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Abstract—No two snowflakes are alike. However, they can be 

classified into over a hundred different categories based on their 

geometry. Recent developments in machine learning algorithms 

have led to the possibility of automatically classifying more 

classes of snowflakes more accurately and efficiently. We present 

supervised and unsupervised learning approaches to snowflake 

classification coupled with dimensional reduction techniques.  

Proper automatic and detailed classification of ice and snow 

hydrometeors enables advanced characterization of geometrical, 

microphysical, and scattering properties of particles, which, in 

turn, is essential for development of radar-based quantitative 

precipitation estimation of snow. 

I. INTRODUCTION 

Classification of snowflakes has been recently invoked as 
an important factor in enriching our understanding of 
polarimetric radar signatures of snow, ice cloud processes and 
resulting precipitation. However, classification of over a 
hundred shapes of snowflakes [1] is a challenging problem for 
both atmospheric scientists and machine learning engineers due 
to the complex nature of snow. In the past decade, new multi-
camera-based systems such as the Snowflake Measurement 
and Analysis System (SMAS) and Multi-Angle Snowflake 
Camera (MASC) were introduced. The images from these 
instruments are perfect to serve as input data for our models. 
Fundamentally understanding the data and extracting features 
is important to classify snowflakes. Convolutional Neural 
Networks (CNNs), while being a popular technique to classify 
images, fail to describe the features it learns from [2] and 
therefore make feature extraction and studying important. 

II. DATA SOURCES AND METHODOLOGIES 

The SMAS, a seven-camera system, and the MASC, a 
three-camera (modified to five), both capable of 3D 
reconstruction, particle size and fall speed measurement, serves 
as our primary source of data (Fig. 1). However, with the 
limited number of images that is already preprocessed and 
labeled, it is difficult for supervised learning. Our data includes 
the collected locations in Table 1. The methods used in this 
study include a simple CNN (Fig. 2) and additional 
dimensional reduction/feature extraction techniques using: 

• PCA - Principal Component Analysis, dimensional 
reduction method that fits a p-dimensional ellipsoid. 

o Single Image PCA - fitting PCA over each 
300x300 pixels image. 

o Tabular Data PCA - transforming all image into 
90000-dimensional tabular data then fitting PCA. 

• Hu Invariant Moments - Shape descriptors that give 7 
unique moments of the silhouettes of images which are 
invariant over scaling, rotations or translations. This 
feature extraction method also disregards image texture. 

• UMAP [3] - Uniform Manifold Approximation 
Projection, State-of-the-Art feature extraction technique 
that relies on different metrics such as Euclidean, 
Minkowski, etc. to cluster features and has supervised 
learning options. 

 

Figure 1. Snowflake Measurement and Analysis System (left) and Multi-Angle 
Snowflake Camera (right). 

TABLE I.  DATA SOURCES. 

Data Source MASC SMAS Location 

MASCRAD Y  CO, USA 

ICE-POP Y  Pyeonchang, KR 

NASA-GPM-WFF Y Y VA, USA 

IMPACTS-UConn Y Y CT, USA 

MASCDB [4] Y  Jura Mountains, CHE 

III. RESULTS AND ANALYSIS 

We have included four classes of snowflakes for this 
preliminary study (Fig. 2): Aggregate, Small/Germ, Planar, 
Graupel-like. Fig. 3 shows the result from our CNN is positive 



for classifying Planes and germs but not for Aggregates and 
Graupel-like. This could be improved with a complex network. 

 

Figure 2. Snowflake Classes used for study. 

 

Figure 3. Confusion Matrix for Simple CNN architecture. 

PCA on single image gives positive results for isolating 
small particles while the x axis provides a small amount of 
distinction symmetry between aggregates and planes (Fig. 4). 
Hu Invariant Moments could distinguish between shapes based 
on the silhouette (Fig. 5). However, since Graupel-like 
snowflake silhouettes are indistinguishable from enlarged 
small particles, their differences could not be differentiated. 
UMAP with Euclidean [5] on feature extraction has general 
clustering between classes but the clusters overlap (Fig. 6). It 
shows separation between sizes on the y-axis and a general 
decrease in symmetry on the diagonal axis. This presents 
similar features to PCA. 

 
Figure 4. PCA Single Image. 

 

Figure 5. Hu Invariant Moments. 

 

Figure 6. UMAP Supervised. 
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