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Abstract—Camera traps are an important tool in ecological
studies for non-intrusive monitoring of various animals. However,
annotating camera trap data usually requires large amount of
human labor. Therefore, we propose a solution for practitioners
with limited human resources: an automated pipeline for curating
in-the-wild camera trap data that mimics human annotators and
significantly reduces the amount of human labor needed. We also
propose evaluation protocols for estimating system performance
on unlabeled data, and present experiments that demonstrate our
pipeline’s strengths, weaknesses, and flexibility to accommodate
users’ requirements.

Index Terms—In-the-wild data processing, animal detection,
animal species classification, few-shot learning

I. INTRODUCTION

This paper addresses the critical gap between research
advancements and their real-world applications using camera
trap images. In what follows, we will discuss the effect of data
curation, challenges of unlabeled/in-the-wild data, and an end-
to-end pipeline where detection performance and classification
performance are intertwined.

Camera traps have been a valuable tools in ecological
research, enabling the non-intrusive monitoring of wildlife
across diverse environments. Over the recent years, the ad-
vancement of computer vision tools shows a bright future in
automating the detection and classification of animal species
for camera trap data. However, most current research relies
heavily on human labor for data curation, which may not be
available for every practitioner.

Therefore, in this paper, we propose a data curation pipeline
that leverages an existing tool, temporal information, and
few-shot learning to mimic the benefit from having humans
involved in the data curation, and we demonstrate the pipeline
on in-the-wild camera trap data collected from Senegal. Com-
paring to curated datasets such as Snapshot Serengeti and
World Conservation Society (WCS) camera trap datasets, our
raw data is “in-the-wild” due to 1) we have not used any
human annotation to remove non-animal false triggers, and
2) many of the species present in our data are unique to the
geographical location, and cannot be found in existing species
classification solutions1.

This work is funded by NSF grant number 2022314, under the HUNTRESS
(HUnting, Nutrition, Tool-use, Reproductive Ecology, and meat Sharing in
Savanna chimpanzees) project.

1github.com/microsoft/SpeciesClassification

Our main contributions are: 1) proposing an automated data
curation pipeline that mimics human annotators, 2) allowing
the user to customize the pipeline considering the trade-off
between accuracy and amount of data processed, and 3) pro-
posed end-to-end evaluation strategies to estimate performance
on unlabeled data.

II. RELATED WORK

In recent years, as computer vision technology advances,
many researchers have also adapted deep learning methods
to assists camera trap studies in terms of classification [1],
detection [2], or even re-identification [3]. A brief description
of full processing pipeline is proposed in [4]; however, the
paper provided few technical details and also requires addi-
tional labeling and training for the classifier. There has been
very little research that considers the end-to-end processing
pipeline and discusses relationship between detection results
and classification results. This problem also exists in other
communities; for example, [5] discusses the lack of joint
consideration between face detection and recognition, as most
recognition evaluation datasets assume perfect input data.

However, despite exciting news about technical advance-
ments, there is still a gap between research and real world
application. Much published research depends implicitly on
extensive human annotations for both training data, and no-
tably, evaluation data. In particular, the human annotation
process acts as implicit quality filtering, and eliminates empty
or un-recognizable objects during annotation, leading to overly
optimistic evaluation performance that may not transfer to real-
world data.

Take Snapshot Serengeti [6] as an example. Its web page2

states that a total of 7.1M images has been collected. However,
only 78,000 images are annotated with bounding box and
species labels — about 1% of total images. We can identify
at least two major data curation steps described in [6] and its
tech blogs. Through a guided interface on Zooniverse, “citizen
scientists” can toggle options like build, horn shape, or tail
shape, to assist the identification of the species present in a
picture. At least 10 users have to classify an image before
a consensus rule is applied to consolidate user inputs. Other
citizen scientist are assigned the task of identifying/confirming

2lila.science/datasets/snapshot-serengeti
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whether an image is empty3. Instead of needing consensus
from 10 people, only 2 people per image is needed for this
task.

Gomez Villa et al. [7] used Snapshot Serengeti to illustrate
the point that well-curated data (balanced between species,
no empty images, etc.) is better for training CNNs than less-
curated data (unbalanced training dataset containing empty
images). Beery et al. [8] explores the generalizability of classi-
fication and detection models, and emphasized the challenge of
processing data from unseen locations. Also, using the well-
known ImageNet as an example, the authors of [9] showed
that selecting harder images rather than easy images could
causes more than 10% drop in testing accuracy, which hints
at the benefit of having curated/easy evaluation data. Similarly,
we observe much worse performance on our in-the-wild data
than published camera trap dataset such as WCS4 or Snapshot
Serengeti [6] when we applied existing detection tools.

III. MOTIVATIONS FROM IN-THE-WILD DATA

Under a broad project that investigates ecological ba-
sis of hunting and meat sharing in female savanna chim-
panzees [10,11], our goal is to use camera traps to estimate
the population density of several species that are hunted by
chimpanzees. So far, we have received 8 shipments of data,
totaling more than 67,000 videos from 341 camera locations.
Details of these shipments can be found in Table II. We will
refer to our data as “Senegal” data.

As the camera traps are automatically triggered by motion,
many recorded videos are in fact empty and are likely triggered
by background objects like branches or leaves rather than
animals. These empty videos, when processed through an
animal detection system, yield many false detections.

In our previous work [12], videos from 40 camera trap lo-
cations between shipment 2 and 3 are processed automatically
without any human intervention. We then randomly sampled
8,000 bounding boxes out of all detection outputs; out of
the 8,000 bounding boxes, 2,586 are background objects mis-
detected as animals. That is to say, 32.3% detected animals
are in fact false detections.

To provide a comparison, we ran the same detector (Mi-
crosoft MegaDetector v4 [4]) on a randomly sampled subset
of the annotated portion of Snapshot Serengeti, and the false
detection rate is only 3.16%.

Our initial assumption was that the model is prone to
false detections; however, when evaluated on a dataset that
is selected to not have empty images (e.g., labeled part
of Snapshot Serengeti), false detections do not pose as an
issue. To confirm that, we ran a short experiment. First, we
randomly selected 200 images from our collection that we
confirmed to contain animals, and labeled them with bounding
box annotations — we call it “Senegal (curated)”. We then
take two publicly available camera trap datasets — Snapshot
Serengeti and WCS, and sample a subset of each to have

3blog.snapshotserengeti.org/2019/05/28/machine-learning-and-citizen-
sciencea-winning-combination/

4lila.science/datasets/wcscameratraps

similar bounding box size and count statistics as the labeled
200 images from our data. We then applied the same detector
on these three sub-datasets, and the results are presented in
Table I.

TABLE I: Detection Performance on Various Camera Trap
Datasets

Dataset Miss rate (%) False detections rate (%)
Senegal (un-curated) N/A 32.3
Senegal (curated) 1.18 2.91
Snapshot Serengeti 2.21 1.57
WCS 3.09 1.91

As we observe with “Senegal (curated)”, provided we
manually remove empty images and only include images with
animals, the false detection rate goes down drastically; notably,
it is now in the same range as the two public datasets.

We believe that this small experiment also helps to show
the difference between curated and un-curated data, as well
as difficulties caused by having in-the-wild, un-curated data.
Such difficulties can be solved by creating a massive amount
of annotations using human verification, but not everyone has
the manpower to do that.

Besides the benefit of curated data, we also need to con-
sider the trade-off between human labor and the amount of
useful data produced. For example, in a study for zebra re-
identification [3], a pipeline is introduced to require less
human labor; it is achieved by only having one species to
consider and by incorporating many filtering stages to reject
images that may not have high enough quality. This method
results in a very strict pipeline and only yields 685 images out
of 8.9 million images.

In this paper, we propose a processing pipeline that yields
curated results while utilizing minimal human labor. We also
show that we can alter components of our pipeline to reach a
desired trade-off point, depending on the user’s need.

IV. METHODOLOGY

In this section, we first present our pipeline to curate in-
the-wild camera trap data. We will then discuss the evaluation
protocols for unlabeled data, in order to demonstrate the
effectiveness of the pipeline.

A. Processing Pipeline

Our pipeline will focus on: 1) detecting potential animal
sightings, 2) eliminating false detections, and 3) providing a
species classification result. We will also show that the pipeline
can be adjusted to meet the user’s need. A block diagram of the
pipeline can be seen in Figure 1. We apply a heatmap-based
detection filter to mimic the human effort of removing empty
images (Section IV-A2), and a few-shot learning classifier
with adjustable decision rules to mimic human annotations
of species (Section IV-A3).

The majority of our data are in video format, and we
design our full processing pipeline to obtain potential animal
species classifications from videos. To reduce the number of
potentially repetitive images, we only consider 1 frame from
every 30 frames, which correspond to one second as our videos

Authorized licensed use limited to: Purdue University. Downloaded on November 15,2024 at 21:27:19 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II: Data shipments we have received.

Shipment Videos Images Size (GB) Cameras

1 2,998 106,283 187 48
2 25,606 10,433 1,304 110
3 3,489 2,392 132 31
4 6,894 1,410 284 37
5 11,523 356 642 39
6 4,759 1,354 167 22
7 6,391 1,548 275 19
8 5,939 879 252 35

Total 67,599 124,655 3,242 341

Fig. 1: Block Diagram of the Processing Pipeline

have 30 frames per second. This reduces processing time and
redundant appearances.

1) Detection: We then run detection on these sampled
frames to creating bounding boxes of potential animals. Over
the course of the project, we have used both Microsoft’s
MegaDetector v4 and v5 [4]. In this paper, we will only use
the newer v5.

MegaDetector has been trained on millions of images from
many public camera trap datasets plus additional private data5,
and has been used by more than 50 organizations. It is arguably
the most popular detector specialized for detecting animals in
camera traps, and it would be impossible for us to either train
a model from scratch or fine-tune an existing model to match
the performance of this model, using our 200 labeled images.

However, despite the massive amount of training data and
many iterations of adjustments, the MegaDetector model is
still not perfect. As we mentioned in Section III, it yields
about 30% false detections when applied to shipments 2 and
3 of our data.

2) Detection result filtering: First, we propose to directly
utilize the detection results to eliminate some of the false de-
tections. The idea is to identify objects that appears repetitively
in the same position, and reject them as background objects.
Because we have observed that many cameras gradually shift
positions, we choose not to use a single heatmap to represent
a camera location, but instead compute a heatmap for every
100 sampled frames; the heatmap is then normalized to
[0,1]. Then, for each detected bounding box, we compute its
overlap with the normalized heatmap. Two sample heatmaps
are shown in Figure 2: (a) is the heatmap resulting from many
animal detections, which are distributed spatially, and (b) is
the heatmap resulting from constant detection of the same
background object.

5github.com/microsoft/CameraTraps/blob/main/archive/megadetector.md

A threshold is set to determine when a bounding box
is classified as a background object should rejected. For
simplicity here, we will outright reject the entire frame when
we reject a background object. We refer to this heatmap-based
detection result filtering as “heatmap” for short.

(a) Animal detections (b) False detections

Fig. 2: Comparison between heatmaps from two locations,
one featuring mostly animal detections and the other featuring
mostly false detections.

3) Classification using few-shot learning: The core of few-
shot learning (FSL) is to use a small number of labels for
classification; FSL has been a popular topic recently, and many
methods have been proposed. In our case, one could consider
that instead of training a network to give explicit classification,
the network is trained to extract features that separate classes.
In FSL, the classification of unknown images are done by
comparing their features to a small group of labeled images,
known as “support set”. The major benefit of FSL method is
that the training can be done with publicly available data, and
we only need to label a few images when we switch to our data
with unseen species and environment. In contrast, traditional
deep learning requires a much larger amount of training data
to be able to adapt to new classes and environments.

When comparing several networks for our task [12], we see
that PMF [13] performs the best so we use it here. We train
the network purely on public data, namely Snapshot Serengeti.
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Then, we labeled a few images per species using shipment 2
and 3 of our data; the number of labeled images is shown
in Table III. Since the number of images for each species
are different, we choose to randomly sample 10 images per
species to construct the support set. Note that this also mimics
a scenario where much less human labor is needed. More
implementation details can be found in [12].

TABLE III: Total labeled images for each species

Species Images Species Images

Baboon 108 Hartebeest 25
Buffalo 74 Oribi 22

Bushbuck 126 Patas monkey 30
Duiker 53 Roan antelope 97

Green monkey 99 Warthog 83
Guineafowl 86

Typical FSL classification considers only the top-1 result. In
other words, an unknown image’s class is assigned to be the
closest support image’s class in the feature space. However, as
we are observe many false detections in our data, we alter the
FSL classification decision rule to try to reject false detections.
Here, we apply a K-Nearest-Neighbor decision rule — for
example, with a 3/5 decision rule, at least 3 images from the
top-5 matches must be from the same species for it to be
classified.

As mentioned above, we sample 10 images per species
to create a balanced support set. Nevertheless, we are also
interested in the effect of having more support images with
an unbalanced distribution among species. So in this paper,
we also perform additional experiments with all images we
labeled (Table III) as the support set.

B. Evaluation Methods

As we have emphasized throughout this paper, we conduct
our experiments on fully un-labeled, un-curated data. We apply
two stages of evaluation. The first evaluates the detection per-
formance to show the effectiveness of the heatmap detection
filter. The second evaluates the end-to-end pipeline results
for animal classification, to show the effect of individual
modifications on the whole system.

To begin, we investigate the effectiveness of the heatmap
detection filter by counting how many images with detections
contain mistakenly detected background objects. First, we
randomly sample 200 images from all images with at least
one detection, and count the number of images with false
detections; this step is repeated 5 times and an average with
confidence interval is reported. This process is repeated to
images after applying the heatmap filter.

Evaluating classification results without ground truth labels
is more difficult. In addition, we face a more complex scenario
of “classification in the presence of false detections” which is
not considered by most classification-oriented research, where
it is assumed that all inputs are relevant and an overall classi-
fication accuracy is sufficient. However, in a real application,
it is almost impossible to have a perfect detection system
that only returns relevant objects. Due to the presence of

irrelevant objects, we propose an evaluation scheme similar
to the precision-recall curve.

Our final task is to classify cropped bounding boxes into
one of 11 species: baboon, buffalo, bushbuck, duiker, green
monkey, guineafowl, roan antelope, warthog, hartebeest, oribi,
and patas monkey. To alleviate human labor, we choose 5
species to verify the results: baboon, green monkey, bushbuck,
duiker, and warthog. These 5 species are common enough
to yield meaningful statistics, and are affected by two major
error causes we observed with our data: 1) confusion between
similar looking species (baboon vs. green monkey, bushbuck
vs. duiker) and 2) false detections (branches, rocks) mis-
classified as animals.

First, for each species, we sample up to 50 images and
record the number of correctly classified images. We then
compute a sampled precision, which is the total number
of correctly classified images divided by the total number
of sampled images. As we add rejection schemes, we may
inevitably reject actual animal images. To quantify that, we
compute a projected number of correct classifications for
each species. For example, in one experiment, the classifier
indicates 2,731 images are baboons. We sampled 50 images
and found that 44 of them are indeed baboons. Hence, we
calculate that 44/50 ∗ 2731 = 2403 images are projected to
be correctly classified as baboons. We then sum all species to
get a projected total number of correctly classified images.
This estimation saves us from viewing thousands of images.
To provide another aspect of classification accuracy, we also
compute the projected precision, which equals the projected
total number of correctly classified images divided by the total
number of classified images.

In the results section, we will show the relationship between
precision measures and projected total number of correctly
classified images.

V. EXPERIMENTS AND RESULTS

Using our evaluation strategy for unlabeled data, we conduct
experiments to examine the strength and weakness of the pro-
posed pipeline on unlabeled, in-the-wild data. The source data
of the experiments are from shipment 2 and shipment 5. These
are from the same general region of Mont Assirik, but different
camera locations. As mentioned earlier in Section IV-A3, our
support set images are from shipment 2 and 3; hence, the
addition of shipment 5 allows us to investigate the pipeline’s
performance on completely unseen/out-of-distribution data.

In this section, we perform two sets of experiments: Section
V-A focuses only on detection performance and how the
heatmap filter helps reduce false detections; Section V-B then
examines end-to-end classification results of the pipeline and
discusses the effect of various modifications.

A. Detection

To illustrate the effectiveness of heatmap, we perform three
sets of experiments. All three experiments compare detection
performance with or without the heatmap-based rejection that
aims to reject false detections. The difference among them is
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the set of data on which the experiment is performed. We used
the evaluation protocol described in Section IV-B: sample 200
images, count false detections images, and repeat.

First, Table IV shows detection results on shipment 2
data, which is all from ground-based cameras. It is obvious
that applying the heatmap-based detection filter drastically
decreases the amount of images with false detections.

TABLE IV: Detection Performance for Shipment 2 Data

Heatmap False detections rate (%)
Without rejection 35.3± 3.98
With rejection 8.2± 2.18

We then performed experiment 2 and 3 on data shipment
5, which contains both ground-based and arboreal cameras,
where the camera is mounted near tree crowns, around 3
meters above the ground. Figure 2-b shows an example of ar-
boreal cameras. False detections happen much more frequently
on arboreal cameras because 1) they are close to leaves and
branches that moves, and 2) the camera itself is more likely
to move compared to ground-based cameras. Therefore, here,
we perform two sets of experiments, one with ground-based
cameras only, and one with both ground-based and arboreal
cameras.

The ground-only results are shown in Table V, and the
ground-and-arboreal results are shown in Table VI. In both
cases, we see that the heatmap filter helps drastically decrease
false detection rate.

It it worth noting that we also see a significant increase
in the numerical value of false detection rate with arboreal
cameras included. This confirms our speculation that arboreal
cameras produce more false detections, but it also shows
that our filter eliminates false detections even with arboreal
cameras.

TABLE V: Detection Performance for Shipment 5 Data
(Ground)

Heatmap False detections rate (%)
Without rejection 57.4± 4.92
With rejection 12.5± 2.30

TABLE VI: Detection Performance for Shipment 5 Data
(Ground and Arboreal)

Heatmap False detections rate (%)
Without rejection 72.6± 2.11
With rejection 22.9± 1.43

B. Classification

Next, we examine the end-to-end classification results, and
explore how our modifications affect the performance.

Again, we begin our experiment with data shipment 2, and
follow the evaluation protocol for unlabeled data specified in
Section IV-B. The results are shown in Table VII. We created
7 different tests by varying the modifications, as indicated on
the left part of the table. Except for the last row, which uses

extra support images, all other use the exact same support set
(same 10 images for each species) for consistent comparison.

Looking at row 1 vs. row 2, and row 1 vs. row 3, we see
that individually, both adding heatmap and KNN improve the
classification precision in terms of both sampled precision and
projected precision. As expected, when we apply both heatmap
and KNN (see row 4), the precision is further improved.
Comparing results between row 4, 5, and 6, we see that as
we make the KNN decision rule more strict, precision also
goes higher. Moreover, when we look at the results from row
1 to row 6, we can see that as precision increase, the projected
number of animals correctly classified goes down.

To help interpret the results, we have plotted both sam-
pled and projected precision against the projected number
of animals correctly classified in Figure 3. It shows that
potentially, our pipeline can be applied in many different use
cases. By adjusting the modifications, the user could choose
the desired operating point depending on whether they want
to maximize the number of animals found, or maximize the
classifier accuracy which could reduce human labor for further
verification.

Finally, row 7 presents the case with extra images as the
support set. We can make direct comparison between row 7
and row 4, since both have the same modifications except row
7 has extra support images. Contrary to our expectation, extra
support images do not offer any significant improvement over
only having 10 images per species. Therefore, we suspect that
quality of the support set may be more important than quantity
of the support set; “what makes a good support set?” is a topic
worth further investigation.

TABLE VII: Classification Result with Various Modifications,
Data Shipment 2

Modifications Results

Heatmap
Rejection KNN Extra

Support

Projected
Correct
Count

Sampled
Precision

Projected
Precision

No No No 13,868 0.556 0.542
Yes No No 5,482 0.608 0.657
No 3/5 No 7,997 0.588 0.582
Yes 3/5 No 3,460 0.656 0.698
Yes 4/5 No 1,338 0.680 0.800
Yes 5/5 No 526 0.878 0.931
Yes 3/5 Yes 4,359 0.564 0.544

(a) Projected Precision (b) Sampled Precision

Fig. 3: Precision vs. Projected Total Correct Classification
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TABLE VIII: Classification Result with Various Modifications,
Data Shipment 5

Modifications Results

Heatmap
Rejection KNN Extra

Support

Projected
Correct
Count

Sampled
Precision

Projected
Precision

No No No 5144 0.256 0.469
Yes No No 2814 0.448 0.706
No 3/5 No 1884 0.184 0.298
Yes 3/5 No 1573 0.388 0.638
Yes 3/5 Yes 1895 0.342 0.469

Now. we will shift our focus to shipment 5, the unseen/out-
of-distribution scenario, and results are shown in Table VIII.
Unlike what we observe with shipment 2, the results here are
not entirely as expected. Comparing row 1 and 2, we can
see that heatmap filtering still improves precision significantly.
However, by comparing row 1 vs. row 3, or row 2 vs. row 4,
we see that KNN does not help increase precision, and is
in fact detrimental to the classification result. Our conclusion
is that heatmap, which does not rely on labeled data, can
universally improve detection and classification results, while
KNN is more influenced by the labeled support set and may
not be effective with out-of-distribution data.

With out-of-distribution data, having extra support images
does slightly improve KNN-based results (row 3 vs. row 5).
However, if we compare row 2 vs. row 5, we see that extra
support images still do not offset the detrimental effect KNN
caused with unseen data.

VI. CONCLUSION AND FUTURE WORK

In this paper, we pointed out the lack of study on processing
true in-the-wild camera trap videos. Most current work either
only focuses on a single aspect or requires large effort by
human annotators to create training and evaluating data. To fill
the void for researchers who cannot afford a large amount of
human labor, we proposed a processing pipeline that requires
minimum human involvement, which can also be adjusted to
accommodate the user’s need between the number of animals
found and the amount of human labor needed.

Our pipeline consists of an existing detection tool, a few-
shot learning-based classifier, and modifications that mimic
the role of human annotators to either reject false detection
or make species classification. Our detection experiments in
Section V-A demonstrated the effectiveness of a heatmap
detection filter in rejecting false detections during detection
phase. Our classification experiments in Section V-B yielded
mixed results: for in-distribution data (where both support
set and unknown images are from shipment 2), our pipeline
produced promising results, showing that labeling 10 images
per species can achieve reasonable classification results. For
out-of-distribution data (where the support set are from ship-
ment 2 while unknown images are from shipment 5), the
general classification performance became much worse —
heatmap filtering still helped improve the results while the
KNN decision rule was lackluster.

In conclusion, we proposed a end-to-end processing pipeline
for large, unlabeled camera trap data, and showed its strengths
and weaknesses under different scenarios. We also proposed
evaluation protocols for estimating classification performance
on unlabeled data.

Nevertheless, our work here is not entirely done, and there
are still many aspect that can be further investigated. For
example, in Section V-B, we ask the question “what makes
a good support set for few-shot classification?” In addition,
the classifier still faces difficulty with similar looking species
such as duiker vs. oribi or between several primate species
(baboon, green monkey, patas monkey).
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