this can be a possible explanation for the finding. Moreover, people with higher education (a 6 

college degree) show less interest in increasing rideshare usage.  7 

The significant coefficients related to the usage of rental cars suggest that highly educated 8 

e-scooter users are less inclined to increase the usage of rental cars. Moreover, individuals from 9 

women and other genders are less interested in increasing the usage of this particular mode of 10 

transportation compared to their male counterparts. This aligns with findings from a prior study, 11 

which reported that men have a 4.3 times greater likelihood of using rental cars than women (Bi 12 

et al., 2020). However, the study also reveals that non-White e-scooter users and users with no 13 

automobile ownership are more likely to increase their usage of rental cars. 14 

Again, non-white and low-income e-scooter users show a higher probability of increasing 15 

the use of both personal bikes and shared bikes. One possible reason behind the popularity of bike 16 

share services in the low-income communities in Portland is the special pricing plan offered by 17 

the bike-share company, BIKETOWN (Portland Bureau of Transportation, 2017). 18 

 Moreover, having a college degree reduces the propensity to use both types of bikes. even 19 

women and individuals of other genders who use e-scooters show less interest in increasing the 20 

usage of shared bikes compared to men. Studies also observe a male overrepresentation among the 21 

users of shared e-scooters (Christoforou et al., 2021) as well as bike sharing systems (Fishman et 22 

al., 2015). 23 
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 In addition, both Recreational Enthusiasts and Intermittent Joyriders show a less 1 

likelihood of increasing personal bike as well as shared bike use for recreational purposes. 2 

According to a study by Yang et al., (2021), e-scooters and bike share services compete with each 3 

other instead of complementing. Therefore, based on the results of this study, it can be asserted 4 

that e-scooters are preferred over bikes for recreational purposes. 5 

When it comes to walking, non-white and low-income e-scooter users are more likely to 6 

increase walking after they start to use e-scooters. However, individuals with higher education (at 7 

least 4-year college degree) and living in areas with more mixed-land uses show less probability 8 

of walking after using e-scooters. Our findings align with previous research (Jiao and Bai, 2020; 9 

Tuli et al., 2021) indicating higher e-scooter usage in mixed land-use areas.   10 

The results of the ORL model also suggest that Recreational Enthusiasts and Intermittent 11 

Joyriders are less likely to increase walking after using e-scooters. Furthermore, our study echoes 12 

the observation by Laa and Leth (2020) that e-scooters tend to substitute for walking. Importantly, 13 

our study contributes new insights by revealing that e-scooters serve as a substitute for walking 14 

specifically for recreational purposes regardless of the frequency of using e-scooters. 15 

Furthermore, upon comparing various transportation modes, the coefficients of the ORL 16 

models suggest that, despite Recreational Enthusiasts and Intermittent Joyriders displaying a 17 

reduced inclination to enhance their use of any available transportation mode for recreational 18 

purposes, members of Recreational Enthusiasts show the least interest in expanding their 19 

utilization of car transportation. Conversely, Intermittent Joyriders express the lowest interest in 20 

increasing their usage of rideshare services. 21 

 22 

 23 
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6. Conclusion 1 

6.1 Summary 2 

This study aims to determine (i) who uses shared e-scooters, and why they use them, and (ii) what 3 

effect e-scooters have on the usage of other modes of transportation. To achieve the objectives, the 4 

study utilized the socio-demographic and travel-related variables of e-scooter users from the 2018 5 

E-scooter Pilot User Survey administered by the City of Portland (PBOT, 2018). Using Latent 6 

Class Analysis, the study classified the e-scooter users into three groups. The identified latent 7 

classes were as follows: Class 1 (Recreational Enthusiasts) constituted occasional and frequent 8 

fun users, Class 2 (Commute Riders) composed of frequent users who regularly (more than once 9 

a week) use this green shared micromobility mode to commute, and Class 3 (Intermittent 10 

Joyriders) comprised occasional and one-time users for recreational purpose.  11 

Based on the identified classes of e-scooter users along with their socio-demographic 12 

characteristics and built environment, this study performs a set of ordered logit models to assess 13 

the effect of e-scooters on the usage of other transportation modes. 14 

According to the results of the ORL model, compared to Commute Riders, Recreational 15 

Enthusiasts and Intermittent Joyriders show significantly less interest in increasing the usage of 16 

any available modes after the adoption of e-scooters. Nonetheless, low-income e-scooter users 17 

show a higher probability of increasing their usage of all types of transportation modes, for 18 

example, public transportation, driving automobile, shared mobility services, rental cars, personal 19 

bikes, shared bikes, and walking.  20 

 21 
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6.2 Policy Implications 1 

The findings of this study provide insights into the user groups of e-scooters and the impact of e-2 

scooter usage on their use of other modes. Therefore, this study provides essential information for 3 

e-scooter deployment strategies for city planners and policymakers. During deployment, this 4 

study's findings can help planners identify target locations and demographics and understand the 5 

underlying equity concerns. Moreover, the results can aid e-scooter companies in adopting 6 

different pricing mechanisms to attract more e-scooter users from different user groups. 7 

To increase the use of e-scooters as a green mode of transportation, specific strategies need 8 

to be designed for the identified user classes according to their characteristics. For example, to 9 

increase the usage among the Intermitted Joyriders, e-scooter companies can offer rewards to users 10 

who use e-scooters several times within a given period. To encourage the transition of occasional 11 

and one-time e-scooter user groups to more frequent users of public transportation, convenient 12 

modal linkage can be facilitated by increasing the deployment of e-scooters near transit stations or 13 

developing a unified pricing plan with a single payment method. Areas with higher job density 14 

tend to exhibit greater car usage. Therefore, promoting e-scooters near regions with high 15 

employment density could offer a promising approach to reducing car dependency. Moreover, it 16 

can be a supporting approach to encourage the users of Commute Riders.  Smith and Schwieterman 17 

(2018) also reveal that e-scooters have the potential to increase job reachability compared to public 18 

transportation and walking alone. Moreover, the members of Recreational Enthusiasts and 19 

Intermittent Joyriders both show less interest in increasing their automobile dependency. 20 

Therefore, implementing economic incentives, such as discounts or special offers can be an 21 

effective strategy to encourage Recreational Enthusiasts and Intermittent Joyriders to choose e-22 

scooters over personal car transportation for recreational purposes. 23 
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The findings also show that members of generation X and baby boomers are reluctant to 1 

increase their rideshare usage after using e-scooters. Hence, to make the older communities more 2 

interested towards e-scooter usage, e-scooter companies can spread the option of cash payment 3 

system for unlocking and riding on e-scooters. Moreover, physical health conditions may hinder 4 

many older adults from feeling safe riding e-scooters (Gebhardt et al., 2021); in that case, e-scooter 5 

companies can launch 4-wheel e-scooters specifically designed to fulfill the safety and comfort 6 

needs for older adults. Furthermore, the Intermittent Joyriders show the least interest in increasing 7 

their rideshare usage compared to all other transportation modes. To shift these occasional and one 8 

time e-scooter users to frequent users, e-scooter companies can tailor their services and features. 9 

By enhancing the convenience and reliability of e-scooter services, these companies can position 10 

e-scooters as a more attractive alternative to rideshare services for recreational trips. This strategic 11 

adjustment should aim to facilitate the transition of users from rideshare to a greener mode of 12 

transportation. 13 

However, when it comes to e-scooter riders from low-income communities, their usage of 14 

various transportation modes tends to increase. Therefore, a subsidized pricing plan could greatly 15 

help them in adopting the green transportation system. Moreover, among all the available 16 

transportation modes, low-income e-scooter users express the highest interest in expanding their 17 

use of public transportation. In light of this, an integrated pricing plan that combines public 18 

transportation and e-scooters could greatly benefit users with an annual income below than a 19 

certain threshold, (e.g., under $15k).  20 

 21 
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6.3 Limitations & Future Study 1 

In our study, we have gained valuable insights into transportation behavior changes following the 2 

adoption of shared e-scooters. However, the survey question we used to understand the impact of 3 

e-scooter usage on other modes did not fully capture the causal relationship. Instead, it reflects 4 

changes in behavior since the adoption of e-scooters, which may be influenced by various other 5 

factors like changes in residential or job locations, and significant life events. Unfortunately, due 6 

to limitations in data availability, our study couldn't directly address these factors and define a 7 

causal impact on other transportation modes due to e-scooter usage. Nonetheless, it would be 8 

advantageous for future studies to enhance survey tools to measure the causal effect of e-scooter 9 

use on other transportation modes. 10 

Moreover, the results of the models could be context specific. Further studies are needed 11 

using survey data from other e-scooters programs in the US, which will help generalize the 12 

findings. Furthermore, due to data availability issues, the current study did not include responses 13 

from non-users; therefore, a future study can concentrate on non-users of e-scooters to determine 14 

the reasons for non-adoption. Moreover, the study incorporates built environment variables 15 

gathered from users' home zip codes as provided by PBOT. Consequently, the calculation of land-16 

use entropy is performed at the ZIP code level. Generally, ZIP codes can range in size from a few 17 

square miles in densely populated urban areas to much larger areas in rural regions. Some ZIP 18 

codes may cover only a single city block, while others may extend to encompass multiple 19 

neighborhoods, towns, or even parts of a city and its outskirts (Grubesic & Matisziw, 2006). As 20 

the ZIP codes can be highly heterogeneous, encompassing a mix of urban, suburban, and rural 21 

areas. Therefore, a potential avenue for future development in the study could involve collecting 22 

respondents' home locations at the census block level. Calculating land-use entropy based on the 23 
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block group level could mitigate the issue of heterogeneity and provide a more nuanced 1 

understanding of local variations in land use patterns. Additionally, the study was unable to 2 

account for certain variables due to data limitations, including household structure, employment 3 

status, number of household vehicles, number of household drivers, possession of a driving license, 4 

and type of occupation, among others. Future surveys should aim to collect this essential 5 

information for a more comprehensive understanding of e-scooter user characteristics. Finally, the 6 

study did not consider residential self-selection and other endogeneity issues in the ordered logit 7 

model, which is left for future works using a multi-level modeling framework.  8 

 9 
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