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ABSTRACT

The surge in the number of normally-o� power-constraint Internet

of Things (IoT) devices in recent years has ampli�ed the demand for

high-performance and energy-e�cient in-memory computing ar-

chitectures built on top of various non-volatile memories. Magneto-

Electric Field E�ect Transistors (MEFETs) have presented com-

pelling design features suitable for logic and memory integration as

an emerging post-CMOS FET. These include high-speed switching,

minimal power usage, and non-volatility. This work introduces a

new in-memory computing architecture designed for edge appli-

cations, leveraging emerging MEFETs. The proposed architecture

enables the execution of both Boolean logic operations and Binary

Content Addressable Memory (BCAM) operations within a single

cycle. Furthermore, the energy consumption during the write oper-

ation of the proposed cell is optimized by introducing a new write

circuitry. The outcomes of our device-to-architecture evaluation

reveal approximately 43.5% and 96.9% reduction in read and write

energy consumption, respectively, compared to the counterpart

non-volatile memories. At the application level, the proposed ar-

chitecture is applied to implement Binary Neural Networks (BNNs)

based on AlexNet and VGG16. Our results showcase a decrease

of approximately 54% in the overall energy consumption when

implementing these networks using the proposed design compared

to non-volatile in-memory computing designs.
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1 INTRODUCTION

In recent years, the surge in the number of sensors and applica-

tions within the Internet of Things (IoT) has ampli�ed the necessity

to transmit data back and forth between sensors and the cloud.

This trend has introduced various issues such as increased en-

ergy consumption, heightened latency, and diminished security

[2, 11, 17, 30]. The escalating necessity to extend the operational

lifespan of battery-constrained IoT edge devices has driven a swift

rise in attention toward integrating emerging Non-Volatile Memory

(NVM) technologies into edge devices. This interest is primarily

propelled by the distinctive characteristics of NVMs, such as non-

volatility, durability, extended endurance, high integration density,

remarkably low standby power consumption, and compatibility

with intermittent computing [7, 9, 22, 23, 25]. Particularly for em-

bedded applications and low-power IoT systems reliant on on-chip

cache, integrating robust NVMs has the potential to augment mem-

ory capacity and performance [16].

The NVM technologies have evolved signi�cantly, with Resis-

tive RAM (ReRAM) and Phase Change Memory (PCM) emerging as

promising alternatives to DRAM/SRAM due to their higher ON/OFF

ratio and packing density (∼2-4×) [6]. However, they face chal-

lenges such as slow write operations, high power consumption,

and low endurance (∼ 10
5-1010) [23, 31]. Ferroelectric transistor

RAMs (FERAMs) o�er advantages in endurance and sense margin

with a reduced 1-10 ns [28] write time and could be a possible al-

ternative. The downside is their large write voltage (> 4.0Ē ) and

power consumption [10, 28]. Spin-based NVMs have attracted at-

tention for their sub-nanosecond switching speeds, long retention

times (10 years), and low energy consumption. These NVMs utilize

Spin-Transfer Torque (STT) or Spin-Orbit Torque (SOT) to manipu-

late magnetization [15]. However, they exhibit poor ON/OFF ratios

and face reliability issues due to high current densities and power

dissipation. The Magneto-Electric Field-E�ect Transistor (MEFET),

leveraging the antiferromagnetic Magneto-Electric (ME) phenom-

ena, has recently undergone experimental investigation [16, 22, 23].

This spintronic device displays promising attributes, characterized

by enhanced performance and heightened temperature resilience.

What distinguishes the MEFET from conventional spintronic de-

vices are its notably high switching speed (<20 ps), high ON/OFF

ratio (e.g., 106 for WSe2), and low energy consumption (<20 aJ) by

capitalizing on coherent rotation as the domain switching mecha-

nism, thereby eliminating the necessity for ferromagnetic switching

or domain wall movement [8, 22].
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Figure 1: (a) MEFET device and the circuit scheme, (b) Sample

source-to-drain current versus voltage at T1 and the induced

spin polarization in WSe2.

Drawing upon the promising attributes of MEFET, this study

introduces, for the �rst time, a novel non-volatile hybrid MEFET-

CMOS architecture demonstrating pro�ciency in executing Boolean

logic operations alongside Binary Content Addressable Memory

(BCAM) within a single cycle. The study explores its potential for

advancing high-performance and energy-e�cient IoT applications.

The primary contributions of this research are outlined as follows:

(1) We design a hybrid MEFET-CMOS integrated memory cell

based on a set of e�cient circuit-level and micro-architectural

schemes. We develop a new write circuitry to facilitate a one-cycle

write operation for the proposed cell, comprising both the data

and its complementary counterpart; (2) We enable an in-memory

bit-line computing scheme based on the proposed architecture

to implement various Boolean logic operations alongside BCAM

within a single cycle; and (3) We develop a bottom-up evaluation

framework to showcase the performance of the proposed design

against the well-known non-volatile memory candidates running

the Binary Neural Networks (BNNs) acceleration task.

2 MEFET BASICS

The Magneto-Electric Spin Field E�ect Transistor (MEFET) demon-

strates structural similarities with the CMOS FET device. Fig. 1(a)

illustrates the basic single-source con�guration of the MEFET, a

four-terminal device comprising gate (T1), source (T2), drain (T3),

and back gate (T4) terminals [22, 27], [12]. This device consists of a

narrow semiconductor channel situated between two dielectrics:

the magneto-electric (ME) material, such as chromia (Cr2O3), and

the insulator, such as alumina (Al2O3). Various materials like PbS,

graphene, InP, or WSe2 can be employed to form the narrow semi-

conductor channel. Two electrodes are connected to this stacked

structure, with T1 located at the bottom gate through the ME layer

and T4 at the top via the alumina layer forming the back gate. The

channel material, tungsten diselenide (WSe2), yields a high on-o�

ratio, enhancing hole mobility [22], [12]. Both conductors and FM

polarizers can be utilized for the source and drain materials (at the

T2/T3 terminal).

The MEFET functions as a transistor by biasing the semicon-

ductor channel via T1 and T4 terminals (similar to gate biasing

in CMOS) and then applying current from T2 to T3 (similar to

source-drain biasing in CMOS). Applying a very low voltage of

approximately ±100 mV [22], [21] across the gate (T1) and back

gate terminals (T4: ground) charges the ME capacitor. The change

Table 1: Compact Verilog-A model parameters.

Parameter Value Description of Parameter and Units

Ċĉā 12 Dielectric constant of chromia [5]

ĊýĢ2ċ3
10 Dielectric constant of Alumina

Īĉā 10 thickness of magnetoelectric layer, nm

ēĉā × Ĉĉā 900 area of magnetoelectric layer, Ĥģ2

ĪĥĮ 2 Oxide barrier thickness, nm

ĒĪℎ 0.05 Threshold of Chromia state inversion, V

Ēĝ 0.1 Voltage applied across ME layer, V

ĎĥĤ 1.05 ON Resistance, ġ¬

Ďĥ Ĝ Ĝ 63.4 OFF Resistance,ĉ¬

in polarity at T1 generates a vertical electric �eld across the gate,

which switches the paraelectric polarization and anti-ferromagnetic

(AFM) order in the ME insulator layer, leading to the reorientation

of chromia spin vectors. Through exchange interactions and spin-

orbit coupling (SOC), the high boundary polarization of the ME

layer can polarize carriers’ spins in the semiconductor channel,

resulting in preferred conduction along a speci�c axis, such as

lower resistance. The surface magnetization of the MEFET’s chan-

nel induces directionality in conductance, unlike conventional gate

dielectrics, ultimately altering the channel spin vector’s orienta-

tion. Non-Equilibrium Green’s Function (NEGF) transport simula-

tions are employed to investigate the current-voltage relationship

(Fig.1(b)), dependent on the direction of ME polarization based on

[7], [13]. These simulations are conducted on a 2D ribbon with a

width of 20 nm and a band mass of 0.1ģě , considering a conserva-

tive exchange splitting value of 0.1 eV, T3–T2 = 0.1 V, at 300 K. To

read out the MEFET, the T2-T3 resistive path can be sensed and

compared with a reference. The ON/OFF current ratio for (WSe2)

can reach up to 106. Table 1 showcases the experimental parameters

utilized for the switching behavior of the Chromia layer and SOC

channel in our model.

3 PROPOSED ARCHITECTURE

Fig. 2(a) illustrates the proposed architecture, designed to operate

e�ectively in both memory and computing modes. The memory ar-

chitecture is constructed using the proposed hybrid CMOS-MEFET

memory bit-cell as shown in Fig. (2(b)), Row Decoder (RD), Column

(a)(a)

(b)

(c)

XNOR

(c)

Figure 2: (a) ProposedMEFET-based non-volatile architecture,

(b) MEFET memory bit-cell structure, (c) Proposed recon�g-

urable sense ampli�er.
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Table 2: Signaling of the Proposed MEFET Cell.

Signals Hold Read Write
Computing

(Boolean)
BCAM

WLL ‘0’ ‘1’ ‘0’ ‘1’ ĀėĪė

WLR ‘0’ ‘1’ ‘0’ ‘1’ ĀėĪė

WRH ‘1’ ‘0’ ‘1’ ‘0’ ‘0’

WRV ‘0’ ‘1’ ‘1’ ‘1’ ‘1’

SL ‘0’ ‘0’ VWR ‘0’ ‘0’

BL ‘0’ VDD ‘0’ VDD VDD

BLB ‘0’ VDD ‘0’ VDD VDD

Decoder (CD), and the Proposed Sense Ampli�er (PSA), as de�ned

in the Fig. 2(c). As shown in Fig. 2(b) the suggested hybrid memory

cell comprises three MEFETs and four MOSFETs. This con�gura-

tion allows for the storage of both data and its complementary

value within a single cell. This capability facilitates the execution of

various logic operations, including X(N)OR, in a single cycle. The

memory cell utilizes row-based control signals, namely Word Line

Left (WLL), Word Line Right (WLR), Source Line (SL), and Write

Line Horizontal (WRH), while the control signals, i.e., Write Line

Vertical (WRV), Bit-line (BL) and inverted Bit-line (BLB) operates

on a column basis.

As illustrated in Fig. 2(c), the cell value is read out via BL/BLB and

transmitted to PSA for sensing and computing. The PSA comprises

a 4×1 multiplexer capable of executing read, (N)AND, (N)OR, and

X(N)OR logic operations, depending on appropriate control signals.

When the control signals are asserted to “00”, the BL, and BLB

are activated and fed into the Di�erential Sense Ampli�er (DSA)

to read the data of the selected cell. Alternatively, if the control

signals are set to “01”, the BL is connected to the skewed inverter

(SA-1), thereby unveiling the (N)AND operation in the output of

the PSA. Moreover, a skewed bu�er (SA-2) is employed to reveal the

NOR output when the PSA control signals are set to “10”. Finally,

X(N)OR logic is achieved in the PSA by setting the control signals to

“11”, thereby enabling the OR gate in the PSA. Furthermore, for the

implementation of the BCAM operation, the BL and BLB are linked

to an AND gate in the PSA to identify data mismatches. Table 2

shows an overview of the necessary signaling for various operations.

A comprehensive discussion on the memory and computing modes

in the proposed architecture is provided in detail to understand the

functionality of the proposed design.

3.1 Memory Mode

In Fig. 3(a), the proposed write circuitry is shown with the simul-

taneous writing of the intended data and its complement into the

cell. For this purpose, the activation of the M4 transistor occurs

through WRV, and the SL is connected to the write voltage VWR.

819 809 819

(b)

819

809 819 809

(a)

819

Figure 3: (a) Write and (b) Read operations of the proposed

cell.

Simultaneously, the M3 transistor is activated by the WRH. The

write voltage and its complement are directed to the gate of Q1 and

QB1 MEFETs, respectively. The complement of the write voltage is

generated through the MEFET-based inverter, utilizing a �xed re-

sistance in the pull-up network. By appropriately applying voltage

to the gate of MEFETs, the resistance of MEFETs is con�gured. As

an illustration, applying positive VWR induces a transition in the

resistance state of Q1 to high, concurrently causing the inverted

voltage of VWR to impact the gate of the QB1 MEFET (negative

voltage), thereby leading to a low-resistance state in this MEFET.

In the read process as shown in Fig. 3(b), the SL is connected to

the ground, while the BL and BLB are linked to VDD and then left

�oated. Subsequently, the access transistors (M1 and M2) are ac-

tivated through the control signals WLL and WLR. Owing to the

resistance discrepancy in the MEFETs, which re�ects the stored

data, either BL or BLB discharges more rapidly than the other. This

voltage di�erence can be detected by the DSA in the PSA, revealing

the stored data as shown in Fig. 3(b). For instance, if the data stored

in the Q1 MEFET is ‘1’ (high resistance, RH), and QB1 stores its

complementary ‘0’ (low resistance, RL), BLB discharges much faster

than BL, and this di�erentiation is identi�ed by the PSA, which

is set up to function in read mode by control signals SE1 and SE0.

These signals are con�gured to “00” to activate the DSA in the PSA.

3.2 Computing Mode

Bit-line Logic Computation Core: The proposed architecture

enables the execution of row-wise X(N)OR, (N)AND, and (N)OR

logic operations. To accomplish this, the logic operands need to be

initially arranged in corresponding columns. The RD control unit

triggers the memory cells containing the operands, as depicted in

Fig. 4, across the entire physical memory row. To this end, the BL

and BLB are connected to VDD and left �oated. Subsequently, two

columns within the memory structure which contains the logic

operands are activated by applying appropriate control signals

to their access transistors and connecting their SL to the ground

by activating the column-based WRVn signal. As shown in Fig. 4,

depending on the resistance of MEFETs representing the stored

data, the BL and BLB either discharge or remain una�ected. If either

data stored in MEFETs (Q1 and Qn) is set to ‘0’ (i.e., low resistance),

the BL is discharged. By con�guring the PSA’s congratulation bits

to “01”, the þĈ is connected to SA-1 that is properly skewed to

unveil the output of the NAND operation (FBL).

It is noteworthy that, owing to the symmetry of the proposed

bit-cell with inverted inputs, the opposite side connected to BLB

simultaneously generates a NOR logic. In this scenario when the

appropriate control signal “10” is asserted to the PSA, þĈþ is con-

nected to the skewed bu�er (SA-2), thus revealing the NOR logic of

the stored data as shown in Fig. 4. This logic is achieved based on

Equation 1.

ĂBLB = čþ1.čþĤ = č1.čĤ = č1 +čĤ (1)

For instance, when Q1 and Qn are ‘1’ (high resistance, RH), BL

remains untouched. Simultaneously, QB1 and QBn are set to ‘0’

(complementary of Q1 and Qn), leading to the discharge of BLB

at the same time. Given that þĈ signi�es the NAND operation of

stored data after crossing the SA-1 (FBL) and þĈþ represents the

AND operation of the inverted stored data of selected rows, the
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Figure 4: Performing Boolean in-memory computing.

implementation of XNOR logic can be accomplished by connecting

the inverted output of SA-1 and the output of SA-2 to an OR gate

in the PSA (Fig. 4). Equation 2 represents the output of the XNOR

operation.
ĂXNOR = ĂBL + ĂBLB = č1.čĤ + (č1 +čĤ) = (č1.čĤ) + (č1.čĤ)

(2)

BCAMCore: The proposed architecture can be readily recon�g-

ured to realize BCAM to directly compare the stored data with the

input provided, enabling swift retrieval of information. To this end,

the BL and BLB are connected to VDD and subsequently left �oating

similar to read and Bit-line logic computing. Following this, the

search data is applied to the WLLn and its complementary asserted

to WLRn. In cases where the search data matches the stored data,

the BL and BLB remain unchanged. However, in instances where a

disparity between the stored data and the search data occurs, either

the BL or BLB is discharged. As an illustration, let’s examine a sce-

nario where the search data is “011” and it is compared against the

stored data in a column-based architecture, which includes “010”,

“011”, and “100” as shown in Fig. 5. In the case of a mismatch, BL0

and BL2 are discharged, yielding a ‘0’ output for AND0 and AND2.

However, due to the match between the stored data “011” and the

search data, no discharge occurs in BL1 and BLB1, resulting in a ‘1’

output for AND1.

4 PERFORMANCE EVALUATION

To assess the e�cacy of the proposed design, a bottom-up evalua-

tion framework is developed across device, circuit, and architecture

levels. A comparison is made with a cutting-edge non-volatile mem-

ory array utilizing RRAM and Magnetic Tunnel Junction (MTJ),

2

2

2 2

2

2

Figure 5: BCAM operation.

Table 3: Evaluation of Delay and Energy consumption in

memory mode.
Read Write

Designs Technology
Delay (ps) Power (ĆW) Energy (fJ) Delay (ns) Power (ĆW) Energy (fJ)

[32] RRAM 73.19 35.24 2.57 1.2 97.3 116.76

[33] STT/SOT MTJ 145.71 18.02 2.62 0.84 139.2 116.928

Proposed MEFET 71.61 20.36 1.45 0.22 16.2 3.564

speci�cally tailored for in-memory computing. The assessments

are conducted using the HSPICE tool, along with the Verilog-A

MEFET model based on [19], using the 45 nm NCSU product design

kit at 0.8V supply voltage [1].

4.1 Memory Mode Evaluation

The assessment of the read and write operations for the proposed

cell entails a comparison with two designs, as outlined in Table 3.

It is evident from the comparison that the proposed design exhibits

signi�cantly lower time and power consumption in write operation

compared to the other cells. This is because the write operation is

executed by applying a voltage below 100 mV to the MEFET gate in

the proposed cell [20]. Furthermore, the proposed cell accomplishes

the process of writing data and its complementary counterpart

within a single cycle. This results in a substantial decrease in en-

ergy consumption during the write operation. While the process

of writing data into the RRAMs and MTJs is notably characterized

by extensive time and power consumption, the proposed design

demonstrates a write energy consumption of about 96.9% lower

compared to the designs presented in [32] and [33]. The di�eren-

tial nature of the read operation in the proposed design, coupled

with the heightened high-to-low resistance ratio in the MEFET,

streamlines the sense ampli�er for data reading. Consequently, the

energy consumption during read operations is signi�cantly reduced

in the proposed design when compared to the reference designs.

The proposed design demonstrates a noteworthy reduction in read

energy, with a 43.5% decrease compared to the [32] design and a

44.6% decrease compared to the [33] design.

4.2 Computing Mode Evaluation

To verify the functionality of the proposed design, Fig. 6 presents

the transient waveform showing various logic operations under

di�erent input conditions in the proposed design. As illustrated,

the evaluation of di�erent logic functions in the proposed design

involves considering four distinct inputs. In each input state, upon

activation of the WLL and WLR signals, the selected operands and

their complements are computed on the BL and BLB, respectively.

Figure 6: Transient waveform of the proposed design in vari-

ous logic functions.
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Table 4: Delay and power consumption of di�erent Boolean

function operations.
NAND/AND NOR/OR XNOR/XOR

Designs
Delay(ps) Power(ĆW) Delay(ps) Power(ĆW) Delay(ps) Power(ĆW)

[32] 74.84 43.7 74.84 43.7 85.61 47.32

[33] 132.19 30.06 132.19 30.06 197.2 44.9

Proposed 60.21 25.99 63.2 26.12 66.8 27.7

Subsequently, these computed results are transmitted to the PSA.

The PSA is capable of executing various logic operations depending

on the appropriate control signals. An illustrative example of the

PSA output representing the result of an XOR operation is shown

in Fig. 6.Furthermore, for a more precise evaluation of the proposed

design, a comparative analysis is performed against state-of-the-art

IMC architectures from recent years. Table 4 presents the delay and

power consumption associated with the implementation of Boolean

logic gates. As evident from the table, the proposed cell exhibits

lower delay and power consumption in all Boolean logic operations

compared to the selected designs in [32, 33]. It is worth noting

that, the proposed design directly computes various logic functions

utilizing the PSA. This diminishes the overhead of the entire mem-

ory system since the number of PSAs aligns with the number of

columns. In contrast, other designs, except for [32], necessitate ad-

ditional circuits for executing diverse logic operations. The power

consumption of the proposed design exhibits a signi�cant reduction,

approximately 40.22% lower than the [32] and 13.1% lower than the

[33] when implementing (N)AND, and (N)OR operations. Moreover,

the power consumption in implementing the X(N)OR logic in the

proposed design is lower than the compared cells. The power con-

sumption for implementing X(N)OR is 41.4% and 38.3% lower than

the ones in [32] and [33], respectively. Additionally, as previously

mentioned, the proposed design demonstrates pro�ciency in exe-

cuting BCAM operations. Fig. 7 illustrates the energy consumption

required for implementing a 4-bit BCAM operation. The energy

consumption in BCAM operation is notably lower, with a reduction

of 43.4% compared to the design in [32] and 44.4% compared to the

design in [33].

5 APPLICATION LEVEL ANALYSIS

5.1 Binary Neural Networks

Convolutional Neural Networks (CNNs) operate in two distinct

modes: training mode and inference mode. During training, the

network learns by processing pre-classi�ed training images to cal-

culate the con�guration values of its layers. In inference mode, the

network applies this learned con�guration to examine new test

images. In both modes, the most computationally demanding arith-

metic operations are Multiplication and Accumulation (MAC) [24].
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Figure 7: Energy consumption of 4-bit BCAM operation.

Figure 8: BNN calculation using XNOR and bit counting,

where inputs and weights are +1 or -1 [29].

To address the computational and memory challenges associated

with these operations, researchers have developed various BNNs,

where weights and input activations are constrained to be binary

during forward propagation. One such approach, BinaryConnect

[14], trains deep neural networks with binary weights (-1, +1) and

demonstrates near state-of-the-art performance on popular datasets

such as MNIST and CIFAR-10. This methodology holds promise for

hardware implementations of CNNs by replacing complex multi-

plication operations with simpler XNOR operations [18, 26], and

signi�cantly reducing the storage requirements for weights. XNOR-

NET [18] presents a straightforward and accurate implementation

of BNN, achieving comparable results to the full-precision AlexNet

on the ImageNet dataset.

The common activation functions in BNNs, i.e., ďğĝĤ, generate

binary values of either +1 or -1, rendering neurons (ýğ and ýĥ ) in

subsequent layers as 1-bit representations. Consequently, computa-

tions involve multiplying a binarized input neuron vector ýğ by a

binarized weight matrixē . This operation can be e�ciently con-

ducted utilizing XNOR and a counter. Fig. 8 demonstrates how the

matrix-vector operation involving +1 and -1 values can be binarized

and executed employing XNOR and counter.

5.2 Experiments

To assess the e�cacy of the proposed architecture in real-world

applications, we executed Binarized Image classi�cation on neural

networks. Speci�cally, we employed AlexNet as a binarized Convo-

lutional neural network (CNN) and a more intricate architecture,

VGG16, to study the performance of the proposed design. AlexNet,

characterized by �ve convolutional layers and three fully connected

layers [4], was employed alongside the deeper VGG16 network,

comprising 13 convolutional layers and three fully connected lay-

ers [3]. The implementation of these networks commenced with

a circuit-level simulation in HSPICE, aiming to analyze the delay,

power, and energy consumption of the XNOR logic gate embedded

within the proposed design. Following this, both network architec-

tures were instantiated using MATLAB software. The data acquired

from the circuit-level simulation was subsequently applied to each

convolutional layer in both network architectures. As shown in Fig.
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Figure 9: Energy consumption of di�erent convolutional

layers in (a) AlexNet (b) VGG16

9, the energy consumption of each convolutional layer in both net-

works is contrasted with that of other designs. The outcomes reveal

a noteworthy reduction in energy consumption for the proposed

design compared to the reference cells. The decrease in energy

consumption is credited to the diminished energy usage linked

with the integration of XNOR logic in the proposed design. This

can be attributed to the utilization of an innovative di�erential

circuit for computing XNOR logic within a single cycle. Particu-

larly, the energy consumption of the proposed design during the

implementation of Alex-Net is approximately 54.2% less than that

of the [32] design. Furthermore, in implementing a more intricate

network such as VGG16, the overall energy consumption is reduced

by approximately 54.3% and 79.1% compared to the [32] and [33]

designs, respectively.

6 CONCLUSION

In this work, we introduce a non-volatile in-memory computing

architecture employing MEFETs, speci�cally designed for cutting-

edge IoT devices. Our proposed architecture is adopted to execute

Boolean logic operations alongside the BCAM operation within a

single cycle. This achievement is realized through the utilization

of the innovative sense ampli�er and the storage of both data and

its complement within a singular cell. Additionally, our designed

write circuit enables the proposed cell to write data and its comple-

mentary counterpart in just one cycle, leading to a comprehensive

reduction in energy consumption. The simulation results demon-

strate a notable reduction in energy consumption for the proposed

design, with approximately a 43.5% decrease in read operation en-

ergy and an impressive 96.9% reduction in write operation energy

compared to other designs. Moreover, to assess the practical per-

formance of the proposed architecture, we implemented two BNNs

named AlexNet and VGG16 utilizing the suggested design. The sim-

ulation results reveal a substantial reduction in energy consumption,

approximately 54% when implementing AlexNet and VGG16 using

the proposed architecture in comparison to the reference designs.
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