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Abstract—In this paper, a cost-effective Near-Sensor Processing
(NSP) platform is developed based on an experimentally-measured
Ti/TiN/GazO3/Ti/Pt Resistive Random Access Memory (RRAM)
device that facilitates event detection for edge vision sensors
without the requirement for power-intensive Analog-to-Digital
Converters (ADCs). The platform is supported with a hardware-
friendly background comparison technique providing adjustable
precision that allows for a dynamic balance between accuracy and
efficiency at runtime. Our device-to-architecture simulation results
demonstrate that the proposed platform achieves on average
66% and 63% energy saving over STT-MRAM and SOT-MRAM
counterparts due to utilizing the ADC-less method.

I. INTRODUCTION

Over the past decade, there has been extensive development
in CMOS imagers featuring on-chip feature extraction and com-
pression with the primary objective of optimizing computing
resources and reducing overall power consumption [1]-[5]. At
the same time, Non-Volatile Memories (NVMs) have gained
significant interest as possible substitutes for conventional
volatile memory technologies. This increased interest is due
to the unique attributes of NVM, such as non-volatility, robust-
ness, long endurance, extremely low standby power, suitability
for intermittent computing, and high integration density [6], [7].
In scenarios such as embedded applications and low-power loT
systems where on-chip cache plays a crucial role, a resilient
NVM has the potential to augment memory capacity and
enhance overall performance. Magnetic Tunnel Junction (MTJ)
devices are among the most common NVMs. Experiments and
fabrications of Spin-Transfer Torque (STT) MTJs demonstrate
fast magnetic switching in the subnanosecond range. By utiliz-
ing Spin-Orbit Torque (SOT), faster switching is also achieved
[8]-[12]. Despite their advantages such as long retention times
(up to 10 years) and minimal energy consumption for writing
data (in the fJ/bit range), these technologies face challenges
due to their low ON/OFF ratios (typically below 10), leading
to reliability issues associated with the current-driven switching
approach. Moreover, MTJs are able to store only one bit
per device, which limits the memory capacity, and the three-
terminal structure of SOT-MTJ increases the complexity of the
memory array and reduces scalability.

Lately, Resistive Switching (RS) devices, specifically Resis-
tive Random-Access Memory (RRAM), are being recognized
as one of the most promising emerging memory technologies
with implementations on basic binary transition metal oxide
materials, such as HfO, [13], Al,O3 [14], and TiOs [15],
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Fig. 1. (a) Schematic diagram and (b) Characteristics of endurance of
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where carrier transport is predominantly influenced by oxygen
vacancies. RRAM offers a much higher ON/OFF ratio than
MTIs. Moreover, by presenting multi-level resistance and a
two-terminal device structure, they offer higher memory capac-
ity and scalability. In this paper, we present a Near-Sensor Pro-
cessing (NSP) architecture for event detection applications at
the edge that saves the background image in an accurate RRAM
array modeled based on our fabricated Ti/TiN/ GayOs/Ti/Pt
[16]. The main contributions of this paper are as follows: (1) We
design an NSP architecture with inventive micro-architectural
and circuit-level strategies in pixel and RRAM peripherals
tailored for energy efficiency and speed up; (2) We propose
a versatile hardware-aware method for event detection, tailored
to identify events through background variations; and (3) We
present an inclusive bottom-up evaluation framework designed
to gauge the overall performance of the system.

II. MULTILEVEL RRAM DEVICE

The RRAM is a two-terminal NVM that stores data in
different resistive states by creating/rupturing a conductive
filament within the metal oxide insulator. At the device level,
we designed a Ti/TiN (bottom electrode, BE)/GasO3/Ti/Pt (top
electrode, TE) thin-film RRAM device [16]. The schematic
diagram of the Ga;O3; based RRAM device is depicted in
Fig. 1(a) that is used in a 1TIR cell as the central storage
component in the envisioned near-sensor accelerator. During the
set phase, by applying a positive voltage to the top electrode,
the conductive filament establishes a connection between the
top and bottom electrodes, resulting in a Low Resistance State
(LRS). Conversely, in the reset phase, a negative voltage is
applied to the top electrode and the filament undergoes a
breakage, causing an increase in the device’s resistance and
transitioning it into a High Resistance State (HRS). Figure
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1(b) reports the endurance test results for 300 cycles at a read
voltage of 0.2 V. As the I... (set current) increases from 10 to 50
1A, a noticeable trend emerges in LRS, indicating the presence
of three distinct LRS states. In contrast, the HRS remains nearly
constant across all compliance currents. The memory states for
presented GayO3 based RRAM are experimentally measured
and represented by the 4 chosen resistance states, i.e., ~140k{2
(Lee=50pA), ~900k2 (I..=20pA), ~1.8MQ (I..=10pA), and
~38MQ (R,fr). The presented multi-level RRAM device
offers excellent resistance switching properties and a high
Roff/Rop ratio (up to 10%).

III. PROPOSED NEAR-SENSOR EVENT DETECTOR

Utilizing the multi-level RRAM device, an always-on event
detector architecture has been proposed on top of the process-
ing near-sensor scheme. The suggested architecture primarily
comprises three main components. A 256x256 pixel array for
capturing the frames, a 64x64 RRAM array that saves the
background data, and a near sensor comparator component.
The peripherals include pixel array and RRAM array write and
readout circuits, a demux, and a control logic to control the
operation of the arrays. In the presented NSP architecture, the
main idea involves storing particular pixels from an input frame
as background data on the RRAM array. The pixel selection
algorithm will be explained in the following section. After
saving background data, the NSP platform operates in event
detection mode, utilizing an ADC-less approach to compare
input frames with the pre-stored background data. Upon detect-
ing a new object through a mismatch between the input frame
and background data, the platform switches to sensing mode,
capturing frames in high resolution and transmitting them to
any deep-learning accelerator for further processing.

Pixel Array. The proposed NSP platform utilizes a 256 x256
pixel array to capture input frames, as depicted in Fig. 2(a).
Three-transistor/one-photodiode (PD) pixels form the pixel
array. As illustrated in Fig. 2(c), the output of the pixel array
is connected to a 1-to-2 demux. During the regular sensing
mode, the demux sends the pixel’s output signal to the ADC-
based high-resolution readout circuitry. Conversely, during the
event detection mode, through the demux, the pixel’s output
is forwarded to the near-sensor comparator part for detecting
events in an ADC-less method. Moreover, to store the data
of selected pixels of our array as background data, ADCs are
utilized but with lower bit-width of 2-bit or 3-bit resolution to
reduce the ADC’s overall power consumption.

Background RRAM Array. In our NSP platform, a 64 x64
RRAM array is considered to store background data. The
RRAM array is shown in Fig. 2(b), where ITIR cells are
used to form the array. To store each pixel’s data in the array,
two RRAM cells are dedicated. As mentioned in the previous
section, each RRAM can have four different resistance levels.
Three of these levels are considered to be utilized in our design.
We have utilized 900k€2, 1800kS2, and 38M2 resistance levels
for storage purposes. The reason for using only these three
levels is that during reading the RRAMs generated current by
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Fig. 2. (a) The proposed NSP platform, (b) MEFET background array, and
(c) 3-T pixel structure.

an RRAM with 900kS2 resistance is exactly double of generated
current of an RRAM with 1800k2 resistance and in the case
of 38M() resistance, the RRAM almost passes zero current
through it. Later, these current levels by using the presented
comparison mechanism, will present a digital representation
of the stored background data. The size of the RRAM array
is also defined considering the pixel selection algorithm where
one pixel out of 9, 25, or 49 pixels will be saved as background.
The algorithm has been explained in a more detailed way in
the next section. Thus, a 64x64 RRAM array is enough for
background storage.

During backup, each pixel’s data is coded to two RRAM
resistance levels with 2-bit or 3-bit resolution. Theoretically, 9
different combinations of two RRAM’s resistance levels can be
generated. By using two different reading voltages one of them
is doubled the other, some levels overlap and the final generated
voltage will be the same. In practice, in our method, seven
distinct voltage levels can be generated by two background
RRAMs. Thus, pixel data can be mapped to these levels. In the
case of 3-bit data precision, we need eight levels. Fig. 3 shows
the output voltage of a pixel under different light intensities
from the brightest to the darkest. As can be observed in Fig.
3, after a point the output voltage of the pixel doesn’t change
much when the environment gets darker(right end of the curve),
thus we can consider two “110” and “111” data same when
we are mapping them to the RRAMs. The voltage levels that
pre-stored 3-bit and 2-bit background data generates are also
shown in Fig. 3. As an example, Table I explains how we
code 3-bit pixel data to the resistance levels of two RRAMs
in the background array, and also, generated voltage by the
resultant stored data of the background array is illustrated. The
background voltages later are used for comparison purposes
during event detection mode.

TABLE I
CURRENT LEVELS FOR THE 3-BIT PRECISION BACKGROUND ARRAY
Background data | RI(kS2) | R2(kSY) | Viackgrounda(mV)
“000” 38000 38000 0
“001” 38000 1800 10
“010” 1800 38000 19
“011” 1800 1800 27
“100” 900 38000 35
“101” 900 1800 45
“1107 (“1117) 900 900 53
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Near-Sensor Comparator. In the event detection mode,
the presented NSP platform is responsible for continuously
comparing the pre-stored background data with the sensed pixel
data to find any mismatches. We present a new comparison
method to directly compare the analog signal coming from
pixels with digital background data without using power-hungry
ADCs. As mentioned before, primarily, the pixel’s data can be
stored with 2-bit or 3-bit precision in two RRAM devices in
the background array. By considering two different RRAM read
voltages, according to Table I, seven different voltages can be
generated by the stored background data. These voltages are
used to be compared with the pixel’s output voltage. As shown
in Fig. 3, the pixel’s output voltage spans from 0 to around
60 mV. This span is divided into seven subranges equal to the
number of voltage levels that background data can generate
as highlighted with shaded and plain areas in Fig. 3. The
proposed near-sensor comparator has been depicted in Fig.
4. For comparison, the voltage generated in the background
array (Viackground) @s shown in Fig. 4(a), and the pixel’s output
voltage (Vpixel), are fed to a new circuit designed based on a
voltage divider and voltage comparators. As shown in Fig. 4(b),
Vbackground and Viixer are fed to the gates of T1 and T2 transistors,
which form a voltage divider. As Vigckground and Vi are
quite small, T1 and T2 work in the subthreshold region. If
Vbackground and Vpize are equal, in T1 and T2 operating points,
the voltage divider’s output voltage (V,,:), will be almost 100
mV. and if Vigekground and Viiger are not equal, it results
in the V,,; being deviated from 100 mV. By detecting any
deviation from the working point (100 mV) by comparators,
a mismatch can be detected. As V) is continuous analog
voltage, Viackground and Vpze; may never be equal exactly
even when the pixel data matches with background data. Thus,
the V,,: is fed as input to two voltage comparators whose
reference voltages (V;.;1 and V,.f2) define a small range around
100 mV which resembles the ranges we defined in Fig. 3 around
any of to Viackgrouna levels. As shown in Fig. 4(c), If Vi, is
bigger than V;.¢1, the output of the first comparators (V) will
be ‘0” and If V,,,,; is smaller than V/.;, the output of the second
comparators (Vo) will be ‘0’. Thus, only when V,,; is in the
range of V,.ry to V,y1, which means that the Viucrgrouna and
Vpizer are almost equal, V.1 and Vo will be ‘0’ at the same
time, and the precharged match line will remain precharged.
Other than that at least one of the V.1 or V., voltages will be
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Fig. 4. Near-Sensor comparator unit. (a) Reading background data using two
different read voltages, (b) Near-Sensor comparator circuit, (c) Comparators
outputs when the different voltage from voltage divider (Vo) is fed to them.
‘1’ leading the match line to discharge. We keep tracking the
match line and whenever it is discharged, a mismatch between
background data and collected pixel data is detected.

IV. EVENT DETECTION MECHANISM

To enhance energy efficiency, not all pixels are saved as the
background; instead, some of them are algorithmically selected
and stored in the background array. Then, they are used to be
compared with the new pixel data to detect new events. For
pixel selection purposes during the backup stage, we employ
the concept of pixel boxes. We define a box around a group
of pixels and select only one pixel from each box to be stored
as the background data. Fig. 5 illustrates the pixel boxing and
selection for backup and comparison purposes, where a box
has been shown with a red dashed line.

The presented NSP offers configuration flexibility to enable
dynamic trade-offs between accuracy and energy efficiency. By
adjusting box_size € {3,5,7} and precision € {2,3}, various
design configurations can be determined where box_size indi-
cates the dimensions of specified pixel groups, and precision
represents the bit-width of selected pixel data. As shown in
Fig. 5, one pixel in each box is activated during backup
and event detection mode, and the rest of the pixels are
in the off state. As activated pixels remain ON during all
operating phases, we refer to them as Always-On pixels. In
the fabrication process, those pixels can be allocated a distinct
VDD rail from other pixels. This adjustment allows designers
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Fig. 5. Pixel selection using boxing method with the box size of 3x3.
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Fig. 6. Object detection timeframes of the NSP platform. In ¢;, ¢;4,,, and ¢; 42, background is updated. (a) to (d) shows the difference between the pre-stored
background and captured image at different times under different box_size and precision configurations. In (a), (c), and (d), a new event is detected. In (b)

and (e) comparison shows zero difference means no new event.

to completely deactivate pixels other than the Always-On ones
during background updating and event-detection modes without
a need for a complex controlling mechanism. The horizontal
positions of Always-On pixels are located in the central row
of each box, while the column number changes. In this boxing
method, only one pixel is activated in each column during each
cycle. Thus, within every column of boxes, data from multiple
boxes can be read and compared according to the box size.
As an example, with bor_size = 3, the selected pixel of 3
boxes encompassing 9 rows of the pixel array can be read in a
single cycle as depicted in Fig. 5. We begin pixel selection by
choosing the left pixel of the first box in a column of boxes and
for the subsequent boxes, we shift the selected pixel of the box
one column to the right. As shown in Fig. 5, P 1, P52, and,
Py 3 are chosen pixels and they can be compared in one cycle.
To do this, in each cycle, the row selector activates three desired
rows containing the selected pixel of the box. Since selected
Always-On pixels are allocated distinct VDD rails, the rest of
the pixels remain OFF even when their rows are selected by
the row selector. Thus, each n x n pixel box as depicted in
Fig. 5, contains one ON pixel and (n? — 1) OFF pixels. For
box_size € {5, 7}, similar to box_size = 3, we start selection
from the central pixel of the leftmost column and end with the
rightmost column of the boxes. The near-sensor comparator
keeps comparing this data with the background pixel value
stored in the RRAM background array.

Algorithm 1 illustrates the procedure, including the event
detection and sensing modes of the presented architecture.
The box_size, precision, thresholdpixes, and time, values
are given to the algorithm as inputs. The turn_on_list is
utilized as an array to store the number of mismatches between
background data and pixel data during event detection mode.
If the number of mismatches exceeds the thresholdpxess, it is
considered a new event. It should mention this variable reset
after each event-detection run. The time, parameter serves
as the time threshold for updating the background. Line 9
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Algorithm 1 Proposed NSP Event Detection Algorithm

: Inputy: box_size € {3,5,7} & precision € {2, 3}-bit
: Inputy: thresholdpixels, timer
: Output: sensor_mode status
: turn_on_list = []
: procedure EVENT-DETECTION
if time > time,: > Merge steady objects with the background.
update (background)
for i = L}’”‘-%J +1 to 256 with step= box_size?
parallel_activate (rowi, rOWiipox_sizes TOWi+ (2 box_size), ...)
pixel_values +— read_rows () >je{l,...,256}
changed_array < parallel_comp (precision, pixel_values,
old_values)

ESveNouEwN T

——

12: turn_on_list.push (changed_array) > 4,7 are box index.
13: if (length (turn_on_list)> thresholdpxels)

14: time += 1 > Use it to update the background.
15: enable SENSOR MODE

16: else:

17: time = 0

18: end procedure

19: procedure SENSOR MODE

20: result =[]

21: while (length (turn_on_list) !=0) do

22: result +=read_box (turn_on_list.pop)
23: end while

24: compress_send (result)

25: end procedure

activates the rows containing the selected pixels, while line 10
reads their values. In line 11, the parallel_comp function
conducts comparisons of new values and old values of 256
pixels based on the precision parameter. All the indexes with
change are pushed in the turn_on_list in line 12. The
length of the turn_on_1list is evaluated after finishing all
rows. If it is bigger than thresholdpixels, the mode transitions
to the sensing mode, and the time counter is added by one.
This counter keeps track of how many times the NSP platform
switches continuously to the sensing mode. Once this counter
reaches time,, the NSP platform updates the background with
the new values (line 7). In the Sensor Mode, all pixel values
within the boxes defined by the turn_on_1ist are activated.
Subsequently, these values are sequentially read on a row-by-
row basis. It is important to note that the reading process is
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strictly row-oriented, which implies that an entire row is read
even if only a single box intersects with it. This approach may
lead to the generation of redundant data values. To mitigate the
issue of transmitting duplicate data, a compression mechanism
is applied to the acquired values before their transmission
to the cloud. Specifically, line 24 of the algorithm details
this compression process, ensuring that only new data are
sent. Figure 6 depicts the object detection timeframe and
qualitatively compares different scenarios under variations in
boxgize and precision. At t;, t; 1y, and t;12,, the background
is updated when the light is OFF (¢;), ON (t;4,), and after
the position of a chair and the color of monitors are changed
(ti42n). Figures 6(a), (b), (c), (d), and (e) show the differences
between the background and the image captured at ¢;5, ti1n,
titn+s. titnt10, and t; oy, respectively. Since the background
is updated at ¢;4,, and ¢;12, and no changes have occurred,
zero differences are detected in Figures 6(b) and (e). However,
at t;45, the light is turned ON, at ¢;,,,5 a person has entered
the frame, and at ¢;;,410 the position of a chair is changed
and the monitors are turned ON. Thus, Figures 6(a), (c), and
(d) show the difference between the stored background and the
captured image at those times.
V. EVALUATIONS

Framework. The assessment framework is established using
a bottom-up approach as shown in Fig. 7. Initially, at the device
level, we utilized our experimental switching data from RRAM
and formulated a Verilog-A model for co-simulation with
interface CMOS circuits in Cadence Spectre and SPICE. At the
circuit level, we commenced by implementing the RRAM/pixel
array and associated peripheral circuitry using NCSU 45nm
PDK [17] in Cadence, from which we extracted output volt-
ages and currents on SLs. We employ the Synopsys Design
Compiler for the creation of the controller, utilizing a standard
industry-level 45nm technology. At the architectural level, we
have adapted PiPSim [18] as a tool for evaluating in-/near-
sensor performance. This tool enables the reporting of array-
level read/write energy and latency. Moving to the application
level, we have engineered an HW/SW simulator that integrates
the proposed event detection method. This simulator utilizes
architectural-level data of the RRAM background array and
pixel array, facilitating the estimation of system performance.

Functionality Verification. Transient simulations are done
to verify the functionality of the presented near-sensor compara-
tor. The waveforms of these simulations have been depicted in
Fig. 8. Here, in each clock cycle, different values of Viqcrground
and V. are fed to the near-sensor comparator unit. It is worth
mentioning that in these simulations, 3-bit background data has
been considered. V4, depicts the output of the voltage divider.
As shown in Fig. 8, when the values of Vpackground and Vpixel
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Fig. 7. Proposed evaluation framework.
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Fig. 8. Transient waveforms of the Near-Sensor Comparator unit.
are very close to each other, the output of our voltage divider
closely approximates its working point (100 mV). Conversely,
when Viackeround and Viixel are not close, Vo, deviates from its
equilibrium. Voltage comparators are responsible for detecting
this deviation. When the outputs of both comparators (V.1
and V,y) are ’0’, the voltage of the matchline remains at ’1’;
otherwise, it discharges to ’0’. The Clk signal synchronizes the
operation: during Clk="1’, precharge occurs in the matchline
and comparators, while during Clk="0’, evaluation occurs.
According to Fig. 8, during the first, third, fifth, and seventh
clock cycles, the Match signal is discharged to ’0’ because
Vbackground and Viixel are not equal or close enough. However,
during the second, fourth, and sixth clock cycles, the Match
signal is *1” as Vpackgrouna and Vpixel almost match each other.

Comparative Analysis. Figure 9 illustrates the distribution
of energy consumption during event detection mode, which
involves background updating and event detection, across three
platforms utilizing STT-MRAM, SOT-MRAM, and RRAM
as the background array. This experiment explores scenarios
involving both 2-bit and 3-bit configurations and considers three
different box sizes. In the event detection mode, we presume
that 5% of the time is dedicated to updating the background,
while the remainder is allocated for identifying mismatches
between pixel value and the previously stored background in the
three platforms being tested. It’s important to note that during
the sensing mode, all platforms exclusively handle the same
pixel array, resulting in equal energy consumption across all
designs. Thus, the energy consumption of the pixel array is not
considered in the comparisons.

According to Fig. 9, in background updating, platforms
based on the SOT-MRAM and RRAM act better than the
STT-MRAM-based one, due to their smaller switching energy.
However, due to using an ADC-less comparison method in
our platform, the overall energy of the presented RRAM-based
design is lower than the other two platforms in all of the
different configurations. Based on the results we note that (i)
the NSP platform utilizing RRAM consumes approximately
66% and 63% less energy on average compared to designs
based on STT-MRAM and SOT-MRAM, respectively. This
is primarily attributed to the elimination of energy-intensive
ADCs in the proposed near-sensor comparator. (ii) Since the
switching energy of the utilized SOT-MT] is slightly less than
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Fig. 9. Breakdown of energy consumption for three under-test platforms. In
each bar-group from left to right: STT-MRAM, SOT-MRAM, and RRAM.

the switching energy of RRAM, for background updating the
required energy by the SOT-MRAM-based platform is less
than our platform in 2-bit configurations. However, in 3-bit
configurations, our platform acts better as it only demands two
RRAM switching per pixel while the SOT-MRAM-based plat-
form needs three MTJs to be written. (ii) As precision increases
(ranging here from 2 to 3 bits), there is a corresponding increase
in the energy requirements for the edge device to conduct
near-sensor computation. (iii) For a given precision level,
employing a larger box size results in greater energy efficiency
for the system. Figure 10 illustrates the execution time across
six combinations of box sizes and precision levels for three
platforms under test. Each bar represents two components: the
execution time of event detection and background updating. As
it can be observed in Fig. 10, the STT-MRAM-based platform
has the largest execution time due to the high switching time
of the STT-MTJs. Our presented platform has ~34x smaller
execution time on average compared to the STT-MRAM-based
platform. Compared to the SOT-MRAM-based platform, our
platform has on average 33% larger execution time, basically
because RRAMs have larger switching delay than SOT-MTJs.
However, the event detection delay of our platform is ~3.3%
smaller than the SOT-MRAM-based platform on average and as
the time we operate for detecting events is much larger than the
allocated time for background updating, the larger background
update delay of our platform can be neglected.

VI. CONCLUSION

The paper introduces an energy-efficient near-sensor event
detection platform based on a multilevel RRAM device. By
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Fig. 10. Breakdown of execution time for three under-test platforms. In each
bar group from left to right: STT-MRAM, SOT-MRAM, and RRAM-based
designs.
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presenting a new method of comparison and removing power-
hungry ADCs, the presented design offers high energy ef-
ficiency suitable for edge devices. Design reconfigurability
offers users a trade-off between precision and energy efficiency,
allowing them to select the desired configuration according to
their application. Our evaluation results show that the proposed
platform achieves, on average, 66% and 63% energy savings
over STT-MRAM and SOT-MRAM counterparts due to the
utilization of the ADC-less method.
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