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Covering approximately 40% of land surfaces, grasslands provide critical ecosystem services

that rely on soil organisms. However, the global determinants of soil biodiversity and func-

tioning remain underexplored. In this study, we investigate the drivers of soil microbial and

detritivore activity in grasslands across a wide range of climatic conditions on five continents.

We apply standardized treatments of nutrient addition and herbivore reduction, allowing us

to disentangle the regional and local drivers of soil organism activity. We use structural

equation modeling to assess the direct and indirect effects of local and regional drivers on soil

biological activities. Microbial and detritivore activities are positively correlated across global

grasslands. These correlations are shaped more by global climatic factors than by local

treatments, with annual precipitation and soil water content explaining the majority of the

variation. Nutrient addition tends to reduce microbial activity by enhancing plant growth,

while herbivore reduction typically increases microbial and detritivore activity through

increased soil moisture. Our findings emphasize soil moisture as a key driver of soil biological

activity, highlighting the potential impacts of climate change, altered grazing pressure, and

eutrophication on nutrient cycling and decomposition within grassland ecosystems.
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Grassland systems covering approximately 40% of the
world’s terrestrial surface, encompass a wide variety of
habitats for soil organisms1,2, which play key roles in

delivering ecosystem functions such as nutrient cycling and
decomposition3–6. In this context, the key players are soil
microorganisms and detritivores such as earthworms, isopods,
millipedes, and enchytraeids, which primarily feed on litter and
organic materials. Their collective efforts break down organic
matter, thus supplying vital nutrients to plants7. Soil organism
activity is strongly driven by temperature, soil moisture8–11, and
global change factors, including increased nutrient inputs and
alterations in the range, abundance, and distribution of above-
ground herbivores. However, we lack a broad understanding of
how nutrient inputs and herbivory influence soil communities
and ecosystem functions in grasslands. At the same time, such
soil organisms may be important mediators of ecosystem
responses to global change2,12,13. Further, a lack of spatially
replicated studies means that we cannot predict how plant pro-
ductivity, grazing, or local abiotic characteristics may mediate
nutrient and herbivory effects on soil organisms14.

Herbivores can play a crucial role in shaping grasslands by
facilitating diverse plant communities and maintaining ecosystem
functioning14. For example, wild herbivores may selectively
consume abundant plant species, altering species
composition15–17 and can contribute to maintaining plant
diversity by reducing competition for light18. Moreover, herbi-
vores impact nutrient cycling in grasslands by consuming live
plant material and modifying the quantity and quality of organic
inputs to the soil, e.g. via excreta, and via changes in soil abiotic
conditions14,19,20. At the same time, large native herbivore den-
sities may be reduced via hunting or land conversion, and in
many cases, they are replaced by large numbers of domestic
livestock21,22. Soil communities, processes, and structure are
strongly affected by wild and domestic herbivores, with important
consequences for soil biological activity and ecosystem
multifunctionality14,23–25. Herbivores may enhance soil biological
activity by depositing easily-degradable dung and urine or, par-
ticularly under fertile conditions, inducing compensatory
growth19,26–28. In contrast, in relatively unproductive systems,
grazers may preferentially feed on the few available nutrient-rich
plants, on which many soil organisms also depend, resulting in
poorer quality of litter, which reduces biological activity15,19,29,30.
Additionally, aboveground herbivores may create harsh envir-
onmental conditions for soil organisms through soil compaction,
negatively affecting pore space and water infiltration as well as
increasing the cover of bare soil, resulting in high temperature
fluctuations compared to vegetated areas31,32. At the same time,
the interaction between herbivory and nutrients can be context-
specific, as it may vary based on the specific plant species and
local site conditions33.

Predictions suggest that the disruption of the nitrogen cycle
could cause nitrogen (N) deposition to double in the future34,35.
The same applies to phosphorus (P) inputs, which have globally
increased compared to preindustrial levels36,37. The growth and
biomass production of plants depend on nutrients such as
nitrogen, phosphorous, and potassium, and most grasslands are
limited in productivity by nutrient inputs38,39. Nitrogen inputs
may increase the activity of soil organisms by increasing the
amount and quality of plant material that enters the soil
system10,20, but have also been shown to reduce detritivore
activity40. The same applies to soil microbes, as long-term
nitrogen inputs have been shown to have negative effects41. While
the effects of phosphorous inputs on microbial activity remain
less understood, it is known that phosphorous limitation can
impede decomposition41–43. Globally, nitrogen to phosphorous
ratios are increasing, leading to a prevalence of phosphorous

limitation in soils36. This limitation can further inhibit microbial
activity, which in turn can impact biological decomposition
processes44. Additionally, although soil microbes are generally
less susceptible to potassium deficiency than plants45, they still
benefit from increased nutrient inputs, including potassium and
micronutrients from plants that have sufficient nutrient supply.
Given these context-dependent effects of nutrient addition and
herbivory on soil processes, we need standardized manipulations
of herbivores and nutrients across experimental and environ-
mental gradients.

To improve our understanding of how fertilization and her-
bivory may alter ecosystem functioning belowground, we inves-
tigated the effects of nutrient enrichment (NPK fertilization) and
herbivore reduction on soil microbial and detritivore activity
across grasslands worldwide. This globally-coordinated study of
soil biota was carried out within the Nutrient Network
experiment46, with sites in North and South America, Europe,
Asia, and Australia that represent a wide range of grassland
habitats and environmental conditions (Fig. 1a; Table S1). In
2015, we used standardized bait (bait lamina strips) at 18 sites to
assess soil detritivore feeding activity47, and analyzed soil samples
from 26 sites for soil microbial activity (microbial respiration)48.
Throughout the manuscript, we use the term ‘biological activity’
to encompass both activities. We used structural equation models
to test which biotic (plant community properties49) and abiotic
properties (soil water content11) determine soil biological activity
worldwide. We hypothesized that (1) reducing aboveground
herbivores would result in a decrease in belowground activity
rates. Furthermore, we expected (2) the impact of added nutrients
on soil biological activity would depend on carbon inputs, with
increased plant biomass due to nutrient additions being asso-
ciated with higher soil biological activity. With the two treatments
in combination (3), the positive effect of nutrients on soil activity
would be stronger than the negative effect of reduced herbivory,
leading to a net increase in soil biological activity. Here, we
expected that the positive effect of nutrients on soil activity would
be stronger than the negative effect of reduced herbivory.

Results
Effects of nutrient addition and herbivore exclusion. Soil det-
ritivore feeding activity ranged from 0.94% to 77% of available bait
substrate removed (Fig. S1a). Soil microbial respiration ranged
from 0.27 μl O2 h-1 g-1 soil dry weight to 8.93 μl O2 h-1 g-1 soil dry
weight. (Fig. S1b). Nutrient addition had no significant effect on
detritivore feeding activity (F= 0.08; p= 0.78) and soil microbial
activity (F= 0.94; p= 0.333). Despite high among-site variation
(Fig. S2), herbivore reduction had a positive effect on detritivore
feeding (Fig. 1b; F= 3.60; p= 0.06), resulting in higher activity
levels when herbivores were reduced (+16.7%). At the same time,
herbivore reduction did not affect soil microbial activity (Fig. 1c;
F= 0.29; p= 0.59) Similarly, there was no interactive effect of NPK
fertilization and herbivore reduction on detritivore (F= 0.21;
p= 0.65) and microbial (F= 0.63; p= 0.43) activity.

Structural equation model analyses. The site-specific environ-
mental conditions and treatments also had strong effects on the
soil environment and the associated plant community, which
became more apparent when the interdependence of variables
was considered. Mean annual precipitation (MAP) and soil water
content were positively correlated (Fig. S6) and structural equa-
tion modeling shows that MAP and soil water were positively
associated with soil detritivore and microbial activity (Figs. 2a and
3a). At the same time, soil biological activity rates increased with
higher amounts of MAP and soil water content, regardless of
other treatment conditions (Figs. S4a, b and S5). Reflecting our
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results from linear mixed-effects models, nutrient addition had
no direct effect on soil biotic activity. However, our SEM model
revealed that herbivore reduction directly increased detritivore
activity and indirectly increased activity of all soil microbes and
detritivores via increasing soil water content (Table S3; Figs. 2a, c
and 3a, c). Plant biomass, which increased with site MAP and
both NPK and herbivore reduction treatments, was related with
lower soil microbial activity (see also Fig. S6). At the same time,
we found detritivore and microbial activities to be significantly
positively correlated (Fig. 4; F= 9.15; p= 0.003).

Discussion
We conducted a globally-distributed experiment assessing the
responses of soil biological activity to nutrient addition and
herbivory at 26 sites, spanning five continents and multiple
grasslands. Soil microbial and detritivore activity were associated
with similar drivers at the global scale. Soil biological activity
increased with MAP and soil moisture, suggesting that future
climatic changes related to alterations in the amount and fre-
quency of precipitation as well as evapotranspiration50 may have
major consequences for grassland ecosystem functioning. To

Fig. 1 Global distribution and treatment effects. a Global map of all participating sites in the study. Red dot= data on soil microbial and detritivore activity
(n= 18 sites); blue dot = data on soil microbial activity only (n= 26 sites). b, c Show two figures where we tested the effect of NPK fertilization, herbivore
reduction, and the interactive effect of NPK fertilization and herbivore reduction on soil detritivore activity (log-scaled) and soil microbial activity (log-
scaled). Points are raw observations; error bars indicate 95% confidence intervals. Significance levels: (*) p-value= 0.06, ns not significant.
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Fig. 2 Structural equation model of soil detritivore activity. a Soil detritivore activity as a best-fit Structural Equation Model showing the effects of NPK
fertilization and herbivore reduction (Fisher’s C= 1.88; P= 0.758; d.f.= 4; 18 sites). Black arrows indicate significant positive and red arrows indicate
significant negative effects in the model (P < 0.05). Dashed gray arrows indicate non-significant effects (P > 0.05) that remain in the model based on AIC.
Dark gray double-headed arrows indicate paths that were treated as correlated errors in the model. Arrow widths are proportional to their effect sizes.
Numbers along the arrows are standardized path coefficients. Marginal R2m: model variation explained by fixed effects; conditional R2c: model variation
explained by both fixed and random effects. Significance levels: *p < 0.05; **p < 0.01; ***p < 0.001. b Direct, indirect, and net effect of MAP on soil
detritivore activity, and c direct, indirect, and net effect herbivore reduction on soil detritivore activity.

Fig. 3 Structural equation model of soil microbial activity. a Soil microbial activity as a best-fit Structural Equation Model showing the effects of NPK
fertilization, herbivore reduction (A/C= 77.9, Fisher’s C= 1.932; P= 0.381; d.f.= 2; 26 sites). Black arrows indicate significant positive and red arrows indicate
significant negative effects in the model (P < 0.05). Dashed gray arrows indicate non-significant effects (P > 0.05) that remain in the model based on AIC.
Dark gray double-headed arrows indicate paths that were treated as correlated errors in the model. Arrow widths are proportional to their effect sizes.
Numbers along the arrows are standardized path coefficients. Marginal R2m: model variation explained by fixed effects; conditional R2c: model variation
explained by both fixed and random effects. Significance levels: *p < 0.05; **p < 0.01; ***p < 0.001. b Direct, indirect, and net effect of MAP on soil microbial
activity, and c direct, indirect, and net effect herbivore reduction on soil microbial activity, and d direct, indirect, and net effect of NPK fertilization on soil
microbial activity (scale of b) differs from c and d.
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determine whether this pattern is causal or due to covariation
with other variables such as geological and historical factors, it
will be necessary to conduct future experimental manipulations.
Both soil biological activity measures are tightly linked to
decomposition processes that determine carbon sequestration
and release11,51, and therefore play a key role in grassland carbon
cycles52. In addition, herbivore presence was associated with
lower soil moisture which may amplify effects of a drier climate.
Moreover, MAP, NPK addition, and herbivore reduction had
indirect negative effects on soil microbial activity by increasing
plant biomass. This indicates that plant community-mediated
changes in soil microbial communities and functions depend on
abiotic and biotic conditions. This study improves our mechan-
istic understanding of factors determining soil biological activity
globally, which is crucial to predict belowground ecosystem
functioning in a changing world and to adopt measures to pre-
serve grassland systems2,46,53,54.

In line with our hypothesis (1), we found a consistent overall
positive effect of herbivore reduction on soil detritivore activity
across all sites. In addition, through our SEM analysis, we
observed that herbivore reduction enhanced soil detritivore
activity directly and also indirectly via an increase in soil water
content. However, while herbivore reduction had no direct effect
on soil microbial activity, it also indirectly increased microbial
activity via increases in soil water content. It has long been
recognized that soil organisms strongly depend on soil moisture
(e.g., residing on water films within the soil pore system)11,55–58.
Confirming this, our results highlight the role of water availability
for both measures of soil biological activity, with higher activity
levels at sites with higher MAP and soil water content. Previous
studies have found herbivores to reduce soil water content59 and
to have negative effects on soil organisms, especially in unpro-
ductive ecosystems17,19,53,60,61. Our results suggest that a reduc-
tion in soil activity with herbivory is the dominant pattern in
grasslands. This finding is consistent with other studies reporting
decreased soil respiration in response to lower soil water
content62–64. In our study, soil water content had a significantly
larger effect on soil microbial activity compared to detritivore
activity. This might be attributed to the fact that the soil water
content data were better aligned with the measure of soil
microbial activity. However, it is also possible that detritivores are
less influenced by water content than microorganisms due to

their ability to move to deeper soil layers65. This adaptability
allows them to sustain their activity even in drier conditions. In
support of this, Sagi et al.66 discovered that the primary litter
decomposition in the Negev desert during summer was driven by
a woodlice species, in contrast to microbes which lacked the
necessary water for growth.

Other possible mechanisms for direct negative impacts of
(especially larger) herbivores on soil detritivores and thus the
positive effect when they were excluded, entail physical dis-
turbances like trampling and soil compaction53,67,68. These result
in higher bulk density and reduced connectivity of soil pores69

that normally ensure water infiltration and air permeability70,71.
Such a reduction in soil pore space has been shown to reduce the
abundance and diversity of soil arthropods and annelids69,72,73.
For example, Collembola and enchytraeids strongly depend on
macropores in their living environment, have hardly any ability to
move through compacted soil, and may thus experience reduced
access to food resources, consequently inhibiting their feeding
activity69. However, even soil animals with considerable bur-
rowing abilities, like earthworms, have been shown to be nega-
tively affected by soil compaction74. Indeed, we found some
evidence for a significant positive relationship between soil
microbial and detritivore activity and soil porosity across a subset
of sites (Fig. S8). However, given that only a subset of the sites
could be considered for this analysis, this topic needs to be
addressed in future research.

At the same time, we observed increases in plant biomass that
were associated with herbivore reduction, nutrient addition, and
higher levels of precipitation75. It is well-established that vege-
tation cover helps to maintain high levels of soil biological
activity, as evidenced by previous studies76–80, which is consistent
with our own findings. However, higher plant biomass also led to
declines in soil microbial activity which is, in contrast to other
studies reporting positive effects of higher plant biomass on soil
biological activity via bottom up effects of increased
rhizodeposition19,81–83. There are several possible explanations.
On one hand, enhanced plant growth could potentially result in
higher transpiration rates84,85, ultimately leading to a reduction
in soil water content over time. On the other hand, herbivore
reduction also led to a less diverse plant community, which could
also decrease microbial respiration. It is also possible that soil
microbial communities have to compete with plants for nutrients,
possibly leading to reduced respiration rates. Follow-up studies
are needed to relate environmental change-induced alterations in
soil microbial communities to ecosystem functions, using stan-
dardized, replicated methods to increase the generality and
robustness of such experiments86,87.

In contrast to our hypotheses (2 & 3), we did not observe an
either significant effect of nutrient addition soil biological activity
or a significant interaction between nutrient addition and her-
bivory. Although we applied NPK at high levels, we did not detect
any direct fertilization effect, suggesting that availability of
mineral nutrients is not the main determinant driving soil bio-
logical activity in grasslands. However, soil community responses
and functions can be diverse and context-dependent88. Previous
studies have shown that nutrient addition can alter the soil
community by changing pH, porosity, organic fractions, and
increasing decomposition, but responses of soil microbial
respiration and biomass to NPK addition are highly
variable25,40,41,89–91. However, our findings show a decline in soil
microbial activity due to nutrient addition in global grasslands,
alongside an increase in total plant biomass. Nutrient addition
altered plant communities through by increasing total plant
biomass and reducing plant species richness. Similar effects have
been reported by multiple studies46,92–97. As nutrient addition
has been shown to decrease soil organic matter stabilization, we

Fig. 4 Correlation between soil microbial and detritivore activity.
Correlation of soil microbial activity and detritivore activity (both log-
scaled, data from 18 sites included; F= 9.15, p= 0.003). Color of data
points (blue) indicates soil moisture level of the sample.
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speculate that our results may be connected to shifts in plant or
soil microbial communities that influence the recalcitrance of
organic matter and its microbial processing98.

Assessing soil microbial activity for a global scale study entailed
some constraints that could have also influenced our findings.
Measuring soil microbial activity involved homogenizing, sieving,
and shipping soil samples to a central laboratory, which includes
disruption of soil aggregates, along with potential changes in
microbial activity due to shipping conditions. Additionally,
assessing microbial activity under controlled temperature condi-
tions, differing from the natural environment, might have influ-
enced the correlations observed with mean annual temperature
(MAT). Similarly, the bait lamina test, offering an on-site
approach to assess detritivore activity, has faced recent critique
regarding its use of standardized substrates as accurate indicators
of local plant litter-driven decomposition99 even though this
concern was not directly tested for bait lamina strips.

Overall, our results highlight that reductions in mean annual
precipitation or prolonged drought periods may reduce soil bio-
logical activity that is key for the provisioning of essential eco-
system functions like nutrient cycling and decomposition52,100.
These expected changes in climate could be further amplified by
alterations in the abundance and identity of herbivores as well as
nutrient inputs, with complex feedback mechanisms, including
shifts in local plant community composition and productivity, as
well as abiotic factors like soil compaction. Nutrient addition did
not directly affect soil biological activity across global grasslands,
emphasizing the importance of an indirect effect via plant bio-
mass that should be considered in future studies. These novel
insights into the global drivers of soil biological activity stress the
complex interplay between different components of anthro-
pogenic change that may alter above-belowground interactions
and thus the functioning of global grasslands.

Methods
Experimental design and included sites. Fieldwork was con-
ducted in 2015 within the Nutrient Network Global Experiment
(www.nutnet.org)46 at 26 sites (see Fig. 1a and Table S1). The
sites are located in North and South America, Europe, Asia, and
Australia and are all dominated by herbaceous or low-statured
vegetation (hereafter referred to as grasslands). Moreover, sites
cover wide environmental gradients with elevations ranging from
6m to 4.241 m a.s.l., mean annual temperatures from −3.3 °C to
22.4 °C, and mean annual precipitation from 324 mm to
1678 mm (Table S1). The experiments were set up at different
times in 2009–2014 (for details see Table S1).

For our study, we sampled plots at each site, which were
randomly assigned to one of four: Control, nutrient addition,
fenced, nutrient addition and fenced. Each treatment was replicated
three times at each site, leading to a total of 12 plots. Fences
excluded aboveground herbivores weighing more than 50 g. The
plots were 5 × 5m in size and NPK plots received a fertilization
treatment of nitrogen (N), phosphorus (P), and potassium (K).
Nutrient addition rates and sources are: 10 g Nm-2 * year-1 as
timed-release urea [(NH2)2CO], 10 g Pm-2 * year-1 as triple-super
phosphate [Ca(H2PO4)2], 10 g Km-2 * year-1 as potassium
sulphate [K2SO4]. Additionally, 100 gm² of a micronutrient mix
of Fe (15%), S (14%), Mg (1.5%), Mn (2.5%), Cu (1%), Zn (1%), B
(0.2%), and Mo (0.05%) were applied once at the start of the
experiment. In contrast, control plots did not receive additional
nutrients and represent ambient soil conditions. The fences for
herbivore reduction were of 2.3 m height, with few sites having
physical constraints that required fencemodification. They were set
up with a 1 cm woven wire mesh extending 0–90 cm aboveground
and a 30 cm outward-facing flange stapled to the ground to exclude

smaller digging animals. To reduce possible impacts of neighboring
plots, all plots are separated by walkways of at least 1 m width. All
sampling occurred in a single, randomly selected, 2.5 × 2.5 subplot
of each plot. Further details on the experimental set up,
standardized sampling protocols, and nutrient sources are
described in Borer et al.46.

Plant data. Following the standardized Nutrient Network pro-
tocol, total aboveground plant biomass was clipped at peak bio-
mass within two 0.1 × 1 m strips per plot, whose locations are
changed each year (see Borer et al., for details). Sorted plant
material was dried at 60 °C to a constant mass and weighed to the
nearest 0.01 g. For our analyses, we used data on total plant
biomass (i.e., the sum of dead and live plant biomass) from 2015
(i.e., the year of the study) as a proxy for plant-derived inputs to
the soil, such as rhizodeposits and plant litter. Plant species
richness was assessed on-site in a permanent 1 × 1 m quadrat
located in the focal subplot in each plot.

Climate variables. Data on mean annual precipitation (MAP in
mm) and mean annual temperature (MAT in °C) were derived
from the WorldClim database (version 1.4; Hijmans et al.).
Values were interpolated at high resolution from meteorological
stations with 10 to 30 years of data101.

Soil sampling. Soil invertebrate feeding activity was assessed at
16 sites using the bait lamina test (Terra Protecta GmbH, Berlin,
Germany), which is commonly used as a rapid ecosystem func-
tion assessment method11,47. The bait strips are made of PVC
(1 mm × 6mm × 120 mm) and have 16 holes (1.5 mm in dia-
meter). Holes were filled with an artificial organic bait substrate,
which was prepared according to the recommendations of Terra
Protecta, consisting of 70% cellulose powder, 27% wheat bran,
and 3% activated carbon. The bait substrate is primarily con-
sumed by soil collembolas, enchytraeids, and earthworms76,102;
microbial activity plays a minor role in bait loss103–105. The bait
strip assessment was done by the principal investigator of each
site. The bait strips were inserted vertically into the soil with the
uppermost hole just beneath the soil surface. A steel knife was
used to create a slot in the soil, before the strips were inserted.
Five strips were spaced 15 cm apart within each plot to account
for within-plot spatial heterogeneity. After three to six weeks of
exposure, the bait strips were removed from the soil and directly
evaluated in the field. Each hole was rated as 0 (no invertebrate
feeding activity), 0.5 (bait material partly consumed), or 1 (bait
material completely consumed), based on visual inspection. Thus,
soil invertebrate feeding activity could range from 0 (no feeding
activity) to 16 (maximum feeding activity) per strip. Mean bait
consumption of the five strips was calculated per plot prior to
statistical analyses and expressed as a percentage. Timing varia-
tions resulted from the substantial environmental differences, as
in some cases, short exposure intervals did not yield discernible
changes (for detailed exposure time please see Table S1).

Soil for microbial data was collected from 26 sites six weeks
before peak plant biomass production (local site coordinators
chose specific dates, as seasonality varied across different
latitudes) by taking three subsamples per plot (using a soil corer
with 5 cm diameter and 12 cm depth), which were then
homogenized and sieved using a 2 mm mesh. All soil samples
to Anita Risch in Switzerland following a standardized protocol.
A subset of these samples was then shipped to a centralized lab at
the German Centre for Integrative Biodiversity Research in
Leipzig, Germany. We ensured sample quality during transit by
using postal services with temperature control and fast shipping
methods. Here, we took approximately 6 g of fresh soil to measure
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basal respiration (without the addition of substrate) at hourly
intervals for 24 h at 20 °C using an O2-microcompensation
system48. We used four different O2-microcompensation devices
to measure all samples simultaneously. Basal respiration, as a
measure of soil microbial activity, was then calculated as the
mean O2 consumption rate 14–24 h after the start of the
measurements (μl O2 h-1 per g soil dry weight), as the machine
needs some time to measure stable values over an extended
period77. In addition, soil water content [%] was calculated as the
difference between the weight of the fresh soil sample and the
weight of the soil sample per plot after they were dried for at least
48 h at 70 °C. Soil water content was significantly positively
correlated with soil water holding capacity (R²= 0.61, p < 0.001).
Soil porosity was determined as described in Risch et al.25, but
was only available for a subset of 15 sites.

Statistics and reproducibility. To assess the effects of fertiliza-
tion, reduced density of vertebrate herbivores, and their interac-
tion on soil detritivore feeding and microbial respiration across all
sites without accounting for abiotic factors and plant data, we
employed linear mixed-effects models using the lmer function
from the R-package “lme4106”. The model’s random intercepts
were organized based on two factors: (1) block nested within site,
and (2) the type of O2-microcompensation device (for soil
microbial data) or field exposure duration (for detritivore data),
as some sites had a longer exposure time due to logistical con-
straints. We also tested a model with treatment duration years as
a fixed effect, but found that treatment duration had no sig-
nificant impact on soil microbial and detritivore activity, and
consequently excluded “treatment duration” from our explana-
tory parameters. To account for the non-normality of our
response variables, we log-transformed data prior to our analysis.
Figure 1b, c are based on mixed-effects model fits extracted using
the package “ggeffects107”.

We used structural equation modeling (SEM) to disentangle
direct and indirect pathway effects by which fertilization and
herbivore reduction affected the activity of soil organisms. In
determining the environmental variables for our SEM approach,
we considered factors that could offer meaningful insights into
the dynamics of soil microbial and detritivore activity. These
variables were selected a priori based on their established
influence on soil microbial and detritivore activity, as well as
their potential to mediate treatment effects. Our choices were
guided by existing literature in the field. Given that plant
community composition and biomass are strong predictors of soil
microbial and detritivore activity and are thus likely to mediate
the treatment effects, we included plant species richness and total
plant biomass in the SEM (Figs. 2 and 3). As soil organisms are
highly dependent on soil moisture108, we included soil water
content as a key abiotic driver. We also chose to include mean
annual precipitation (MAP) as another exogenous variable, as it
was correlated with soil moisture (Fig. S7) with the two soil
activity variables (Figs. 2 and S4a, b) and should have long-lasting
effects on soil conditions that are also relevant for our snapshot
assessments. We further selected mean annual temperature as
another exogenous variable. However, the relationship between
mean annual temperature (MAT) and microbial activity was not
statistically significant (p= 0.14), and a similar non-significant
trend was observed with detritivore activity (p= 0.93) (see also
Fig. S4c, d). Although MAT displayed a positive correlation with
plant species richness, this association did not extend to the other
variables in our SEM model (as illustrated in Figs. 2 and 3).
Consequently, we decided to exclude MAT from the final model.
The framework of the “piecewiseSEM” R package109 allowed us to
test for interactive treatment effects and to account for the

hierarchical study design by including random effects in the
models. We also investigated the effects of soil pH and individual
effects of living and dead plant biomass on soil microbial and
detritivore activity within the model. However, these data were
only available for a small subset of sites and as we found no
significant direct or indirect effects on biological activity, we
excluded them in the final model.

The single models that were incorporated in the SEM were
built using LMMs (Table S2). The assumptions of the LMMs were
checked by plotting frequency distributions of each variable and
the variance structure of all models using residual plots for
homogeneity and quantile-quantile plots for normality (i.e., no
correlation between the residuals and the fitted parameters of the
model). To meet model assumptions, plant biomass, plant species
richness, soil water content, and detritivore activity were log-
transformed. The relationship between plant richness and total
plant biomass was included as a correlated error term due to
reciprocal effects110.

The number of variables was reduced from the conceptual
model using the Akaike Information Criterion (AIC) that is
implemented in the “piecewiseSEM” package. Standardized
coefficients are reported for each path of the final model
(Tables S3 and S4, Figs. 2a and 3a). The overall fit of the models
was evaluated by using Shipley’s test of d-separation obtained
through Fisher’s C statistic. Correlations were performed between
soil microbial activity and soil detritivore activity. To examine the
impact of herbivore-induced changes in soil structure on
biological activity, we analyzed the correlation between soil
porosity (a measure of soil compaction influenced by herbivores)
and the two soil activity measures. However, due to insufficient
sample size, we could not include soil porosity in the SEM. The
statistical analyses were performed using the R statistical software
(version 4.2.2.; R Core Team 2022). Data used for creating the
figures can be found in the supplementary data (Figs. 1a, 2 and 4
were created with Data 1, Figs. 1b and 3 with Data 2).

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The source data that support the findings of this study can be found in the
supplementary data (Figs. 1a, b, 2 and 4 were created with Data 1, Fig. 1c and Fig. 3 with
Data 2). All other data are available from the corresponding author on reasonable
request.

Code availability
The code is available from the corresponding author upon request.
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