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Abstract—Maultistable structures, known for their ability to
rapidly switch between multiple stable states, are increasingly
used for various robotic and mechatronic systems (e.g., grip-
pers, swimming, jumping, or crawling robots). However, existing
multistable structures generally have a fixed structure after
fabrication, leading to a fixed energy profile with respect to defor-
mations, a concept termed as energy landscape (EL) that dictates
a structure’s stable configurations and dynamic responses. To
overcome this limitation, this work investigates how to actively
tune the EL of a beam-based mechanism with a linear spring
on the fly to enable tunable modules. We consider two tuning
strategies to adjust the beam’s initial bending angle and the
offset of the spring. We establish a forward model to predict the
module’s ELL and conduct experiments to validate this model.
We also address the inverse problem to achieve a desired EL by
choosing proper values of the initial bending angle and the offset
of the spring. Finally, we demonstrate the practical applications
of this tunable module with three cases: a Kicker, a configurable
arm, and a crawling robot. Our research lays the groundwork
for advanced robotic and mechatronic systems, enabling them
to harness structures with elastic instabilities for tuning their
performance on the fly, thereby enhancing their adaptability and
functionality.

Index Terms—flexible robots, soft robots, bistable, energy
landscape

I. INTRODUCTION

Multistable structures, characterized by their ability to
rapidly switch between multiple stable configurations, rep-
resent an emerging area of study in robotic or mechatronic
systems. These structures, after switching to a stable state,
can maintain the new stable configuration without any external
energy input. A special type of multistable structure is a
bistable structure with two stable states, which has been
observed widely in nature. For instance, the Venus flytrap’s
leaves are bistable, which can snap shut in 0.1 s to capture
prey [1]. Similarly, the rapid beak closure of hummingbirds is
another instance of natural bistability, enabling these birds to
catch flying insects efficiently [2].

Inspired by nature’s remarkable bistable mechanisms, re-
searchers have recently explored how to leverage multistable
or bistable structures to enhance the performance of various
systems by exploiting the elastic instability inherent in multi-
stable structures [3], [4]. Comprehensive reviews can be found
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in [5], [6], but here, we only review several representative
works in this area with a focus on robotic applications.
Bistable structures are used to generate fast response [7],
enlarged output force [8], [9], and multiple functions [3],
[10], [11] for various robotic systems. For instance, Wu et
al. [7] developed a bistable thermal actuator with increased
actuation speed by harnessing snap-through instability. In-
spired by the well-known two-balloons problem, Overvelde
et al. [8] exploited the snap-through instability to generate
larger motion and higher force with a fluidic actuator. Patel
et al. [11] built a bistable module based on a pre-stretched
elastomeric membrane and demonstrated three reconfigurable
soft robots capable of multimodal locomotion. Other represen-
tative examples using bistable mechanisms include swimming
robots [12], [13], robotic grippers [14]-[16], robots with
jumping capability [17], etc.

For multistable or bistable structures, an important charac-
teristic is the energy landscape (EL): how the stored strain
energy varies with respect to the deformation (e.g., bending
angle). A typical EL is plotted in Fig. 1B as the black curve.
The EL can determine both the stable configurations and the
dynamic responses of the structures. Despite substantial recent
research, existing multistable structures are generally fixed
after being fabricated, leading to a predetermined EL [7], [11],
constraining their adaptability and application scope.

Addressing this constraint, researchers have recently inves-
tigated how varying specific parameters of these structures
will influence their ELs, thereby generating different stable
configurations or dynamic responses [18]-[20]. For instance,
our previous work demonstrated a bistable mechanism consist-
ing of a flexible beam curved by a pre-tensioned spring [21].
Using flexible beams with different initial bending angles,
we realized different ELs, including symmetric bistable (SB),
asymmetric bistable (AB), and monostable (MB) landscapes.
Liu er al. investigated adjusting the EL in a soft gripper,
enabling state switching tailored to specific targets [22]. Jiang
et al. developed an electroactive soft bistable actuator with
adjustable EL. by controlling the voltages applied to the
twisted and coiled polymer fibers and manually altering the
prestretch of the elastic cords [23]. Additionally, Pal leveraged
magnetic field to adjust the force response and bistability of
a magnetoelastomeric beam and applied it to reconfigurable
mechanical signal-processing devices [24].

Despite recent progress in adjusting the EL for multistable
structures, two issues remain largely unaddressed. First, most
of the existing work, with notable exceptions [23], [24],
cannot adjust the EL on the fly. Current approaches typically
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Fig. 1. Working principle for tuning the energy landscape (EL) of a beam-based module. (A) A symmetric bistable module in its left stable, straight, and right
stable states, respectively. (B) The EL of the symmetric bistable module. (C) When 6;,, increases with L. = 17 mm, the module changes from symmetric to
asymmetric bistable and finally to monostable. (D) When L. increases with 6;, = 0, the spring’s energy profiles will scale down, changing both the energy

barriers and resting angles.

require manual alterations, such as the manual modification
of the initial lengths of spring elements [9], [12], [22], or
the manual adjustment of the initial bending angle of bistable
mechanism by changing the dimension of its bending beam
[25], [26]. It would be more advantageous if we could tune
the parameters on the fly to enhance the utility of multistable
structures. Second, there are few systematic explorations on
how to achieve the desired EL by choosing proper parameters
for the multistable structures. Instead, most existing work
predominantly conducts simulations or experiments to observe
how different parameters will influence the EL [27]-[30].

This work presents contributions that directly address these
two issues using a beam-based module with a linear spring.
The specific contributions are twofold. First, we introduce two
strategies to tune the module’s EL without manual alterations,
adjusting its performance on the fly, such as resting angles and
energy barriers. The first strategy employs a shape-morphing
beam (SMB) that can bend to and hold a desired angle to
adjust the beam’s initial bending angle. The second strategy
uses an adjustable cable driven by a motor to adjust the offset
of the linear spring. The second major contribution of this
work lies in our systematic explorations on how to achieve a

desired EL by choosing the proper parameters for those two
tunable elements. We call this the inverse problem, which is
solved based on the forward problem: predict the EL given the
parameters. By solving the inverse problem, we provide a more
guided approach to designing tunable elements for multistable
structures.

The rest of this paper is organized as follows. In Section II,
we discuss how to tune the EL of a beam-based mechanism
by adjusting the parameters of its components. In Section
III, we implement the tuning strategies on prototypes to
realize different ELs. We also address the forward problem
by establishing a model to predict the EL and conducting
experiments to validate the developed model. In Section IV,
we address the inverse problem to solve for the correct tuning
parameters which result in the desired EL for the tunable
module. In Section V, we demonstrate the wide applicability
of this tunable module with a kicker, a reconfigurable arm,
and a crawling robot. Finally, we conclude this paper.

II. WORKING PRINCIPLE FOR TUNING THE ELS

In this section, we explain how to actively tune the ELs of
modules with elastic instabilities. Without loss of generality,



we use a beam-based module with a linear spring to illustrate
the working principle. This module primarily comprises a
flexible beam and an elastomeric spring (see labels on the
right of Fig. 1A). The beam is connected to two rigid frames
(top and bottom). One end of the spring is anchored to the
top frame at point P, while the other end is connected to
an adjustable cable, which is, in turn, attached to the bottom
frame at point Q. The adjustable cable of length L. is used
to offset the extension of the spring. When the dimension and
bending angle of the flexible beam are given, increasing the
length of the adjustable cable results in a decrease in the length
or extension of the spring. The beam has a rectangular hole
at its center, allowing for the passage of both the spring and
the adjustable cable as the beam undergoes bending motions.
With an initially straight flexible beam, this module exhibits
two symmetrical stable states (SS): the left stable state (left
SS) and the right stable state (right SS), each mirroring the
other relative to the beam’s straight configuration (Fig. 1A).

To analyze the stable states, we need to consider the
module’s strain energy. The total strain energy (U) of the
module consists of two components: the strain energy of the
flexible beam (U,) and that of the spring (Us). Since the
flexible beam is long and slender, the strain energy of the bent
beam due to shear stress and compressive stress is negligible
compared with that due to normal stress. So U, mainly comes
from the bending energy of the flexible beam, while U, comes
from the spring’s extension. We can represent the total energy
U as a function of the beam’s bending angle 6

1 1
U=U,+Us = §kb(0—0m)2+§kSA2(0) (1)

where k;, is the beam’s effective bending stiffness, 6, is the
beam’s initial bending angle (6;,, = 0 for an initially straight
beam), and k; is the spring’s stiffness. A(6) represents the
spring’s extension as a function of 6, which can be expressed
as

A(f) = max(0, L(0) — L. — L;y) 2)

where L(0), varying with 0, is the distance between the two
anchoring points P and Q, L. is the length of the adjustable
cable, L;, is the spring’s nominal length. As can be seen in
Eq. (2), L. can be used to offset the extension of the spring
for a given L(#). Assuming the beam is uniformly deformed
and takes on the shape of a circular arc, L(6) is a chord PQ
corresponding to this circular arc. The radius of the arc is
expressed as R(§) = L./0, where L, is the length of the
beam. In this case, L can be obtained as a function of 6 by
the following equation
L) = 2Rsin(g) = 2% sin(g) (3)
With Eq. (1), we plot U, U, and U as functions of the
bending angle 6, represented by the black, red, and green
curves, respectively (Fig. 1B). The beam’s strain energy, U,
is a convex parabola with its vertex located at (6;,,0). The
spring’s strain energy, Uy, is symmetric about the vertical axis
6 = 0. The resulting total EL of the module, U = U, + Us,

has two local minima at ; and 6, (shown as the black squares
in Fig. 1B), indicating the left and right stable states (left SS
and right SS) of the module. The module is in equilibrium
when the bending angle 8 equals 6; or 6,., and external energy
is required to shift the module away from the stable states
(0; or 6,.). The peak of this EL (U,, shown as the black dot
in Fig. 1B), indicating the module’s maximal strain energy
and its unstable straight state, is located at # = 0. The
differences between the energy peak (U,) and energies at the
local minima (U; or U,) are termed the energy barriers (i.e.,
left energy barrier Eém. = U, — U; and right energy barrier
E},. = Up—U;). We call this configuration symmetric bistable
(SB) since the EL is bistable with two minima (6; and 6,.) and
symmetric (6, = —6;).

To transit the module from the right SS to the left SS, we
apply a force to bend the module to the left, overcoming the
right energy barrier £}, . Application of this external force
will increase the strain energy stored in the module. Once the
module surpasses the energy peak U, part of the stored strain
energy would be instantly released, resulting in a rapid snap
motion to the left SS. A similar mechanism is needed when
switching from the left to the right SS, where an appropriate
force must overcome the left energy barrier E!, . to initiate
the transition.

By tuning the EL, we can adjust the positions of the two
resting angles (6; and 6,.). If the magnitudes of §; and 6, are
adjusted to be different (|6,.| # |6]), the module is referred to
as asymmetric bistable (AB). If one resting angle disappears,
the module will become monostable (MS). Similarly, the value
of each energy barrier (Ell)ar and E} ) can also be adjusted
by tuning the EL. An increase in £y, for instance, leads to
a more rapid or forceful transition from the left to the right
SS (solid curved arrow in Fig. 1B) since a greater amount of
stored energy is released upon surpassing the energy peak U,,.
Meanwhile, this increase in Ej_ . makes it more difficult to
transit from the right to the left SS since more energy input
is required to overcome a larger Fj .

Since we have four independent tunable elements: kj, 0;,,
ks, and L. in Egs. (1) and (2), in theory, we can simultaneously
achieve all the four desired characteristics (6;, 6,, E.,. and
E},..) by choosing proper values for ky, 6;,, ks, and L.
In practice, however, it is quite challenging to concurrently
tune these four tunable elements in a tunable module. Ad-
ditionally, it is generally not necessary to achieve all four
characteristics at the same time (e.g., in some cases, only the
resting angles are required, and the energy barriers are not
critical). Therefore, in this study, we only investigate strategies
to adjust two elements on the fly, ;,, and L., to tune the EL to
achieve either two desired resting angles (indicating the stable
states of the module) or two desired energy barriers (indicating
the dynamic responses of the module). We choose to adjust
0, and L. because they are relatively easy to implement
and prove effective in achieving the desired characteristics
(implementation details are discussed in section III).

We first illustrate how adjusting the beam’s initial bending
angle (6;,) can influence the module’s EL. Since U, =



%kb(ﬁ — 0;n)?, adjusting 6;,, will influence the energy profile
of the flexible beam. Specifically, adjusting 6;,, can shift U,
horizontally since U, is a convex parabola symmetric about
vertical axis 8 = 6,,,. To illustrate this, we plot the module’s
ELs (Fig. 1C) for three different 6;,, values: 0°, 40°, and 80°,
while maintaining a constant L. at 17 mm. For these three
cases, the energy profile of the spring, U, stays the same.
However, U, will shift horizontally to the right when 6,,
increases, thus changing the module’s EL, U. When 6;,, = 0°,
the module’s EL is SB. When 6;, = 40°, the EL changes
to AB. Values of energy barriers are also changed. Compared
with the first case (6;, = 0°), E{m decreases while E}
increases. When 6;,, = 80°, the peak disappears, eliminating
the energy barriers and resulting in an MS configuration.

We then illustrate how adjusting the cable’s length (L) will
influence the module’s EL. Since A(#) = max(0, L(0) — L. —
Li,) and U, = 1k,A2(0), adjusting L. will influence the
extension of the spring, thereby affecting the energy profile of
the elastic spring. Specifically, changing L. will scale up or
down the energy profile of the spring. We plot the module’s
ELs (Fig. 1D) for three different L. values: 10, 15, and 20
mm, while maintaining a constant 6;, at 0°. For these three
cases, U, stays the same, but U, will scale down when we
increase L., thus changing the module’s EL, U. The module
is SB for each case since both Uy and U}, are symmetric about
the vertical axis (6 = 0°). In these three cases, the module with
L. = 10 mm has the largest energy barriers (E, . and EJ ).
When L. increases, the resting angles move closer to 0°, until
the energy peak of the EL (shown as the black dot) finally
disappears, and the module becomes monostable.

III. IMPLEMENTATIONS OF THE TWO TUNING STRATEGIES

In this section, we detail how we implement the tunable
module and the two tuning strategies for the beam’s initial
bending angle 6;,, and the cable’s length (L.). We also develop
a more accurate forward model to predict the module’s EL to
realize three different configurations (SB, AB, and MS) by
adjusting 6;,, and L. on the fly.

A. Design of the tunable module

The developed module is made of several parts. We use
a straight configuration of the module in Fig. 2A for a
better illustration. First, it has two shape-morphing beams
(SMBs) that can morph to and then hold another curved shape,
thereby adjusting their initial bending angles (details in the
next paragraph). One end of these SMBs is connected to a
3D-printed top frame, and the other to a 3D-printed bottom
frame, which is mounted to a fixture. An elastic spring made
from elastomers (details to be discussed later) is placed in the
middle of the two SMBs. One end of the spring is attached
to a pin on the top frame, while the other end is attached to
an adjustable cable that can be pulled or released by a DC
motor M3 (3080, Pololu Corp) placed in the bottom frame.
The fixture hosts two additional DC motors labeled as M1 and
M2 (3080, Pololu Corp) placed on each side of the module.
Actuating M1 will pull the left actuation cable to bend the

module to the left, provided that the right actuation cable is
slack. Similarly, actuating M2 can pull the right actuation cable
to bend the module to the right. The bending angle is negative
(positive) if it is bent to the left (right) by the left (right)
actuation cable. The attainable range of the bending angle 6
is ( -192°, 192°), which is determined by the collision of the
two frames. In practice, we only bend the module in the range
( -160°, 160°), to reduce the influence of permanent plastic
deformation of the bending beam. On both the top and bottom
frames, several protrusions with holes are designed to facilitate
the routing of the actuation cables.

Tuning 6;,, is accomplished through the SMBs (Fig. 2B).
Each SMB has three components: a 3D-printed beam made
from thermoplastic material polycarbonate (PC), a customized
silicone tube encasing the beam, and a resistance wire wrapped
around the tube. The beam is initially straight (i.e., 6;, = 0°,
Fig. 2A). Now we can actuate either M1 or M2 to bend the
SMBs to a desired angle ;,, to the left or right. Then, we heat
up the tubes and the PC beams by applying a constant voltage
(10 V) across the resistance wires (Fig. 2B). The silicone
tubes serve a dual purpose: they facilitate uniform heating
of the PC beams and ensure consistent bending behavior
during the bending motion. After around 200 seconds, the PC
beams reach a temperature higher than their glass transition
temperature and become soft. Then we maintain the new shape
for around 320 seconds while cooling down the SMBs until
their temperature drops below the glass transition temperature,
and the SMBs regain their rigidity. Finally we release the
actuation cables. During this tuning process, we keep the
spring slack because, with tension in the spring, the heated
beams may buckle due to the restoring force of the spring. In
this way, we can actively adjust the initial bending angle of
the module on the fly.

Tuning the length of the adjustable cable, L., is realized by
using the cable system driven by motor M3. One end of the
cable is attached to the lower end of the spring, while the other
end is attached to a capstan on the shaft of M3. The cable is
routed through a small hole in the bottom frame (see point Q
in Fig. 2C and D) to keep the effective length of the cable L
constant when the module undergoes bending motion. In this
way, we can actuate M3 to adjust the value of L. (Fig. 2C).
M3 is also used to relax the spring before tuning the initial
bending angle of the SMBs.

We choose polycarbonate (PolyMax PC, Polymaker Inc)
for the beams since it can maintain its initial shape better,
i.e., it can almost recover its initial shape after being bent by
a large angle and undergoing a large strain, compared with
other 3D printing materials (e.g., PLA, PETG, Nylon). We
design the dimension of the beam to be 0.6 x 8 x 38 mm,
and fabricate the beam through 3D printing (Prusa i3 MK3).
The customized silicone tube is molded using Dragon Skin 30
(Smooth-On Inc) with an outside dimension of 4.5 x 11 x 38
mm. A dedicated mold for curing the silicone tube is printed
with a FDM printer (Prusa i3 MK3). A beam with the same
dimension as those used in the SMBs is inserted to the center
of the mold to realize the rectangular hole in the cured silicone
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model.

tube. After inserting the PC beam to the cured silicone tube, a
resistance wire (RW0332, TEMCo Inc) with a resistance of 9
Q is wrapped outside the tube to complete the fabrication of
an SMB. The elastic spring is also molded using Dragon Skin
30 because it can withstand a large tensile strain. We choose
the spring’s dimension to be 4 x 2.4 x 32 mm. We select the
specific dimensions for the beam and the spring such that their
strain energies during the bending process are approximately
within the same range.

B. Forward problem: predict the tunable module’s EL

With the detailed design, we now establish a more accurate
mathematical model for the EL to investigate how tunable
elements 6;,, and L. will influence the module’s EL (i.e.,
resting angles or energy barriers). Specifically, we want to
solve the forward problem: given the values for 6;, and L.,
predict the module’s EL.

In the implemented module, the total strain energy has three
parts: the strain energies from the tubes Uy, the beams U, and
the spring Us.

U(6) = Uy + Uy + U,

:2x%h¥+2x%mwgﬂmf+%mA%® @
where k; is the effective bending stiffness of the two tubes,
and other parameters are the same as in Eq. (1). Note that
U, = %ktﬂz because the initial angle of both tubes is always
zero, regardless of the value of 6,,. Now, since there exists
a distance (L. in Fig. 2D) between the end of the bending

beam and the spring’s attaching point (P or Q), Eq. (3) does

not hold anymore. Based on the geometry shown in Fig. 2D,
we have the following equation to relate L and 6.

. (5)
9L, + Ly, if 9=0

Mw{mﬂm§+axifeepwmﬂumm
where | = /L2 + L?/02, L; is the length of the tube, a =
arctan(|0|L./L:). Egs. (4) and (5) can be used to predict the
EL of a tunable module given the values of the two tuning
parameters 6;, and L.

We can obtain the derivative of L(6#) with respect to 6 as
10| 10|

sin(; +a)+ lcos(?

o
e

for the special case of § =0, L'(f) = 0.

The configuration of the module (i.e., SB, AB, or MS) can
be determined by examining the derivative of U with respect
to 6. Specifically, if the equation

2L, Ly

L'(6) = )

+a)(1+

U'9)=0 (6)
has three solutions 6, 62, and 63, U(#) would have three
extrema (one maximum point at 6 and two minimum point
at #; and 63), indicating the module is bistable. The maximum
and minima represent the energy peak and stable states,
respectively, as shown by the black dots and squares in Fig.
1B-D. Further, the module is SB or AB if the magnitudes of
the two minima are the same or different. If Eq. (6) has one
solution, then U(f) has one minimum, indicating the module
is MS. If Eq. (6) has two solutions, U() is transitioning
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its stable states.

between bistable and monostable (the maximum point 6 and
one minimum 6y or f3 are merged).
Carrying out the derivative, we have

U'(0) = 2ki0 + 2Ky (0 — 03n) + EA(O)L'(0) =0 (7)

where A(0) = max(0, L(0) — L. — L;p).

A MATLAB script is developed to numerically solve Eq.
(6) using the built-in fmincon function to obtain the bending
angles (01, 62, and 03) corresponding to the maximum and
minimum points on the energy landscapes (black dots and
squares in Fig. 1B-D). Based on these obtained bending
angles, the energy peak, minimum energies at stable states,
and energy barriers can be calculated using Eq. (4). In this
way, the forward model can be used to both predict the EL of
a module and solve for its resting angles and energy barriers.

To gain insights on how 6;, and L. will influence the
module’s behavior, we use Eq. (6) to plot the bistable and
monostable regions in Fig. 3A. For this analysis, we exper-
imentally obtain the values of parameters k;, = 1.620 mlJ,
kp = 8.296 mJ, and ks = 0.1518 mJ/mm? (detailed procedures
can be found in the supplementary material). We have also
limited the range of 6;, to (—m, ) and L. to (8, 40). We
choose this range for L. because if L. is too small, the spring
force of the module around its straight shape would be very
large, leading to the buckling of the beam during the transition.
A thorough discussion on the buckling behavior of flexible
beams can be found in [31]. If L. is too large (e.g., 48 mm),
then the spring will always be slack, and the module is always
monostable.

In Fig. 3A, we see that all the regions are symmetric about
the axis 0, = 0. The SB configuration is only possible
when 6;, = 0 and L, < 36.1 mm. When 6;, = 0 and
36.1 < L. < 40 mm (the spring’s energy will decrease
if L. increases, see Fig. 1D), the spring’s energy profile is
insufficient to result in a maximum in the module’s EL. So,
the module is also monostable. For a given value of L. < 36.1
mm, the module will go from bistable to monostable when
the magnitude of 6;, increases, as indicated by Fig. 1C. At
the boundary between bistability and monostability (i.e., the

transition between bistable and monostable ELs), Eq. (6) has
two solutions. The magnitude of 0, at this boundary increases
when L. decreases. This is because, as shown in Fig. 1C, if
the green curve is higher (corresponding to lower L.), the
red curve needs to shift more (corresponding to larger 6,,,)
horizontally to transition the module’s EL from bistable to
monostable. Based on the results in Fig. 3A, we can choose
specific values for 6;,, and L. of the prototype to enable three
different configurations of the EL: SB, AB, and MS.

To validate the model we have developed so that we can use
it for the inverse problem in the next section, we experimen-
tally obtain the ELs of modules with different configurations
(SB, AB, and MS) and compare them with the predicted
ELs. We conducted experiments on the same module with
different 6;,, and the same L. = 20 mm. These correspond to
three different configurations: SB, AB, and MS, respectively.
Since it is difficult to directly measure the strain energy, we
derive the strain energy through bending tests of the module
(detailed experimental procedures for these tests can be found
in the supplementary material) to obtain the force on the
actuation cable and displacement of the actuation cable. Then
we calculate the strain energy through discrete integration of
the force on the cable over displacement of the cable. For this
discrete integration, we choose the initial condition (i.e., the
initial energy) as the strain energy at the left stable state (or
the right stable state for a monostable module) which can be
calculated using Eq. (4).

For each module, the bending test is repeated three times
to obtain three ELs. Both experimental and predicted ELs are
plotted in Fig. 3B, where the dotted and solid curves are the
experimental and predicted ELs, respectively. Shaded regions
around the dotted curves show the standard deviations of the
measurements. From this figure, we can see that the strain
energy model matches reasonably well with the experimental
results with an average error of 6.61 mJ and average standard
deviation of 8.87mJ. The experimental energies are greater
than the predicted ones, possibly because of the friction force
between the actuation cables and the silicone tubes. Four
images representing typical stable states of the tunable module



are illustrated in Fig. 3C.

IV. INVERSE PROBLEM: OBTAIN DESIRED EL USING THE
Two TUNING STRATEGIES

Using the two tuning strategies, a more interesting problem
is to achieve a desired EL. Though the most general case
is to achieve precisely the same desired EL (i.e., the exact
curve of the EL) for a tunable module, the most important
characteristics for the EL are the resting angles (6;, 6,.) and
the energy barriers (E!, ., and EJ_ ). Ideally, we can achieve
both the desired resting angles and desired energy barriers at
the same time by tuning the four elements (ky, 6;,, ks, and L)
concurrently. However, we only implemented two independent
strategies to adjust 6;,, and L. on the fly as discussed in section
III. Therefore, in this section, we aim to solve the simplified
tuning problem: given desired resting angles (6; and 6,.) or
energy barriers (Ellmr and Ej_ ), solve for the values of 6,
and L.. We call this the inverse problem for tuning as opposed
to the forward problem discussed in section III-B. We also
validate the solution by implementing the two tuning strategies
on a prototype and comparing the resulting resting angles (or
energy barriers) with the desired ones.

A. Feasible regions of the resting angles or energy barriers

Before trying to realize the desired resting angles or energy
barriers, it’s necessary to first obtain the feasible regions for
them so that we can choose the desired values in these regions.
We first discuss the feasible region for the resting angles,
which can be categorized into two cases: when the module is
bistable, find the region for two variables 6; and 6,., whereas
when the module is monostable, only the region for one
variable needs to be determined.

When the module is bistable, the feasible region of resting
angles 6; and 6, depends on two conditions: ranges of the
tunable parameters (6;,, and L.) and bistability of the module.
We look at these two conditions to determine the values for 6;,,
and L, corresponding to the boundaries of the feasible region.
Using the forward model developed in section III-B, we can
obtain #; and 6, resulting from those tuning parameters 6;,
and L.. Then 0; and 6, are plotted in a 2-dimensional figure
to show the boundaries of the feasible region.

For the first condition, we can generate three boundaries:
D, @, and Q) in Fig. 4A based on the ranges of tunable
parameters.

curve ()
curve (2):
curve (3):

For instance, for the range described by Eq. (8), we take
sample sets (e.g., 0;, = 7/4 and L. = 8 mm) from this
range and use Eq. (6) to determine if the module for a certain
sample set of ;, and L. is bistable or not. If bistable, we
record the corresponding #; and 6,. for that sample set using the
forward model. Plotting the resting angles for all the sample
sets, we obtain boundary (I). The ranges described by Eq. (9)

L.=8,—7<lp,<m ®)
0, = —7,8 < L. < 40 )
0, = m,8 < L. <40 (10)

and (10) are utilized in a similar manner to get boundaries 2)
and Q). When L. = 40, the module is always monostable,
so this upper bound of L. is irrelevant in Fig. 4A. For the
second condition, we can generate two boundaries (@) and
®) in Fig. 4A), corresponding to the transition of the module
from bistability to monostability, which occurs when Eq. (6)
has just two solutions (see the supplementary material for the
detailed procedure to obtain boundaries @) and (5)). These two
sets of boundaries form a closed region (the blue region in
Fig. 4A), inside which the input variables 6;,, € (—7, 7) and
L. € (8, 40) and the module will be bistable. In other words,
we can realize any values for §; and 6, inside this region by
choosing proper values of 0;,, and L. Curve 6 is plotted here
to show the SB configurations.

When the module is monostable, we can only obtain the
region for one resting angle. In this case, we use 6; (or 6,.) to
designate the resting angle of the module if it is negative (or
nonnegative). Curves (7) (representing 6;) and (8) (representing
0,) are also determined by the two conditions mentioned
above. It can be seen that the region of §; (or 6,.) extends
from O to the resting angle resulting from tunable parameters
0;,, = —m (or w) and L., when the module transitions from
bistable to monostable.

We then try to get the feasible region for the energy barriers
El.. and E7 . When the module is bistable, similar to
the case of resting angles, the feasible region of E} . and
Ej . also depends on two conditions: ranges of the tunable
parameters (0, and L.) and bistability of the module. As
shown in Fig. 4B, the feasible region of E}, and EJ, . is
enclosed by two sets of boundaries: one (D, @), and ()
determined by the ranges of the tunable parameters (#;,, and
L.) and the other (@ and (5)) determined by the transition
of the module between bistable and monostable states. Curve
®) is also plotted here to show the SB configurations. Note
that for monostable configurations, the energy barrier does not
exist. Additionally, boundaries @) and () in Fig. 4B lie on
the horizontal and vertical axes, respectively, since one energy
barrier is O when the module transitions between bistable and
monostable states.

B. Obtain desired resting angles or energy barriers

After identifying the feasible regions for the resting angles
and energy barriers, we can solve the inverse problem: given
desired resting angles (; and 6,.) or energy barriers (E,,,. and
E,,,) from the closed regions shown in Fig. 4, solve for the
corresponding tuning parameters 6;, and L.

First we investigate the inverse problem for tuning the
resting angles. When a module is at a resting angle, the
derivative of its strain energy with respect to the bending angle
is 0. So the desired resting angles #; and 6, must both satisfy
Eq. (6), leading to the following two equations with 6;,, and
L. being the unknowns.

(ks —+ kb)gl — kpOin + ksmax((), L(?l) —L.— Lln)L/(gl) =0

(ks + kb)gr - kbein + ksmaX(O, L(g7) - Lc - LG)L/(gT) =0
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Egs. (IV-B) and (IV-B) can be solved to determine the values
of the tuning parameters 6;,, and L.. In this case, if we tune
the module to have the solved 6;,, and L., ideally, the resting
angles of the resulting module should be #; and 6,.

To validate the inverse solution obtained thorough Egs.
(IV-B) and (IV-B), we choose 12 sets of specific values for
0, and 0, in the closed region in Fig. 4 (detailed values
are provided in the supplementary material). Since the closed
region is symmetric about curve (6), we just choose points on
one side of the curve. For each set (shown as red dots in Fig.
4), we plug in values of 0; and 0,. to Eqs. (IV-B) and (IV-B) to
solve for the corresponding tuning parameters 6;,, and L. and
then implement them on the prototype using the two tuning
strategies. Finally, we measure the resulting resting angles and
compare them with the desired ones 0; and 0,.. The results are
shown in Fig. 4, where the red and green dots represent the
desired and the measured resting angles, respectively. For each
set, a red line is used to connect the measured to the desired
value. It can be seen that they match well with a mean error
of 8.2 degrees and a standard deviation of 3.5 degrees. The
error may be caused by the viscoelastic behavior and plastic
deformation of the bending beams, as well as the deformation
of the silicone tubes under high temperatures. For the case
with ; = —45° and 0, = 35°, the resulted prototype becomes
monostable after tuning, instead of bistable as expected. We
believe this is because the imperfect behaviors of the bending
beams and tubes overwhelm the small energy barrier of the
prototype.

For the monostable case, we have only one resting angle (6,
or ,) and one valid constraint equation (Eq. (IV-B) or (IV-B))
to solve for 6;, and L.. With only one equation, we can still
realize the given resting angle 6; (or 6,.) by first choosing a
specific value for L. and then solving for 6;,, using Eq. (IV-B)
(or Eq. (IV-B)) based on the chosen L..
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For the inverse problem for tuning the energy barriers,
there are no simple linear equations similar to Egs. (IV-B)
and (IV-B). Instead, simplex search optimization method is
used to solve for the values of the tuning parameters 6;,
and L. given the desired energy barriers EZM and E,,,.
The objective function used in the optimization is the error
between the desired energy barriers and that resulting from the
tuning parameters 60;, and L.. We also conduct experiments
to validate the inverse solution for energy barriers obtained
through the optimization method. We also choose 12 sets of
specific values for E,,. and Ezar in the closed region in
Fig. 4B. Following a procedure similar to that for the resting
angles, we implement the two tuning strategies on a prototype
and compare the desired and measured energy barriers. Red
and green dots represent the desired and measured energy
barriers, respectively. As shown in Fig. 4B, they match well
with a mean error of 9.7 mJ and a standard deviation of 4.5
mlJ. It can be seen that for each set, the measured values
are predominantly situated to the upper left of the desired
values. This may be attributed to the permanent deformation
of the silicone tubes caused by high temperatures when
implementing the tuning strategies.

V. APPLICATIONS

In this section, we employ the tunable modules for three
different applications to demonstrate the utility of tuning EL
on the fly.

A. An adjustable kicker with a single tunable module

We first demonstrate a single tunable module as a kicker that
can change its kicking power by adjusting its energy barrier.
The tunable module’s bottom frame is fixed, while its top
frame kicks a toy car on its trajectory during its transition
motion. It is initially in its right resting shape. The toy car
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Fig. 5. A kicker based on a single tunable module has adjustable kicking
power. (A) When 6;, = —7/4 and L. = 10 mm, the toy car travels by 251
mm. (B) When 6;,, = —7/8 and L. = 18 mm, the car travels by 124 mm.

is placed inside a sloped track to constrain its motion. As
shown in the supplementary video and Fig. 5A, we first let
the module have 6;, = —7/4 and L. = 10 mm, which results
in a left energy barrier of E} = 77.2 mJ. If we actuate
the left cable, the module would first gradually move to the
left. Subsequently, upon surpassing the energy peak, it would
swiftly release part of its stored strain energy and collide with
the toy car during its transition motion. The collision would
make the toy car proceed along the sloped track. In this case,
the toy car travels a distance of 254 mm. Then, if we want
to decrease the traveling distance to approximately half of its
current value, we can tune the initial bending angle and the
cable length of the tunable module to 6;,, = —7/8, L. = 18
mm, respectively. This tuning will generate an energy barrier
of E! . = 35.0 mJ, approximately half of the previous energy
barrier. After tuning, we repeat the experiment and find the
toy car travels a distance of 124 mm (Fig. 5B), also about
half of the previous travel distance.

B. A reconfigurable arm with two tunable modules

We then connect two modules in series to realize a reconfig-
urable arm, which can change its resting shapes by employing
the two tuning strategies individually. As shown in Fig. 6A,
each module of the arm has its own motor controlling its cable
length, L., respectively, but they share the same side motors
at the base for actuation. To do this, we route a single cable in
a closed loop on each side of the arm. The arm can generate
different final shapes by adjusting the resting shapes of both
modules independently. Without loss of generality, we show
six typical shapes in the arm’s workspace.

The first shape is a straight one (Fig. 6A), which can
be realized by making actuation cables on both sides and
adjustable cables on both modules slack. For the second shape,
the first module bends left, while the second is straight (Fig.
6B). To generate this shape, we tune the first module to be
monostable, with its left resting angle being 6! = —40°. We
achieve this resting angle by tuning the first module’s initial
bending angle to 6} = —62.2°. Its adjustable cable is slack.

second
module

A i

W

first
module

fixture =

Fig. 6. A reconfigurable arm consisting of two modules connected in series
can generate different final shapes under the same actuation. Yellow and green
texts are for the first and second modules, respectively. The arm is connected
to a fixture via the bottom frame of the first module. (A)-(F) are six typical
shapes of the arm. (G) Following one route would make the arm collide with
an obstacle. (H) and (I) are two sequential images of the arm following another
route to avoid colliding with the obstacle.

Shapes C, D, and E share the same initial bending angles
and cable lengths for each module. It means the tuning strate-
gies are not required to reconfigure between these three shapes.
The first module is AB with ! = —120° and 9,1« = 60°, while
the second module is SB with 67 = —90° and 62 = 90°. As
discussed in IV, we can solve for the corresponding values of
tuning parameters 6;, and L. for each module via the inverse
process of tuning: 0}, = —88.4°, L! = 13.4 mm, 62, = 0°,
L? = 21.2 mm. In shape C (Fig. 6C), the second module
has a smaller left energy barrier than the first module. When
we actuate the right actuation cable, the second module will
transition first (from left to right resting shape) while the first
module stays around its left resting shape. In this way, we
obtain shape D (Fig. 6D). If we pull the right actuation cable
further, the first module will also transition to its right resting
shape to generate shape E (Fig. 6E). Under the actuation of
the right cable, the reconfigurable arm changes from shape C
to E through shape D.

By implementing the tuning strategies, we can also make the



first module transition first, thus the arm changes from shape
C to shape E through another intermediate shape F (Fig. 6F).
To do this, we reduce the value of Lf from 21.2 mm to 12 mm
to increase the left energy barrier of the second module and
increase the value of L! from 13.4mm to 21.4 mm to decrease
the left energy barrier of the first module. In this way, the first
module would transition first when the right actuation cable
is pulled, followed by the second module.

Changing the transition sequence (i.e., which module transi-
tions first) can be useful in practical applications. For instance,
it can be used to adjust the arm’s trajectory to avoid collision
with an obstacle (see the supplementary video). As shown in
Fig. 6G, both modules are initially in their left resting shapes.
We want to transition the arm to another shape where both
modules are in their right resting shapes without colliding
with the yellow cylinder obstacle. Following the first route
mentioned above (from shape C through D to E) would make
the second module collide with the obstacle. Following the
latter route (from shape C through F to E) would successfully
make the arm finish the transition without colliding with the
obstacle. Two intermediate pictures of the arm during this
transition are shown in Fig. 6H and 1.

C. A reconfigurable crawling robot

We further develop a crawling robot to demonstrate that
the tuning strategies can be used to change its locomotion
direction (see the supplementary video). The robot is made
from two modules connected in series, similar to the recon-
figurable arm. It has a 3D-printed directional foot on each
module (Fig. 7A). The foot on the first and second module is
used for the backward and forward locomotion, respectively.
To crawl forward, we let the first module maintain its left
resting shape while the second module is bent upward by
the right actuation cable and downward by the left actuation
cable repeatedly (Fig. 7B). We tune the second module with
6? = —30° and L? = 25 mm, which result in energy barriers
of E|,, =225 mJ and EJ,, = 0.7 mJ. We tune the first
module with 6}, = —90° and L! = 15 mm, which result
in a left energy barrier of Eéar = 91.5 mJ. Both energy
barriers of the second module are much smaller than the left
energy barrier of the first module. This ensures that when we
alternatively actuate the two actuation cables, the first module
stays around its left resting shape, while the second module
can switch between its two stable states. In this way, the
directional foot on the second module can make the robot
crawl forward, while the foot on the first module does not
touch the ground.

We can change the robot’s locomotion direction by tuning
the modules’ parameters on the fly. To realize the backward
crawling (Fig. 7C), we first move the foot on the second
module away from the ground by switching the second module
to its right resting shape. Now, the foot on the first module
will touch the ground. We then tune the second module with
62, =90° and L? = 8 mm, resulting in a right energy barrier
of 161.2 mJ. We also tune the first module with 6} = —30°

and L! = 25, which results in energy barriers of B}, = 22.5

mJ and Ej, = 0.7 mJ. Both energy barriers of the first
module are much smaller than the right energy barrier of
the second module. This ensures that when we alternatively
actuate the two actuation cables, the second module stays
around its right resting shape, while the first module will
switch between its two stable states. In this way, the directional
foot on the first module would make the robot crawl backward.

second
module
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t=0s
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: t=5.0s

crawl forward
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t=239s
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Fig. 7. Using the tuning strategy to change the locomotion direction of the
crawling robot. (A) To realize the crawling locomotion, two feet capable of
directional friction force are attached to the top frame of each module. (B)
Some sequential images of the robot crawling forward. (C) Some Sequential
images of the robot crawling backward.

VI. CONCLUSION

In this study, we present methods to tune the energy
landscape (EL) for a beam-based module with elastic insta-
bilities on the fly without manual alterations. The two tuning
strategies we developed — adjusting the beam’s initial bending
angle and varying the offset of the spring’s extension — have
proven effective in manipulating the EL, as evidenced by our
forward model and its subsequent experimental validation. We
have also successfully solved the inverse problem to obtain
desired resting angles or energy barriers through the two
tuning strategies. We also illustrate the practical applications
of tuning through the successful deployment of the tunable
module in three different scenarios: as a kicker to impart
different energies to an object, as a reconfigurable arm that
can reconfigure its resting shape, and as a crawling robot that
can crawl in both directions using the same actuation. Our
method may pave the way for future development in advanced
robotic and mechatronic systems, leveraging the unique capa-



bilities of multistable structures for enhanced performance and
versatility.
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