
DRAM-Locker: A General-Purpose DRAM Protection

Mechanism against Adversarial DNN Weight Attacks
Ranyang Zhou†, Sabbir Ahmed‡, Arman Roohi∗, Adnan Siraj Rakin‡, and Shaahin Angizi†
†Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA

‡Department of Computer Science, State University of New York at Binghamton, NY, USA
∗School of Computing, University of Nebraska–Lincoln, Lincoln NE, USA

rz26@njit.edu, sahmed9@binghamton.edu, aroohi@unl.edu, arakin@binghamton.edu, shaahin.angizi@njit.edu

Abstract—In this work, we propose DRAM-Locker as a robust
general-purpose defense mechanism that can protect DRAM
against various adversarial Deep Neural Network (DNN) weight
attacks affecting data or page tables. DRAM-Locker harnesses
the capabilities of in-DRAM swapping combined with a lock-
table to prevent attackers from singling out specific DRAM rows
to safeguard DNN’s weight parameters. Our results indicate that
DRAM-Locker can deliver a high level of protection downgrading
the performance of targeted weight attacks to a random attack
level. Furthermore, the proposed defense mechanism demonstrates
no reduction in accuracy when applied to CIFAR-10 and CIFAR-
100. Importantly, DRAM-Locker does not necessitate any software
retraining or result in extra hardware burden.

I. INTRODUCTION

The widespread progress of Deep Neural Networks (DNN),

achieving unparalleled performance and high accuracy even

with models that have low bit-widths, has recently led to the

emergence of various security-related attacks across many deep

learning applications [1], [2]. Recent research indicates that

by identifying and manipulating a small set of susceptible bits

within well-trained DNN weight parameters, adversaries can

significantly degrade the resulting accuracy of these models as

indicated in Fig. 1(a) [2]. These attacks, known as Bit-Flip At-

tacks (BFAs), have primarily been facilitated by a phenomenon

in DRAM called RowHammer as the manifestation of a DRAM

cell-to-cell interference and failure mechanism [3], [4]. On top

of this, a novel class of adversarial fault injection techniques has

been recently introduced [5]–[7] that exploits BFA in memory

addresses. Here an attacker can leverage the RowHammer

attack to flip the bits in the page tables to corrupt the translation

between the virtual and physical memory addresses. This gives

attackers system-level privileges to overwrite a specific data

block stored in a physical address using a replacement data

block stored at a different physical memory address [5].

The RowHammer attack occurs when a malicious process

repetitively activates and pre-charges a specific row (referred

to as the aggressor row) until it reaches a certain threshold

(TRH ) [7]–[9]. This repeated activation induces bit-flips in

adjacent rows (referred to as victim rows). Unfortunately, due

to the shrinking size of DRAM chips in modern manufac-

turing processes, DRAM has become increasingly susceptible

to RowHammer-induced bit-flips [10]. The data reported in

Fig. 1(b) shows a notable downward trajectory in the TRH

over recent years. For instance, compared to DDR3 (new),

LPDDR4 (new) requires approximately 4.5 times fewer ham-

mering iterations to trigger the same effect [11]. This trend

suggests that TRH will nearly vanish with the advent of DDR5

[12]. To prevent RowHammer attacks, DRAM manufacturers

DRAM Generation TRH

DDR3 (old) 139K

DDR3 (new) 22.4K

DDR4 (old) 17.5K

DDR4 (new) 10K

LPDDR4 (old) 16.8K

LPDDR4 (new) 4.8K - 9K

(a) (b)
Fig. 1. (a) Targeted bit flipping vs. random bit flipping for an 8-bit quantized
VGG11 trained on CIFAR100, (b) RowHammer thresholds [11].

and researchers have proposed hardware-based victim-focused

defense mechanisms to proactively refresh the victim rows [3],

[7]. However, such RowHammer mitigation proposals have

faced a huge overhead both from latency and power con-

sumption perspectives [13]. To mitigate this, recent aggressor-

focused swap-based mechanisms [11], [14] proactively swap

and unswap aggressors with random rows before reaching the

TRH . This raises another issue, i.e., the challenge of precisely

monitoring the targeted row. SHADOW [15] leverages unintel-

ligent swap operations on all potential target rows to safeguard

them from Rowhammer attacks. However, it is evident that

attackers do not typically target numerous rows simultaneously,

resulting in the wasteful execution of swap operations.

While there has been a multitude of generic victim-focused

[3], [16] and aggressor-focused [11], [14], [17] mechanisms to

protect the memory rows against RowHammer attacks, a few

works have tried to tailor defense mechanisms for adversarial

DNN weight attacks in software. Most of these methods try

to make the model more robust by either using fewer bits for

the model’s weights [18] or by making the model larger to

reduce the effect of weight noise on accuracy. Such mecha-

nisms require software retraining or result in extra hardware

burdens. In this work, we propose DRAM-Locker as a novel

and advanced DRAM defense mechanism to protect the DNN

against both adversarial BFA and page table attacks targeting

weight parameters. Our contribution is summarized as follows.

• We are the first to demonstrate a general-purpose DRAM

defense mechanism with a lock-table that protects memory

against DNN weight attacks affecting data or page tables;

• We develop ISA, software support, and the interface

required to implement in-DRAM swap operation; and

• We extensively analyze the DRAM-Locker’s applicability

and efficiency in withstanding RowHammer vulnerability

compared to recent hardware/software techniques over

CIFAR-10 and CIFAR-100 DNN datasets.

	

	

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on November 23,2024 at 13:56:09 UTC from IEEE Xplore.  Restrictions apply. 



II. BACKGROUND & MOTIVATION

A. DRAM

Organization & Commands. The DRAM chip is a hierar-

chical structure consisting of several memory banks as shown in

Fig. 2. Each bank comprises 2D sub-arrays of memory bit-cells

that are virtually ordered in memory matrices (mats), which

have billions of DRAM cells on modern chips. Each DRAM

bit-cell consists of a capacitor and an access transistor. The

charge status of the bit cell’s capacitor is used to represent

binary “1” or “0” [19]. In idle mode, the memory controller

turns off all enabled DRAM rows by sending the Precharge

(PRE) command on the command bus. This will precharge

the Bit-Line (BL) voltage to VDD

2
. In the active mode, the

memory controller will send an Activate (ACT) command to

the DRAM module to activate the Word-Line (WL). Then, all

DRAM cells connected to the WL share their charges with the

corresponding BL. Through this process, BL voltage deviates

from the precharged VDD

2
. The sense amplifier then senses

this deviation and amplifies it to VDD or 0 in the row buffer.

The memory controller can then send read (RD)/write (WR)

commands to transfer data to/from the sense amplifier array.

RowClone. Taking advantage of the DRAM’s ability to

transfer a complete data row to the corresponding row buffer

during read operation, RowClone [20] has been devised as an

uncomplicated and highly effective technique for facilitating a

rapid in-memory copy operation (completed in less than 100

nanoseconds) within the DRAM sub-array, allowing data to be

transferred from a source row to a destination row. RowClone

eliminates the need to transfer data over the memory channel.

The memory controller manages this by issuing two back-to-

back ACT commands first to the source and then the destination

without PRE command in between with almost negligible cost.

By using this method, the latency and power consumption of

a bulk copy operation can be reduced by a factor of 11.6 and

74.4, respectively [20].

B. SOTA Defense Mechanisms

Multiple software and hardware mitigation mechanisms have

been proposed to reduce the impact of RowHammer-based

attacks. The standard mitigation approach used by manufac-

turers such as Apple [21] is to reduce the refresh period, e.g.,

from 64ms to 32ms. The system manufacturers tend to increase

refresh rates and hardware RHP [10]. Along this line, Target

Row Refresh (TRR) [7] and other counter-based detection

methods [17], [22] require add-on hardware to calculate rows’

activation and record it to other fast-read-memory (SRAM

[23]/CAM [24]). The controller will then refresh the target

row if the number reaches TRH [7]. However, such proactive

Fig. 2. Organization of a DRAM chip.

refreshing proposals have faced a huge overhead both from

latency and power consumption perspectives. A method called

Secure Row-Swap (SRS) [11] has demonstrated the use of

fewer counters for crucial data and implemented associated

threat mitigation using the swap operation. However, such

mitigations not only impose a significant slowdown to the

system but also require a pre-defined threshold at CPU design

time. To solve this issue, LT-PIM protects only a critical part of

the memory rather than the complete data [13]. Mitigations of

this kind are susceptible to breakthrough attacks on many bits,

such as Half-Double [25], which take advantage of previously

unknown access patterns. Software-only schemes offer the

advantage of compatibility with existing hardware, making

them more deployable. However, it’s important to note that

existing software-only mitigations require modifications to the

memory allocator and may not be fully effective. The software-

based efforts such as SoftTRR [26] enable software tracking

of activations to Page Table Entry(PTE) rows and accordingly

issue mitigation. Similar to hardware-based TRR, the efficacy

of such defense reduces when the attack happens on more

number of bits and larger distances as in Half-Double. CTA [27]

is susceptible to privilege escalation attacks such as PThammer

[6] targeting L1PTE. There are a few defense mechanisms

developed especially for exploits on page tables. SecWalk [28]

can detect only up to 4-bit flips per PTE with error detection

codes though it is susceptible to attacks like ECCploit [29]. PT-

Guard [5] presents a method that tracks the rows under attack

by asserting the Message Authentication Code (MAC) to the

PTE. In DRAM writes, they split the MAC into eight parts

and embed them in the unused bits of the PTE. Then they

recomputed the MAC and performed integrity checks on the

hardware page table to ensure the PTE remained unchanged. In

our work, there is no need to occupy the resources of software

sides without reducing the performance.

III. THREAT MODEL

The DRAM-Locker is designed to safeguard DRAM against

the following adversarial DNN weight attacks.

Bit-Flip Attack (BFA). We assume the following threat

model for BFA. 1) DNN model inference is running on a

resource-sharing environment which is practical due to the re-

cent popularity of Machine-Learing-as-a-Service (MLaaS) [30].

The attacker can run user-level un-privileged processes re-

motely on the same machine deployed by the victim DNN

model; 2) Each DRAM row has a threshold TRH after becom-

ing an aggressor row, and once exceeded within the refresh

interval (Tref ), it will impose a bit-flip to two adjacent victim

rows as depicted in Fig. 3(a); 3) We assume that all vulnerable

data rows are neither concentrated in one/two sub-arrays nor

evenly distributed in each sub-array. Experimentally, most sub-

arrays store several data rows simultaneously; some may store

multiple or none; 4) The attacker has a detailed mapping file

that can locate the physical address of the target data in the

neural network and is aware of the initial static mapping of

the DRAM rows (i.e., physical adjacency information between

rows) [15]; and 5) the attacker is aware of the internal structure

of the DNN models, e.g., the number of layers and the width

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on November 23,2024 at 13:56:09 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3. Two major DNN threat models in this work: (a) BFA, (b) PTA.

of each layer. On top of that, the attacker has complete

knowledge of the DNN model parameters, their values, and bit

representation for inference. They can catch the bits that can

mostly reduce the accuracy, such as W2 shown in Fig. 3(a).

Page Table Attack (PTA). We assume the following prac-

tical threat model for PTA established by prior works [5].

1) The attacker can map the virtual addresses to physical

addresses using several techniques such as leveraging huge

page support, hardware-based side-channel attack [31], and

memory messaging [32]; 2) The attacker can cause a targeted

bit-flip to the page table and cause a bit-flip at the desired

location using fast and precise multi-bit-flip techniques [33];

3) We assume the kernel and operating system are trusted and

well-protected; 4) Following standard practice, we assume the

commercial DRAM is not protected by ECC and cannot protect

large-scale deep learning models against RowHammer [33]; and

5) Attacker can insert their own virtual page table entry, as

depicted in Fig. 3(b) 1 and 2 perform a bit-flip within their

page table entries P1, coercing them to direct to a secondary

virtual address row P2 [5]. Knowing the location of the target

row after flipping the page table, the attacker can redirect the

pointer to the target row out of range.

IV. DRAM-LOCKER

The DRAM-Locker aims to serve as a comprehensive rem-

edy for various forms of severe RowHammer attacks targeting

DNN weight parameters. The core idea behind DRAM-Locker

is to prevent RowHammer attackers from singling out specific

DRAM rows by securing those rows with locks. DRAM-Locker

employs the SWAP command to interchange the locked row

with a free one, effectively unlocking it and restoring normal

program execution. Compared with the previous counter-based

designs [7], [22], DRAM-Locker only requires a fast read-and-

write memory space for the lock-table without any counter

overhead. The DRAM-Locker also offers scalability and flexi-

bility w.r.t. various applications. In other words, our framework

allows users to customize the data they are willing to protect

without requiring changes to the framework. As compared with

other swap-based frameworks such as [15], DRAM-Locker is

more directional and can effectively reduce the overhead of

useless and time-consuming protection.

A. Protection Framework
Our protection framework exploits the lock-table to record

the physical addresses of the DRAM that need to be locked.

These addresses depend on the physical address of the data

the user is willing to protect. For example, frequently used

data is often the target of attackers, so adjacent rows of these

Fig. 4. Overview of the DRAM-Locker. (a) R/W of the Locked Row, (b)
Implementation of a SWAP operation, (c) R/W of the Unlocked Row, (d) Final
status after updating the lock-table.

data can be recorded in a lock-table. In addition, due to the

uncertainty of attacks, users can manually add any row that

has a high probability of becoming an aggressor row into the

the lock-table. As depicted in Fig. 3(a), conventional BFA

techniques have been proven to be highly inefficient when

applied to large-scale DNNs with extensive datasets. They

often perform a large number of bit-flips on weights and/or

activations without effectively reducing the accuracy of the

model. But if the attacker focuses on attacking adjacent rows of

particular weights to cause bit-flip, this will cause fatal damage

to the DNN model. We propose to segregate and retain these

addresses within a lock-table in SRAM. Once the addresses

are stored in the lock-table, any attempt to access this data

without the accompanying unlock command will result in a

block. In DNNs, weights typically represent high-frequently

used data. Locking these weights can lead to substantial delays

and a significant burden on the controller. Additionally, frequent

access implies continuous refreshing, and the possibility of

bit-flips occurrence within these rows is definitely low. If we

choose to lock frequently used rows, then we have to unlock

them constantly, so locking adjacent rows can substantially

decrease the need for frequent unlocks.

DRAM-Locker prepares for subsequent lock recognition and

unlocking operations by storing instructions in Sequence. As

shown in Fig. 4(a), if an R/W (Read/Write) instruction in the

Sequence contains the locked address, access to the Locked

Row will be denied. Therefore, the DRAM-Locker needs

SWAP operations to unlock. As shown in Fig. 4(b), SWAP

operations are transferred into DRAM instructions via ISA.

The DRAM implements the sets of Row Copy instructions in

order to perform the SWAP operation to pull out the Locked

Row. Besides, since the RowClone principle is to overwrite the

data of the copied row into a new row, we devise a Buffer

Row. The detailed steps are as follows. In step 1 , DRAM-

Locker copies the Locked Row to the Buffer Row; in step

2 , it copies the Unlocked Row to the Locked Row; and in

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on November 23,2024 at 13:56:09 UTC from IEEE Xplore.  Restrictions apply. 



step 3 , DRAM-Locker copies the Buffer Row to the Unlocked

Row. This step does not change the lock-table, but exchanges

the original data of the two addresses, ultimately achieving the

unlocking process. The data stored at the locked address has

been swapped into an unlocked row. Fig. 4(c) shows that the

next R/W instruction requires the address of the Unlocked Row

to access the data of the original Locked Row. Taking the TRH

into account, it becomes necessary to re-secure the previously

unlocked rows by periodically refreshing the lock-table. In

Fig. 4(d), for instance, following the completion of a SWAP

operation, the controller reinstates the swapped address into

the lock-table after a cumulative count of 1k R/W instructions,

effectively re-locking the data row.

B. Lock-table & Sequencing

The lock-table plays a crucial role in our platform similar

to that of the count-table in state-of-the-art designs [22], [23].

Meanwhile, lock-table has no dependency on extra components

such as counters. While counter-based designs employ a count

table to monitor memory access patterns and keep track of the

number of accesses to each row in the memory, DRAM-Locker

stores the addresses of vulnerable rows and denies permission-

less access requests to them. In counter-based designs, when

a row is accessed excessively within a short time frame, the

count-table is the indicator of a potential RowHammer attack.

In response, the defense can take preventive actions to mitigate

it. In DRAM-Locker, whenever the controller recognizes an

R/W instruction, it will traverse the lock-table. If the address

contained in the instruction is found, the instruction will be

skipped. Therefore, no matter how many requests the attacker

sends, they will be invalid and the instructions will not be

executed. As a result, the latency caused by invalid instructions

will also be eliminated. The instructions from attackers will also

be stored in Sequence. If these instructions are skipped, we can

also improve the performance. When the program necessitates

accessing these data rows, the SWAP operation is required to

unlock the secured rows. So we insert row copy instructions

to the sequence in order to execute the SWAP operations. To

realize this, DRAM-Locker requires ISA support which will

be introduced in the next subsection. DRAM-Locker uses three

Row Copy instructions to implement the SWAP operation.

C. ISA Support

The DRAM-Locker is intentionally crafted as a general-

purpose autonomous defense mechanism. Consequently, it

needs to be accessible to system-level libraries and develop-

ers. From a developer’s perspective, DRAM-Locker needs to

transfer the SWAP operations and insert some specific instruc-

tions to perform the defense. Therefore, to enable widespread

RowHammer defense for both BFA and PTA, ISA support is

indispensable for any user-level program. This can be trans-

lated into the DRAM-Locker’s hardware instruction set during

installation. As shown in Fig. 5, DRAM-Locker is designed

to process two 16-bit instruction types after compiling the

upper-level code: (1) a copy instruction based on RowClone

method [20], (2) an instruction for control operations. When

OP is 01, DRAM-Locker performs a row copy operation by

activating both µReg src. and µReg des. Opcodes 10 and 11

μ μ

Fig. 5. DRAM-Locker’s instructions, µOps, and their description.

correspondingly denote straightforward control operations for

managing loops and termination within the DRAM-Locker’s

control flow., i.e., bnez, done.

D. Discussion: Challenges with Unsuccessful Swapping.

We conducted comprehensive circuit-level simulations to

investigate the impact of process variations of in-DRAM SWAP

as the key operation in the DRAM-Locker based on the frame-

work discussed in Section V. Our study considered a worst-

case DRAM cell scenario where all components (including

cell/BL/WL capacitance and transistor in Fig. 2) exhibited

variation. We performed a Monte Carlo simulation using the

45nm NCSU PDK library. This simulation comprised 10,000

trials, and we systematically increased the variation in param-

eters from ±0% to ±20%. It is worth noting that reducing

the transistor size is anticipated to exacerbate the impact of

process variation. Our observation shows that the percentage of

erroneous SWAP operation across 10,000 trials is 0%, 0.14%,

and 9.6% for ±0%, ±10%, and ±20%, respectively.

V. PERFORMANCE EVALUATION

Setup & Framework. We present a cross-layer evaluation

framework as depicted in Fig. 6 to demonstrate the benefits

of DRAM-Locker in protecting memory against adversarial

DNN weight attacks. Firstly, we develop DRAM-Locker’s sub-

arrays with peripherals using Cadence Spectre in the 45nm

NCSU PDK library [34] at the circuit level to verify SWAP

functionality, attain performance parameters, and measure the

row-shuffle time. The memory controller and registers are

designed and synthesized by Design Compiler with a 45nm

industry library. Afterward, we incorporated the results from

circuit-level assessments and extensively modified CACTI at

the architecture level. Next, we implemented DRAM-Locker’s

ISA in gem5 [35], and exported the memory statistics and

performance to an in-house C++ DRAM-Locker optimizer,

taking the CACTI output and application netlist as the inputs.

At the application, we evaluated the performance of our pro-

posed technique in defending against adversarial BFA and PTA

using various DNN models and datasets, where the weights are

quantized to 8-bit width. To carry out the BFA and PTA, we

randomly sampled images from the test/validation set, with a

default sample size of 128 for both datasets.

Hardware Overhead Analysis. We compare the DRAM-

Locker’s hardware overhead with the latest RowHammer mit-

igation mechanisms in the literature in Table I. In this ex-

periment, we utilize a uniform configuration of 32GB:16-bank

DDR4 DRAM for all frameworks. The aim is to standardize

capacity and area overheads across different frameworks. In

Table I, i) the involved memory refers to the type of mem-

ory utilized by the framework for RowHammer protection.

As previously discussed, certain frameworks rely on counters

to monitor intrusions and store tracking information within

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on November 23,2024 at 13:56:09 UTC from IEEE Xplore.  Restrictions apply. 



μ

Fig. 6. Proposed cross-layer evaluation framework.

the system, utilizing Content-Addressable Memory (CAM) or

Static Random-Access Memory (SRAM). However, CAM and

SRAM are significantly more costly in comparison to DRAM

with the same overhead. Therefore, opting for a framework

with such additional resources may lead to debates regarding

cost-effectiveness. Take the Graphene [24] as an example, it

employs both CAM and SRAM and the total capacity overhead

is 0.53MB + 1.12 MB. It is worth pointing out that while

most of the frameworks’ area overhead in Table I is already

quite compact, in terms of practical circuit design, minimizing

alterations to the existing structure is generally more pragmatic.

We observe that SHADOW [15] and DRAM-Locker promote

the use of extremely less extra components for constructing

their defenses. Therefore, these two frameworks are selected

for further security and performance analysis in the next part.

Security & Performance Analysis. Figure 7(a) shows the

comparison between latencies of SHADOW [15] with TRH=1k,

2k, 4k, and 8k, and the DRAM-Locker with TRH=1k. The

threshold here represents the number of necessary visits to the

aggressor row by the attacker to ensure that the victim row can

generate a bit-flip. Whether in PTA or BFA, the attacker must

ensure that the bit they expect is flipped accurately, so in the

experiment, we consider the threshold as the minimum number

of times. Also in this experiment, we assume that DRAM-

Locker suffers from a 10% error rate due to unsuccessful

SWAPs of instructions. Please note that if the DRAM-Locker

shows no errors then it will be ideally invulnerable. In Fig. 7(a),

due to the DRAM-Locker’s distinctive SWAP mechanism, we

exclusively evaluate the worst case, which is the 1k threshold.

In this case, our framework demands the highest number of

SWAP operations, resulting in the longest latency. We can

see that SHADOW [15] exhibits a defense threshold. System

integrity is compromised once this threshold is surpassed,

signifying that further delay escalation is halted. Conversely,

TABLE I
COMPARISON WITH PRIOR ROWHAMMAR MITIGATION FRAMEWORKS.

Framework involved memory capacity overhead area overhead

Graphene [24] CAM-SRAM 0.53MB‡+1.12MB† 1 counter

Hydra [17] SRAM-DRAM 56KB†+4MB∗ 1 counter

TWiCE [23] SRAM-CAM 3.16MB†+1.6MB‡ 1 counter
Counter per Row DRAM 32MB∗ 16384 counters
Counter Tree [22] DRAM 2MB∗ 1024 counters

RRS [14] DRAM-SRAM 4MB∗+NR† NULL

SRS [11] DRAM-SRAM 1.26MB∗+NR† NULL
SHADOW [15] DRAM 0.16MB∗ 0.6%

P-PIM [36] DRAM 4.125MB∗ 0.34%

DRAM-Locker DRAM-SRAM 0+56KB† 0.02%

NR = Not Reported
∗The capacity overhead of DRAM. †The capacity overhead of SRAM. ‡The capacity overhead of CAM.

Fig. 7. (a) Latency of DRAM-Locker (indicated by DL) and SHADOW [15]
in different numbers of BFA, (b) Defense time (per day) in various thresholds.

DRAM-Locker operates without such a defense threshold.

Hence, the latency in DRAM-Locker is solely contingent on

TRH , with the worst case in our model being a TRH=1k.

Unlike SHADOW, our framework not only boasts remarkably

low latency but also demonstrates general applicability across

various DRAM chips, without any distinctions. In Fig. 7(b),

we conducted experiments to evaluate the duration for which

SHADOW and DRAM-Locker can effectively defend against

attacks. Considering a 10% error rate during the execution of

Row Copy instructions, we take the expected outcomes of these

error instructions into account. Then, we deemed success as

achieving a probability exceeding 99%. This means in both

PTA and BFA threat models, when the attacker aims to flip

the target bit, the probability is lower than 1%. As a result, we

observe that even considering a 10% error to each row copy,

DRAM-Locker could maintain an effective defense mechanism

against attacks for a period exceeding 500 days under the 1K

threshold. Therefore, in contrast to SHADOW, our framework

exhibits reduced latency and extended defense duration.

Evaluation of DRAM-Locker against BFA & PTA. Figure 8

shows the efficacy of DRAM-Locker in alleviating the perfor-

mance degradation caused by BFA. Note that this evaluation

considers the worst case ±20% variation on all DRAM com-

ponents and thus considers that the BFA is successful 9.6% of

the time as discussed before. The figure presents performance

degradation across two different evaluation models, ResNet-20

trained on the CIFAR-10 dataset and VGG-11 trained on the

CIFAR-100 dataset. The plots clearly reveal that with DRAM-

Locker, it takes the attacker an increasing number of iterations

to cause the same performance degradation. Thus, DRAM-

Locker significantly increases the computational overhead for

the attacker by necessitating more bit-flips to achieve equivalent

attack effectiveness. We ran the same experiment considering

PTA as the attack mechanism. The findings reveal that the

attacker similarly needs a growing number of iterations to

induce an equivalent performance decline.

Comparison to other Defenses. In Table II, we compare

our proposed DRAM-Locker, with existing training-based de-

fenses [18], [37], [38]. Most of these methods try to make the

model more robust by either using fewer bits for the model’s

weights [18] or by making the model bigger to reduce the

effect of weight noise on accuracy [37]. When we use DRAM-

Locker to protect a specific number of vulnerable bits (for

example, 1150), it does a better job of defending the BFA

than the binary model. However, it’s worth noting that our

method does add a small amount of delay and energy use,

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on November 23,2024 at 13:56:09 UTC from IEEE Xplore.  Restrictions apply. 



0 20 40 60 80 100

Iteration

0

20

40

60

80

100

A
c
c
u

r
a
c
y
 (

%
)

without DRAM-Locker

with DRAM-Locker

0 20 40 60 80 100

Iteration

0

20

40

60

80

100

A
c
c
u

r
a
c
y
 (

%
)

without DRAM-Locker

with DRAM-Locker

(a) (b)

Fig. 8. DRAM-Locker evaluation for (a) ResNet-20 trained on CIFAR-10, (b)
VGG-11 trained on CIFAR-100. The degradation in performance is shown for
100 iterations of the attack.

which isn’t an issue for the training-based defenses [18], [37],

[38]. On the other hand, the existing training-based methods

often come with downsides like taking a lot of time to train

and reducing the model’s accuracy. Our DRAM-Locker doesn’t

have these problems; it works well against BFAs and PTAs

without needing extra training time or hurting performance,

and only adds a minor hardware cost. Plus, our method can be

used alongside existing software protections or training-based

defenses [18], [37] to make the model even more secure against

various types of attacks.

TABLE II
COMPARISON TO OTHER COMPETING SOFTWARE DEFENSE METHODS ON

CIFAR-10 DATASET EVALUATED ATTACKING A RESNET-20 MODEL.

Models Clean Acc.(%) Post-Attack acc.(%) Bit-Flips #

Baseline ResNet-20 [2] 91.71 10.90 20
Piece-wise Clustering [18] 90.02 10.09 42

Binary weight [18] 89.01 10.99 89
Model Capacity × 16 [37] 93.7 10.00 49
Weight Reconstruction [38] 88.79 10.00 79

RA-BNN [37] 90.18 10.00 1150
DRAM-Locker 91.71 91.71 1150

VI. CONCLUSIONS

Here, we proposed a general-purpose defense mechanism

called DRAM-Locker that can safeguard DRAM against var-

ious adversarial DNN weight attacks affecting data or page

tables. DRAM-Locker leverages in-DRAM swapping combined

with a lock-table to deliver a high level of protection downgrad-

ing the performance of targeted weight attacks to a random

attack level. Our defense shows reduced latency, extended

defense duration, and no reduction in the accuracy of DNNs

when applied to various DNN models compared with existing

defense mechanisms.

ACKNOWLEDGMENT

This work is supported in part by the National Science Foundation
under Grant No. 2228028, 2216772, and 2216773.

REFERENCES

[1] Y. Adi et al., “Turning your weakness into a strength: Watermarking deep
neural networks by backdooring,” in USENIX, 2018, pp. 1615–1631.

[2] A. S. Rakin et al., “Bit-flip attack: Crushing neural network with
progressive bit search,” in ICCV, 2019, pp. 1211–1220.

[3] Y. Kim et al., “Flipping bits in memory without accessing them: An ex-
perimental study of dram disturbance errors,” ACM SIGARCH Computer

Architecture News, vol. 42, no. 3, pp. 361–372, 2014.
[4] O. Mutlu et al., “Fundamentally understanding and solving rowhammer,”

in ASP-DAC, 2023, pp. 461–468.
[5] A. Saxena et al., “Pt-guard: Integrity-protected page tables to defend

against breakthrough rowhammer attacks,” in DSN. IEEE, 2023, pp.
95–108.

[6] Z. Zhang et al., “Pthammer: Cross-user-kernel-boundary rowhammer
through implicit accesses,” in MICRO. IEEE, 2020, pp. 28–41.

[7] P. Frigo et al., “Trrespass: Exploiting the many sides of target row
refresh,” in SP. IEEE, 2020, pp. 747–762.

[8] A. Olgun et al., “Dram bender: An extensible and versatile fpga-based
infrastructure to easily test state-of-the-art dram chips,” IEEE TCAD,
2023.

[9] A. G. Yağlikçi, M. Patel, J. S. Kim, R. Azizi, A. Olgun, L. Orosa,
H. Hassan, J. Park, K. Kanellopoulos, T. Shahroodi et al., “Blockhammer:
Preventing rowhammer at low cost by blacklisting rapidly-accessed dram
rows,” in HPCA. IEEE, 2021, pp. 345–358.

[10] J. S. Kim et al., “Revisiting rowhammer: An experimental analysis of
modern dram devices and mitigation techniques,” in ISCA. IEEE, 2020,
pp. 638–651.

[11] J. Woo et al., “Scalable and secure row-swap: Efficient and safe row
hammer mitigation in memory systems,” preprint arXiv:2212.12613,
2022.

[12] M. Marazzi et al., “Rega: Scalable rowhammer mitigation with refresh-
generating activations,” in SP. IEEE, 2023.

[13] R. Zhou et al., “Lt-pim: An lut-based processing-in-dram architecture
with rowhammer self-tracking,” IEEE Computer Architecture Letters,
vol. 21, no. 2, pp. 141–144, 2022.

[14] G. Saileshwar et al., “Randomized row-swap: mitigating row hammer
by breaking spatial correlation between aggressor and victim rows,” in
ASPLOS, 2022, pp. 1056–1069.

[15] M. Wi et al., “Shadow: Preventing row hammer in dram with intra-
subarray row shuffling,” in HPCA. IEEE, 2023, pp. 333–346.

[16] D.-H. Kim et al., “Architectural support for mitigating row hammering
in dram memories,” IEEE CAL, vol. 14, no. 1, pp. 9–12, 2014.

[17] M. Qureshi et al., “Hydra: enabling low-overhead mitigation of row-
hammer at ultra-low thresholds via hybrid tracking,” in ISCA, 2022.

[18] Z. He et al., “Defending and harnessing the bit-flip based adversarial
weight attack,” in CVPR, 2020, pp. 14 095–14 103.

[19] V. Seshadri et al., “Ambit: In-memory accelerator for bulk bitwise
operations using commodity dram technology,” in MICRO. IEEE, 2017,
pp. 273–287.

[20] V. Seshadri, Y. Kim et al., “Rowclone: Fast and energy-efficient in-dram
bulk data copy and initialization,” in MICRO, 2013.

[21] Apple, inc. about the security content of mac efi security update 2015-
001. [Online]. Available: https://support.apple.com/en-au/HT204934.

[22] S. M. Seyedzadeh et al., “Counter-based tree structure for row hammering
mitigation in dram,” CAL, vol. 16, 2016.

[23] E. Lee et al., “Twice: Preventing row-hammering by exploiting time
window counters,” in ISCA, 2019, pp. 385–396.

[24] Y. Park et al., “Graphene: Strong yet lightweight row hammer protection,”
in MICRO. IEEE, 2020, pp. 1–13.

[25] A. Kogler et al., “{Half-Double}: Hammering from the next row over,”
in USENIX Security, 2022, pp. 3807–3824.

[26] Z. Zhang et al., “{SoftTRR}: Protect page tables against rowhammer
attacks using software-only target row refresh,” in USENIX, 2022, pp.
399–414.

[27] X.-C. Wu et al., “Protecting page tables from rowhammer attacks using
monotonic pointers in dram true-cells,” in ASPLOS, 2019, pp. 645–657.

[28] R. Schilling et al., “Secwalk: Protecting page table walks against fault
attacks,” in HOST. IEEE, 2021, pp. 56–67.

[29] L. Cojocar et al., “Exploiting correcting codes: On the effectiveness of
ecc memory against rowhammer attacks,” in SP. IEEE, 2019, pp. 55–71.

[30] M. Ribeiro et al., “Mlaas: Machine learning as a service,” in ICMLA.
IEEE, 2015, pp. 896–902.

[31] D. Gruss et al., “Another flip in the wall of rowhammer defenses,” in SP.
IEEE, 2018, pp. 245–261.

[32] A. Kwong et al., “Rambleed: Reading bits in memory without accessing
them,” in SP. IEEE, 2020, pp. 695–711.

[33] F. Yao et al., “Deephammer: Depleting the intelligence of deep neural
networks through targeted chain of bit flips,” in USENIX, 2020.

[34] (2011) Ncsu eda freepdk45. [Online]. Available:
http://www.eda.ncsu.edu/wiki/FreePDK45:Contents

[35] N. Binkert et al., “The gem5 simulator,” ACM SIGARCH computer

architecture news, vol. 39, pp. 1–7, 2011.
[36] R. Zhou et al., “P-pim: A parallel processing-in-dram framework enabling

row hammer protection,” in DATE. IEEE, 2023.
[37] A. S. Rakin et al., “Ra-bnn: Constructing robust & accurate binary neural

network to simultaneously defend adversarial bit-flip attack and improve
accuracy,” arXiv preprint arXiv:2103.13813, 2021.

[38] J. Li et al., “Defending bit-flip attack through dnn weight reconstruction,”
in DAC. IEEE, 2020, pp. 1–6.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on November 23,2024 at 13:56:09 UTC from IEEE Xplore.  Restrictions apply. 


