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1 Introduction

The CERN LHC collides bunches of particles at a maximum rate of about 40 MHz at several
experimental sites including CMS. During LHC Run 2 in 2015–2018, the maximum instantaneous
luminosity Linst reached 2.1⇥ 1034 cm�2s�1, twice the initial design value, at

p
B = 13 TeV. The mean

pileup (PU), or simultaneous inelastic proton-proton (pp) collisions per bunch crossing, was about 50.
To select collision events of potential interest to physics analyses, the CMS trigger system divides
the processing into two levels: a first level (L1) that is implemented in custom-designed electronics,
and a high-level trigger (HLT) implemented in software and executed on commodity computers. The
HLT further refines the purity of the collection of physics objects that are selected at L1, with an input
event rate to the HLT limited to about 100 kHz by the detector read-out electronics, and targets an
average output rate of about 1 kHz during Run 2 for standard pp collision events for offline storage and
prompt reconstruction. The HLT also accommodates combinations of objects, such as leptons and
jets or final states in B physics, to target specific physics analyses, although the focus of this paper is
on the reconstruction and object identification tools used at the HLT. Novel techniques introduced
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during Run 1, such as a high rate storage of events with a reduced data content (“data scouting”) and
storage of additional full events for delayed processing (“data parking”), both described in ref. [1],
continued during Run 2 to further extend the physics program.

The performance of the CMS L1 and HLT trigger systems during Run 1 of the LHC, with
p
B = 7

and 8 TeV for pp collisions, is described in ref. [2]. The L1 trigger was subsequently upgraded during
Run 2 of the LHC as part of the Phase-1 upgrades of CMS [3], and its performance is described in
ref. [4]. Run 2 of the LHC delivered challenges to the Run 1 L1 and HLT algorithms, including a
higher

p
B of 13 TeV, higher luminosity, larger PU, and further detector aging (primarily from radiation

damage). The algorithms deployed at the HLT were revised to address these challenges and were
made flexible enough to adapt to various changing detector conditions that occurred during Run 2,
together with the installation of detector components and electronics that were part of the CMS
Phase-1 upgrades [5]. Further adaptations of the HLT for Run 3 of the LHC, such as the inclusion
of graphical processing units for computation, are described in ref. [6].

This paper is organized as follows. Section 2 describes the CMS experiment and the LHC
operating conditions during Run 2, and section 3 describes the architecture of the HLT, as well as a
breakdown of its rate and processing time. Section 4 describes the reconstruction and performance of
the physics objects in the HLT that are broadly applicable to a wide range of physics analyses, such as
lepton, jet, and energy sum triggers. Finally, a summary is given in section 5.

2 Experimental conditions during Run 2

2.1 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter,
providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker,
a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron
calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward calorimeters
extend the pseudorapidity coverage provided by the barrel and endcap detectors. Muons are detected in
gas-ionization chambers embedded in the steel flux-return yoke outside the solenoid. A more detailed
description of the CMS detector, together with a definition of the coordinate system used and the
relevant kinematic variables, can be found in refs. [6, 7]. The silicon tracker used in 2016 measured
charged particles within the range |[ | < 2.5. For nonisolated particles with 1 < ?T < 10 GeV and
|[ | < 1.4, the track resolutions were typically 1.5% in ?T and 25–90 (45–150) �m in the transverse
(longitudinal) impact parameter 3

GH
(3

I
) [8]. At the start of 2017, a new pixel detector was installed [9];

the upgraded tracker measured particles up to |[ | = 3.0 with typical resolutions of 1.5% in ?T and
20–75 �m in 3

GH
[10] for nonisolated particles of 1 < ?T < 10 GeV. According to simulation

studies [11], similar improvements are expected in the longitudinal direction.

2.2 The LHC operations

The operational period of LHC Run 2 covered the years 2015 to 2018. The year 2015 was dominated
by commissioning activities in the wake of LHC Long Shutdown 1, with a correspondingly small
amount of integrated luminosity delivered to the experiments. Additionally, the electronics for the
CMS L1 trigger was upgraded and installed for data taking at the beginning of 2016. Hence we
will focus mainly on the 2016–2018 period.

– 2 –



2
0
2
4
 
J
I
N
S
T
 
1
9
 
P
1
1
0
2
1

Traditionally, each year starts with an interleaved commissioning-production period, where the
Linst is progressively increased by the insertion of additional proton bunches in opposite directions
to make two oppositely running proton beams in a single LHC fill. After the beams achieve their
maximum occupancy projected for the year, the LHC conditions are optimized throughout the year
to achieve the needs of the physics programs of the experiments. Within a given LHC fill, the Linst
generally decreases in tandem with the natural depletion of the beams, which allows for the activation
of looser trigger algorithms that can increase the physics reach of an experiment by keeping the data
bandwidth to storage effectively constant. For some Run 2 fills, the beam focusing was periodically
adjusted to achieve approximately constant Linst for an extended amount of time (luminosity leveling).

Table 1. The LHC operations parameters during Run 2. The maximum PU is for standard physics fills with
more than 600 bunches, and the average PU is calculated assuming an inelastic cross section of 80 mb. The
8b4e bunch-filling configuration values are given in brackets, and they refer to an LHC configuration used in
2017 to mitigate beam losses. The

p
B

NN
is the center-of-mass energy per nucleon.

2016 2017 2018
Proton-proton
Max. colliding bunches 2220 2556 [1868] 2556

in CMS 2208 2544 [1866] 2544
Max. Linst (⇥1034 cm�2 s�1) 1.5 1.7 [2.1] 2.1
Max. PU 46.9 47.5 [78.8] 64.7
Avg. PU 27 31 [42] 37

Heavy ions
Collisions species pPb XeXe, pp PbPb
p
B

NN
(TeV) 8.16 5.44, 5.02 5.02

There are also special LHC runs that occur throughout the running period with a variety of
purposes. Low-PU runs, with much less than 0.3 pp interactions per bunch crossing, are important
for particular standard model (SM) measurements, such as the measurement of the W boson mass.
On the other hand, high-PU runs, with fewer filled bunches, are also available for experimental
performance measurements to prepare for the steady luminosity increase during Run 2, as well as
for that expected for LHC Run 3 and for the High-Luminosity LHC era. Other special run setups
include: reference pp collisions for the heavy ion program; luminosity studies during van der Meer
scans [12], both at the initial proton injection energy and at the maximum energy; as well as special
machine development runs for LHC beam studies.

The experience acquired through Run 2 led to progressively smoother LHC operations throughout
the years [13, 14]. In 2016, the maximum Linst had a rapid initial increase to the nominal value
of 1.0 ⇥ 1034 cm�2 s�1, followed by a gradual increase during the year to ⇡1.5 ⇥ 1034 cm�2 s�1. In
2017, this pre-shutdown performance was easily achieved by the start of the run, and adjustments
made throughout the year allowed the crossing of the 2.0 ⇥ 1034 cm�2 s�1 milestone by October.
Amongst these adjustments, we highlight the deployment of the “8b4e” filling scheme (8 filled
bunches followed by 4 empty buckets) accompanied by the reduction of V⇤ (a parameter related to
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the transverse beam size at the interaction point) from 40 to 30 cm to mitigate beam losses around
the region of an LHC magnet interconnect [14, 15]. Finally, in 2018 the initial ramp-up period
to routinely deliver maximum instantaneous luminosity was very quick, and collision data were
acquired at a steady pace during the year. A summary of the LHC parameters for pp and heavy
ion collisions for 2016–2018 is shown in table 1.

3 Online data selection

3.1 The HLT architecture

The HLT hardware consists of a large cluster of multi-core servers, the event filter farm, that runs a
Linux operating system. The processing capacity of the Filter Farm was expanded gradually throughout
Run 2 to cope with the evolving LHC and detector conditions. By the end of Run 2, the processing
power was about 7.2 ⇥ 105 in HEPSPEC 2006 [16] units. This was distributed across 360 nodes of
dual Intel Haswell E5-2680v3 processors (8640 cores), 324 nodes of dual Intel Broadwell E5-2680v4
processors (9072 cores), and 400 nodes of dual Intel Skylake Gold 6130 processors (12 800 cores).

As noted earlier, the HLT refines the purity and reduces the rate of events that are selected by L1,
targeting a rate of about 1 kHz averaged over an LHC fill for standard pp collision events for offline
storage and prompt reconstruction. Additional storage beyond the 1 kHz rate is allowed for data to be
“parked”, whereby the offline reconstruction is postponed until a later, non-data-taking period (e.g.,
during a long shutdown of the LHC). In 2018, the storage rate for parking was an additional 3 kHz [1].
The average raw data event size for these standard pp collision events at the average Run 2 PU (37) is
about 0.65 MB after compression, with a peak size near 1 MB at the highest PU conditions. A higher
rate of reduced-size events also can be acquired, a technique referred to as “data scouting,” where
only the high-level physics objects, such as jets or leptons, reconstructed at the HLT are stored on
disk. No raw data from detector channels are stored for later offline analysis. For example, 5 kHz of
scouting events with an average event size of 8 kB were also recorded in 2018 [1].

3.2 Algorithms

The data processing of the HLT is structured around the concept of an HLT “path”, which is a set
of algorithmic processing steps run in a predefined order that both reconstructs physics objects and
makes selections on these objects based on the physics requirements. Each HLT path is implemented
as a sequence of steps generally of increasing complexity, reconstruction refinement, and physics
sophistication. For example, the processing of intensive track reconstruction is usually performed only
after some initial reconstruction and selection based on the calorimeters and muon detectors. Each path
also requires the selections in specific L1 triggers (“L1 seeds”) to have been satisfied before execution
would begin. The reconstruction modules and selection filters of the HLT use the same software
framework used for offline reconstruction and analyses (CMSSW [17]). The framework supports
multi-threaded event processing, which optimizes memory usage and is utilized for the HLT software.

The HLT paths selecting similar physics object topologies are grouped into primary data sets,
which are then grouped into streams. Primary data sets define the samples used for offline processing,
and their trigger content is chosen such that the overlap is minimized to avoid reconstructing offline
the same event in multiple primary data sets. Streams define the outputs of the HLT processes,
which are transferred from CMS to offline computing facilities during data taking. The grouping
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of primary data sets into streams further reduces the overlap across HLT outputs, allowing for a
more efficient handling of these data transfers.

3.3 Menus

The HLT selects data for storage through the application of a trigger “menu”, which is a collection
of individual HLT paths. The trigger path definitions, physics object thresholds (e.g., the transverse
energy ⇢T threshold and the ?T threshold), and rate allocations are set to meet the physics objectives
of the experiment. For Run 2, the HLT menus typically had around 600 paths for pp data taking. This
included the primary triggers for analyses, as well as triggers for calibration, efficiency measurements,
control region measurements, etc. that were typically looser than the primary triggers. These latter
triggers were often “prescaled”, meaning that they selected only a fraction of the events that satisfied
their conditions to limit their storage rate. Approximately a dozen menus were deployed each year
during 2016–2018 for operations with pp collisions. Different sets of trigger menus were used for
special LHC runs, including heavy ion collision runs. A representative listing of the primary triggers
used in 2018 for physics analyses, along with their thresholds and corresponding rates, is given in
table 2. These triggers accounted for approximately 50% of the overall menu rate used to select data that
were reconstructed promptly. Note that the listed rates of each trigger are inclusive and not necessarily
unique. For example objects selected by a trigger applying isolation would also be selected by a trigger
not requiring isolation on the same type of objects, provided that the other conditions (e.g., energy) are
met. Comprehensive details of the algorithms used and their performances are discussed in section 4.

The rest of the trigger menu not included in table 2 consists of slightly more specialized trigger
paths that enhance the acceptance of events for targeted analysis areas of the CMS physics program.
This includes “cross-object” triggers, such as mixed double-lepton (e +�) triggers that target, e.g.,
H ! WW, H ! ⌧ ⌧ , and top quark pair production in the dilepton final state, where H indicates the
Higgs boson. Top quark acceptance is further enhanced in other decay topologies, such as lepton+jets
or the all-hadronic channel. For the former, the ⇢T threshold on an electron can be reduced from that
used in the inclusive single-electron trigger, with manageable rate increase, when used in coincidence
with jets with a total scalar ?T sum (�T) above a given threshold. Likewise, for the latter, the hadronic
top quark decays can be selected via requirements on the number of jets, �T, and one or more b-tagged
jets. The B physics program of CMS generally targets soft dimuon final states, and thus uses additional
requirements (e.g., invariant mass) in its HLT paths to keep trigger rates manageable. Since the
overall list of these more specialized trigger paths numbers in the hundreds, their performances are
not described here. However, the description and performance of the algorithms used for most of
the individual objects forming these paths are discussed in this article.

3.4 Rates and processing time

The distribution of the CPU time spent in processing the HLT menu by reconstruction category and
by instances of C++ classes within those categories is shown in figure 1. Overall, there are O(1200)
instances stemming from O(200) algorithms that are run. The HLT configuration is based on the one
used in 2018, with only minimal updates to the local reconstruction to reflect the ongoing developments
foreseen for LHC Run 3. The timing is measured for an average PU of 50 during a 2018 data-taking
period on a full HLT node (2⇥ Intel Skylake Gold 6130) with hyper-threading enabled, running 16
jobs in parallel with 4 threads each. The average processing time per event is 451 ms; scaling this
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Table 2. Representative set of HLT paths based on the basic HLT physics objects used during data taking in
2018, the associated thresholds at the L1 and HLT, and the corresponding HLT output rates. The total menu rate
at Linst = 1.8 ⇥ 1034 cm�2 s�1, representative near the start of an LHC fill, is 1.6 kHz.

HLT path L1 thresholds [GeV] HLT thresholds [GeV] Rate [Hz]
Single muon 22 50 49
Single muon (isolated) 22 24 230
Double muon 22 37, 27 16
Double muon (isolated) 15, 7 17, 8 32
Single electron (isolated) 30 32 180
Double electron 25, 12 25, 25 16
Double electron (isolated) 22, 12 23, 12 32
Single photon 30 200 16
Single photon (isolated), 30 110 16

barrel only (|[ | < 1.48)
Double photon 25, 12 30, 18 32
Single tau 120 180 16
Double tau 32 35, 35 49
Single jet 180 500 16
Single jet with substructure 180 400 32
Multĳets with b tagging �T > 320 �T > 330 16

jets > 70, 55, 40, 40 jets > 75, 60, 45, 40
Total transverse momentum 360 1050 16
Missing transverse momentum 100 120 49

performance to the full event filter farm capacity means that it would be able to process an event input
rate of approximately 130 kHz, above the nominal L1 rate target of 100 kHz.

Figure 2 illustrates the HLT rates attributed to each CMS physics group for the HLT menu deployed
in September 2018, which selects data for prompt reconstruction. The rates were determined by running
the HLT menu on a special data set where events were selected that passed the L1 trigger without any
additional HLT requirements. The rates were normalized to an average Linst of 1.8 ⇥ 1034 cm�2 s�1.
An event is attributed to a given physics group if the latter requires (i.e., owns) at least one of the HLT
paths that triggered the event. For each physics group, three types of rates are evaluated.

• Total: the inclusive rate arising from all HLT paths needed by that physics group.

• Pure: the exclusive rate from all paths uniquely assigned to that physics group.

• Shared: the sum of the pure rate and the fractional rate of the HLT paths shared with other
groups, where the rate is split equally among all groups for a given path.

The sum of the Shared HLT rates is 1530 Hz. However, because the selected data are recorded in
separate data sets with some overlap (6.6%) for analysis and offline processing reasons, the actual
storage rate is 1640 Hz with the additional duplication.

The CMS physics analysis groups focused on searches for physics beyond the SM are the B2G
(searches for new physics in boosted signatures), SUSY (searches for new physics in final states with
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Figure 1. Pie chart distribution of the CPU time per event spent by the HLT for different parts of the event
reconstruction. Reconstruction modules and filters are grouped by detector and physics object (outermost ring
and similarly colored groupings). The middle ring reports the names of specific C++ classes in CMSSW used in
the HLT reconstruction, and the various slices in the innermost ring refer to different instances (modules) of that
given C++ class in the HLT menu. The empty slice indicates the time spent outside of the individual algorithms.

imbalanced ?T), and Exotica (other topologies of new physics) groups. The analysis groups focused
on measurements are the Higgs boson physics, top quark physics, B physics, and other SM phenomena
groups. The “Objects” category in figure 2 contains the HLT paths used by the physics object groups
(Tracking, Muon, Electron-Photon, Jet-MET, Tau, b Tagging) to characterize the performance of
the online and offline reconstruction. The “Calibrations” category includes all HLT paths used for
subdetector alignment and calibration purposes.

The rate allocation per physics group is also expressed as a pie chart in figure 3. Very roughly one-
third of the HLT rate budget is devoted to searches beyond the SM, one-third to measurements including
the Higgs boson (but apart from B physics), and one-third to B physics and physics object groups.

4 The HLT reconstruction and performance

The HLT paths in the menu are based on physics objects produced from reconstruction modules that use
information from the inner tracking system, calorimeters, and muon detectors. Central to many of the
object reconstructions is the particle-flow (PF) algorithm [18], which aims to reconstruct all individual
particles (electrons, muons, photons, and charged and neutral hadrons) in an event, combining
information provided by these systems. The online PF reconstruction has a simplified version of the
offline reconstruction to fulfill the timing limitation for online reconstruction. The tracking has a reduced
number of iterations, down to three as discussed in section 4.1. Moreover, electron reconstruction is not
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Figure 2. The HLT rate consumption by physics group in the standard physics streams for a Run 2 menu
deployed in September 2018. The “Total Rate” is the inclusive rate of all triggers owned by a group, and the
“Pure Rate” is the exclusive rate of all triggers unique to that group. The “Shared Rate” is the rate calculated by
dividing the rate of each trigger equally among all physics groups that use it, before summing the total group
rate. It includes the Pure Rate of that physics group. The topic coverage of each group is discussed in the text.

Figure 3. Share of the total HLT rate that each physics group contributes. “Data Set Overlap” refers to the
events that are duplicated and saved into separate data sets for analysis and offline processing convenience, but
which must be reconstructed separately offline.
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integrated into the online PF algorithm [18]. Brief descriptions of the HLT reconstruction algorithms
for physics objects and highlights of their performance measured with data collected during Run 2 are
described below. The measured efficiencies of the lepton (✓) algorithms are typically obtained using
the “tag-and-probe” technique [19], which exploits resonant dilepton production (e.g., Z ! ✓✓ or
J/ ! ✓✓) events in data. One of the lepton candidates, called the “tag,” is required to satisfy a trigger
requirement (e.g., a single-lepton trigger) such that the event is recorded irrespective of the other lepton,
the “probe.” Offline selection requirements are applied to both tag and probe to reduce the contribution
of misidentified leptons. The trigger efficiency of the probe can then be measured in an unbiased way
as a function of various kinematic and object quality parameters. The measured efficiencies of jets
and energy sums are obtained using an unbiased data set, namely one triggered by a lepton.

4.1 Tracking

Charged particle tracks in the HLT are reconstructed from the hits in the pixel and strip tracker using
a Kalman filtering technique [20], based on initial estimates of the track parameters obtained from
hits in the pixel detectors (“seeds”). The seed is propagated outwards and the track parameters are
updated with the information from compatible hits as they are found until no more hits are found
or the tracker boundary is reached. The track is then propagated from the outermost hit inwards in
search of additional compatible hits, after which a fit to the resulting hit collection determines the final
track parameters. Similar to the offline track reconstruction [8], the tracking is performed iteratively,
starting with tight requirements on the ?T and displacement with respect to the beam spot of the seed,
which become looser for each subsequent iteration. Hits in the tracking detectors already used in a
track are removed at the beginning of the next iteration. The general track reconstruction in the HLT
consists of three iterations. The first two require the maximum of four consecutive pixel detector hits
expected for one track from the detector geometry, identified using a cellular automaton algorithm [21],
to seed (i.e., initiate) the tracking. These iterations first target high-?T tracks before extending the
coverage to low-?T tracks, using the full volume of the pixel detector. The third iteration relaxes the
requirement on the number of hits in the track seeds to three and is restricted to the vicinity of jet
candidates identified from calorimeter information and the tracks reconstructed in the two previous
iterations. Tracks are clustered into vertices using the same deterministic annealing algorithm [22]
used in the offline reconstruction [8]. The vertex position is fitted using an adaptive vertex fitter [23].

This configuration of the track reconstruction was deployed in 2017, after the Phase-1 pixel detector
was installed. Reflecting the lower number of detector layers, fewer pixel hits were required to form
track seeds in previous years. The higher quality of track seeds available in 2017 resulted in an increase
in tracking efficiency by about 10% for tracks with ?T > 1.2 GeV, with larger improvements present at
lower ?T and high |[ |. At the same time, the track misidentification rate was reduced by a factor of 5–7.

During 2017, several issues with the installed Phase-1 pixel detector were identified that led to a
nonnegligible fraction of inactive pixel detector modules in each event. Most notable was the failure
of some direct-current DC-DC converters (⇡5%) used to power the detector, which resulted in an
increasing fraction of inactive modules toward the end of the data-taking period [6].

During the year-end technical stop 2017–2018, the pixel detector was equipped with new
converters, and the initial performance was restored. To safeguard against a possible recurrence of this
problem and other possible detector failures, an additional recovery iteration was added. Track seeds
consisting of just two pixel detector hits (“doublets”) are created in regions of the detector where
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two inactive modules overlap as seen from the interaction point. Because of the limited CPU time
available for the HLT reconstruction, this iteration is restricted to tracks with ?T > 1.2 GeV.

The tracking efficiency and misidentification rate reported here are obtained from simulated top
quark pair (tt) events with a mean PU of 50. The efficiency and rate are defined with respect to
the Monte Carlo (MC) simulated objects, where the tracks of the simulated particles are matched
to reconstructed tracks based on shared hits in the tracking detectors. The tracking efficiency is
defined as the fraction of simulated particles from the signal interaction with ?T > 0.9 GeV, |[ | < 2.5,
3
GH

< 35 cm, and 3
I
< 70 cm that are matched to a reconstructed track. The misidentification rate is

defined as the fraction of reconstructed tracks that could not be matched to a simulated particle. To
realistically model the effect of an imperfect pixel detector, a map of inactive modules representing
the status of the real detector as of June 2018 is applied to the simulation. The tracking performance
is implicitly included in the measured HLT object and algorithm performances that use tracking,
reported in subsequent sections of this article.

The tracking efficiency as a function of ?T, number of PU interactions (#PU), [, and q is shown
in figure 4. The reduction of efficiency at large track ?T is characteristic of the sample used for
the efficiency measurement. As the inactive modules are not distributed uniformly throughout the
detector, the tracking performance is expected to be asymmetric in track [ and q. For reference, the
efficiency that would be achieved with the “design pixel detector”, namely with no inactive pixel
detector modules, is also shown in the figure. As the doublet-seeded iteration is not run in the case
of the design detector, in some cases the tracking efficiency with the “realistic detector”, which
takes into account the pixel detector modules that have become inactive, can be higher than with
the design detector. In the plateau region around ?T ⇡ 20 GeV, the efficiency observed with the
realistic detector conditions is about 5% lower than with the design detector. This efficiency loss
compared with the design detector is more pronounced in the central part of the detector, and is
concentrated in the region around q = 0.6, where a significant number of inactive modules is present.
The doublet-seeded tracking iteration is able to recover a significant fraction of this efficiency loss
above the ?T threshold of 1.2 GeV. The performance of the recovery procedure is not uniform across
the [ and q ranges since it is invoked only if there are two overlapping inactive modules, making it
dependent on the specific distribution of these modules. The tracking efficiency is robust against the
presence of PU, decreasing only slightly with the number of additional interactions. The performance
of the doublet-seeded recovery is also independent of PU.

The tracking misidentification rate as a function of ?T, #PU, [, and q is shown in figure 5. There
is no difference between the misidentification rates with the design and realistic detector conditions.
Taking into account the doublet-seeded recovery iterations, a slight increase of the misidentification
rate above the ?T threshold of this iteration is observed. When integrated over all ?T values, no
significant increase in the misidentification rate is observed for the doublet-seeded recovery iteration
as seen in the other plots. The misidentification rate does increase with the number of additional
PU interactions for either tracking scenario and for the design pixel detector.

4.2 Muons

Tracking algorithms are also deployed to identify and reconstruct muons measured in the muon
detectors in combination with the pixel and strip trackers. Since the algorithms used during Run 2
are described in more detail in ref. [24], a brief summary is given here.
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Figure 4. Tracking efficiency as a function of simulated track ?T (upper left), #PU (upper right), [ (lower left),
and q (lower right). The contributions to the total efficiency from the different tracking iterations are shown in
different colors. The initial three iterations are shown in shades of blue, and the contribution of the doublet
recovery iteration is shown in violet. The simulation includes a map of inactive modules representing the status
of the real detector as of June 2018. The performance that would be achieved with no inactive pixel detector
modules and no doublet recovery iteration (design pixel detector) is shown as a red line. Details of the observed
features are discussed in the text.

Muon track reconstruction at the HLT takes place in two steps: first using hits only in the muon
system (L2 reconstruction), followed by a combination with hits in the inner tracking system (L3
reconstruction). The L2 reconstruction is equivalent to the standalone muon reconstruction performed
offline. The reconstruction at L3 is seeded by an L2 muon and follows an iterative track reconstruction
similar to that described in the previous section in a region around the seed starting from the outer
tracking layers and working inward (“outside-in”) or from the inner tracking layers working out
(“inside-out”). The latter inside-out approach also can be seeded directly by muons reconstructed by
the L1 trigger (“L1 muons”) using muon detector information only. The L3 track reconstruction is
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Figure 5. Tracking misidentification rate as a function of track ?T (upper left), #PU (upper right), [ (lower left),
and q (lower right). No selection on track kinematics is applied. The misidentification rate for the first three itera-
tions (default tracking) is shown in dark blue triangles, whereas the misidentification rate after including the dou-
blet recovery iteration is shown in violet circles. The simulation includes a map of inactive modules representing
the status of the real detector as of June 2018. The misidentification rate that would be observed with no inactive
pixel detector modules and no doublet recovery iteration (design pixel detector) is shown in dark red squares.

essentially 100% efficient with respect to L1-identified muons, and it reduces the rate by more than an
order of magnitude for the same ?T threshold because of the improved momentum resolution of the
inner tracking system. However, the L3 reconstruction consumes approximately 20% of the overall
HLT CPU time per event. After the track reconstruction, identification criteria are applied as well
as isolation criteria for the isolated muon category. The isolation is based on the sum of ?T from
additional tracks associated with the primary vertex and calorimeter energy deposits clustered using

an algorithm based on the PF candidates in a cone of radius �' =
q
(�q)2

+ (�[)2 = 0.3 around the
muon. The estimated contribution from PU to the energy deposits in the calorimeter is subtracted.
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The combined L1+HLT muon trigger efficiency of an isolated single-muon trigger with ?T >

24 GeV with respect to offline-reconstructed muons is presented in figure 6 as a function of the
data-taking date, which shows the effect of the evolution of the muon reconstruction algorithm during
Run 2, as well as the detector and machine conditions. The maximum efficiency of about 90% is
primarily set by the L1 trigger. Offline-reconstructed muons with ?T > 26 GeV are used. In 2016,
two different approaches were used to reconstruct L3 muons. The first one (the “cascade” algorithm)
starts from L2 muons as seeds and consists of three different methods to reconstruct L3 muons. Each
method uses the outside-in or inside-out approach with different ways to find tracks in the inner tracker.
The fastest method in calculation time is used first, and then it proceeds to the next methods only if an
L3 muon is not found in the previous method. The other approach (the “tracker muon” algorithm)
starts from L1 muons as seeds, which are used to define an inner tracker region to perform the track
reconstruction. Reconstructed inner tracks matched to segments in the muon stations are then tagged
as muons. By combining with the L3 muons from the cascade algorithm, it improves the overall
performance, especially when L2 muons are not properly reconstructed. The performance was stable
with an overall efficiency of about 90% during the whole of 2016 operations, showing robustness in
early 2016 during a period of degradation of the inner strip tracking detectors before their operational
parameters were retuned to reduce their susceptibility to highly ionizing particles.

In 2017, a new algorithm for the L3 muon reconstruction (the “iterative” algorithm) was
implemented. It combines the advantages of both the cascade and tracker muon algorithms and
replaced them. It starts with the outside-in step seeded by L2 and continues to find more L3 muons by
two inside-out steps seeded by L2 or L1 muons. In early 2017, the performance of the initial version
of the iterative algorithm was not as good as that of the previous algorithm, since a few technical weak
points in the algorithm were not identified during validation with simulated events. The performance
was consistently improved by implementing several patches during the data taking until the middle
of 2017. However, the efficiency decreased later, mainly as a result of pixel detector module losses
mentioned in the previous section and higher PU, as indicated in figure 6. The efficiency did rise
nevertheless toward the end of 2017 and early 2018 because of a slight reduction in the amount of PU.
To improve the robustness of the algorithm, significant changes were introduced in 2018. To recover
the efficiency, all L1 muons were used in the L1-seeded step by removing the ?T requirement, and an
iterative tracking step was added in the inside-out steps using the pixel doublet as seeds. In parallel, to
improve the purity and rate, identification criteria were imposed on L3 muons at the last step of the
algorithm. These improvements were implemented in May 2018 as denoted in the figure, restoring the
efficiency to be similar to the 2016 level, up to the end of the Run 2 operation.

Figure 7 (left column) shows the efficiency of the isolated single-muon trigger with ?T > 24 GeV
as a function of muon ?T, [, and the number of reconstructed primary vertices (#vtx) for three years of
data taking: 2016, 2017, and 2018. The right column of figure 7 shows the corresponding efficiency
distributions for the nonisolated single-muon trigger with ?T > 50 GeV. The panel below each figure
shows the ratio of the efficiency measured for data to that of simulation.

Figure 8 shows the efficiency of the same isolated single-muon trigger as in figure 7, plotted
as a function of the [ and q of the muons. Different muon detector technologies and different
reconstruction algorithms in both the L1 and HLT were used depending on the geometric region,
but the overall efficiency is generally stable across Run 2, except for a few specific regions related
to issues in the muon detector.
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Figure 6. Evolution of the isolated single-muon trigger efficiency with ?T > 24 GeV as a function of data-taking
dates during the Run 2 period from 2016 to 2018. Each point is the efficiency measured using the data with an
integrated luminosity of about 3 fb�1. Dashed lines show the changes in the LHC or CMS conditions that could
have an impact on the trigger performance, such as the fix for the degradation of the inner tracker as a result
of heavily ionizing particles (“HIP mitigation fix”) or the change in the filling scheme for pp collisions at the
LHC (“8b4e scheme”) that led to higher PU in CMS until the end of 2017. The change of the reconstruction
algorithm for L3 muons are presented as green dotted lines, including the replacement of cascade or tracker
muon algorithm to the iterative algorithm (“Change to iter. L3”) and the update of the iterative algorithm to
overcome the limitations observed in 2017 (“Iter. L3 update”).

The minimum ?T thresholds used for double-muon triggers are lower than those of single isolated
muon triggers. As table 2 shows, the lower-?T threshold of the isolated double-muon trigger used
in the Run 2 trigger menu is 8 GeV. The efficiency of this lower-?T “leg” is reported in ref. [24]. It
exhibits a sharp turn-on in the efficiency vs. ?T at the threshold, with a plateau efficiency of ⇡95%
that is stable across the years 2016–2018 to within about 1%.

4.3 Electrons and photons

The electron and photon candidates at L1 are based on trigger towers defined by arrays of 5⇥5
ECAL crystals along with the HCAL tower directly behind them in the barrel, and in the endcaps
are formed from groups of 5–25 crystals depending on their [-q position [4]. The trigger tower with
the largest ⇢T is clustered together with its adjacent ⇢T towers using a procedure that also trims the
energy deposits to only include contiguous towers to match the electron or photon signature in the
calorimeter. To form an L1 candidate, energy clusters must satisfy additional identification criteria
and, optionally, isolation requirements. The HLT electron and photon identification begins with a
regional reconstruction of the energy deposited in the ECAL crystals around the L1 candidates. In
Run 2, the signals in the ECAL crystals are reconstructed by fitting the signal pulse with multiple
template functions, to mitigate out-of-time PU. The signal amplitudes are then corrected by per-crystal
correction factors and per-channel calibration techniques, which, to deal with the increasing ECAL
crystal opacity from radiation damage, require frequent updates to maintain performance. Clusters
of ECAL deposits within a certain geometric area around the seed cluster, called “superclusters,”
are then built, using the same reconstruction algorithm as used offline [25]. However, the energy
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Figure 7. Trigger efficiencies for the isolated single-muon trigger with ?T > 24 GeV (left column) and the
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Figure 8. Efficiency of the isolated single-muon trigger with ?T > 24 GeV as a function of the [ and q of the
muons in 2016 (upper left), 2017 (upper right), and 2018 (lower).

correction applied to HLT superclusters is simpler than the one used offline in that it employs ECAL
information only. This correction is needed to take into account possible energy losses of the electrons
and photons travelling through the detector material. After requesting a minimal threshold on the
energy, requirements are applied based on properties of the energy deposits in the ECAL and HCAL
subdetectors, according to the compactness and shape of electromagnetic showers. In the case of
electrons, the ECAL supercluster is associated with a reconstructed track with a direction compatible
with the cluster location. The first step is a match with pixel detector hits. Since 2017, the pixel
matching algorithm requires three pixel detector hits rather than two, to maximize early background
rejection, while a hit doublet is accepted only if the trajectory passes through a maximum of three
active modules. Once the supercluster is associated with the pixel detector seeds, the electron track is
reconstructed using a dedicated tracking algorithm, based on the Gaussian sum filter [26]. However,
not all electron HLT paths run this algorithm: in some cases, sufficient rate reduction is already
achieved from pixel detector matching alone.
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Single- and double-electron triggers are the first selection step of most analyses using electrons.
In the following, their performance is reported, using the full 2016, 2017, and 2018 data sets,
corresponding to an integrated luminosity of 136 fb�1 [27–29]. The performance of photon triggers,
which are very similar to those of electron triggers apart from the absence of the requirement on
the presence of matching tracks, is not reported here. This is because photon triggers are typically
designed for specific analyses and are not used as extensively.

Table 3. Tag-and-probe selections used for the single- and double-electron trigger efficiency determination.

Tag selection Probe selection
?T > 30 (35) GeV in 2016 (2017–2018) ?T > 5 GeV
|[ | < 2.1 (except 1.44 < |[ | < 1.57) |[ | < 2.5
Tight isolation and shower shape requirements No extra identification criteria
Passing the single-electron HLT path
with ?T > 27 (32) GeV in 2016 (2017–2018)

The tag-and-probe selections [30] used to measure the efficiencies are listed in table 3. Probes
are then required to pass the HLT path under study. The analyzed triggers are the following, being
those used by most of the physics analyses involving electrons:

• Single-electron trigger with tight identification and isolation requirements: electron ?T >

27 (32) GeV in 2016 (2017–2018).

• Double-electron trigger with loose identification and isolation requirements: highest-(lowest-)?T
electron ?T > 23 (12) GeV.

The identification requirements are based on the shower shapes in ECAL and HCAL, and the
isolation requirements on energy and momentum sums in a cone around the electron. Figures 9–13
show the L1+HLT efficiency of these two electron triggers with respect to an offline-reconstructed
electron as a function of the electron ?T and #vtx, for different [ regions of the supercluster. The
offline-reconstructed electron efficiency is typically above 95% for electrons with ?T > 20 GeV [31].
The lower panel of each plot shows the ratio of the efficiency for data to MC simulation. The
data/MC discrepancy in the turn-on at low ?T, seen for all years and [ values, mainly comes from the
small differences that exist between the online and offline ECAL response corrections [31]. Small
inefficiencies that arose during 2017 from L1 energy clusters misassigned to the previous bunch
crossing at high ?T [4] primarily affect higher |[ | than reported here.

The single-electron trigger performance reported in figures 9 and 10 is affected by a change in
the strict identification and isolation selections required in this HLT path, which together are known as
the tight working point, whose target is a signal efficiency of about 80%. These criteria were retuned
in 2017, and some requirements in the endcap were loosened. Consequently, the single-electron
trigger efficiency is higher for 2017 and 2018 with respect to 2016, in particular at high [ values.
The different shape as a function of ?T in 2016 with respect to 2017 and 2018 arises mainly from
the different energy threshold, namely, 27 instead of 32 GeV. In 2017, the CMS pixel detector
was upgraded by introducing extra layers in the barrel and forward regions, and a commissioning
period at the beginning of the year led to a slightly reduced efficiency. As a consequence of the
upgraded detector, the algorithm used to reconstruct electrons matching ECAL superclusters to pixel
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detector tracks was revised, causing a significant rate reduction for a minimal performance loss.
However, problems with the pixel detector DC-DC converters (discussed in section 4.1) led to a
gradual efficiency reduction towards the end of the year. Moreover, the majority of the high PU data
in 2017 also came toward the end of that year. Thus, for these reasons, the single-electron trigger
performance in 2017 is slightly worse than in 2018.

The efficiency of the double-electron trigger, shown in figures 11–13, is in general higher in
the turn-on region in 2016 compared with 2017 and 2018. This is because the ⇢T thresholds of
the lowest unprescaled L1 seed requiring two electrons, which seeds this path, increased across the
years. The effect is especially evident at low ?T. Moreover, the 2017 trigger performance is slightly
worse than the other years because of the issues related to the pixel detector and PU described in
the previous paragraph. More details are reported in ref. [31].
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Figure 9. The L1+HLT efficiency of the single-electron HLT path with ?T > 27 (32) GeV in 2016 (2017
and 2018) with respect to an offline-reconstructed electron as a function of the electron ?T, obtained for
0 < |[ | < 1.44 (upper left), 1.57 < |[ | < 2.0 (upper right), and 2.0 < |[ | < 2.5 (lower). The lower panel
of each plot shows the ratio of data to MC simulation. The vertical bars on the markers represent combined
statistical and systematic uncertainties.
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Figure 10. The L1+HLT efficiency of the single-electron HLT path with ?T > 27 (32) GeV in 2016 (2017
and 2018) with respect to an offline-reconstructed electron as a function of #vtx, obtained for 0 < |[ | < 1.44
(upper left), 1.57 < |[ | < 2.0 (upper right), and 2.0 < |[ | < 2.5 (lower). The electron ?T is required to be
above 50 GeV. The lower panel of each plot shows the ratio of data to MC simulation. The vertical bars on the
markers represent combined statistical and systematic uncertainties.

4.4 Jets

Jets are reconstructed at the HLT using the anti-:T clustering algorithm [32] with a nominal distance
parameter of 0.4, and 0.8 for wide jets used in Lorentz-boosted topologies and multĳet triggers. The
inputs for the jet algorithm can be either calorimeter towers or reconstructed objects from the PF
algorithm. Most HLT jet paths use the PF inputs (“PF-jets”), whereas calorimeter jets (“Calo-jets”)
are used as a first step to identify jet signatures and initiate the PF reconstruction. To account for
detector and collision conditions, several corrections are applied to the estimated PF hadron energies,
average PU energy, and jet energy scale. The performance of the jet triggers is measured in terms of
their efficiency to select events that have an offline-reconstructed jet. For this purpose, an unbiased set
of pp collision events collected with an isolated single-muon trigger with a ?T > 27 GeV requirement
is used. The events are required to have exactly one loosely identified offline muon with ?T > 10 GeV
within |[ | < 2.4, which has a relative isolation value less than 0.4 in a �' cone of radius 0.4 to match
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Figure 11. The L1+HLT efficiency of the ?T > 23 GeV leg of the double-electron trigger with respect to
an offline-reconstructed electron as a function of the electron ?T, obtained for 0 < |[ | < 1.44 (upper left),
1.57 < |[ | < 2.0 (upper right), and 2.0 < |[ | < 2.5 (lower). The lower panel of each plot shows the ratio of data
to MC simulation. The vertical bars on the markers represent combined statistical and systematic uncertainties.

the trigger criteria. Any events with additional loosely identified electrons having ?T > 10 GeV within
|[ | < 2.5 are rejected to ensure that the chosen data have high purity of hadronic jets in the event. The
offline-reconstructed PF jets used in the measurement are clustered using the anti-:T algorithm with
radius 0.4; have ?T > 18 GeV within |[ | < 2.4; and pass selection criteria based on the charged-hadron
fraction, number of constituents, etc. that are able to reject a good fraction of leptons misidentified as
jets. Events are selected requiring at least one such offline jet that is well separated from the offline
muon by a �' of at least 0.4, so that the muon lies outside the reconstructed jet radius.

The efficiency is defined as the ratio of the number of events that have an HLT PF jet that passes
the trigger threshold and matches the highest-?T offline PF jet within �' < 0.2, to the total number of
events with a reconstructed offline jet. The efficiency for the lowest threshold unprescaled single PF jet
trigger as a function of the offline PF jet ?T is shown separately for each data-taking year in figure 14.
Results are shown for the total integrated luminosities collected in each year during 2016, 2017, and
2018. For a trigger threshold of 500 GeV, the efficiency reaches 100% at about 600 GeV in the offline
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Figure 12. The L1+HLT efficiency of the ?T > 12 GeV leg of the double-electron trigger with respect to
an offline-reconstructed electron as a function of the electron ?T, obtained for 0 < |[ | < 1.44 (upper left),
1.57 < |[ | < 2.0 (upper right), and 2.0 < |[ | < 2.5 (lower). The lower panel of each plot shows the ratio of data
to MC simulation. The vertical bars on the markers represent combined statistical and systematic uncertainties.

reconstructed jet ?T for all three years. The jet trigger efficiency, measured as a function of the offline
reconstructed jet ?T, is affected by the calibration of the offline-reconstructed jets. The offline jet energy
corrections were recalculated multiple times during Run 2, whereas only one set of online calibrations
were used. Hence, depending on the energy scale and resolution of the offline-reconstructed jets, the
turn-on of the efficiency curve can be shifted and become slightly faster or slower.

4.5 Scalar energy sums

The global �T energy sum is based on the scalar sum of jet ?T, and is sensitive to multĳet signatures.
The same set of unbiased events triggered by an isolated muon, described in the previous section, is
used to measure the efficiency of �T triggers. The event preselection requirements based on leptons
are also the same. To suppress the effects from PU, the �T reconstructed at the HLT is calculated using
HLT PF jets having ?T > 30 GeV within |[ | < 2.4. The same ?T and [ requirements are also applied to
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Figure 13. The L1+HLT efficiency of either leg of the double-electron trigger with respect to an offline-
reconstructed electron as a function of #vtx, obtained for 0 < |[ | < 1.44 (upper left), 1.57 < |[ | < 2.0 (upper
right), and 2.0 < |[ | < 2.5 (lower). The electron ?T is required to be above 50 GeV. The lower panel of each
plot shows the ratio of data to MC simulation. The vertical bars on the markers represent combined statistical
and systematic uncertainties.

the offline-reconstructed PF jets to calculate the offline �T, in addition to passing the jet identification
criteria. The offline jets are required to be separated from the offline muon by a �' of at least 0.4.

The trigger efficiency is defined as the ratio of the number of events where the �T at the HLT
passes the applied threshold to the total number of events selected by the offline �T algorithm with
the same threshold. The performance of the unprescaled �T triggers with the lowest thresholds, as
a function of the offline �T, is shown separately in figure 15 for the total integrated luminosities
collected during 2016, 2017, and 2018. During 2016, a lower threshold of 900 GeV was applied online
and was increased in subsequent years to maintain a similar total trigger rate as the Linst increased.
This is because �T is highly sensitive to PU events, causing a nonlinear increase in the trigger rate.

For an online threshold of 1050 GeV, the efficiency reaches 100% at about 1300 GeV in the
offline-calculated �T. The �T trigger efficiency for 2016 was lower because of an effect in the L1
trigger seed firmware implementation that limited the plateau to < 100%.
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Figure 14. The L1+HLT efficiency of the unprescaled single PF jet trigger having an online ?T threshold of
500 GeV, measured with respect to the offline reconstructed PF jet ?T, for the data collected using an unbiased
single-muon trigger during 2016, 2017, and 2018. The slight variation in turn-on curve is caused by differences
in offline jet energy scale calibrations. The vertical bars on the markers represent statistical uncertainties.
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Figure 15. The L1+HLT efficiency of the unprescaled �T triggers with the lowest thresholds, measured with
respect to the offline-reconstructed �T, for the data collected during 2016, 2017, and 2018. The inefficiency for
2016 is caused by an effect in the L1 trigger seed firmware implementation. The vertical bars on the markers
represent statistical uncertainties.

4.6 Missing transverse momentum

At the HLT, the missing transverse momentum is defined as the negative vector sum of the ?T of
all the PF candidates in an event, and its magnitude is denoted as ?miss

T . It is crucial to account for
the instrumental effects of noise and beam-induced backgrounds to keep the rates of these triggers
within reasonable limits. Additional filtering algorithms are applied during reconstruction to achieve
lower rates for ?miss

T triggers. Calorimeter deposits consistent with noise signature or beam halo are
removed from the energy sum computation at the HLT.
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The performance of the ?miss
T triggers is measured with respect to the offline-reconstructed ?miss

T
also based on PF candidates and including jet energy corrections, referred to as corrected ?miss

T . An
unbiased sample of events, triggered by a single isolated electron of ?T > 32 GeV, is used for this
measurement. To match the online requirement, the events must contain exactly one well-identified and
isolated offline electron, having ?T > 35 GeV within |[ | < 2.5 and passing the electron identification
criteria based on track quality and electromagnetic shower shape variables. Events with any additional
loosely identified electrons or with muons with ?T > 10 GeV are excluded.

The trigger efficiency is defined as the ratio of the number of events that satisfy a given online
?miss

T threshold requirement to the total number of events selected by the offline ?miss
T algorithm with

the same threshold. The performance of the unprescaled triggers with the lowest thresholds using
the total integrated luminosities collected during 2016, 2017, and 2018, is shown in figure 16. Since
?miss

T triggers are also susceptible to PU effects similar to �T triggers, the thresholds are different
in the three years because of variations in the Linst. For a trigger of threshold of 170 GeV, the
efficiency reaches 100% for an offline ?miss

T of about 350 GeV in 2016, with a similar performance
seen in later years for slightly shifted thresholds.
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Figure 16. The L1+HLT efficiencies of the unprescaled ?miss
T triggers with the lowest thresholds, measured

with respect to the offline-reconstructed corrected ?miss
T , for the data collected during 2016, 2017, and 2018.

The vertical bars on the markers represent statistical uncertainties.

At the HLT, online jet energy corrections can also be propagated to the calculation of the ?miss
T

similar to that performed offline. Figure 17 (left) compares the performance of the nominal and
corrected ?miss

T at the HLT for the 2018 data-taking year. The trigger with corrected ?miss
T has a

slightly faster turn-on compared with that of the nominal ?miss
T trigger having the same threshold.

However, the rate of the corrected ?miss
T trigger is also observed to increase by about 20% compared

with that of the nominal ?miss
T trigger. Figure 17 (right) shows the performance of different unprescaled

thresholds on online ?miss
T against offline-corrected ?miss

T , again using 2018 data. The turn-on curves
are observed to behave consistently with increasing thresholds.

The event selection efficiencies as a function of #vtx are shown in figure 18 for different data-taking
years. The offline thresholds are chosen at the fixed L1+HLT efficiency values of 80 and 95% for
each year, as determined from figure 16. The thresholds applied online are 170, 250, and 220 GeV
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Figure 17. Left: comparison of the L1+HLT efficiencies of the corrected vs. nominal ?miss
T triggers of the

same threshold, for the data collected during 2018. Right: nominal ?miss
T trigger L1+HLT efficiencies using

different thresholds.
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Figure 18. Event selection efficiencies as a function of #vtx for fixed L1+HLT efficiency values of 80 and 95%
of the unprescaled ?miss

T triggers with the lowest ?miss
T thresholds in 2016 (upper), 2017 (lower left), and 2018

(lower right). The PU is considerably lower in 2016, which allowed to lower thresholds for all triggers involving
jets and ?miss

T . The vertical bars on the markers represent statistical uncertainties.

– 25 –



2
0
2
4
 
J
I
N
S
T
 
1
9
 
P
1
1
0
2
1

in 2016, 2017, and 2018, respectively. The efficiencies decrease in events with a larger #vtx, which
is expected since particle tracks from only a limited number of vertices are reconstructed at the
HLT and ?miss

T is underestimated.
An alternative ?miss

T trigger is based on a calculation that uses all the reconstructed PF objects
except for muons, leading to the “�-subtracted” trigger paths. Therefore, in this approach, events
with high-?T muons are also assigned large online ?miss

T , whereas for events with no reconstructed
muons, the two calculations coincide. An unprescaled trigger path that selects �-subtracted ?miss

T and
missing �T (similarly without muons) both >120 GeV was available during the majority of Run 2.
The main uses for this path are searches for new physics in final states with only jets and ?miss

T , which
require the lowest ?miss

T thresholds possible. Figure 19 shows the performance of this path with
respect to the offline �-subtracted ?miss

T , during 2016, 2017, and 2018. A trigger efficiency above
95% is reached for �-subtracted ?miss

T > 250 GeV.
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Figure 19. The L1+HLT efficiency of the �-subtracted ?miss
T trigger with a threshold of 120 GeV on both ?miss

T
and missing �T measured with respect to the offline reconstructed �-subtracted ?miss

T , shown separately for data
collected during 2016, 2017, and 2018. The vertical bars on the markers represent statistical uncertainties.

4.7 b quark jets

The identification of b quark jets at the trigger level is essential to collect events that do not pass
standard lepton, jet, or ?miss

T triggers, and to increase the purity of the recorded sample for analyses
requiring b quark jets in the final state. The L1 trigger uses information from the calorimeters and
muon detectors to reconstruct objects, such as charged leptons and jets. Sophisticated identification
of b quark jets similar to the one performed offline is not possible at that stage as it relies on the
reconstructed tracks from charged particles available only at the HLT. In this section, we describe
b quark jet identification at the HLT.

Because of latency constraints at the HLT, it is not feasible to reconstruct the tracks and primary
vertex with the algorithms used for offline reconstruction. The time needed for track finding can
be significantly reduced if the position of the primary vertex is known. Although the position in
the transverse plane is defined with a precision of 20 �m, its position along the beam line is not
known. However, it is possible to obtain a rough estimate of the primary vertex position along
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the beam line by projecting the position of the silicon pixel tracker hits compatible with the jets
onto the I direction. A pixel tracker hit in the barrel (endcap) is compatible with a jet when the
difference in q between the hit and the jet is less than 0.21 (0.14). The region along the beam
line with the highest number of projected pixel detector hits is most likely to correspond to the
position of the primary vertex.

This fast primary vertex finding algorithm is sensitive to pixel detector hits from PU interactions.
Therefore, a number of selection requirements based on the shape of the charge deposition clusters
associated with the pixel detector hits are applied to select those that most likely correspond to a
particle with a large ?T. In addition, only pixel detector hits compatible with up to four highest-?T
jets with ?T > 30 GeV and |[ | < 2.4 are used. Finally, each pixel detector hit is assigned a weight
reflecting the probability that it corresponds to a track in one of the considered jets. The weight is
obtained by using information related to the shape of the charge deposition cluster, the q between
the jet and the cluster, and the jet ?T. Since the spread of projected hits from the primary vertex
is proportional to the distance from the beam line, a larger weight is assigned to pixel detector
hits closer to the beam line.

Since b tagging relies on the precise measurement of the displaced tracks with respect to the
primary vertex, it is crucial to use tracks that use the information of both the pixel and the silicon strip
tracker to improve the spatial and momentum resolutions. To reduce the HLT algorithm processing
time, these tracks are reconstructed only when originating near the primary vertex and if they are close
to the direction of the highest-?T jets, sorted according to decreasing jet ?T. Up to eight jets with
?T > 30 GeV and |[ | < 2.4 are considered in an event. In the first step, the trajectories of charged
particles are reconstructed from the pixel detector hits. To reduce the reconstruction time, tracks are
only reconstructed when they have 3

GH
< 15 mm, 3

I
< 2 mm, and are compatible in angle with the

direction of one of the jets. The tracks are reconstructed using the information from the pixel and strip
detectors. An iterative procedure is applied that is similar to the offline track reconstruction except for
the number of iterations and the seeds used for track finding in each iteration.

The reconstructed tracks and the primary vertex are then used to reconstruct secondary vertices
with the inclusive vertex finder reconstruction algorithm [33, 34]. These vertices and tracks are
then used as input for the b tagging algorithms.

Usually a loose b tagging selection based on Calo-jets is used as an intermediate filter to select
the events for which the full PF-jet reconstruction will be executed and from which the final PF-jet b
tagging selection is applied. However, Calo-jet b tagging was sufficient for some physics triggers.

4.7.1 Description of the algorithm

During the 2016 data-taking period, CSV�2 was the recommended algorithm for b tagging at the
HLT. The tagger and its performance are described in ref. [34]. After 2016, CMS developed a new
tagger dedicated to identification of b quark jets reconstructed with the anti-:T jet clustering algorithm
with a distance parameter equal to 0.4 (AK4-jets). This new algorithm, DeepCSV [34], relies on a
multiclassifier neural network structure made of four fully connected layers with 100 neurons each.
The input variables list comprises PF jet properties, tracks, and vertex related variables. The DeepCSV
output values range from zero to one and are interpreted as the probability for a given jet to originate
from the hadronization of a b quark, a c quark, or a gluon or light quark. The DeepCSV tagger
was deployed at the HLT at the start of the 2017 data-taking period, and it was the recommended
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online b tagging algorithm until the end of Run 2 in 2018. The training of the DeepCSV algorithm
has been carried out using the input variable collections obtained from MC simulated events after
the trigger selection and the full CMS event reconstruction.

An important figure of merit for b tagging algorithms is the b quark jet identification efficiency
versus the gluon or light-quark jet misidentification rate evaluated in simulated events in the form
of receiver operating characteristic curves (ROC curves); this provides a direct comparison of the
performance of different taggers. The flavor of offline-reconstructed jets in simulation is identified
using the so-called “ghost-matching” technique [32]. In this method, only the directional information
of the four-momentum of the generator-level (ghost) hadron is used to prevent any modification to
the four-momentum of the reconstructed jet. Jets containing at least one b hadron are assigned b
quark jets. Similarly, labels are defined for jets originating from c hadrons and from gluons g or
light-flavor (u, d, s) quarks (light jets). Preference is given to jets with b hadrons over c hadrons.
Online jets are matched to offline jets if their direction agrees within a cone of �' < 0.4, and their
flavor is assigned using the offline jet.

0.4 0.5 0.6 0.7 0.8 0.9 1
b jet efficiency

3−10

2−10

1−10

1

ud
sg

 je
t e

ffi
ci

en
cy CMS

Simulation 

Offline jets  
HLT Calo-jets 
HLT PF-jets  

DeepCSV (solid)  
CSVv2      (dashed)

Figure 20. Performance of the online (red and blue) and offline (black) b quark jet identification algorithms
demonstrated as the probability for a light jet to be misidentified as a b quark jet as a function of the efficiency
to correctly identify a b quark jet. The performance of the CSV�2 (dashed) and DeepCSV (solid) algorithms
are shown. The curves are obtained for online and offline jets with ?T > 30 GeV and |[ | < 2.4 in simulated tt
events. The plot is obtained using the 2017 detector conditions.

In figure 20, the ROC curves obtained for the two b tagging algorithms, DeepCSV and CSV�2,
are compared using two different sets of HLT input variables for the jet algorithm: full event PF
reconstruction (in blue) and reconstruction based on information in regions around jets from the CMS
calorimeters (in red); the offline performance is shown for reference in black. The conclusion of this
study is that DeepCSV outperforms CSV�2, with an improvement of the b quark jet tagging efficiency
for a fixed gluon or light-quark misidentification rate of 5–15%.
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4.7.2 Performance measurement in data and simulation

The performance is evaluated using pp collision data collected at
p
B = 13 TeV in 2017 and 2018

during LHC Run 2, corresponding to an integrated luminosity of about 30 and 48 fb�1, respectively.
The performance is assessed for events consistent with the tt process. Events are selected at the HLT
using a combination of trigger paths that require the presence of at least one muon and one electron.
For the offline analysis, events are selected that contain one isolated electron with ?T > 30 GeV and
one isolated muon with ?T > 20 GeV. In addition, at least two jets with ?T > 30 GeV are required.
This event selection is enriched with tt events and ensures an unbiased selection of b quark jets
with only a small contribution of tW events.

Efficiencies are measured by selecting events that contain at least one offline-reconstructed jet
passing a working point that corresponds to a light jet mistag rate of 1%. Figure 21 shows the online
PF-jet DeepCSV and CSV�2 discriminator score. The left (right) plot was obtained using 2017 (2018)
data. As described earlier, the output scores range from 0 to 1, and a negative value is assigned if the
tracking preselection has failed and the discriminator was not evaluated. For both tagging algorithms,
the data agree well with the MC simulation predictions. The distribution for true b quark jets peaks
at unity, while a peak at low values in the b tag score is observed for light jets. For DeepCSV, the
separation between signal and background is observed to be much larger.
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Figure 21. Left: online (PF-Jets) CSV�2 discriminator distribution, normalized to unity for both data and the
summed simulation. Different colors show the contributions from simulation of different jet flavors. The plot is
obtained using the 2017 detector conditions. A negative value indicates that the tracking preselection has failed
and the discriminator is not evaluated. Right: same, but for the DeepCSV discriminator. The plot is obtained
using 2017 data and MC simulation using the DeepCSV algorithm as it was run in 2018. The lower panel
of each plot shows the ratio of data to MC simulation. The vertical bars on the markers represent statistical
uncertainties.

The efficiencies at the HLT are displayed in figure 22. The efficiency is defined as the fraction of
jets selected by the HLT with respect to the number of jets selected by the offline DeepCSV algorithm,
with representative working points as indicated in the plots. The study is performed using data and
simulated samples for the conditions of 2017. The performances of Calo- and PF-jets are shown
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individually. Good agreement between data and simulation is observed. The rise of the efficiency
using DeepCSV both online and offline is much steeper because of the larger correlation between the
scores. In these plots, the choice of a looser working point, and thus higher efficiency, for Calo-jet b
tagging compared to PF-jet b tagging reflects how these algorithms are applied in physics triggers.
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Figure 22. Efficiency to pass the online CSV�2 (left) and DeepCSV (right) working points as a function of
the corresponding offline DeepCSV value. Data collected in 2017 are shown in closed circles; the result of
the simulation is shown in open circles. The turn-on with respect to the online Calo-jets is shown in blue.
The turn-on with respect to the online PF-jets is shown in red. The right plot is obtained using 2017 data
and MC simulation using the DeepCSV algorithm as it was run in 2018. A negative value indicates that the
tracking preselection has failed and the discriminator is not evaluated. The vertical bars on the markers represent
statistical uncertainties.

For trigger paths using b quark jet tagging, the online efficiency with respect to the offline
performance is usually an important figure of merit. This quantity can be evaluated for a fixed offline b
tagging efficiency corresponding to a light-jet efficiency of 0.1, 1, or 10%, namely, the tight, medium,
and loose working points, respectively. The relative CSV�2 and DeepCSV efficiency is shown in
figure 23. The efficiencies, as obtained from data and simulation, are in good agreement. Using these
curves, the online selection is tuned to reach a fixed efficiency given a fixed offline selection. The
CSV�2 efficiency is smaller than that of DeepCSV at high score values because the offline DeepCSV
discrimination is much better and the jets selected online are all also selected by the offline algorithm.

4.8 Tau leptons

Tau leptons have a relatively short lifetime and decay before reaching the beampipe. In 64.8% of cases,
they decay hadronically into one or three charged hadrons and mostly accompanied by neutral pions.
Neutral pions decay promptly into two photons, which may convert into e+e� pairs while traversing
the material of the tracker. As a result of the large magnetic field of the CMS solenoid, the e+e� pairs
are separated in the (q, [) plane. Thus, neutral pions are reconstructed from photons and electrons.
The aim of the HLT tau reconstruction is to reconstruct hadronic decays of tau leptons (⌧h).

4.8.1 Reconstruction of ⌧h trigger paths

The reconstruction of tau leptons at the HLT is performed in different steps depending on the associated
particle. A flow chart of the reconstruction steps is summarized in figure 24. The ⌧h triggers used in
the Run 2 data-taking period and the corresponding L1 and HLT conditions are listed in table 4.
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Figure 23. Efficiency of jets b tagged offline to pass the online CSV�2 (left) and DeepCSV (right) b tagging
requirement, as a function of the online requirement. Three offline selections are shown: Loose (red), Medium (or-
ange), and Tight (blue). Data are shown in closed circles; the result of the simulation is shown in open circles. The
right plot is obtained using 2017 data and MC simulation but using the DeepCSV algorithm as it was run in 2018.

Double-tau (⌧h⌧h) trigger paths. A double-tau trigger path is formed when a tau lepton is associated
with another tau lepton that also decays hadronically. In these double-tau triggers, the reconstruction
is performed in three steps. The first step is called L2, where reconstruction starts with the L1
trigger ⌧h candidates. The energy depositions in the calorimeter towers around the seeded L1 ⌧h
candidates within a cone of radius 0.8 are clustered, and L2 ⌧h candidates are reconstructed by using
the anti-:T algorithm [32] with �' = 0.2. In 2016 and 2017, the L2 candidates were reconstructed
for all L1 ⌧h candidates, including those with very low ?T that did not contribute to any of the
relevant seeds in the L1 menu. In 2018, the reconstruction of the L2 candidates was updated to be
performed around only those L1 ⌧h candidates that satisfy the ?T and isolation criteria of the L1
seeds that contributed to the event selection at L1.

L1 triggered tau
leptons

L2 calo taus L2.5
pixel isolation

Regional L3 reconstruction
using particle flow & HPS

algorithms

Global L3 reconstruction
using particle flow & HPS

algorithms

Global L3 reconstruction
using particle flow & cone based

algorithms

double-tau paths

lepton + tau paths

others

single tau & tau + MET paths

Figure 24. Flow chart for ⌧h-candidate reconstruction at the HLT.

In the second step, known as L2.5, charged-particle isolation based on the information in the
pixel detector is implemented. Reconstructed L2 ⌧h jets with ?T > 20 GeV and |[ | < 2.5 are selected,
and pixel detector tracks are reconstructed around the direction of the selected L2 ⌧h candidates in
a region of �[ ⇥ �q = 0.5 ⇥ 0.5 from the hits in the pixel detector. The reconstructed tracks are
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clustered, and vertices having at least two tracks with ?T > 1 GeV are formed by using the divisive
vertex finder [8]. If no vertices are found, a ⌧h candidate is considered perfectly isolated and the
reconstruction continues with the next step. If more than one vertex is reconstructed, the one with
the highest

Õ
?2

T of its constituent tracks is chosen as the primary vertex of the hard-scattering event.
Tracks that have at least three hits and have a trajectory in a cone of 0.15 < �' < 0.4 centered
around the L2 ⌧h candidates and originating from the primary vertex are considered for the isolation
requirement. These tracks are required to have 3

GH
< 0.2 cm. An L2 ⌧h candidate is considered to be

isolated if the scalar sum of the ?T of the associated pixel detector tracks is less than 4.5 GeV.
The final step is referred to as the L3 reconstruction, where the full tracking information is included

through the use of the online PF reconstruction. Instead of reconstructing all tracks, the reconstruction
is performed regionally around the L2 ⌧h candidates with ?T > 20 GeV and |[ | < 2.5. The L3
reconstruction was performed using a cone-based algorithm until mid-2018, after which it was upgraded
to the hadron-plus-strips (HPS) algorithm that had already been in use for the offline reconstruction
of tau leptons [35]. The HPS algorithm allows for the exclusive reconstruction of specific hadronic
decay modes, which is not possible with a cone-based algorithm. Both algorithms start with PF jets
reconstructed by the anti-:T algorithm with a distance parameter of 0.4, and a maximum of one tau
lepton is reconstructed for each PF jet at the end of the algorithm. The HPS-based algorithm, described
later, will be the main focus here, since the cone-based algorithm has already been described in ref. [35].

The ⌧h⌧h triggers used in the Run 2 data-taking period require a pair of isolated L1 ⌧h candidates
with variable ?T thresholds, as listed in table 4. The ⌧h candidates are required to have ?T > 35 GeV
at the HLT and to pass the medium working point of the combined isolation, described below. The
isolation is relaxed by 5%/GeV for ?⌧h

T > 100 GeV (i.e., the threshold on the ?T sum is increased by
5% for each GeV in ?

⌧h
T above 100 GeV). The ⌧h candidates must be separated by �' > 0.5.

Lepton+⌧h trigger paths. So-called cross triggers select events with at least one tau lepton and
another object, such as an electron or muon. For these triggers, the reconstruction is performed in fewer
steps than for double-tau trigger paths. These triggers require the existence of an L1 trigger seeded
by a muon or an electron together with a ⌧h lepton. Additionally, they perform the reconstruction
and selection of a muon or electron before the ⌧h reconstruction starts, which reduces the number
of events for which the ⌧h reconstruction is run. Because of that, the L3 reconstruction is run
directly without the L2 and L2.5 prefilters and thus over the entire CMS detector acceptance. The
L3 reconstruction is performed using the HPS algorithm.

The lepton+⌧h triggers require a muon or an electromagnetic object passing the L1 ?T thresholds
given in table 4. A ⌧h candidate is also required to pass a given HLT ?T threshold and loose charged
isolation. In some cases, several L1 triggers with different ?T thresholds are used to keep the L1
rate constant by dynamically selecting the unprescaled L1 seed based on Linst. The isolation is
relaxed by 5%/GeV for ?

⌧h
T > 110 GeV. Finally, the lepton and ⌧h candidate must be separated

from each other by requiring �' > 0.3.

The ⌧h + pmiss
T and single-⌧h trigger paths. Tau leptons can also be reconstructed in association

with ?miss
T , which is also called a cross trigger. The reconstruction in such triggers occurs in two steps.

These triggers require the existence of an L1 trigger seeded by ?miss
T together with a ⌧h lepton, as

with the lepton+⌧h triggers. The reconstruction and selection of ?miss
T before the ⌧h reconstruction is

started reduces the rate of events for which the ⌧h reconstruction is run. Hence, the L3 reconstruction
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can be run without the L2.5 prefilter and globally over the entire coverage of the CMS detector. In
the case of single-⌧h triggers, because of the high ?T requirement, global L3 reconstruction is also
affordable. In both ⌧h + ?miss

T and single-⌧h triggers, however, the L2 filters are used to reduce the
CPU processing time. In contrast to the �⌧h, e⌧h, and ⌧h⌧h triggers, the ⌧h + ?miss

T and single-⌧h
triggers reconstruct the tau leptons using the cone-based algorithm as described in ref. [35].

Table 4. List of ⌧h triggers used in 2016, 2017, and 2018 data-taking periods including both the L1 and HLT
conditions. The e⌧h triggers evolved in 2016 data taking, with the labels (1), (2), and (3) indicating use for the
first 7.4 fb�1, the next 10.2 fb�1, and the last 18.3 fb�1 of data, respectively.

Year Trigger HLT condition L1 condition
2016

�⌧h ?
�
T > 19 GeV (isolated) ?

⌧h
T > 20 GeV (unseeded) ?

�
T > 18 GeV

e⌧h ?
e
T > 24 GeV, ?⌧h

T > 20 GeV (unseeded) (1) ?
e
T > 22 GeV

?
e
T > 24 GeV, ?⌧h

T > 20 GeV (seeded & nonisolated) (2) ?
e
T > 22 GeV,
?
⌧h
T > 20 GeV

?
e
T > 24 GeV, ?⌧h

T > 30 GeV (seeded & isolated)(3) ?
e
T > 22 GeV,
?
⌧h
T > 26 GeV

⌧h⌧h ?
⌧h
T > 35 GeV (seeded & isolated) ?

⌧h
T > 28–36 GeV

⌧h + ?miss
T ?miss

T > 90 GeV, ?⌧h
T > 50 GeV, ?⌘

±

T > 30 GeV (unseeded) ?miss
T > 80–100 GeV

Single ⌧h ?
⌧h
T > 140 GeV, ?⌘

±

T > 50 GeV (seeded) ?
⌧h
T > 120 GeV

2017 & 2018
�⌧h ?

�
T > 20 GeV (isolated), ?

⌧h
T > 27 GeV (seeded & nonisolated) ?

�
T > 18 GeV,
?
⌧h
T > 24/26 GeV

e⌧h ?
e
T > 24 GeV , ?⌧h

T > 30 GeV (seeded & isolated) ?
e
T > 22/24 GeV,
?
⌧h
T > 26/27 GeV

⌧h⌧h ?
⌧h
T > 35 GeV (seeded & isolated) ?

⌧h
T > 32–36 GeV

⌧h + ?miss
T ?miss

T > 100 GeV, ?⌧h
T > 50 GeV, ?⌘

±

T > 30 GeV (seeded) ?miss
T > 80–110 GeV,
?
⌧h
T > 40 GeV

Single ⌧h ?
⌧h
T > 180 GeV, ?⌘

±

T > 50 GeV (seeded) ?
⌧h
T > 120–130 GeV

The ⌧h + ?miss
T triggers are seeded by an L1 cross trigger as listed in table 4. The ⌧h + ?miss

T
triggers require high ?miss

T and a tau lepton with ?
⌧h
T > 50 GeV passing the medium working point

of the charged isolation by rejecting the tracks with low ?T. The isolation is relaxed by 5%/GeV
for ?⌧h

T > 120 GeV. The high ?T single-⌧h trigger is seeded by a single L1 tau lepton. Tau leptons

are reconstructed by using charged particle h± tracks with ?
h±

T > 30 (50) GeV for the ⌧h + ?miss
T

(single-⌧h) trigger, and they are required to have large ?T and to pass the medium working point of
the combined isolation (discussed in the next section). The isolation is relaxed for ?⌧h

T > 300 GeV
by 2%/GeV and is removed completely when ?

⌧h
T > 500 GeV.

Hadron-plus-strips algorithm. In the first step of the HPS algorithm, photons and electrons
that exist in PF jets are clustered into a “strip” around the highest-?T photon or electron with a
�[ ⇥ �q area of 0.05 ⇥ 0.2, and the strip is assigned the ⇡0 mass. To overcome any inefficiency
stemming from the misreconstruction of charged hadrons, PF neutral hadrons in the signal cone are
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considered as a part of charged hadrons in addition to PF charged hadrons. The signal cone that
is used to reconstruct ⌧h candidates is defined as a function of the ?T of the hadronic system by
'sig = 3.0 GeV/?T, with the limits of the cone size to be in the range of 0.05 < 'sig < 0.10. We
reconstruct ⌧h candidates in the following decay topology classes on the number of charged and
neutral hadrons: (=h± , =⇡0) = (1,0), (1,1), (1,2), (2,0), (2,1), (3,0), and (3,1). The classes with two
charged hadrons have been added to catch decays to three charged hadrons where one track was
not properly reconstructed. A vertex is associated to each tau candidate, selected to be the one
closest in 3

I
, to the track of the highest-?T charged-hadron candidate. A tau lepton is then selected

by applying further requirements that include the compatibility of the final states to given decay
modes. For this purpose, the reconstructed decay modes are required to be within a mass window
corresponding to either a ⇢ (770) or a1(1260) . The mass windows are optimized for the online
implementation of the HPS algorithm to reconstruct the online tau leptons efficiently. The offline
values of the mass windows are reported in ref. [35].

After this step, there are further cleaning steps applied. Soft tau lepton candidates with two charged
hadrons with ?T < 5 GeV are rejected in order to reduce the rate of tau leptons with one charged
hadron migrating to the decay mode with two charged hadrons. Of the remaining candidates, the tau
leptons with the largest ?T and largest strip multiplicity are preferred by the HLT paths. The single-tau
candidate with the lowest combined isolation, associating its neutral components with the candidate,
within the isolation cone size of �' = 0.5, is selected. The combined isolation is calculated as:

�L3
⌧h

=
’

?charged
T +

’
?WT, (4.1)

where
Õ

?charged
T and

Õ
?WT are the scalar sums of the ?T of charged hadrons and of photons, respectively,

that do not belong to the ⌧h candidate. The value of the combined isolation is relaxed in the HPS-based
tau lepton reconstruction compared with the one used in cone-based algorithm to achieve similar
efficiency, leading to the requirement that the isolation be smaller than 3.9, 3.7, and 3.2 GeV for
loose, medium, and tight working points, respectively. Those values are further relaxed as a function
of ?T to increase the reconstruction efficiency of genuine ⌧h candidates at high ?T. This is only
possible because of the reduction in the number of misidentified ⌧h candidates as a function of ?T,
which helps to control the trigger rates [35].

4.8.2 Performance measurement in data and simulation

The efficiencies of the ⌧h legs of the e⌧h, �⌧h, and ⌧h⌧h triggers are estimated by using the tag-
and-probe method in Z/W⇤ ! ⌧ ⌧ ! �⌧h events, since the ⌧h purity is higher in �⌧h events than
in e⌧h and ⌧h⌧h events. Monitoring triggers based on �⌧h with the same isolation, identification,
and ?T thresholds as in the e⌧h or ⌧h⌧h triggers are used to measure the efficiency of ⌧h leg in
e⌧h and ⌧h⌧h triggers. The trigger efficiency is calculated from the ratio of the number of events
that pass the baseline offline tag-and-probe selection, explained below, as well as the given HLT
path to the number of events that pass only the tag-and-probe selection. The offline ⌧h candidates
are matched to the online ⌧h candidates for the numerator selection. The measured efficiencies
always depend on the offline selection.

Events passing an isolated single-muon L1 trigger with ?T > 27 GeV and |[ | < 2.1 are selected.
Exactly one offline muon passing loose identification criteria is required to suppress the contamination
from Z ! �� events. An offline muon candidate is considered matched with an online object if
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�' < 0.5. From this sample, a hadronically decaying tau candidate with ?T > 20 GeV and |[ | < 2.1
is selected as the probe. The tau candidate is required to pass the medium working point of the tau
combined isolation to reject the events with misidentified tau leptons reconstructed from the background
from SM events composed uniquely of jets produced through the strong interaction, referred to as
quantum chromodynamics multĳet events, with 70% efficiency. To suppress the misidentified muons
and electrons, dedicated discriminators are used. The ⌧h lepton is required to be separated from the
tagged � . The selected � and ⌧h candidates are required to have opposite sign charges in both data and
simulation samples. The reconstructed offline tau leptons are matched with tau leptons, electrons, or
muons at the MC generator level to suppress misidentified ⌧h particles from jets in simulated events. In
data, the contribution from such events is subtracted using events containing a muon and an hadronic tau
lepton carrying the same charge. To increase the purity of the Z ! ⌧ ⌧ ! �⌧h events, offline selections
on the transverse mass, <T(� , ?

miss
T ) < 30 GeV, and visible mass, 40 < <vis(�⌧h) < 80 GeV are

applied. Furthermore, events with electrons and b-tagged jets are vetoed.
The trigger efficiencies are measured for the full 2016, 2017, and 2018 data sets, corresponding

to an integrated luminosity of 137.1 fb�1, and in Drell-Yan simulated samples (Z/W⇤ ! ✓✓ , where
✓ = e, � , ⌧). The combined L1+HLT efficiency of the ⌧h triggers is presented unless stated otherwise.
Therefore, generally, the results include the impact of L1 trigger selection efficiency and the specific
L1 seeding efficiencies. Figure 25 compares the ?T resolution of the two different algorithms used to
reconstruct hadronically decaying tau leptons from the same data set recorded from the first 17.7 fb�1

taken in 2018. The figure shows that the HPS-based tau reconstruction has a better ?T resolution
compared with the cone-based one. This reduces the fraction of misidentified ⌧h candidates from
low-?T jets exceeding the nominal ?T threshold, allowing lower ?T thresholds for the same rate. The
efficiency per leg of these two algorithms is presented in figure 26 for the ⌧h⌧h triggers, where one
can see that the HPS algorithm has slightly higher efficiency in the turn-on region with ?T and has
a significant improvement in the region of high PU.

The implementation of the HPS ⌧h reconstruction reduced the HLT rate of ⌧h by 10% per
⌧h leg. It is measured as 4.6 and 39 Hz for an average PU of approximately 50 for �⌧h and ⌧h⌧h
triggers, respectively, while it was correspondingly 5.2 and 50 Hz for the cone-based algorithm.
The approximate processing time of a ⌧h⌧h trigger is around 50 ms, whereas it is around 10 ms for
lepton+⌧h triggers for an average PU of approximately 50.

Figure 27 presents the trigger performance per leg of the ⌧h⌧h triggers in 2016, 2017, and 2018.
It shows that the 2016 data have a higher efficiency compared with 2017 and 2018 data, which is a
consequence of the lower L1 ?T thresholds and the lower PU, as presented in the right plot of the figure.
The HPS-based reconstruction algorithm deployed in the middle of 2018 data-taking results in good
efficiency in general, compared with the cone-based reconstruction algorithm that was used before.
Since there were no other significant differences in terms of ?T thresholds, isolation, or L1 seeds
between 2017 and 2018, one would expect to see similar performance in 2017 and 2018. However,
the figure shows that the efficiency for 2017 data is lower than that in 2018 data. This was caused
by the inactive pixel detector modules observed in the beginning of 2017 data taking as well as the
DC-DC converter issue (described in section 4.1) encountered at the end of the 2017 data taking. The
inefficiency coming from the inactive pixel detector modules was recovered with the extra recovery
iterations in the tracking, but the DC-DC problem reduced the overall efficiency. In 2018, the DC-DC
pixel detector issue was mitigated, and this improved the tau trigger efficiency.
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Figure 25. The ?T resolution for the �⌧h trigger for cone-based and HPS-based ⌧h reconstruction, calculated
by using the first 17.7 fb�1 of 2018 data taken with the cone-based tau reconstruction, where the trigger paths
with HPS-based algorithm were included for the purpose of testing. The vertical bars on the markers represent
statistical uncertainties.
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Figure 26. Combined L1 and HLT efficiency per leg of the ⌧h⌧h triggers with cone-based and HPS-based ⌧h
reconstruction, using the first 17.7 fb�1 and the next 42.0 fb�1 of data in 2018. The figure shows the efficiency as
a function of offline ?

⌧
T (left) and #vtx (right). The vertical bars on the markers represent statistical uncertainties.

5 Summary

The performance of the high-level trigger of CMS has been presented as it evolved over the course
of LHC Run 2 in 2016–2018. The algorithms of the high-level trigger were adapted to meet the
challenges of the increase of the LHC luminosity and pileup to twice their initial design values as
well as two to three times the previous Run 1 values. Imperfect detector effects that arose also were
mitigated to minimize inefficiencies. The trigger menu continuously evolved to meet the needs of the
experiment across a wide range of physics areas under these conditions and within the CPU capacity
of the online computer farm. The overall single isolated lepton trigger efficiency was maintained at
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Figure 27. Combined L1 and HLT efficiency per leg of the ⌧h⌧h triggers for 2016, 2017, and 2018 data taking.
The figure shows the trigger efficiency as a function of the offline ?

⌧
T for a 35 GeV threshold (left) and as a

function of #vtx (right), for which an offline requirement of ?⌧T > 50 GeV is applied. The lower panels show the
ratio of data to MC simulation for each year. The vertical bars on the markers represent statistical uncertainties.

the level of 90% for muons and 80% for electrons with ?T thresholds of 24 and 32 GeV, respectively.
Triggers based on jets and on energy sums such as ?miss

T also were available. Jets also could be
tagged as arising from a b quark jet with a performance of the identification algorithm approaching
that achieved offline and using machine learning for the best discrimination. Hadronically decaying
tau leptons were also reconstructed in the trigger and were typically used in combination with other
leptons, with minimum ?T thresholds from 20 to 35 GeV on the hadronic tau decay depending on
the flavor of the other lepton and the data-taking year.
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