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ABSTRACT

With deep learning deployed in many security-sensitive areas, ma-

chine learning security is becoming progressively important. Recent

studies demonstrate attackers can exploit system-level techniques

exploiting the RowHammer vulnerability of DRAM to deterministi-

cally and precisely �ip bits in Deep Neural Networks (DNN) model

weights to a�ect inference accuracy. The existing defense mech-

anisms are software-based, such as weight reconstruction requir-

ing expensive training overhead or performance degradation. On

the other hand, generic hardware-based victim-/aggressor-focused

mechanisms impose expensive hardware overheads and preserve

the spatial connection between victim and aggressor rows. In this

paper, we present the �rst DRAM-based victim-focused defense

mechanism tailored for quantized DNNs, named DNN-Defender

that leverages the potential of in-DRAM swapping to withstand

the targeted bit-�ip attacks with a priority protection mechanism.

Our results indicate that DNN-Defender can deliver a high level of

protection downgrading the performance of targeted RowHammer

attacks to a random attack level. In addition, the proposed defense

has no accuracy drop on CIFAR-10 and ImageNet datasets without

requiring any software training or incurring hardware overhead.

CCS CONCEPTS

• Hardware→ Dynamic memory; • Security and privacy →

Security in hardware.
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1 INTRODUCTION

The far-reaching development of Deep Neural Network (DNN) accu-
racy even with low-bit-width models has recently triggered various
security-associated attacks in many applications [13]. Recent stud-
ies show that an adversary can identify and manipulate a small

number of vulnerable bits of o�-the-shelf well-trained DNN weight
parameters to signi�cantly compromise the output accuracy [4, 13].
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Figure 1: (a) RowHammer thresholds [21], (b) Targeted vs.

random bit �ipping for an 8-bit ResNet-34 on ImageNet and

DNN-Defender’s performance.

Such Bit-Flip Attacks (BFAs) have been enabled mainly due to a

manifestation of a DRAM cell-to-cell interference and failure mech-

anism called RowHammer (RH) [7]. RH attack is conducted when

a malicious process activates and pre-charges a speci�c row (i.e.,

aggressor row) repeatedly to a certain threshold (ĐĎĄ ) to induce bit-

�ips on immediate nearby rows (i.e., victim rows). Unfortunately,

by scaling down the size of DRAM chips in the modern manufac-

turing process, DRAM becomes increasingly more vulnerable to

RH bit-�ips [6]. Figure 1(a) shows that the RH threshold has had a

signi�cant downward trend in recent years, e.g., the attacker needs

∼4.5× fewer hammer counts on LPDDR4 (new) as opposed to DDR3

(new) [21].

To prevent RH attacks, DRAM manufacturers and researchers

have proposed hardware-based victim-focused defense mechanisms

to proactively refresh the victim rows by adding counters to count

the number of activations [7]. However, such RH mitigation pro-

posals have faced a huge overhead both from latency and power

consumption perspectives [24]. To mitigate this, recent aggressor-

focused swap-based mechanisms [16, 21] proactively swap and

unswap aggressors with random rows before reaching the RH

threshold. Such mechanisms can be immensely e�ective when the

attacker does not have knowledge of the internal DRAM organiza-

tion. The Randomized Row-Swap (RRS) [16] swaps the aggressor

row with a random row within the same bank in the memory. A

method called Secure Row-Swap (SRS) [21] has demonstrated the

use of fewer counters for crucial data and implemented associated

threat mitigation using the swap operation. This approach reduces

the swap rate while maintaining security, resulting in higher e�-

ciency and lower latency. Assuming the attacker’s access to this

information, the attacker will not track the aggressor row but the

victim row and attack its adjacent row, making it a new aggres-

sor row. In this case, swapping the aggressor row with another



Figure 2: Organization of a DRAM chip.
random row is purposeless. On the other side, prior works have

approached the problem of DNN weight noise mitigation from

a software-training optimization perspective [3, 9] and DNN ar-

chitecture modi�cation [14] that impose expensive overhead or

performance/accuracy degradation.

We developDNN-Defender as a pureDRAM-based victim-focused

defense mechanism to e�ectively withstand the targeted RH BFAs

on DNNs. The main contributions of this work are: (1) We design

the DNN-Defender mechanism with hardware-software support

that utilizes in-DRAM swapping to protect the DNN weight param-

eters not requiring any software training or imposing additional

hardware overhead; (2) We develop a priority protection mecha-

nism method and parallelism to tailor the performance-accuracy

trade-o�s with respect to the system requirements; and (3) We ex-

tensively analyze the DNN-Defender’s applicability and e�ciency

in taming RH vulnerability compared to recent hardware/software

techniques over CIFAR-10 and ImageNet DNN datasets. On the

CIFAR-10, the accuracy of the DNN-Defender-supported system is

91.71% while the baseline indicates only 10.9% under BFA.

2 BACKGROUND & MOTIVATION
2.1 DRAM
Organization & Commands. The DRAM chip is a hierarchical

structure consisting of several memory banks as shown in Fig. 2.

Each bank comprises 2D sub-arrays of memory bit-cells that are

virtually ordered in memory matrices (mats), which have billions

of DRAM cells on modern chips. Each DRAM bit-cell consists of

a capacitor and an access transistor. The charge status of the bit

cell’s capacitor is used to represent binary “1” or “0” [17]. In idle

mode, the memory controller turns o� all enabled DRAM rows

by sending the Precharge (PRE) command on the command bus.

This will precharge the Bit-Line (BL) voltage to ĒĀĀ
2

. In the active

mode, the memory controller will send an Activate (ACT) command

to the DRAM module to activate the Word-Line (WL). Then, all

DRAM cells connected to the WL share their charges with the cor-

responding BL. Through this process, BL voltage deviates from the

precharged ĒĀĀ
2

. The sense ampli�er then senses this deviation and

ampli�es it to ĒĀĀ or 0 in the row bu�er. The memory controller

can then send read (RD)/write (WR) commands to transfer data

to/from the sense ampli�er array.

RowClone. Exploiting the fact that DRAM transfers an entire

row of data to the corresponding row bu�er during the read opera-

tion, RowClone [18] has been developed as a simple and e�cient

mechanism to enable a bulk in-memory copy operation (<100ns)

from a source row to a destination row completely in the DRAM

sub-array. RowClone eliminates the need to transfer data over the

memory channel. The memory controller manages this by issu-

ing two back-to-back ACT commands �rst to the source and then

the destination without a PRE command in between with almost

l1 l2 lLlk

Wlk1

Figure 3: Adversarial weight RowHammer attack in the ġĪℎ
layer of a DNN.

negligible cost. By using this method, the latency and power con-

sumption of a bulk copy operation can be reduced by a factor of

11.6 and 74.4, respectively [18].

2.2 Row Hammer-based DNN Weight Attack

The BFA progressively searches for vulnerable bits by �rst per-

forming a bit ranking within each layer based on gradient [13].

Considering a weight quantized DNN, the weight matrix can be

parameterized by two complement representations {BĢ }
Ĉ
Ģ=1

, where

Ģ ∈ {1, 2, ..., Ĉ} is the layer index. BFA computes the gradient w.r.t.

each bit of the model (|∇BĢ
L|) where L is the inference loss func-

tion. At each iteration, the attacker performs two key attack steps:

i) inter-layer search and ii) intra-layer search; where the goal is to

identify a vulnerable weight bit and �ip it. Given a sample input Į

and label Ī , the BFA [13] algorithm tries to maximize the following

loss function (L):
max
{B̂Ģ }

L
(

Ĝ
(

Į ; {B̂Ģ }
Ĉ
Ģ=1

)

, Ī
)

, (1)

while ensuring the hamming distance between the perturbedweight

tensor by BFA (B̂
Ĉ
Ģ=1) and initial weight tensor ({BĢ }

Ĉ
Ģ=1

) remains

minimum. Finally, the attack e�ciency can be measured by the

number of bit-�ips required to cause DNN malfunction. Figure

1(b) illustrates how the DNN accuracy degrades under a few (less

than 5) targeted bit-�ips using DeepHammer attack [23] in an 8-bit

quantized ResNet-34 running the ImageNet dataset as opposed to

over 100 random BFAs. Figure 3 illustrates how such an adversarial

weight attack is conducted in an Ĉ-layer DNN on the targetēĢġ1 =

1001, i.e., the weight located in the Ģġ layer. The malicious process

continuously hammers the aggressor row in ė-address and induces

bit-�ips on adjacent victim rows (ė − 1 and ė + 1) holdingēĢġ1 . As

a result, such a single-sided RH attack changes the weight value

(herein, 1001→0011).

3 WHITE BOX THREAT MODELS

Hardware Threat Model. We assume the following threat model:

1) Each row has a threshold ĐĎĄ after becoming an aggressor row,

and once exceeded within the refresh interval (ĐĨě Ĝ ), it will impose

a bit-�ip to two adjacent victim rows; 2) We assume that all vul-

nerable data rows are neither concentrated in one/two sub-arrays

nor evenly distributed in each sub-array. Experimentally, most sub-

arrays store several data rows simultaneously; some may store

multiple or none; and 3) The attacker has a detailed mapping �le

as shown in Fig. 4 that can locate the physical address of the target

data in the neural network and is aware of the initial static mapping

of the DRAM rows (i.e., physical adjacency information between

rows) [5, 20]. Therefore, the attacker can perform an RH attack on

the targeted content.



Table 1: Standard threat model for BFA [13, 23].

Information Attackers Access

Model architecture and parameters ✓

Small batch (e.g., 128) of test data ✓

Address of parameter cached in DRAM ✓

Model training data and con�guration ×

Memory read & write permission ×

Software Threat Model. We assume a standard white-box

threat model for the BFA adopted across multiple attack domains

in prior works [13, 15]. In a white-box threat model (summarized

in Table 1), the attacker is aware of the internal structure of the

DNN models, e.g., the number of layers and the width of each layer.

On top of that, the attacker has complete knowledge of the DNN

model parameters, their values, and bit representation for infer-

ence. This assumption is practical due to the recent advancement

of side-channel information leakage and the reverse-engineering

of DNN models [22] that can recover the DNN model con�guration

at the inference stage. However, the attacker can not access the

training stage con�guration and data even in a white-box setting.

The attacker has a sample batch of test data to launch the attack.

Moreover, the attacker is co-located with the victim, which enables

the attacker to run user-space unprivileged processes. Finally, the

attacker has complete knowledge of the DRAM addressing scheme.

In this work, two types of white-box attack threat models are con-

sidered. A semi-white-box attack, as a weak version of the BFA,

where the attacker is unaware of our proposed defense scheme,

and a complete white-box attack, where the attacker is aware of the

defense and takes necessary actions to circumvent the mitigation.

4 DNN-DEFENDER MECHANISM

The DNN-Defender mechanism is developed to utilize the mini-

mum number of swap operations and to optimize latency overheads

to protect the DRAM against the targeted RH in the adversarial

weight attack. Our mechanism makes traceability very di�cult for

the attacker. Even though the attacker can precisely locate the tar-

get data, the DNN-Defender only requires to performmultiple swap

operations to the victim rows to secure the memory. The memory

instruction-based swap allows us to avoid concerns regarding in-

valid refreshes resulting from a communication delay between the

counter and the counter table and o�-chip access as seen in previous

designs [8, 11, 16, 19, 21]. Besides, our design prioritizes versatility

over assessing the potential impact of swap operations on data in

di�erent scenarios and determining the worst-case scenario. The

focus is on preventing all threats regardless of the circumstances.

However, since an aggressor row is typically accompanied by more

than one victim row, one can inevitably ignore the other victim

Physical DRAM Bank
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Figure 4: Threat model about attacker’s known information

about DNN and the attack process.
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Figure 5: The four-step swap mechanism in DNN-Defender.

rows when focusing on the target data since the impact of such data

on the �nal result is far less than that of important data. However,

to minimize the adverse e�ect, DNN-Defender also uses the lowest

resources possible to ensure their security.

As shown in Fig. 5, we propose to virtually partition the pro-

tected data region in each memory sub-array into the target and

non-target victim rows according to their protection priority. The

target row holding the targeted DNN weight is the row with the

highest priority to be protected. In other words, if a bit(s) within

a target row is �ipped, the �nal DNN accuracy will signi�cantly

drop. The non-target rows however show a certain degree of toler-

ance to errors as they have no/negligible e�ect on the �nal result

as illustrated in Fig. 1(b). However, in extreme continuous attack

scenarios, it is not ruled out that non-target rows may contain

important data that would adversely reduce the DNN accuracy.

Therefore, as illustrated in Algorithm 1, DNN-Defender not only

needs to guarantee the security of the target row but also furnishes

a low-cost safeguard for the non-target row. The DNN-Defender’s

swap operations are accomplished in four steps. As depicted in Fig.

5, in step 1 , the memory controller selects a random row in the

sub-array and leverages RowClone [18] to copy it to the reserved

row. In step 2 , the target row is copied to the random row in the

same way. This in-memory operation will refresh the target row

and reset the attacker’s target. The rationale is that even though

the target row is copied to another position, the malicious process

knows the new location, so it will move to the latest row beside

the swapped target row and make it a new aggressor row. In step

3 , the random row in the reserved rows region is copied back

to the original location of the target row. Aiming to refresh the

non-target row knowing that the capacity of the reserved rows

region is limited, in step 4 , the non-target row is copied to the

reserved row until the next random row overwrites it. Finally, the

original target row and random row are swapped, and the non-

target row is refreshed. Please note that the attacker can track the

target rows and attack the updated addresses, while they will no

longer attack the non-target and random rows. It is worth pointing

out unlike SRS [21] and RRS [16], which focus on the aggressor

row, DNN-Defender focuses on protecting the victim row.

Timing Considerations. Considering ĐĎĄ is set to 4,800 in

LPDDR4 [21], the victim rows must be refreshed before the acti-

vation number reaches the threshold. Therefore, it is necessary

for DNN-Defender to complete swapping operations within the

threshold window (<4800)×ĐýÿĐ . DNN-Defender only needs one

random row generation to support all swap operations. Figure 6

illustrates the DNN-Defender’s defense timeline and parallelism for

a sample DNN with multiple swap operations. In swap 1, it requires
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Figure 6: Timeline of a sample DNN with multiple swap ops.

a Random Number Generator (RNG) to de�ne the initial random

row for step 1 . The remaining three steps then follow that as we

discussed before in Fig. 5. After completing step 4 , DNN-Defender

stores the non-target row data of swap 1 in the reserved row, which

means that the non-target row 1 at this time can be used as a new

random row. Therefore, as shown in Fig. 6, step 1 of swap 2 can

overlap with step 4 of swap 1. Then it �nishes the remaining three

steps ( 2 to 4 ). This method is readily applied to the next swaps.

Priority Protection Mechanism. To select the target rows

requiring high-priority protection from DNN-Defender, we propose

using the same attack searching algorithm adopted by an attacker

for BFA [13]. We use a copy of the victim model with identical

model architecture and weights to compute the gradient of the loss

function w.r.t. each weight bit (|∇BĢ
L|). Similar to the BFA attack,

we rank the gradients and only �ip the highest gradient bit of a

speci�c layer which causes the largest increase in loss function as

shown in Eqn. 1. We run the software search algorithms until the

model accuracy drops close to the random guess level (e.g., 10 % for

CIFAR-10). After performing one complete round of BFA, we record

the target bit location Ď1 ∈ (Ģ, ġ) (Ģ is the layer number, ġ is the

index at a speci�c layer) that was �ipped in the current attack round.

Next, we �ip back all the targeted bits and perform another round

of BFA but this time skip �ipping the bits from the previous round

Ď1. Hence for round Ď2, if we encounter any bits from the previous

round Ď1, we skip it and select the next bit candidate based on

gradient. In this way, we keep performing the bit-search algorithm

for multiple rounds (Ďę , ę = 1, 2, ..., Ĩ ), where each round skips all

the bits from the previous rounds of the attack. The total number

of rounds Ĩ depends on the number of bits the defender wants to

secure, and increasing Ĩ will increase the level of protection. After

pro�ling all the vulnerable bits to BFA for multiple rounds, we

select these bit sets as the priority bits requiring more protection.

DNN-Defender will prioritize protecting these vulnerable bit sets by

selecting them as the target row in their corresponding sub-array.

Algorithm 1 DNN-Defender’s Swap Algorithm

1: Procedure: Protection

2: If ĀĀ_ďĪėĨĪ

3: ĀěĜ ğĤě ĨėĤĚĥģ_Ĩĥĭ = ĨėĤĚ (ĀĎýĉ)

4: ĨěĩěĨĬěĚ_Ĩĥĭ ← ĨėĤĚĥģ_Ĩĥĭ

5: ĨėĤĚĥģ_Ĩĥĭ ← ĪėĨĝě_Ĩĥĭ [Ĩĥĭ]

6: ĪėĨĝě_Ĩĥĭ [Ĩĥĭ] ← ĨěĩěĨĬěĚ_Ĩĥĭ

7: If (ĐėĨĝěĪ_Ĩĥĭĩ == 1) ĘĨěėġ ;

8: else For Ĩĥĭ ğĤ ĐėĨĝěĪ_Ĩĥĭĩ do

9: ĨěĩěĨĬěĚ_Ĩĥĭ ← ĤĥĤ_ĪėĨĝěĪ_Ĩĥĭ [Ĩĥĭ];

10: ĤĥĤ_ĪėĨĝěĪ_Ĩĥĭ [Ĩĥĭ] ← ĪėĨĝě_Ĩĥĭ [Ĩĥĭ + 1];

11: ĪėĨĝě_Ĩĥĭ [Ĩĥĭ + 1] ← ĤĥĤ_ĪėĨĝěĪ_Ĩĥĭ [Ĩĥĭ];

12: else if ĀĀ_ąĤĪěĨĨīĦ

13: ĘĨěėġ ;

14: else ęĥĤĪğĤīě ();

15: end Procedure

μ

Figure 7: Proposed evaluation framework.

5 EXPERIMENTAL RESULTS

Setup.We present a cross-layer evaluation framework as shown

in Fig. 7 to demonstrate the bene�ts of DNN-Defender. Firstly, we

developed DNN-Defender’s sub-arrays with peripherals using Ca-

dence Spectre in the 45nm NCSU PDK library [1] at the circuit-level

to verify functionality, attain performance parameters, and measure

the row-shu�e time. The memory controller and registers were

designed and synthesized by Design Compiler with a 45nm industry

library. Afterward, we incorporated the results from circuit-level as-

sessments and extensively modi�ed CACTI at the architecture-level.

We implemented DNN-Defender’s ISA in gem5 [2], and exported

the memory statistics and performance to an in-house C++ DNN-

Defender optimizer, taking the CACTI output and application netlist

as the inputs. At the application, we evaluated the performance

of our proposed technique in defending against adversarial BFA

using two commonly-used visual datasets: CIFAR-10 and ImageNet.

The weights were quantized to 8-bit width. To carry out the BFA,

we randomly sampled images from the test/validation set, with a

default sample size of 128 for both datasets.

5.1 Performance Evaluation

Hardware Overhead Analysis.We compare the DNN-Defender’s

hardware overhead with the latest generic RH mitigation mecha-

nisms in the literature in Table 2. For this experiment, our strategy

is to consider the same 32GB: 16-bank of DDR4 DRAM for all

frameworks and normalize the capacity overhead and area over-

head across di�erent frameworks. In Table 2, i) the involved mem-

ory indicates the type of memory used by the framework for RH

protection. As discussed, certain frameworks rely on a counter

to monitor intrusions and store tracking information in the sys-

tem using CAM/SRAM. Nonetheless, because of the considerably

higher cost of CAM and SRAM in comparison to DRAM, selecting

a framework with such supplementary resources may be contro-

versial. For example, Table 2 shows that only Graphene [11] and

TWiCE [8] occupy two fast storage resources simultaneously. At

the same time, Hydra [12], SRS [21], and RRS [16] rely on SRAM

in addition to DRAM. ii) Capacity overhead refers to the memory

Table 2: Comparison with prior generic RowHammar miti-

gation frameworks.

Framework involved memory capacity overhead area overhead

Graphene [11] CAM-SRAM 0.53MB!+1.12MB 1 counter

Hydra [12] SRAM-DRAM 56KB +4MB∗ 1 counter

TWiCE [8] SRAM-CAM 3.16MB +1.6MB! 1 counter

Counter per Row DRAM 32MB∗ 16384 counters

Counter Tree [19] DRAM 2MB∗ 1024 counters

RRS [16] DRAM-SRAM 4MB∗+NR NULL

SRS [21] DRAM-SRAM 1.26MB∗+NR NULL

SHADOW [20] DRAM 0.16MB∗ 0.6%

P-PIM [25] DRAM 4.125MB∗ 0.34%

DNN-Defender DRAM 0 0.02%

NR = Not Reported
∗The capacity overhead of DRAM.  The capacity overhead of SRAM. !The capacity overhead of CAM.



resources utilized by RH in a framework. Such resources are ded-

icated solely to RH and not for other purposes. Take Graphene

[11] as an example, it requires storing counting tables in SRAM

(1.12 MB), and the space occupied by these tables can no longer be

used as a shared storage space to store data. Graphene also requires

0.53 MB CAM to track vulnerable rows. Take SHADOW [20] as an

example, 0.16 MB capacity of DRAM is dedicated to enabling RH

mitigation. Our framework stands out from others as it does not

utilize any additional memory resources for RH mitigation. Unlike

Graphene [11], TWiCE [8], SRS [21], and RRS [16], DNN-Defender

does not require any fast-read memory. Furthermore, in contrast to

SHADOW [20] and P-PIM [25], DNN-Defender does not even sac-

ri�ce DRAM resources, where all rows can be used for storing data

in the same way as ordinary rows. iii) Some frameworks not only

require storage device resources but also additional components

for RH mitigation. We can �nd that DNN-Defender o�ers one of

the most area-e�cient solutions compared to other frameworks.

Security & Performance Analysis.We establish that the sys-

tem’s security level is directly proportional to the time taken by an

attacker to breach it, i.e., the longer it takes to breach the system,

the higher the security level. The �rst assumption is that the data

has no unique mapping, so we consider the vulnerable data rows

to be evenly distributed in all banks. Therefore, the number of data

rows we need to protect in each bank is given by Ċĩ = ďĘğĪ/ĘėĤġĩ ,

where Ċĩ is �nite. In other words, when the number of under-

attack rows increases, Ċĩ will exceed the defendable threshold. It

is, therefore, essential to identify the threshold that our framework

can withstand. Assuming the worst-case scenario in which a row

contains only a single target weight bit, the maximum number

of defended BFA corresponds to the number of target rows. As

DNN-Defender doesn’t modify the circuitry of the original DRAM

array, we can utilize the timing baseline of DRAM without any

alterations as given in [20] to calculate the time required for swap

operation, whereĐĩĭėĦ = 3×ĐýýČ ,ĐýýČ = 90ns. As discussed,ĐĎĄ
depends on the DRAM process node as the minimum number of

activations that can impose bit-�ip. So the time constraint for DNN-

Defender to perform the swap operations is given by ĐýÿĐ ×ĐĎĄ ,

and the maximum number of swap operations can be calculated

as ĐýÿĐ ×ĐĎĄ
ĐĩĭėĦ

. We can calculate ĐĤ = ĐýÿĐ × ĐĎĄ + ĐĩĭėĦ × Ċĩ ,

and then �nd the total number of swap operations in single ĐĨě Ĝ

by Ċ =

ĐĨěĜ
ĐĤ

× Ċĩ . Our experiments show that DNN-Defender

and SHADOW [20] are the only frameworks that can withstand

the white-box attacks, therefore, we only report their security level

analysis. Our results indicate that even the SRS mechanism [21]

cannot defend against white-box attacks for a period of one day.

Figure 8(a) reports the time-to-break in days for various ĐĎĄ s and

the corresponding number of the defended BFAs. We observe that

our framework outperforms SHADOW in 1k, 2k, 4k, and 8k thresh-

olds, e.g., as indicated for ĐĎĄ=4k, the attacker will require ∼1180

days to break a DNN-Defender-supported system, while SHADOW

stands up for ∼894 days.

Figure 8(b) shows DNN-Defender and SHADOW [20] with 1k, 2k,

4k, and 8k RH thresholds. As mentioned earlier, we pick SHADOW

as one of the best RH mitigation mechanisms over others for this

comparison. The �gure illustrates that with an increase in the num-

ber of BFAs, the rate of latency increase decelerates and eventually
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Figure 8: (a) Time-to-break DNN-Defender (DD) and

SHADOW in di�erent RowHammer thresholds, (b) Latency

of DNN-Defender and SHADOW [20] at di�erent no. of BFA.

reaches a limit for both frameworks. We chose four critical points

of BFAs, i.e., 7K, 14K, 28K, and 55K, where each corresponds to

the maximum allowable number of BFAs under various thresholds.

This selection is made to facilitate a comparative analysis. Consid-

ering a 4k threshold, an escalation in the number of BFAs leads to

a peak in latency. When compared to SHADOW operating at the

same threshold, our framework exhibits lower latency in all cases.

We consider the power consumption of a standard DRAM process

as a benchmark to fully reveal all aspects of our proposed frame-

work. Compared with other frameworks, DNN-Defender indicates

no signi�cant power-saving. For instance, even when SHADOW

is set with a threshold of 1k, DNN-Defender shows a negligible

1.6% power-saving. However, considering the power consumption

by SRAM-based frameworks such as SRS and RRS and o�-chip

memory communication in such systems, DNN-Defender o�ers a

signi�cant improvement (3.4× compared with SRS).

5.2 Defense Evaluation

Evaluation of DNN-Defender against Semi-White-Box BFA.

First, we consider a naive BFA attack [13] where the attacker is

not aware of our defense strategy (Semi-White-box). Such a naive

attackwill fail since the targeted bit-�ip sequence is not optimized to

bypass our defense. A naive attacker will generate a small sequence

of target bits and will attempt to �ip them. However, our defense

will eliminate the impact of bit-�ips via the swap operation, and the

attacker will not achieve any success (i.e., accuracy degradation)

using the existing BFA algorithm.

Evaluation of DNN-Defender against White-Box BFA.With

complete white-box knowledge, the attacker is aware of our defense

and tries to evade it through adaptive search. To bypass DNN-

Defender, the attacker can generate multiple sequences of targeted

bits o�ine using a copy of the target model and evaluate the attack’s

success by launching the attack to the victim space. However, if

a speci�c chain of bit sequences fails to degrade model accuracy,

the attacker can skip this sequence to generate a new set of bit

sequences for the next attack round. This way, the attacker will

iterate through all the Secured Bits (SB) protected by DNN-Defender

and still observe no success i.e., accuracy drop at the output.

Figure 9 demonstrates the e�ectiveness of DNN-Defender in

mitigating the performance degradation caused by BFA when the

attacker further adapts the search and attempts to �ipmore bits than

protected by our defense (denoted as SB + # of additional bit-�ips).

The plots showmultiple curves of performance degradation on each

of the evaluation models (e.g., VGG-11, ResNet-18, ResNet-34), with

each curve representing the degradation after securing a speci�c
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Figure 9: DNN-Defender evaluation for di�erent amounts

of Secured Bits (SB) for (a) VGG-11 trained on CIFAR-10, (b)

ResNet-18 trained on Imagenet, and (c) ResNet-34 trained on

Imagenet against BFA.

number of bits using DNN-Defender denoted as Secured Bits (SB).

The plots reveal that as the SB increases, it takes the attacker an

increasing number of iterations to cause the same performance

degradation, gradually deteriorating the performance of BFA near

the random attack level. For example, in Fig. 9, for the VGG-11

model, increasing the secured bits from 2k to 8k increases the

number of additional bit-�ips required to achieve the same attack

e�cacy by ∼ 6×. Eventually, even this adaptive white-box BFA

attack loses its potency after securing 24k bits (still only ∼ 4% of

the total model bits). In conclusion, our proposed DNN-Defender

will increase the attack time and e�ort by requiring an increasing

amount of bit-�ips to achieve the same attack e�cacy as the baseline

(no defense). If we secure a large number of bits (e.g., ∼ 24k for

VGG-11), then even after increasing the bit-�ip, the e�ect of BFA

can be reduced to a random attack level.

Comparison to BFA Defenses. In Table 3, we compare DNN-

Defender against the existing training-based DNN software defenses [3,

9, 14] and selected generic hardware defenses, i.e., RRS [16], SRS

[21], and SHADOW [20]. A general approach among the prior

software-based defense works is to reduce model weight bit-width

precision [3, 4] and increase the model size to reduce the impact of

weight noise on accuracy [14]. Here, a binary neural network [14]

with both binary weight and activation achieves the best defense

performance against the BFA, requiring over 1000 bit-�ip to reduce

the model accuracy close to random guesses. When protecting the

exact required number of (e.g., 1150) vulnerable bits, DNN-Defender

can resist the BFA attack better than the binary model. However,

our attack incurs slight hardware (e.g., latency & energy) overhead

which is not the case for software training algorithms [3, 9, 14]. In

contrast, all the software-based training methods su�er from high

training overhead and model accuracy drop. Our method is an ef-

fective defense against BFA w/o requiring any training overhead or

performance drop with minimal hardware overhead. Additionally,

any software protection [10] or DNN training algorithm [3, 14]

is not necessarily a competing method against our defense; prior

training-based defenses can further boost the protection against

Table 3: Comparison to BFA software defences on CIFAR-10

evaluated attacking a ResNet-20 model.

Models Clean Acc.(%) Post-Attack acc.(%) Bit-Flips #

Baseline ResNet-20 [13] 91.71 10.90 20

Piece-wise Clustering [3] 90.02 10.09 42

Binary weight [3] 89.01 10.99 89

Model Capacity × 16 [14] 93.7 10.00 49

Weight Reconstruction [9] 88.79 10.00 79

RA-BNN [14] 90.18 10.00 1150

RRS [16] 91.71 75.65 342

SRS [21] 91.71 75.92 378

SHADOW [20] 91.71 88.80 985

DNN-Defender 91.71 91.71 1150

BFA on top of our method. In addition, we observe that DNN-

Defender shows higher post-attack accuracy compared with prior

designs withstanding more number of BFAs.

6 CONCLUSIONS

Herein, we proposed a powerful DRAM-based defense mechanism

called DNN-Defender that leverages the potential of in-DRAM

swapping to protect quantized DNNs from targeted RowHammer

bit-�ip attacks. Our results indicate that DNN-Defender is capable of

providing robust protection against consecutive targeted RowHam-

mer attacks on CIFAR-10 and ImageNet datasets downgrading its

performance to a random attack level.
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