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TopoRoot+: computing whorl and soil line 2
traits of field-excavated maize roots from CT
imaging
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Abstract

Background The use of 3D imaging techniques, such as X-ray CT, in root phenotyping has become more
widespread in recent years. However, due to the complexity of the root structure, analyzing the resulting 3D volumes
to obtain detailed architectural root traits remains a challenging computational problem. When it comes to image-
based phenotyping of excavated maize root crowns, two types of root features that are notably missing from existing
methods are the whorls and soil line. Whorls refer to the distinct areas located at the base of each stem node from
which roots sprout in a circular pattern (Liu S, Barrow CS, Hanlon M, Lynch JP, Bucksch A. Dirt/3D: 3D root phenotyping
for field-grown maize (zea mays). Plant Physiol. 2021;187(2):739-57. https://doi.org/10.1093/plphys/kiab311.). The soil
line is where the root stem meets the ground. Knowledge of these features would give biologists deeper insights into
the root system architecture (RSA) and the below- and above-ground root properties.

Results We developed TopoRoot+, a computational pipeline that produces architectural traits from 3D X-ray CT
volumes of excavated maize root crowns. Building upon the TopoRoot software (Zeng D, Li M, Jiang N, Ju 'Y, Schreiber
H, Chambers E, et al. Toporoot: A method for computing hierarchy and fine-grained traits of maize roots from 3D
imaging. Plant Methods. 2021;17(1). https.//doi.org/10.1186/513007-021-00829-z.) for computing fine-grained root
traits, TopoRoot +adds the capability to detect whorls, identify nodal roots at each whorl, and compute the soil line
location. The new algorithms in TopoRoot + offer an additional set of fine-grained traits beyond those provided by
TopoRoot. The addition includes internode distances, root traits at every hierarchy level associated with a whorl, and
root traits specific to above or below the ground. TopoRoot +is validated on a diverse collection of field-grown maize
root crowns consisting of nine genotypes and spanning across three years. TopoRoot +runs in minutes for a typical
volume size of 4003 on a desktop workstation. Our software and test dataset are freely distributed on Github.

Conclusions TopoRoot+advances the state-of-the-art in image-based phenotyping of excavated maize root crowns
by offering more detailed architectural traits related to whorls and soil lines. The efficiency of TopoRoot + makes it
well-suited for high-throughput image-based root phenotyping.
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Introduction

Roots offer key services to both the plant and the envi-
ronment. They provide anchorage for the plant, extract
water and nutrients from the soil, and sequester car-
bon from the atmosphere. The root system architecture
(RSA), which describes the hierarchical organization of
roots, has profound implications on how well roots per-
form these services [1-3]. Quantifying the RSA is thus
critical for understanding root functions and for promot-
ing plant growth and crop productivity [2, 4].

Unlike the above-ground part of the plant, the poor
accessibility of roots makes them a much more chal-
lenging target for phenotyping. The traditional approach
of manually measuring root traits after excavation and
root washing suffers from long processing times, pos-
sible human errors, and a limited set of traits that can be
measured by hand. To improve efficiency, as well as the
objectivity and veracity of root traits, modern phenotyp-
ing methods have resorted to imaging and computational
processing. Earlier methods often rely on two-dimen-
sional images of roots [5—8]. While such images are usu-
ally easy to obtain, these methods cannot fully capture
the 3D shape and organization of roots [9]. As a result,
a growing body of research utilizes 3D imaging tech-
nologies, such as X-ray CT, MRI, and multi-view optical
imaging, to more accurately quantify the RSA [10-13].

Computational analysis of root traits from 3D imaging
is a non-trivial task, due to the complex branching struc-
ture of a root system and the inherent ambiguity in the
image data [9, 14]. Methods analyzing 3D root images
commonly produce overall traits such as volume, depth,
total root length and number [15-18]. These coarse-
grained traits, however, do not capture the detailed

A: Input CT volume

B: Binary segmentation
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H: Computing traits (modified) G: Soil line detection (new)
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organization and geometry of individual roots. More
recently, several software packages have emerged that
are capable of analyzing fine-grained root traits using
X-ray CT imaging [19, 20] and optical imaging [21-23].
These methods can identify individual roots, measure
their geometry (e.g., diameter, length, angle, tortuosity),
and recover their spatial and hierarchical organization
(e.g., junctions and lateral root orders). Some of these
methods, such as DynamicRoots [21] and 4DRoot [20],
can further produce dynamic growth traits by registering
multiple samples across time.

For nodal root systems (e.g., maize), a notable miss-
ing component in the traits computed by existing fine-
grained phenotyping methods is the identification of
whorls. Whorls are discrete locations at the base of each
stem node where so-called “nodal” roots emerge cir-
cumferentially [22]. The number and location of whorls,
and their associated nodal roots, are important traits for
understanding genetic and functional variation of root
system architecture [24]. However, identifying the pre-
cise locations of whorls from 3D images is far from a
trivial task. First, as roots often cling to the stem, and due
to the limited resolution of imaging, it can be difficult to
locate the starting point of each nodal root (see Fig. 1A).
Second, as the roots become denser around older (and
deeper) whorls, these whorls are harder to detect. The
only method we are aware of that produces whorl traits
is DIRT/3D [22]. This method tracks the emergence of
nodal roots from the top of the stem using a level-set
method. However, as this method is designed for optical
imaging, the occlusion of the roots prevents the method
from reliably detecting whorls beyond the top few (usu-
ally 2).

C: Skeletonization D: Whorl detection (new)

F: Computing hierarchy

E: Cycle breaking

Fig. 1 The TopoRoot+ pipeline for phenotyping excavated maize root crowns from CT images. Given an input 3D image (A), the pipeline computes a
binary segmentation (B), extracts a curve skeleton (C, colored by thickness), detects whorls on the root stem (D), removes cycles on the skeleton (E), com-
putes the hierarchical labels of skeleton branches (F, colored by labels), detects the soil line (G, red plane), and finally computes root traits (H, above- and
below-ground nodal roots are colored in red and blue). The boxed steps are either new in TopoRoot+ or modified from the original TopoRoot pipeline
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A related root trait, also missing from existing works,
is the location of the soil line on field-excavated root
crowns. The soil line separates the above-ground por-
tion of the root stem from the below-ground part, and it
enables the computation of traits specific to each portion.
This is important because while both above- and below-
ground roots make contributions to plant architecture,
only below-ground roots make contributions to water
and nutrient absorption. Furthermore, this distinction
allows for explicit quantification of root length density
(the length of roots per volume of soil below-ground),
which is considered to be one of the most valuable root
functional traits. However, the location of soil line is far
from being obvious after the roots are excavated, washed,
and imaged.

In this paper, we propose a new method for identify-
ing whorls and soil lines in X-ray CT images of field-
excavated maize crowns, and for computing related
fine-grained root traits. Our method, called TopoRoot+,
is built on the recent TopoRoot pipeline [19]. TopoRoot
employs topological simplification and skeletonization to
produce a complete hierarchy of roots from CT images of
maize crowns. TopoRoot+augments TopoRoot by adding
two new modules, one for detecting locations of whorls
and their associated nodal roots, and another for com-
puting the soil lines, both via the analysis of the skeleton
representation of the root crown. These new modules not
only enrich the root hierarchy with whorls and the soil
line position, but also add new traits including internode
distances, root counts, geometry, and hierarchy levels at
each whorl, and aggregated traits for the below-ground
or above-ground part of the root crown.

We validated a subset of the new traits computed by
TopoRoot+ (internode distances, nodal root count by
whorls, soil line location and above/below-ground nodal
root counts) against manual measurements on 133 field-
excavated maize root crowns imaged using X-ray CT.
The samples include nine genotypes and were grown in
three separate years. Our experiments showed that the
internode distances computed by TopoRoot+achieved
an 11.6% error for the youngest internode distance and
15.5% cumulative error for all internode distances. The
computed nodal root counts have 84.3%, 75.6% and 73.0%
correlation at the 1st, 2nd and 3rd youngest whorls.
Finally, the computed soil line locations are 92% accu-
rate within 1 cm and 72% accurate within 5 mm from the
actual soil line.

The TopoRoot+ pipeline runs within minutes on a typi-
cal volume of size 4()(3 on a standard desktop server, add-
ing just seconds of extra time on top of TopoRoot. The
efficiency of TopoRoot+makes it ideal for batch process-
ing of excavated maize root images in a high-through-
put analysis pipeline. The software is freely distributed
on GitHub with the complete set of test data used in
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this paper. The distribution also includes an interactive
graphical interface for viewing and editing root hierarchy,
whorls, and soil lines.

Methods

Overview

Our method is built upon TopoRoot [19], a phenotyp-
ing pipeline designed for field-grown maize root crowns.
Given an X-ray CT scan of an excavated root crown after
root washing, TopoRoot produces a root hierarchy and
fine-grained traits. However, TopoRoot does not detect
whorls or the soil line, and hence it does not produce
traits specific to whorls (e.g., internode distances, num-
ber of nodal roots per whorl, etc.) or the soil line (e.g.,
number of above- and below-ground nodal roots). This
deficiency is addressed by our new work.

The original TopoRoot pipeline proceeds as follows.
First, a binary segmentation of the root crown is com-
puted from the input grayscale volume (Fig. 2B). This seg-
mentation maximally removes topological noises, such as
islands, cavities, and handles, that arise due to the limited
resolution and contrast of CT imaging. Second, a curve
skeleton that captures the root branches, equipped with
the thickness of a branch at each skeleton vertex, is com-
puted from the segmentation (Fig. 2C, colored by thick-
ness). The skeleton captures both the connectivity and
geometry of individual roots. Third, cycles on the skel-
eton (as a result of the remaining topological noise in the
binary segmentation) are removed using a minimal span-
ning tree (Fig. 2E). Fourth, the hierarchy labels (e.g., 0 for
stem, 1 for nodal roots, 2 for first-order lateral roots, etc.)
are computed for each skeleton branch (Fig. 2F, colored
by hierarchy label). Finally, a suite of root traits is com-
puted based on the hierarchical labels and the geometry
of the skeleton branches. These traits include both aggre-
gate measures, such as total root number and root length,
and fine-grained measures, such as the number, length,
tortuosity, and angles of roots at each hierarchy level.

We augment the TopoRoot pipeline with two new
steps, one for detecting whorls (Fig. 2D) and another for
detecting the soil line (Fig. 2G). Specifically, the whorl-
detection step succeeds the skeletonization step and
leverages the skeleton structure to identify clusters of
nodal roots that emerge from the stem. The soil-line-
detection step takes place after the computation of hier-
archy and relies on analyzing the density of lateral roots
(with label greater than 1). We also modified the trait-
computation step to compute additional traits pertain-
ing to whorls and the soil line (Fig. 2H). The augmented
pipeline, which we call TopoRoot+, is illustrated in Fig. 2.
Next, we detail the new and modified steps in their order
in the pipeline.
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Fig. 2 Left: nodal roots clinging to the stem (A, highlighted in red box) result in spurious skeleton curves connected to the stem path (B, thick curve is
stem path). Top right: schematic illustration of an emerging nodal root (C) and a nodal root touching the stem (D), showing the root shape (black) and
skeleton (blue). Bottom right (E): an example of a candidate path (blue) and its simplified path (red) with symbols used in the scoring function

Whorl detection

The skeletonization step in TopoRoot produces a skel-
eton of the root crown that captures individual roots as
skeleton curves. It also identifies the skeleton curve rep-
resenting the root stem, called the stem path, by analyz-
ing the thickness measures associated with the skeleton
vertices (based on the observation that the maize root
stem is usually thicker than the nodal or lateral roots).
Ideally, each skeleton curve that branches off the stem
path should represent a nodal root, and a collection of
such curves whose branching points are nearby on the
stem path should correspond to a whorl. In reality, how-
ever, not all skeleton curves that emerge from the stem
path represent nodal roots. This happens, for example,
when nodal roots (particularly those above the ground)
have a steep growth angle toward the gravity vector and
“cling” to the stem (see Fig. 1A), resulting in spurious
skeleton curves connecting the nodal roots with the stem
(see Fig. 1B). Drying during sample preparation can exac-
erbate this phenomenon. If left untreated, these spurious
connections on the stem path would result in false-posi-
tive detection of whorls that do not exist.

We develop a method to distinguish between skeleton
curves branching off the stem path that represent nodal
roots from those that do not. The key observation is
that a skeleton curve representing a nodal root usually
bends smoothly under gravity (Fig. 1C), whereas a skel-
eton curve representing a false connection tends to bend
sharply near the boundary of the stem, in order to join
the skeleton curve that represents the nodal root clinging
to the stem (Fig. 1D). In the following, we use this obser-
vation to score each skeleton curve’s likelihood of repre-
senting a nodal root.

We consider a skeleton vertex as inside the stem if its
distance to the nearest (in terms of Euclidean metric)
vertex ¢ on the stem path is no more than 1.2 times the
thickness measure at ¢, denoted by r,. Recall this mea-
sure, which captures the thickness of the branch in which
the skeleton vertex lies, was available after the skeletoni-
zation step of TopoRoot (Fig. 2C). A skeleton edge is con-
sidered on the stem boundary if one of its two vertices is
inside the stem and the other is not. We call a skeleton
curve a candidate path if it is the shortest path on the
skeleton that connects a vertex on the stem path with a
skeleton edge on the stem boundary.

Candidate paths are found by employing the classical
Dijkstra’s algorithm [25]. Given an edge-weighted undi-
rected graph GG and a vertex ¢ in (G, this algorithm finds
the shortest paths, where the length is measured by the
sum of edge weights on the path, from ¢ to every other
vertex in G . Starting from v, the algorithm constructs
a tree of shortest paths (known as the shortest-path tree)
by iteratively adding a vertex with the currently shortest
path from y. In our method, for each junction vertex y
on the stem path, we use Dijkstra’s algorithm to compute
the shortest paths from ¢ to all skeleton vertices inside
the stem that are incident to some skeleton edge on the
stem boundary (whenever such path exists). Here, the
weight of a skeleton edge is its length. We consider edges
on the stem path, as well as edges whose vertices are both
outside the stem, to have infinite weight to avoid paths
using those edges. Each found shortest path becomes a
candidate path after adding the skeleton edge on the stem
boundary that is incident to the last vertex of the path.

Note that a candidate path may have a jagged geometry
due to imaging noise and the skeletonization process,
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which could have a significant impact on the score. As a
result, we first simplify the path using the Ramer-Doug-
las-Peucker (RDP) algorithm. Given an input polyline
P and a distance threshold ?, the RDP algorithm uses a
greedy heuristic to find a polyline with the least number
of vertices whose maximum distance to P is no more
than ?. Starting from a straight segment connecting the
two ends of P, the heuristic finds the point y of P fur-
thest to the segment. If the distance from ¢ to the seg-
ment is above ?, v is inserted into the segment to form
a better approximation of P. The point y divides P
into two shorter polylines, and the heuristic proceeds
recursively on each. When applying RDP to simplify a
candidate path, we always perform the first step of the
algorithm (adding the furthest point in P to the straight
segment connecting the two ends of P) to ensure that
the simplified path contains at least three vertices. This
is required for angle measurement (see below). Based
on our empirical observation, we set ? to be the size of
3 voxels in the input image volumes, which is equivalent
to 1.32 mm in physical space. Examples of candidate path
simplification are shown in Fig. 1E.

Now consider a simplified candidate path P that starts
at some stem path vertex . We call the vertex of P with
the largest turning angle the turning point of P, denoted
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by vp, and denote its turning angle (in radians) as « p
(see illustration in Fig. 1E). The score of P is defined as,

10 — min (maz(|v — vp| — ry, 0), 10)

S(P) = eap(— 22 — i’

)

This score is closer to 1 for smaller turning angles « p
and greater distances from the turning point vp to the
stem boundary, which is measured by (|v —vp| — 1)
and clamped to be within the range from 0 to 10 voxels
(equivalent to 4.4 mm). This scoring function captures
the observation earlier that a nodal root tends to bend
less sharply, and the bending location is further away
from the stem, than a false connection on the stem.

Note that our candidate path detection algorithm
above may produce multiple candidate paths connecting
the same skeleton edge on the stem boundary to different
junction vertices on the stem path. After computing the
scores, and for each skeleton edge on the stem boundary,
we keep only the candidate path with the highest score
containing that edge.

A straight-forward way to detect whorls using the scor-
ing function above is to cluster all candidate paths whose
scores are above some threshold § . However, the cluster-
ing result can be sensitive to the choice of §, as shown
in Fig. 3 top. To avoid the need for manually tuning §,

Increasing score threshold

Fig. 3 Top: Clustering of candidate paths on the skeleton at several score thresholds. Paths above and below the thresholds are colored red and blue
(gray skeleton curves are not candidate paths). Each cluster is depicted by a bar on the left, whose length is proportional to the distance (along the stem)
between the highest and lowest candidate paths in that cluster. Green balls mark the whorl locations. Bottom: The bar visualization of clustering results
for all score thresholds in increasing order. The thickened boxes in both top and bottom highlight the same clustering result, which persists for the most

thresholds
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we observed that the desirable clustering is usually quite
stable with respect to small changes in § . Following the
observation, we adopt a parameter-free approach, which
seeks the clustering result that remains the same for the
longest range of thresholds.

Specifically, let A be the list of scores for all candi-
date paths, sorted in ascending order. For each value §
in A, we consider all candidate paths whose scores are
no smaller than §, and cluster the locations of their start-
ing vertices along the stem path. We used the mean shift
algorithm [26], which is a well-known non-parametric
clustering technique that is well-suited for scenario
where the number of clusters is unknown. Two cluster-
ing results are considered the same if (1) they consist of
the same number of clusters and, if so, (2) each pair of
corresponding clusters share the same highest and lowest
candidate paths. Figure 3 bottom visualizes the clustering
results for all values in A for one root sample. We then
take the clustering that remains the same for the most
consecutive values in A as the final clustering (the last
two clustering results in Fig. 3 top). Each cluster in this
clustering becomes a whorl. Since false connections are
rare near a true whorl, we consider all candidate paths
(regardless of their scores) between the highest and low-
est candidate path of each whorl as representing nodal
roots of the whorl.

Following whorl detection, TopoRoot+continues with
the cycle-breaking step of TopoRoot (Fig. 2E). We have
observed that false connections on the stem with clinging
nodal roots often result in cycles in the skeleton graph.
To improve the accuracy of the cycle-breaking step of
TopoRoot, we added a final step in whorl detection to
remove cycles resulted from false connections. Specifi-
cally, we trace paths of skeleton edges that originate from

Lateral root density
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the stem path but do not belong to any candidate paths
representing nodal roots. The traced paths are either
not candidate paths, or candidate paths with low scores
that are not included in the clustering. The tracing of a
path starts from a junction vertex on the stem path and
stops at the next junction vertex. After tracing, all verti-
ces (except the two at the ends) and edges on the traced
paths are removed from the skeleton.

Soil line detection

While soil lines are easily identifiable when imag-
ing plant roots in vivo, they are generally not visible
on excavated and washed maize roots. Our technique
is based on the observation that for excavated maize
root crowns, the density of lateral roots is signifi-
cantly higher below the ground than above the ground.
To verify this observation, and to study the relation
between soil line location and lateral root density, we
conducted an experiment where we inserted pushpins
into the root stem at the soil level before excavating
the root crowns. The pins were removed before CT
imaging, which left holes in the stem that can be man-
ually identified in the 3D images. We then process the
images using the TopoRoot pipeline (with whorl detec-
tion) to obtain the root hierarchy, and plot the density
of lateral root (of any order) as a function of vertical
depth. We observed that this density function often
has a Gaussian-like shape, and the location of the pin-
hole on the stem roughly lies where the function rises
(Fig. 4A, B).

Guided by the observation, we detect the soil lines
by first fitting the density function of lateral roots
with a Gaussian function, f(z)= aexp(,%)
, where a,b,c are the height of the peak, location of

Root depth

Fig.4 A:Lateral root density as a function of the root depth (dark blue dots) on one root crown, the best-fit Gaussian (red curve; b and ¢ are mean and
standard deviation), and the locations of the pinhole (gray line) and the computed soil line (blue line). B: Visualizing the skeleton (lateral roots are black),
the peak of lateral root density (red plane), and the computed soil line (blue plane)
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the peak (measured top-down), and the standard
deviation. The soil location on the stem is then deter-
mined by b — 2 ¢. The factor of 2 is chosen based on
our observation of the pinhole data (Fig. 4A, B; see
validations in the Results section). While our method
is designed for field-excavated maize, the principle
behind our method is likely applicable to other plants
with proliferation of lateral roots after nodal root soil
penetration.

Computing traits
With the detected whorls and soil line, we can augment
the root traits produced by TopoRoot with a suite of new
traits, including:

1. Total whorl number, and internode distances
between every two consecutive whorls. The location
of each whorl is the mean of the starting locations
of all candidate paths representing the nodal roots
of that whorl (see details in “Whorl Detection”). The
internode distance between two whorls is measured
as their distance along the root stem.

2. For each whorl and each hierarchy level, the root
count, total and average root lengths, average root
tortuosity, average root thickness, average number of
children, and the average emergence, midpoint, and
tip angle.

3. Traits in (2) aggregated for all above-ground whorls
and all below-ground whorls.

4. Root length density (RLD) computed as the total
length of nodal roots and lateral roots per unit soil
volume for each centimeter depth under the soil line
(see an example in Fig. 5). We consider all roots in a
“virtual” soil core - a cylinder whose axis is aligned
with the root stem and whose radius covers 95% of
all roots in our data set (which is 8.60 cm).

The complete list of all traits can be found in Supplemen-
tary Table 1.

0-1cm‘77

1-2cm
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Results

We validated a subset of the traits computed by Topo-
Root+against manual measurements field-excavated
root crowns. These traits include internode distances,
nodal root count per whorl, soil line location, and above-
ground and below-ground nodal root count. Our pipe-
line was implemented in C++, and all experiments were
performed on a Windows 10 machine with an Intel(R)
Core(TM) i9-10900X Processor @ 3.70 GHz and 64.0 GB
of memory (RAM).

Data preparation

To evaluate the algorithm across a range of real-world
phenotypic variation that we encounter in maize field
experiments, we constructed a data set that features mul-
tiple site-years and numerous genotypes. Three cohorts
of maize seeds were planted in June of 2020 and 2021
in O’Fallon, MO (for 2020 and 2021) and in 2022 in St.
Charles, MO (for 2022). The 2020 and 2021 cohorts
consist of a mutant (Rt1-2.4 MUT) with a mutation
in the Rootlessl gene, which was known to alter nodal
root patterning [27], and its fully functional wildtype
(maize inbred genotype T43). The 2022 cohort consists
of a small genetic diversity panel (maize inbreds Kill,
CML228, CML247, CML333, Tx303, NC350, and B73)
from the parental lines of the maize Nested Association
Mapping panel (NAM Founders).

The seeds were planted in silt loam soil using jab-type
planters, and genotypes were planted in single rows with
a complete randomized design. Roots were excavated
after 54-57 days of growth (for 2020 and 2021 cohorts)
or at anthesis (for 2022 cohort) using the Shovelomics
protocol [28] and washed to remove large chunks of soil.
X-ray computed tomography (XRT) was conducted using
an X5000 X-ray imaging system, with the X-ray source
set to a voltage of 70 kV, current of 1700uA, and focal
spot length of 119 pum. Each sample was clamped and
placed on a turntable for imaging at a magnification of
1.17X and 10 frames per second, resulting in 1800 16-bit

02 04 06 08 1.0 1.2 14 0.2 04 06 08 1.0 1.2 14

|
| Nodal Roots RLD
\ (cm / cmA3) \

Lateral Roots RLD
(cm / cmA3)

Fig. 5 Root length density (RLD, right) of nodal roots and lateral roots in a root crown (left) plotted as bar graphs, where each bar represents the total
length of roots (in cm) per unit soil volume (in cubic cm) for each centimeter of depth under the soil line
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digital radiographs over a 3-minute scan time. The radio-
graphs were reconstructed into a 3D volume at 109 pm
voxel resolution using the efX-CT software, which was
then exported as a 16-bit RAW volume. Following Topo-
Root, we down-sampled each volume by a factor of 4 in
each dimension for efficient processing. After removing
volumes with excessive soil present, we obtained 45, 64,
and 24 3D root volumes respectively in the 2020, 2021,
and 2022 cohorts for this validation study. Note that the
45 samples from 2020 were identical to those used for
validating TopoRoot [19]. Figure 6 shows the result of our
pipeline (as skeletons) for selected examples from each
cohort.

For validation purposes, we obtained manual measure-
ments of internodal distances and nodal root count per
whorl for all three cohorts. Each sample was dissected
starting from the highest whorl (stalk end) and moving
downward. Nodal root counts considered only attached
roots at each whorl. Furthermore, as mentioned earlier,
and for validating our soil line detection algorithm, a
pushpin was inserted in the root stem of each sample in
the 2021 and 2022 cohorts at the soil level, either prior to
root excavation (in 2021) or after excavation and based
on visual examination of the pigmentation and lateral
root branching (in 2022). The pushpins were removed
before CT imaging. The pinhole in the root stem left by
the pushpin can be unambiguously identified in the 3D
volume for all 64 samples in the 2021 cohort but only 14
samples in the 2022 cohort. For each of these 78 samples,
we manually recorded the location of the pinhole in the
Z direction of the volume, and classified the manually
found whorls to be either above or below the ground.

2020 2021
Rt1-24 ¢
wt(27) Wi )
il

Rt1-2.4
mutant (40) e~
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Note that these manual evaluations are somewhat sub-
jective and prone to error, especially as the nodes get
smaller and whorls more tightly appressed near the seed.

Whorl traits

We first measure the deviations between the internode
distances computed by our algorithm and those mea-
sured by hand. Let ¢; and m; denote respectively the
computed and measured distance between the 4 -th and
(i 4+ 1)-th node, where the index starts from the youngest
whorl (z = 1). We define the following cumulative error
of the first k. internode distances (for k > 1):

k
E _Zi:l”ci_ i
k= k
> i

The mean and standard deviations of Ej, for all sam-
ples in the three cohort (2020,2021,2022), are plotted as
functions of k in Fig. 7 (see blue curves and error bars).
Observe that the error is lowest for the first internode
distance (between 9 and 13%) and rises as lower (and
older) whorls are considered. This rise is due in part to
the increase in root density around older whorls, which
makes accurate detection of whorls more challenging
(see Discussions). In addition, missing or redundant
whorls would change the matching between subsequent
detected and measured whorls, and the impact of such
mismatch on the error increases with k. The error pla-
teaus (between 13 and 16%) towards the bottom of the
root stem, since the last few internode distances are
typically very small and hence contribute little to the

2022

cML228 cML247 | cmL3s3 |
@ | @ @ @

(6)

NC350 (}{\H\

@ Oldest whorl

Fig. 6 Result of TopoRoot +on selected root samples from the 2020, 2021 and 2022 cohorts. One sample is shown for each genotype in each cohort, and
the number of samples of that genotype in the respective cohort is indicated in parentheses. Each result is shown as a skeleton where the nodal roots are
colored by their whorls (see legend). The blue planes indicate the computed soil line locations
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Fig. 7 Accumulated error (compared with manual measurements) of the first k internode distances, E., as functions of k for all samples from the

three cohorts (2020, 2021, 2022)
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Fig. 8 Scatter plots of nodal root counts at the top (youngest) three whorls for all samples in all three cohorts (2020, 2021, 2022). The horizontal and
vertical axes are the computed and measured counts, and each dot represents one sample. The dashed gray lines indicate a perfect match between
the computed and measured counts, and the regression lines are colored red. The Pearson correlation coefficient p and RMSE between computed and

measured counts are indicated in each plot

accumulated error. Considering samples in all three
cohorts, the average error in the first internode distance,
FE4, is 11.6% with a standard deviation of 1.0%, and the
average overall error, E;;, where L is the total number
of measured whorls in each sample minus one, is 15.5%
with a standard deviation of 0.9%.

To further justify our algorithmic choices, Fig. 7 shows
the error of a naive whorl detection method (orange
curves and error bars), which simply performs mean-
shift clustering of all candidate paths on the root stem
(without scoring). Compared with our algorithm, which
performs adaptive clustering after scoring the candidate
paths, the naive algorithm yields a much higher error
range (starting at 15% and plateauing at 21%). There
is a significant difference between the errors Ej of our
method and of the naive method at all i (the maximum
p-value is 0.0082, at i = 3). The higher errors are mostly

caused by the spurious skeleton branches that corre-
spond to nodal roots touching the stem (see Fig. 1).

The curves and error bars are the mean and standard
deviation. Errors produced by our algorithm are in blue,
and errors produced by a naive clustering algorithm of
candidate paths (without scoring) are in orange.

We next examine the nodal root count at each whorl.
Figure 8 visualizes the measured and computed nodal
root counts for the top three whorls for all samples
from three cohorts. At the youngest whorl, the Pearson
correlation coefficient between the computed and the
measured counts is 84.3%. The correlation drops at the
second and third youngest whorls, becoming 75.6% and
73.0%. As in the internode distance validation, we attri-
bute the decreased correlation at older whorls to the
increased difficulty in identifying older whorls and the
cumulative effect from missing or redundant whorls.
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Fig. 9 A:The graph of the percentage of 78 samples in the 2021 and 2022 cohort where the computed soil line position is within a given distance from
the pinholes, as a function of the distance. B: Scatter plots of total nodal root counts above or below the ground for all samples. The horizontal and
vertical axes are the computed and measured counts, and each dot represents one sample. The dashed gray lines indicate a perfect match between the
computed and measured counts, and the regression lines are colored red. The Pearson Correlation value p and RMSE for each scatter plot is indicated
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Fig. 10 A: Comparing the average manual nodal root count at each whorl between wild-types (blue) and mutants (red) in the 2021 cohort. The whorls
are indexed such as the 0-th whorl is directly above or at the soil line and younger whorls have higher indices. B: Same comparison as A but computed
by TopoRoot +instead of measured by hand. C: Scatter plots of measured and computed nodal root counts at whorls 0 and 1, colored by genotypes (blue

for wild-types and red for mutants)

Soil line traits

To measure the accuracy of the soil line location com-
puted by our algorithm, we consider its distance in the
Z direction of the volume from the manually identified
pinhole location on the root stem. As mentioned earlier,
the pinhole locations are visible in 78 samples, includ-
ing 64 in the 2021 cohort and 14 in the 2022 cohort. We
plotted the percentage of all samples within a given dis-
tance from the pinhole, as functions of that distance, in
Fig. 9A. We found that 72% and 92% of all samples are
within 5 mm and 10 mm from the pinholes, respectively,
indicating that our algorithm can locate the soil line with
high accuracy.

We next consider the total nodal root count above
and below the ground. For each of the 78 samples, we
summed up the measured nodal root counts for all whorls
that are above or below the pinhole, and compared them

with the numbers computed by TopoRoot+using the
detected whorls and soil line locations. These numbers
are visualized in scatter plots in Fig. 9B. Consistent with
our observations above, the computed nodal root counts
are more accurate for above-ground nodal roots (87.1%
correlation and 8.6 RMSE) than for below-ground ones
(73.5% correlation and 10.3 RMSE).

Comparison between wild-type and Rt1-2.4 MUT

As a further validation of our pipeline, we applied it to
compare the two genotypes in the 2021 cohort, the wild-
types (Rtl-2.4 WT) and mutants (Rt1-2.4 MUT). As
shown in Fig. 10A the Rt1-2.4 mutation causes a differ-
ent pattern of nodal roots at various whorls, most nota-
bly an increase in the number of roots at whorls close to
the soil line (whorl 0 and whorl 1). Here, the whorls are
indexed such that the 0-th whorl is the one directly above
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or at the soil line, and the indices decrease in the direc-
tion of gravity so that the remaining above-ground and
below-ground whorls have positive and negative indices,
respectively. The differences in nodal root count between
the two genotypes are statistically significant at whorl 0
(p=0.002) and 1 (p<0.001).

We next compared the nodal root counts between the
wild-types and mutants computed using TopoRoot+, as
shown in Fig. 10B, and we observed a qualitatively similar
pattern. In particular, the differences in nodal root count
between the two genotypes are statistically significant at
whorl 0 (p=0.032) and 1 (p=0.003). Scatter plots corre-
lating the measured and computed nodal root counts at
these two whorls, colored by the genotypes, are given in
Fig. 10C. This validation demonstrates the potential of
TopoRoot+in root studies involving whorls and soil line
positions.

Discussions

Despite the advance in imaging technology and its use in
plant phenotyping, analysis of 3D root images remains a
challenging task, particularly when it comes to extract-
ing fine-grained architectural traits. This study advances
the current literature of computational root phenotyp-
ing methods by offering a new suite of fine-grained traits
that are related to whorls and soil lines of excavated root
crowns. While these traits can only be obtained previ-
ously by tedious, destructive, and human-biased manual
measurement, the automated TopoRoot+pipeline can
potentially enable more biological studies concerning the
whorl structure and/or specific to the above- or below-
ground part of the root (we gave an example of compar-
ing the nodal root count near the soil line between the
wild-types and mutants). Although the proposed pipeline
is designed for, and tested on, X-ray CT scans of field-
excavated maize root crowns, the techniques are likely
generalizable to other nodal root systems (e.g., sorghum
with a single tiller) and imaging modalities (e.g., MRI).
We next discuss our choice of parameters, the sources
of errors of our method, its computational performance,
and software availability, which includes a graphical
and interactive tool for viewing and editing the root
hierarchy.

Parameters

There are several empirically determined parameters in
our method, which are described in the Methods section:
(1) the multiplier of 1.2 to the stem thickness to decide if
a skeleton vertex is in the stem (in Whorl Detection), (2)
the error threshold of ? being 3 voxels in the RDP algo-
rithm for curve simplification (in Whorl Detection), and
(3) the multiplier of 2 on the standard deviation of lateral
branching density in determining the soil line position (in
Soil Line Detection). These parameters were estimated
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based on informal observations of a randomly selected
subset of our data set. We did not fine-tune these param-
eters to maximize the accuracy of the entire dataset. It is
possible that different parameters values might be needed
for new datasets, depending on the species (which would
affect the stem thickness multiplier), growing conditions
(which might require a different multiplier in soil line
detection), and imaging resolutions (which might call for
a different value of ?).

Error analysis

As TopoRoot+builds upon the TopoRoot pipeline [19],
it also inherits the latter’s errors, which lie mostly in the
binary segmentation and cycle-breaking steps (see Fig. 2).
In particular, the segmentation may alter the structure of
the root system (e.g., breaking up a root or merging dis-
joint roots), and the cycles may be broken in wrong loca-
tions (e.g., in the middle of a root). Note that our whorl
detection algorithm can remove false skeleton curves
that do not represent nodal roots, and hence reduce the
connectivity errors on the skeleton.

Errors in whorl detection are most often caused by the
scoring function of candidate paths on the skeleton. Our
scores, which are based on the turning angle and turning
point of the paths, are not always effective in distinguish-
ing between paths representing nodal roots from those
that do not. For example, paths representing nodal roots
that bend sharply downward (often seen at whorls above
the ground) may have low scores, while skeleton curves
corresponding to multiple roots touching the root stem
(often seen at whorls below the ground) may not have
the characteristic shape shown in Fig. 1D and hence can
have high scores. Although our proposed adaptive clus-
tering method is more robust against scoring errors than
straightforward clustering after applying a fixed thresh-
old on the scores, missing or redundant clusters can still
happen. A possible remedy is to incorporate additional
geometric properties in the scoring function, such as
the thickness of the root, which is also available on the
skeleton. Furthermore, since whorls located close to the
bottom of the root stem are typically closer to each other,
they are often incorrectly merged in our clustering result.

Our soil line detection algorithm is based on a simple
observation on the density of lateral roots in the vertical
direction. We have identified several other visual cues
about the location of soil lines. For example, the inter-
node distances often sharply reduce below the soil, and so
does the thickness of the root stem. Incorporating these
cues into our current algorithm can potentially improve
its accuracy in locating the soil line, which stands cur-
rently at 72% within 5 mm and 92% within 10 mm. Note
that traits that require the detection of both whorls and
soil line locations, such as total nodal root count above or
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below the soil, will be affected by errors in both detection
algorithms.

As our work is focused on methodology development,
we have not measured how the errors of the computed
traits affect downstream biological studies. Such mea-
surement, which we plan to conduct in the future in the
context of specific studies, would allow us to further eval-
uate the practical value of our pipeline.

Running time

The processing time of TopoRoot+is dominant by steps
in the original TopoRoot pipeline, particularly topologi-
cal simplification and skeletonization (Fig. 2B, C), both
of which scale with the dimension of the input images.
The additional steps introduced by TopoRoot, includ-
ing whorl detection and soil line estimation, operate on
the geometric skeletons. The time complexity of these
steps scales with the size of the skeleton (e.g., num-
ber of vertices and edges), which is much smaller than
the number of voxels in the image volumes. As a result,
TopoRoot+introduces only a small overhead to the pro-
cessing time of TopoRoot.

The CT volumes in the 2020 and 2021 cohorts have
a similar size of roughly 400 x 400 x 400 voxels (after
downsampling by a factor of 4 in each dimension). Pro-
cessing each volume takes on average 13 min and 44 s,
and only 21 s (2.5% of total time) on average are taken
up by the new steps introduced in TopoRoot+. The 2022
cohort has a much larger variation in volume size, rang-
ing from 246 x 246 x 310 voxels to 365 x 365 x 1120 vox-
els. The average running of TopoRoot+on one sample is
15 min and 48 s, of which only 19 s (2.0% of total time) is
spent on whorl and soil line detection. The running time
on the largest volume in the 2022 cohort is 32 min and
47 s.

Note that these running times are much shorter com-
pared to those needed for preparing and imaging the
root samples, and they can be batch-run on a computer
server. As a result, the pipeline is well-suited for high-
throughput processing of root cohorts. In the future, we
will explore how to further accelerate the computations
by parallelizing the pipeline on a multicore cluster.

Software distribution

TopoRoot+is freely distributed online [29]. The GitHub
page contains instructions to run the software, the com-
plete set of root crown data used in our validation, and
details on the input and output file formats. The program
currently supports both image stacks and 3D volume for-
mats, and it produces a skeleton, a hierarchy labeling of
the skeleton, and a spreadsheet of root traits. Like Topo-
Root, TopoRoot+currently only supports Windows 10
machines.
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Also included in our distribution is a graphical inter-
face for viewing and editing the root hierarchy and traits
in 3D. The interface visualizes the segmented root sys-
tem as well as its skeleton, colored based on various root
features selected by the user (e.g., hierarchy level, whorl,
above or below the ground, etc.). The user can selectively
show or hide skeleton curves by hierarchy level or whorl,
and see the whorl locations and soil planes. In addition,
the user may alter the root hierarchy, whotls, or soil line
interactively using mouse and keyboard controls (see
Supplemental Fig. 1). More instructions can be found on
the GitHub page.

Conclusion

We introduced TopoRoot+, a high-throughput pipe-
line for fine-grained phenotyping of excavated maize
root crowns imaged by X-ray CT. Building on top of the
TopoRoot pipeline [19], the expanded work includes new
algorithms for detecting whorls, the nodal roots at each
whorl, and the soil line locations, thereby producing a
suite of root traits that are not offered by existing com-
putational methods. While many of these traits are not
feasible to measure manually, we validated a hand-mea-
surable subset of traits on three separate cohorts of field-
excavated maize root crowns. Our pipeline is efficient to
run and well-suited for high-throughput analysis. The
program is freely distributed online and includes a visual
interface for inspecting and editing the root hierarchy.
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