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A B S T R A C T

Historically, amphibians have been essential to our understanding of vertebrate biology and animal develop-
ment. Because development from egg to tadpole to adult frog can be directly observed, amphibians contributed
greatly to our understanding of not only vertebrate animal development but also the development of the immune
system. The South African clawed frog (Xenopus laevis) has been key to many of these findings. For example,
using Xenopus as a model, the comparative immunology community learned about the contribution of he-
matopoietic stem cells to development of the immune system and about the diversity of antibodies, B cells, T cells
and antigen presenting cells. Amphibians offer many advantages as unique potential model systems to address
questions about immune skin interactions, host responses to mycobacteria, the diverse functions of interferons,
and immune and mucosal interactions. However, there are also many challenges to advance the research
including the lack of specific reagents and well annotated genomes of diverse species. While much is known,
many important questions remain. The aim of this short commentary is to look to the future of comparative
immunology of amphibians as a group. By identifying some important questions or “information-deficit” areas of
research, I hope to pique the interest of younger developing scientists and persuade funding agencies to continue
to support comparative immunology studies including those of amphibians.

1. Introduction: the future of amphibian immunology

In the past fifty years, the science of immunology and the branch of
immunology termed comparative immunology have both flourished.
Based primarily on studies of humans and mice, immunology has
become a mature science. We now understand the complexity of the
immune system and the development of immune responses in
mammalian species in amazing detail. Immunology as a science is like a
giant sturdy tree with growing branches that help to guide the devel-
opment of better treatments for human diseases. Comparative immu-
nology is one small branch of the studies that shape immunology, and
amphibian immunology is a smaller branch of the larger field of
comparative immunology. So, do we now understand immunity in all
vertebrate species based on the studies of mammalian species? Is it
important to keep studying new species including new amphibians? Is
the immune system of amphibians just a variation of what later evolved
in mammals? Why should the world and funding agencies care?

My personal view is that we should care because amphibians are
central to many ecosystems. They consume vast numbers of insects as

adults, and are, in turn, consumed as prey by snakes, birds, and mam-
mals. Amphibians are at a continuing risk of declines due to chy-
tridiomycosis caused by the chytrid fungi Batrachochytrium dendrobatidis
(Bd) (Berger et al., 1998; Longcore et al., 1999) and Batrachochytrium
salamandrivorans (Bsal) (Martel et al., 2013), as well as diseases caused
by ranaviruses (Chinchar et al., 2017) and the protistan parasites Per-
kinsea (Chambouvet et al., 2015; Smilansky et al., 2021; reviewed in
Smilansky and Richards, 2023). The importance of amphibians as a
group can be illustrated by the loss of amphibians in Panama and Costa
Rica due to the chytrid fungus, Bd.When amphibians declined, declines
in snake fauna followed (Zipkin et al., 2020) and an increased incidence
of malaria was noted (Springborn et al., 2022). In addition to their
importance to ecosystems, amphibians provide unique and important
research models because of their external development, reorganization
of the immune system during metamorphosis, development as diploid or
triploid individuals allowing tracking of hematopoietic cell populations,
and hairless skin covered by a mucus that may facilitate uncovering
fundamental immunological processes at the skin environment
interface.
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2. Research questions, challenges, and opportunities

In the following paragraphs, I have tried to highlight a limited
number of subject areas, in no specific order of importance, that I believe
deserve additional attention from future amphibian immunologists.

2.1. Diversity of lymphocytes, monocytes, macrophages and antigen
presenting cell populations in amphibians

One important set of challenges for future amphibian immunologists
includes discovering greater diversity of immune cell subsets. In addi-
tion to the currently described subsets of lymphocytes (see Lopez Ruiz
and Robert, 2023) including T cells, B cells, NK cells, γδ T cells, and
innate T cells, much more lymphocyte subset diversity is yet to be
discovered. Will we be able to distinguish subsets of T helper cells such
as Th17 cells? Can we develop better reagents to distinguish regulatory
T cells (Tregs)?

Critical for the development of effective immune responses are the
phagocytic macrophages and antigen presenting cells such as dendritic
cells. Yet to date, comparative immunologists have described only two
subsets of macrophages and one bi-functional dendritic cell (Neely et al.,
2018) in amphibians. Differentiation of the two known subsets of
macrophages from stem cells is driven by distinct cytokines, colony
stimulating factor-1 or interleukin 34 (Grayfer and Robert, 2014). These
subsets of macrophages have different functions in response to ranavirus
infection (Grayfer and Robert, 2014; Yaparla et al., 2018). Furthermore,
we know very little about the characteristics of tissue-specific subsets of
macrophages such as those that reside in the peritoneum. An under-
standing of the characteristics and functions of these immune accessory
cells would allow for development of better strategies to understand
how specific pathogens may evade detection and clearance. Further
development of monoclonal antibody reagents to distinguish additional
immune subsets is a major challenge for discovery of more diversity of
immune cell subsets in amphibians.

2.2. Mucosal immunity in amphibians

Mucosal barriers are essential for protection from all pathogens, and
they are difficult to study in mammalian systems because they are lining
the inside of the airways, mouth, and digestive tract. Amphibians offer
excellent models to study mucosal immunity because they wear their
mucosal surfaces on the outside. Although much has been learned about
the mucosal defenses of amphibians because of the tragedy of chytrid
fungal infections, we still have a poor understanding of how the
microbiome may shape skin immunity and the identity and functions of
immune cells that interact with the mucus. For example, enrichment of
mast cells in the skin enhanced mucus production and limited the skin
damage due to infection by the chytrid fungus, Bd.Mast cell enrichment
also seemed to limit changes in the skin microbiome resulting from Bd
infection (Hauser et al., 2024). Disruption of skin cells in chytrid in-
fections should activate an epithelia “alarm” response, immigration of
macrophages and neutrophils and Th-17 helper cells to release factors
that protect the skin and promote healing. Yet we have limited under-
standing of macrophage and neutrophil functions in the skin and
whether a Th-17 response develops in amphibians after exposure to skin
pathogens. Although antibodies to chytrid fungal pathogens have been
detected in the mucus of X. laevis after recovery from infections (Ramsey
et al., 2010), we have no clear understanding of how those antibodies
are transported from a B cell compartment in the skin to the mucus.

2.3. IL-17 and fungal immunity

Interleukin 17 family members (IL-17A/F, IL-17B, and IL-17D) have
been detected in X. laevis with variable expression between tissues
(Jackson et al., 2012). In mammals, IL-17 is produced by a subset of T
cells designated Th17 as well as by γδ-T cells and NK cells, and it is

important for the control of fungal infections (reviewed in Amatya et al.,
2017; Gaffen and Moutsopoulos, 2020). IL-23 and pathogen-associated
molecular patterns (PAMPs) are necessary for induction of IL-17 pro-
duction (Gaffen and Moutsopoulos 2020). One important mechanism by
which IL-17 results in pathogen clearance is by the induction of anti-
microbial peptide (AMP) synthesis. Given that amphibian skin is often a
rich source of (AMPs) (Rollins-Smith, 2023), it would be of great interest
to investigate whether an IL-23, IL-17, and the AMP axis might exist and
have a role to play in control of chytridiomycosis.

2.4. Immunity to diseases such as chytridiomycosis, ranavirosis, and
severe perkinsea

Because amphibians continue to decline on a global scale (Scheele
et al., 2019), continued funding to understand the pathophysiology of
amphibian diseases and the immune mechanisms by which diverse
amphibian species become tolerant or resistant should remain a priority.

Immune defenses against chytridiomycosis caused by both Bd and
Bsal remain poorly understood. Because the infection remains in the skin
compartment, studies have focused on skin defenses including antimi-
crobial peptides (AMPs, reviewed in Rollins-Smith, 2023) and the skin
microbiome (reviewed in Rollins-Smith and Le Sage, 2021). Amphibian
skin is critical for water balance, ion exchange, and respiration, and
thus, disruption of the skin caused by severe infections leads to death
(Voyles et al., 2009; Savage et al., 2020). If the infection burden is low,
the default response may be a sort of “immunological ignorance” or
immunological tolerance. In the skin, Bd interacts with keratinocytes
and other epithelial cells or with skin-resident antigen presenting cells.
At least two subsets of macrophages are present in the skin of the South
African clawed frog, Xenopus laevis (Grayfer and Robert, 2015; Popovic
et al., 2019). Activation of the more proinflammatory subset designated
IL-34 may be beneficial to halt infection or harmful if excessive, whereas
activation of the more immunosuppressive subset designated CSF-1 may
permit a more limited infection and eventual clearing and healing. The
production of immunosuppressive factors by the chytrids (reviewed in
Rollins-Smith and Le Sage, 2021) may also deter rapid and effective
clearance. Although, Bsal has not yet been detected in North America,
there is great concern that accidental introduction would have severe
impacts on unique endemic salamander species in North America. Many
of these species have been shown to be vulnerable in experimental trials
(Gray et al., 2023). Furthermore, Bsal introduction would likely occur in
locations in which Bd is enzootic. Co-infection by both chytrids appears
to be more harmful than single infections by either species (Longo et al.,
2019; McDonald et al., 2020). Thus, further studies of the possible im-
mune responses to dual infections by both chytrid species are needed. In
general, further comparative studies in both anuran species and urodeles
could provide greater understanding of whether variation in the in-
flammatory responses and macrophage activation following chytrid
infection could explain the wide variation in susceptibility among
species.

Ranaviruses are large double-stranded DNA viruses with broad host
range (reviewed in Chinchar, 2002). They infect not only amphibians
but also reptiles and fish (reviewed in Chinchar et al., 2017). Amphibian
immune defenses against ranaviruses have mostly been studied in
X. laevis. In this species, tadpoles are very susceptible, but adults can
survive and limit viral replication (reviewed in Chen and Robert, 2011;
Grayfer et al., 2012). Immune defenses include both T cell-mediated
defenses and antibody defenses (reviewed in Grayfer et al., 2015).
Because ranaviruses infect and cause mortality in many ranid species,
further studies in other anurans such as the wood frog (Rana sylvatica)
have been suggested. The wood frog is highly susceptible, and many
populations are at risk for declines because infected adults may return
from overwintering sites to the same water bodies (site fidelity). If they
carry infections each year, the tadpole populations are at risk for die-offs
and eventual population loss (reviewed in Douglas and Katzenback,
2023). Further research on wood frog immune defenses against
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ranaviruses would benefit from the development of new research tools
including an annotated genome, additional transcriptomes, additional
cell lines, and additional reagents such as specific antibodies and cyto-
kines (reviewed in Douglas and Katzenback, 2023).

Amphibian Perkinsea is an alveolate protist associated with
amphibian population declines in wide geographic regions including
North America (reviewed in Chambouvet et al., 2015, 2020). It has only
recently been recognized as an important pathogen of amphibians
(Chambouvet et al., 2020). Because this pathogen is not well charac-
terized, studies have been limited by availability of reagents and the
number of investigators involved in these studies. In comparison with
studies of chytridiomycosis and ranavirosis, almost nothing is known
about immune defenses against the pathogen. The limited studies so far
suggest that Perkinsea infection prevalence and intensity are greater in
ranid frogs than other anuran families and greater in tadpoles than adult
frogs (Karwacki et al., 2018, 2021) A recent study links tadpole mor-
tality to co-infections with both ranaviruses and Perkinsea (Atkinson
and Savage, 2023). The pathogen seems to target liver and kidneys, but
also spleen, pancreas, gills, gastrointestinal tract, muscle, and skin
(reviewed in Isidoro-Ayza et al., 2017). Because most Perkinsea in-
fections are detected in tadpoles rather than adults, it is thought that the
adult immune system may be able to limit or control infections (Isi-
doro-Ayza et al., 2017). Taken together, the alarming number of
tadpole-associated die-offs and the association with ranavirus infections
argue that many basic aspects of the immune defenses of amphibians
against Perkinsea need to be examined.

2.5. Salamander immune defenses (order urodela)

Declines of salamander species in Belgium, the Netherlands, Ger-
many and other locations in Europe due to a new emerging chytrid
species, Bsal, (Martel et al., 2013, 2014) is the impetus for further studies
of this fungus and immune defenses of urodele species in general. North
American is home to a wide variety of unique endemic species that will
be threatened with extinction if Bsal is accidently introduced into North
America (Gray et al., 2023; Olson et al., 2024).

2.6. Caecilian immune defenses (order gymnophiona)

The least studied order of amphibians (Gymnophiona) contains the
limbless worm-like caecilians. Most live in moist soils where they would
likely need to defend themselves against diverse bacteria, fungi, and
protozoa. Why might they be of interest? Two recent in silico studies of
the AMP defenses of caecilians discovered a number of candidate pro-
teins and peptides that would likely have the three-dimensional char-
acteristics of AMPs, yet these AMPs are highly different from the AMP
families found in other amphibians possibly due to the long evolutionary
separation of caecilians from the other orders (Torres-Sánchez et al.,
2020; Benítez-Prián et al., 2024). These examples of novel AMPs are of
great scientific interest to amphibian biologists, but they may also have
potential medical applications.

2.7. Autoimmune regulator (aire) and immunological tolerance

Immunological tolerance to self-antigens is critical for survival. The
discovery of the autoimmune regulator (aire) (reviewed in Anderson
and Su, 2011) suggested an elegant mechanism by which this tran-
scription factor promotes “promiscuous” expression of a diverse array of
tissue-specific antigens by medullary thymic epithelial cells. If the
expressed antigens bind with high affinity to developing T cells in the
thymus, the T cells undergo negative selection allowing for development
of tolerance to most self-antigens. X. laevis and X. tropicalis encode an
aire protein that is highly expressed in the thymus (Saltis et al., 2008),
but the amphibian aire gene lacks an important region [plant homeo-
domain (PHD)-2] required for tolerance induction in mammals (Yang
et al., 2013). Thus, a mechanism critical for development of T cell

tolerance likely arose early in vertebrate evolution, yet the amphibian
airemay function somewhat differently in amphibians than in mammals.
Interesting questions that remain are when in ontogeny is aire expressed.
Since tadpoles don’t need to be tolerant of organ-specific antigens that
won’t appear until after metamorphosis and the numbers of thymocytes
drops dramatically during metamorphosis (reviewed in Rollins-Smith,
1998), is expression of the aire gene delayed until after metamorphosis?

2.8. The value and challenges of next generation sequencing

Some of our forward-thinking comparative immunology colleagues
argued that the power and decreasing cost of whole genome sequencing
and transcriptomics would open the door to understanding the evolution
of the immune system, reveal differing and shared components of the
immune systems, and reduce the need for model species (Dheilly et al.,
2014). They were correct, and there are many examples of amphibian
immune molecules such as cytokines and their receptors that have been
revealed due to the presence of full amphibian genomes. At present, the
full genomes of at least 34 amphibian species have been collected (https:
//www.genomeark.org), and there are 111 listed reference genomes at
scaffold level or higher available on the National Center for Biotech-
nology Information (NCBI) genome database. Furthermore, there is a
newly formed international consortium, the Amphibian Genomics
Consortium (AGC) that aims to support genomics sequencing projects
and genomics-driven research (https://mvs.unimelb.edu.au/amph
ibian-genomics-consortium). However, the value of these genomes is
limited by the lack of good annotation (Dimitrakopoulou et al., 2023).

3. Final thoughts

The future of comparative immunology lies in the creativity and
persistence of students and their mentors who recognize the value of
amphibians and wish to better understand the unique as well as shared
components and functions of the immune system and immune defenses.
Abundant opportunities to better understand the evolution of vertebrate
immune systems and to shape the future of comparative immunology
exist along with many exciting challenges.
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