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ABSTRACT

The surge in the number of normally-off power-constraint Internet
of Things (IoT) devices in recent years has amplified the demand for
high-performance and energy-efficient in-memory computing ar-
chitectures built on top of various non-volatile memories. Magneto-
Electric Field Effect Transistors (MEFETs) have presented com-
pelling design features suitable for logic and memory integration as
an emerging post-CMOS FET. These include high-speed switching,
minimal power usage, and non-volatility. This work introduces a
new in-memory computing architecture designed for edge appli-
cations, leveraging emerging MEFETs. The proposed architecture
enables the execution of both Boolean logic operations and Binary
Content Addressable Memory (BCAM) operations within a single
cycle. Furthermore, the energy consumption during the write oper-
ation of the proposed cell is optimized by introducing a new write
circuitry. The outcomes of our device-to-architecture evaluation
reveal approximately 43.5% and 96.9% reduction in read and write
energy consumption, respectively, compared to the counterpart
non-volatile memories. At the application level, the proposed ar-
chitecture is applied to implement Binary Neural Networks (BNNs)
based on AlexNet and VGG16. Our results showcase a decrease
of approximately 54% in the overall energy consumption when
implementing these networks using the proposed design compared
to non-volatile in-memory computing designs.
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1 INTRODUCTION

In recent years, the surge in the number of sensors and applica-
tions within the Internet of Things (IoT) has amplified the necessity
to transmit data back and forth between sensors and the cloud.
This trend has introduced various issues such as increased en-
ergy consumption, heightened latency, and diminished security
[2, 11, 17, 30]. The escalating necessity to extend the operational
lifespan of battery-constrained IoT edge devices has driven a swift
rise in attention toward integrating emerging Non-Volatile Memory
(NVM) technologies into edge devices. This interest is primarily
propelled by the distinctive characteristics of NVMs, such as non-
volatility, durability, extended endurance, high integration density,
remarkably low standby power consumption, and compatibility
with intermittent computing [7, 9, 22, 23, 25]. Particularly for em-
bedded applications and low-power IoT systems reliant on on-chip
cache, integrating robust NVMs has the potential to augment mem-
ory capacity and performance [16].

The NVM technologies have evolved significantly, with Resis-
tive RAM (ReRAM) and Phase Change Memory (PCM) emerging as
promising alternatives to DRAM/SRAM due to their higher ON/OFF
ratio and packing density (~2-4x) [6]. However, they face chal-
lenges such as slow write operations, high power consumption,
and low endurance (~ 10°-10'%) [23, 31]. Ferroelectric transistor
RAMs (FERAMs) offer advantages in endurance and sense margin
with a reduced 1-10 ns [28] write time and could be a possible al-
ternative. The downside is their large write voltage (> 4.0V) and
power consumption [10, 28]. Spin-based NVMs have attracted at-
tention for their sub-nanosecond switching speeds, long retention
times (10 years), and low energy consumption. These NVMs utilize
Spin-Transfer Torque (STT) or Spin-Orbit Torque (SOT) to manipu-
late magnetization [15]. However, they exhibit poor ON/OFF ratios
and face reliability issues due to high current densities and power
dissipation. The Magneto-Electric Field-Effect Transistor (MEFET),
leveraging the antiferromagnetic Magneto-Electric (ME) phenom-
ena, has recently undergone experimental investigation [16, 22, 23].
This spintronic device displays promising attributes, characterized
by enhanced performance and heightened temperature resilience.
What distinguishes the MEFET from conventional spintronic de-
vices are its notably high switching speed (<20 ps), high ON/OFF
ratio (e.g., 10® for WSey), and low energy consumption (<20 aJ) by
capitalizing on coherent rotation as the domain switching mecha-
nism, thereby eliminating the necessity for ferromagnetic switching
or domain wall movement [8, 22].



charge current ~ ----- >
spin-polarized current -----

Currer)t (uA)

i source T4 back gate drain
T2 4 2z 2

/

o1

Voltage (V)

H '
YI ! Cu
—‘-':’/ i/ Al203 &‘/ 9
o LS 45484448 g .
N of AA
{ - Magneto-Electic material [ _ £
_l_, S
X U narmow semiconductor 1 1 ' gate 2 LE B M
t 7 channel (SOC) @» Energy (eV)
y
T b
(a) (b)

Figure 1: (a) MEFET device and the circuit scheme, (b) Sample
source-to-drain current versus voltage at T1 and the induced
spin polarization in WSe,.

Drawing upon the promising attributes of MEFET, this study
introduces, for the first time, a novel non-volatile hybrid MEFET-
CMOS architecture demonstrating proficiency in executing Boolean
logic operations alongside Binary Content Addressable Memory
(BCAM) within a single cycle. The study explores its potential for
advancing high-performance and energy-efficient IoT applications.
The primary contributions of this research are outlined as follows:

(1) We design a hybrid MEFET-CMOS integrated memory cell
based on a set of efficient circuit-level and micro-architectural
schemes. We develop a new write circuitry to facilitate a one-cycle
write operation for the proposed cell, comprising both the data
and its complementary counterpart; (2) We enable an in-memory
bit-line computing scheme based on the proposed architecture
to implement various Boolean logic operations alongside BCAM
within a single cycle; and (3) We develop a bottom-up evaluation
framework to showcase the performance of the proposed design
against the well-known non-volatile memory candidates running
the Binary Neural Networks (BNNs) acceleration task.

2 MEFET BASICS

The Magneto-Electric Spin Field Effect Transistor (MEFET) demon-
strates structural similarities with the CMOS FET device. Fig. 1(a)
illustrates the basic single-source configuration of the MEFET, a
four-terminal device comprising gate (T1), source (T2), drain (T3),
and back gate (T4) terminals [22, 27], [12]. This device consists of a
narrow semiconductor channel situated between two dielectrics:
the magneto-electric (ME) material, such as chromia (Crz03), and
the insulator, such as alumina (AlyO3). Various materials like PbS,
graphene, InP, or WSe, can be employed to form the narrow semi-
conductor channel. Two electrodes are connected to this stacked
structure, with T1 located at the bottom gate through the ME layer
and T4 at the top via the alumina layer forming the back gate. The
channel material, tungsten diselenide (WSe3), yields a high on-off
ratio, enhancing hole mobility [22], [12]. Both conductors and FM
polarizers can be utilized for the source and drain materials (at the
T2/T3 terminal).

The MEFET functions as a transistor by biasing the semicon-
ductor channel via T1 and T4 terminals (similar to gate biasing
in CMOS) and then applying current from T2 to T3 (similar to
source-drain biasing in CMOS). Applying a very low voltage of
approximately £100 mV [22], [21] across the gate (T1) and back
gate terminals (T4: ground) charges the ME capacitor. The change
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Table 1: Compact Verilog-A model parameters.

Parameter  Value Description of Parameter and Units

EME 12 Dielectric constant of chromia [5]
€ALO, 10 Dielectric constant of Alumina
tME 10 thickness of magnetoelectric layer, nm
WmEe X Ly 900 area of magnetoelectric layer, nm?
tox 2 Oxide barrier thickness, nm

Vin 0.05  Threshold of Chromia state inversion, V

Vg 0.1 Voltage applied across ME layer, V
Ron 1.05 ON Resistance, kQ
Roff 63.4 OFF Resistance, MQ

in polarity at T1 generates a vertical electric field across the gate,
which switches the paraelectric polarization and anti-ferromagnetic
(AFM) order in the ME insulator layer, leading to the reorientation
of chromia spin vectors. Through exchange interactions and spin-
orbit coupling (SOC), the high boundary polarization of the ME
layer can polarize carriers’ spins in the semiconductor channel,
resulting in preferred conduction along a specific axis, such as
lower resistance. The surface magnetization of the MEFET’s chan-
nel induces directionality in conductance, unlike conventional gate
dielectrics, ultimately altering the channel spin vector’s orienta-
tion. Non-Equilibrium Green’s Function (NEGF) transport simula-
tions are employed to investigate the current-voltage relationship
(Fig.1(b)), dependent on the direction of ME polarization based on
[7], [13]. These simulations are conducted on a 2D ribbon with a
width of 20 nm and a band mass of 0.1m,, considering a conserva-
tive exchange splitting value of 0.1 eV, T3-T2 = 0.1 V, at 300 K. To
read out the MEFET, the T2-T3 resistive path can be sensed and
compared with a reference. The ON/OFF current ratio for (WSej)
can reach up to 10°. Table 1 showcases the experimental parameters
utilized for the switching behavior of the Chromia layer and SOC
channel in our model.

3 PROPOSED ARCHITECTURE

Fig. 2(a) illustrates the proposed architecture, designed to operate
effectively in both memory and computing modes. The memory ar-
chitecture is constructed using the proposed hybrid CMOS-MEFET
memory bit-cell as shown in Fig. (2(b)), Row Decoder (RD), Column
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Figure 2: (a) Proposed MEFET-based non-volatile architecture,
(b) MEFET memory bit-cell structure, (c) Proposed reconfig-
urable sense amplifier.



Table 2: Signaling of the Proposed MEFET Cell.

Signals Hold Read Write COMPUHRE pojy

(Boolean)
WLL 0 ‘v ‘0’ ‘r Data
WLR 0 v ‘0 v Data
WRH 1 ‘0’ ‘1 ‘0’ ‘0’
WRV ‘0 ‘v ‘v ‘v ‘1
SL ‘0 ‘0’ Vwr 0 ‘0’
BL 0 Vpp ‘0 Vpp Vpp
BLB 0 Vpp ‘0’ Vpp Vpp

Decoder (CD), and the Proposed Sense Amplifier (PSA), as defined
in the Fig. 2(c). As shown in Fig. 2(b) the suggested hybrid memory
cell comprises three MEFETs and four MOSFETs. This configura-
tion allows for the storage of both data and its complementary
value within a single cell. This capability facilitates the execution of
various logic operations, including X(N)OR, in a single cycle. The
memory cell utilizes row-based control signals, namely Word Line
Left (WLL), Word Line Right (WLR), Source Line (SL), and Write
Line Horizontal (WRH), while the control signals, i.e., Write Line
Vertical (WRV), Bit-line (BL) and inverted Bit-line (BLB) operates
on a column basis.

As illustrated in Fig. 2(c), the cell value is read out via BL/BLB and
transmitted to PSA for sensing and computing. The PSA comprises
a 4x1 multiplexer capable of executing read, (N)AND, (N)OR, and
X(N)OR logic operations, depending on appropriate control signals.
When the control signals are asserted to “00”, the BL, and BLB
are activated and fed into the Differential Sense Amplifier (DSA)
to read the data of the selected cell. Alternatively, if the control
signals are set to “01”, the BL is connected to the skewed inverter
(SA-1), thereby unveiling the (N)AND operation in the output of
the PSA. Moreover, a skewed buffer (SA-2) is employed to reveal the
NOR output when the PSA control signals are set to “10”. Finally,
X(N)OR logic is achieved in the PSA by setting the control signals to
“11”, thereby enabling the OR gate in the PSA. Furthermore, for the
implementation of the BCAM operation, the BL and BLB are linked
to an AND gate in the PSA to identify data mismatches. Table 2
shows an overview of the necessary signaling for various operations.
A comprehensive discussion on the memory and computing modes
in the proposed architecture is provided in detail to understand the
functionality of the proposed design.

3.1 Memory Mode

In Fig. 3(a), the proposed write circuitry is shown with the simul-
taneous writing of the intended data and its complement into the
cell. For this purpose, the activation of the M4 transistor occurs
through WRYV, and the SL is connected to the write voltage Vyr.
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Figure 3: (a) Write and (b) Read operations of the proposed
cell.
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Simultaneously, the M3 transistor is activated by the WRH. The
write voltage and its complement are directed to the gate of Q1 and
QB1 MEFETSs, respectively. The complement of the write voltage is
generated through the MEFET-based inverter, utilizing a fixed re-
sistance in the pull-up network. By appropriately applying voltage
to the gate of MEFETS, the resistance of MEFETs is configured. As
an illustration, applying positive Vg induces a transition in the
resistance state of Q1 to high, concurrently causing the inverted
voltage of Viyr to impact the gate of the QB1 MEFET (negative
voltage), thereby leading to a low-resistance state in this MEFET.
In the read process as shown in Fig. 3(b), the SL is connected to
the ground, while the BL and BLB are linked to Vpp and then left
floated. Subsequently, the access transistors (M1 and M2) are ac-
tivated through the control signals WLL and WLR. Owing to the
resistance discrepancy in the MEFETs, which reflects the stored
data, either BL or BLB discharges more rapidly than the other. This
voltage difference can be detected by the DSA in the PSA, revealing
the stored data as shown in Fig. 3(b). For instance, if the data stored
in the Q1 MEFET is ‘1’ (high resistance, Ryy), and QB1 stores its
complementary ‘0’ (low resistance, Ry ), BLB discharges much faster
than BL, and this differentiation is identified by the PSA, which
is set up to function in read mode by control signals SE1 and SEO.
These signals are configured to “00” to activate the DSA in the PSA.

3.2 Computing Mode

Bit-line Logic Computation Core: The proposed architecture
enables the execution of row-wise X(N)OR, (N)AND, and (N)OR
logic operations. To accomplish this, the logic operands need to be
initially arranged in corresponding columns. The RD control unit
triggers the memory cells containing the operands, as depicted in
Fig. 4, across the entire physical memory row. To this end, the BL
and BLB are connected to Vpp and left floated. Subsequently, two
columns within the memory structure which contains the logic
operands are activated by applying appropriate control signals
to their access transistors and connecting their SL to the ground
by activating the column-based WRVn signal. As shown in Fig. 4,
depending on the resistance of MEFETs representing the stored
data, the BL and BLB either discharge or remain unaffected. If either
data stored in MEFETs (Q1 and Qn) is set to ‘0’ (i.e., low resistance),
the BL is discharged. By configuring the PSA’s congratulation bits
to “01”, the BL is connected to SA-1 that is properly skewed to
unveil the output of the NAND operation (Fpr,).

It is noteworthy that, owing to the symmetry of the proposed
bit-cell with inverted inputs, the opposite side connected to BLB
simultaneously generates a NOR logic. In this scenario when the
appropriate control signal “10” is asserted to the PSA, BLB is con-
nected to the skewed buffer (SA-2), thus revealing the NOR logic of
the stored data as shown in Fig. 4. This logic is achieved based on
Equation 1.

Fpig = QB1.QBn = Q1.0n = Q1+ Qn (1)

For instance, when Q1 and Qn are ‘1’ (high resistance, Ryy), BL
remains untouched. Simultaneously, QB1 and QBn are set to ‘0’
(complementary of Q1 and Qn), leading to the discharge of BLB
at the same time. Given that BL signifies the NAND operation of
stored data after crossing the SA-1 (Fpr) and BLB represents the
AND operation of the inverted stored data of selected rows, the



Figure 4: Performing Boolean in-memory computing.

implementation of XNOR logic can be accomplished by connecting
the inverted output of SA-1 and the output of SA-2 to an OR gate
in the PSA (Fig. 4). Equation 2 represents the output of the XNOR
operation.
FxNoRr = FpL + FpLB = Q1.0n + (Q1 + Qn) = (Q1.Qn) + (Q1.Qn)
2
BCAM Core: The proposed architecture can be readily reconfig-
ured to realize BCAM to directly compare the stored data with the
input provided, enabling swift retrieval of information. To this end,
the BL and BLB are connected to Vpp and subsequently left floating
similar to read and Bit-line logic computing. Following this, the
search data is applied to the WLLn and its complementary asserted
to WLRn. In cases where the search data matches the stored data,
the BL and BLB remain unchanged. However, in instances where a
disparity between the stored data and the search data occurs, either
the BL or BLB is discharged. As an illustration, let’s examine a sce-
nario where the search data is “011” and it is compared against the
stored data in a column-based architecture, which includes “010”,
“011”, and “100” as shown in Fig. 5. In the case of a mismatch, BLO
and BL2 are discharged, yielding a ‘0’ output for ANDO and AND2.
However, due to the match between the stored data “011” and the
search data, no discharge occurs in BL1 and BLB1, resulting in a ‘1’
output for ANDI1.

4 PERFORMANCE EVALUATION

To assess the efficacy of the proposed design, a bottom-up evalua-
tion framework is developed across device, circuit, and architecture
levels. A comparison is made with a cutting-edge non-volatile mem-
ory array utilizing RRAM and Magnetic Tunnel Junction (MT]J),
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Figure 5: BCAM operation.

773

Table 3: Evaluation of Delay and Energy consumption in
memory mode.

Designs Technology ‘ Read| AWite
| Delay (ps) Power (uW) Energy (f]) Delay (ns) Power (4W) Energy (f])
[32] RRAM 73.19 35.24 2.57 1.2 97.3 116.76
[33] STT/SOT MTJ 14571 18.02 2.62 0.84 139.2 116.928
Proposed MEFET 71.61 20.36 1.45 0.22 16.2 3.564

specifically tailored for in-memory computing. The assessments
are conducted using the HSPICE tool, along with the Verilog-A
MEFET model based on [19], using the 45 nm NCSU product design
kit at 0.8V supply voltage [1].

4.1 Memory Mode Evaluation

The assessment of the read and write operations for the proposed
cell entails a comparison with two designs, as outlined in Table 3.
It is evident from the comparison that the proposed design exhibits
significantly lower time and power consumption in write operation
compared to the other cells. This is because the write operation is
executed by applying a voltage below 100 mV to the MEFET gate in
the proposed cell [20]. Furthermore, the proposed cell accomplishes
the process of writing data and its complementary counterpart
within a single cycle. This results in a substantial decrease in en-
ergy consumption during the write operation. While the process
of writing data into the RRAMs and MTJs is notably characterized
by extensive time and power consumption, the proposed design
demonstrates a write energy consumption of about 96.9% lower
compared to the designs presented in [32] and [33]. The differen-
tial nature of the read operation in the proposed design, coupled
with the heightened high-to-low resistance ratio in the MEFET,
streamlines the sense amplifier for data reading. Consequently, the
energy consumption during read operations is significantly reduced
in the proposed design when compared to the reference designs.
The proposed design demonstrates a noteworthy reduction in read
energy, with a 43.5% decrease compared to the [32] design and a
44.6% decrease compared to the [33] design.

4.2 Computing Mode Evaluation

To verify the functionality of the proposed design, Fig. 6 presents
the transient waveform showing various logic operations under
different input conditions in the proposed design. As illustrated,
the evaluation of different logic functions in the proposed design
involves considering four distinct inputs. In each input state, upon
activation of the WLL and WLR signals, the selected operands and
their complements are computed on the BL and BLB, respectively.
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Figure 6: Transient waveform of the proposed design in vari-
ous logic functions.



Table 4: Delay and power consumption of different Boolean
function operations.

Designs \ NAND/AND [ NOR/OR XNOR/XOR
‘ Delay(ps) Power(uW) ‘ Delay(ps) Power(yW) ‘ Delay(ps) Power(yW)
[32] 74.84 43.7 74.84 43.7 85.61 47.32
[33] 132.19 30.06 132.19 30.06 197.2 44.9
Proposed 60.21 25.99 63.2 26.12 66.8 27.7

Subsequently, these computed results are transmitted to the PSA.
The PSA is capable of executing various logic operations depending
on the appropriate control signals. An illustrative example of the
PSA output representing the result of an XOR operation is shown
in Fig. 6.Furthermore, for a more precise evaluation of the proposed
design, a comparative analysis is performed against state-of-the-art
IMC architectures from recent years. Table 4 presents the delay and
power consumption associated with the implementation of Boolean
logic gates. As evident from the table, the proposed cell exhibits
lower delay and power consumption in all Boolean logic operations
compared to the selected designs in [32, 33]. It is worth noting
that, the proposed design directly computes various logic functions
utilizing the PSA. This diminishes the overhead of the entire mem-
ory system since the number of PSAs aligns with the number of
columns. In contrast, other designs, except for [32], necessitate ad-
ditional circuits for executing diverse logic operations. The power
consumption of the proposed design exhibits a significant reduction,
approximately 40.22% lower than the [32] and 13.1% lower than the
[33] when implementing (N)AND, and (N)OR operations. Moreover,
the power consumption in implementing the X(N)OR logic in the
proposed design is lower than the compared cells. The power con-
sumption for implementing X(N)OR is 41.4% and 38.3% lower than
the ones in [32] and [33], respectively. Additionally, as previously
mentioned, the proposed design demonstrates proficiency in exe-
cuting BCAM operations. Fig. 7 illustrates the energy consumption
required for implementing a 4-bit BCAM operation. The energy
consumption in BCAM operation is notably lower, with a reduction
of 43.4% compared to the design in [32] and 44.4% compared to the
design in [33].

5 APPLICATION LEVEL ANALYSIS
5.1 Binary Neural Networks

Convolutional Neural Networks (CNNs) operate in two distinct
modes: training mode and inference mode. During training, the
network learns by processing pre-classified training images to cal-
culate the configuration values of its layers. In inference mode, the
network applies this learned configuration to examine new test
images. In both modes, the most computationally demanding arith-
metic operations are Multiplication and Accumulation (MAC) [24].
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Figure 7: Energy consumption of 4-bit BCAM operation.
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Figure 8: BNN calculation using XNOR and bit counting,
where inputs and weights are +1 or -1 [29].

To address the computational and memory challenges associated
with these operations, researchers have developed various BNNs,
where weights and input activations are constrained to be binary
during forward propagation. One such approach, BinaryConnect
[14], trains deep neural networks with binary weights (-1, +1) and
demonstrates near state-of-the-art performance on popular datasets
such as MNIST and CIFAR-10. This methodology holds promise for
hardware implementations of CNNs by replacing complex multi-
plication operations with simpler XNOR operations [18, 26], and
significantly reducing the storage requirements for weights. XNOR-
NET [18] presents a straightforward and accurate implementation
of BNN, achieving comparable results to the full-precision AlexNet
on the ImageNet dataset.

The common activation functions in BNNS, i.e., Sign, generate
binary values of either +1 or -1, rendering neurons (A; and A,) in
subsequent layers as 1-bit representations. Consequently, computa-
tions involve multiplying a binarized input neuron vector A; by a
binarized weight matrix W. This operation can be efficiently con-
ducted utilizing XNOR and a counter. Fig. 8 demonstrates how the
matrix-vector operation involving +1 and -1 values can be binarized
and executed employing XNOR and counter.

5.2 Experiments

To assess the efficacy of the proposed architecture in real-world
applications, we executed Binarized Image classification on neural
networks. Specifically, we employed AlexNet as a binarized Convo-
lutional neural network (CNN) and a more intricate architecture,
VGG16, to study the performance of the proposed design. AlexNet,
characterized by five convolutional layers and three fully connected
layers [4], was employed alongside the deeper VGG16 network,
comprising 13 convolutional layers and three fully connected lay-
ers [3]. The implementation of these networks commenced with
a circuit-level simulation in HSPICE, aiming to analyze the delay,
power, and energy consumption of the XNOR logic gate embedded
within the proposed design. Following this, both network architec-
tures were instantiated using MATLAB software. The data acquired
from the circuit-level simulation was subsequently applied to each
convolutional layer in both network architectures. As shown in Fig.
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9, the energy consumption of each convolutional layer in both net-
works is contrasted with that of other designs. The outcomes reveal
a noteworthy reduction in energy consumption for the proposed
design compared to the reference cells. The decrease in energy
consumption is credited to the diminished energy usage linked
with the integration of XNOR logic in the proposed design. This
can be attributed to the utilization of an innovative differential
circuit for computing XNOR logic within a single cycle. Particu-
larly, the energy consumption of the proposed design during the
implementation of Alex-Net is approximately 54.2% less than that
of the [32] design. Furthermore, in implementing a more intricate
network such as VGG16, the overall energy consumption is reduced
by approximately 54.3% and 79.1% compared to the [32] and [33]
designs, respectively.

6 CONCLUSION

In this work, we introduce a non-volatile in-memory computing
architecture employing MEFETs, specifically designed for cutting-
edge 10T devices. Our proposed architecture is adopted to execute
Boolean logic operations alongside the BCAM operation within a
single cycle. This achievement is realized through the utilization
of the innovative sense amplifier and the storage of both data and
its complement within a singular cell. Additionally, our designed
write circuit enables the proposed cell to write data and its comple-
mentary counterpart in just one cycle, leading to a comprehensive
reduction in energy consumption. The simulation results demon-
strate a notable reduction in energy consumption for the proposed
design, with approximately a 43.5% decrease in read operation en-
ergy and an impressive 96.9% reduction in write operation energy
compared to other designs. Moreover, to assess the practical per-
formance of the proposed architecture, we implemented two BNNs
named AlexNet and VGG16 utilizing the suggested design. The sim-
ulation results reveal a substantial reduction in energy consumption,
approximately 54% when implementing AlexNet and VGG16 using
the proposed architecture in comparison to the reference designs.
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