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Summary

Interactions between carbon (C) and nitrogen (N) cycles in terrestrial ecosystems are simulated in
advanced vegetation models, yet methodologies vary widely, leading to divergent simulations of
past land C balance trends. This underscores the need to reassess our understanding of
ecosystem processes, given recent theoretical advancements and empirical data. We review
current knowledge, emphasising evidence from experiments and trait data compilations for
vegetation responses to CO, and N input, alongside theoretical and ecological principles for
modelling. N fertilisation increases leaf N content but inconsistently enhances leaf-level
photosynthetic capacity. Whole-plant responses include increased leaf area and biomass, with
reduced root allocation and increased aboveground biomass. Elevated atmospheric CO, also
boosts leaf area and biomass but intensifies belowground allocation, depleting soil N and likely
reducing N losses. Global leaf traits data confirm these findings, indicating that soil N availability
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influences leaf N content more than photosynthetic capacity. A demonstration model based on
the functional balance hypothesis accurately predicts responses to N and CO, fertilisation on
tissue allocation, growth and biomass, offering a path to reduce uncertainty in global C cycle

projections.

I. Introduction

An open challenge in understanding and modelling the terrestrial
carbon (C) cycle response to climate change is to understand the role
of soil nutrients and, specifically, the extent to which nitrogen (N)
limits the current and future land C sink. Resolving this question is
essential for understanding the climate-C cycle feedback under
rising atmospheric CO, levels — a major source of uncertainty in
Earth system projections (Friedlingstein er al, 2014; Arora
et al., 2020; Wei et al., 2022) and a Grand Challenge identified
by the World Climate Research Programme (https://www.wcrp-
climate.org/gc-carbon-feedbacks). As N is an essential nutrient
required for biomass synthesis and used in enzymes responsible for
Cassimilation, N availability constrains C cycle dynamics (Vitousek
& Howarth, 1991; LeBauer & Treseder, 2008).

The first generation of models simulating the terrestrial C cycle
and climate change effects on ecosystems did not resolve
mechanisms of C and N cycle interactions explicitly. These
C-only Dynamic Global Vegetation Models (DGVMs) predicted
substantial, albeit diverging, increases in the terrestrial C stock as a
consequence of an enhancement of terrestrial gross and net biomass
productivity under elevated CO; and a warming climate (Cramer
et al., 2001). However, limited flexibility in the C : N stoichio-
metry of plant tissues implies that additional N has to be made
available for plant acquisition and sequestration in rising biomass
stocks and other plant-derived organic matter, for example in soils.
Hungate ez al. (2003) argued that the additional N required for
plant acquisition implied by these C-only model projections was
unrealistic and, therefore, that the projections of the future land C
sink were excessive. Eatly results from free-air CO, enrichment
(FACE) experiments, conducted mostly on temperate grassland
and forest ecosystems, also provided evidence for a strong role of N
in regulating growth responses to elevated CO, (Oren ez al., 2001;
Schneider ez al., 2004; Dukes ez al., 2005; Reich ez al., 2006). These
insights motivated the development of a second generation of
DGVMs that would explicitly resolve interactions with the N cycle
and thereby consider the constraints imposed by limiting plant N
acquisition (Shi ez al., 2016). However, incorporation of the N
constraint has not reduced the uncertainty in C cycle projections, as
shown by diverging projections of the land-atmosphere C flux by
the current-generation model ensembles (Arora ez al., 2020) and by
diverging global simulations of the response of biomass production
to elevated CO, and N fertilisation (Davies-Barnard ez al., 2020).

Comparison of the observed terrestrial C balance trend in recent
decades and the trends simulated by a recent generation of DGVMs
corroborates this picture (Fig. 1). These models were used for the
model intercomparison activity Trends and Drivers of Terrestrial
Sources and Sinks of Carbon Dioxide (TRENDY) (Sitch ez 2l., 2024)
v.8, and for the quantification of the Global Carbon Budget
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(Friedlingstein ez al., 2022). The spread across individual models is
much larger for C-N models than for C-only models, both for the
mean terrestrial sink between 2011 and 2020 (Fig. 1b) and for the
mean trend between 1959 and 2020 (Fig. 1c). Yet, on average
across the ensemble of models, the average land C sink
(2011-2020) and its multi-decadal trend since 1959 are in closer
agreement with the implied residual sink from the Global Carbon
Budget for C-N models than for C-only models. This suggests a
general improvement of land C balance trend simulations linked to
considering C-N interactions. However, the large variability
among models is a concern and several individual C-N model
simulations of the recent mean land C sink are outside the 95%
confidence interval of its temporal trend (Fig. 1c).

The terrestrial C sink and its evolution under future climate and
CO, projections is a central quantity that has motivated the
inclusion of explicit N cycling in DGVMs. Yet, the apparent
divergence of simulations for the terrestrial C sink and its trend
indicates remaining challenges. The divergence cannot be
attributed solely to uncertainty in the process representations
relating to the terrestrial N cycle and its interaction with the C cycle
in C-N models since there are inherent uncertainties and
limitations in multiple aspects of simulations of the land C cycle
(O’Sullivan ez al., 2022) and impacts by land use change (Dohner
et al., 2022). Nevertheless, the large difference in model spread
among C-only vs C-N models suggests (1) that C-N coupling and
related ecosystem feedbacks are particularly influential for
long-term terrestrial C balance trends, (2) that there is a lack of
agreed principles governing plant responses to N availability and
limitation, and (3) that established observational benchmarks for
model development and testing provide insufficient or insuffi-
ciently used constraints on decadal-scale C cycle trends.

Current models include representations of multiple processes
linking the C and N cycles in ecosystems (Fig. 2). However, the
diversity of representations of individual processes among the
current generation of C—N models is large (Box 1, Davies-Barnard
et al., 2020; Meyerholt et al., 2020) and insights gained from
experiments and field observations remain valuable for better
informing the next generation of C-N models. A key finding from
earlier work has been that models overestimated leaf stoichiometric
flexibility and underestimated flexibility in allocation and N uptake
under elevated CO, (Zaehle ¢t al., 2014; Medlyn ez al., 2015).
Flexible allocation with implications for N uptake remains
unresolved in most of the current generation of C-N models,
many of which simulate foliar C : N stoichiometry changes
exclusively as a function of soil N availability (Box 1).

Recent research suggests that an influence of the atmospheric
environment on leaf C : N stoichiometry and photosynthesis is
evident and can be predicted. Large variations in photosynthetic
capacity at the standard temperature of 25°C (V,,,.x25) have been
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Fig. 1 Terrestrial carbon (C) balance and trends. (a) Residual terrestrial land sink (i.e. after removal of the land use fluxes) time series, (b) recent decadal
mean sink and sink trend. Shading in (a) indicates the model spread for C-only models (red) and C-N coupled models (blue). Data are from the Trenpy v.8
simulations and the Global Carbon Budget 2021 (Friedlingstein et al., 2022). Observations-based estimates (‘Obs." in a) represent the residual of the global
C budget, calculated as the difference between the sums of all emissions (from fossil fuel combustion and land use change) and the sum of the atmospheric
growth rate, the ocean sink and the sink of cement carbonation. Boxes in (b) and (c) represent the inter-quartile range (IQR) and whiskers the median
plus/minus 1.5 times the IQR for C-N coupled models and for C-only models. The vertical line for observations indicates 1.96 times the SD in (b) and 1.96
times the SE (corresponding to the 95% confidence interval) of the sink trend in (c). See Supporting Information Notes S1 for further information about the

methods of this analysis.

documented along climatic gradients (Smith e# al., 2019; Peng
et al., 2020; Dong et al., 2022; Wang et al., 2023; Xu et al., 2023)
and an acclimating response of V,.x25 is documented from FACE
experiments (Ainsworth & Rogers, 2007). A high V,,.x25 requires
a high amount of the N-rich enzyme Rubisco. Hence, a changing
climate and rising CO, have direct implications for the demand for
N and foliar C : N stoichiometry (Dong ez al., 2017) — a pathway
of C-N coupling that has not been considered in the current
generation of C—N models.

© 2024 The Author(s).
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Predictions of leaf-level responses and reliable C cycle simula-
tions and projections to novel environmental conditions rely on
efficient theory and first principles that predict generally observed
patterns in ecosystems in response to the abiotic environment
(Marquet et al., 2014). Eco-evolutionary optimality (EEO) theory
has been developed for predicting how V.55 and leaf N acclimate
to the atmospheric environment (Wright er 4/, 2003; Prentice
etal.,2014; Dong et al., 2017; Smith ez al., 2019; Peng ez al., 2021;
Dong ¢t al., 2022) and for modelling flexible allocation and the role
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of N in constraining ecosystem responses to rising CO, and climate
change (Bloom ez al., 1985; Rastetter ¢t al., 1997; Franklin, 2007;
Franklin e al, 2020; Harrison et al, 2021). However, key
governing principles for the prediction of acclimation of photo-
synthetic and other traits, allocation and C—N interactions are often
not considered in models that are used for global-scale simulations
and as components in coupled Earth System Models.

Large compilations of leaf traits and experimental data have
become available in recent years (Cleland ez 4f, 2019; Kattge
et al., 2020; Liang er al, 2020; Van Sundert er al, 2023).
Ecosystem manipulation experiments provide particularly strong
empirical constraints on models’ responses to environmental
change factors and ensuing long-term shifts in ecosystem
dynamics (Medlyn ez al., 2015; Wieder et al., 2019; Caldararu
et al, 2023), while field data compilations provide rich
information about global variations of N-related plant traits.
Together, these data may provide an opportunity to derive general
patterns of ecosystem responses to altered CO, and soil N
availability for re-examining our understanding of the coupling
between the C and N cycles and how they respond to a changing
environment from a plant-centred point of view. This, in turn,
provides a basis for suggesting how these cycles could be
represented more realistically in models. In this review, we first
summarise the insights gained from meta-analyses of ecosystem
manipulation experiments and leaf traits data compilations across
large environmental gradients. We then show how the observed
patterns can be captured using EEO modelling approaches,
implemented in a simple demonstration model of the coupled
C—N cycle dynamics in terrestrial ecosystems. Finally, we discuss
how the insights from observations and theoretical considerations
could be used to improve our ability to simulate the C cycle
response to multi-decadal environmental change.

Il. Insights from experimental manipulations

Ecosystem manipulation experiments at various scales have been
used to study terrestrial C-N cycle coupling. While results from
individual experiments can differ, a meta-analysis of the available
data can reveal consistent patterns. We performed a meta-analysis
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Fig. 2 Pathways of carbon-nitrogen (C-N)
interactions in terrestrial ecosystems. The
pathway indicated by the blue background colour
represents the traditional approach implemented
in many DGVMs, whereby the atmospheric
environment (mainly temperature, radiation and
vapour pressure deficit) exerts no direct effect on
leaf C : N. The importance of representing
pathways indicated by the red background colour
is emphasised in this review. Effects of soil N
availability on allocation is represented by some
DGVMs reviewed here (Box 1). Direct effects of
the atmospheric environment on acclimation
have implications for the leaf C : N and, through
that, on ecosystem N cycling.

of multiple response variables to elevated CO, and N fertilisation,
drawing on multiple published data compilations of ecosystem
manipulation experiments (Notes S2). All data compilations focus
on responses observed under field conditions in natural soils with
native vegetation and should thus be indicative of global vegetation
responses to environmental change. We use data only from
experiments where a single factor was manipulated (CO, or N
input) and exclude interactive responses recorded in multi-factorial
experiments. For the CO, response, we use data from the
Manipulation Experiments Synthesis Initiative (MESI) (Van
Sundert ¢t al., 2023) — a combined dataset that integrates multiple
data compilations used for previous meta-analyses and results from
individual experiments (Table S1). For biomass-related responses
to N fertilisation, we use data from MESI, combined with data
from a network of standardised grassland field experiments
(NutNet) (Cleland ez al., 2019) (Table S2). To complement our
analysis with a focus on leaf-level responses, we use data of
N-fertilisation effects on photosynthesis and leaf traits from the
published meta-analysis by Liang er al (2020) (Table S3). We
quantified the logarithm of response ratios to compare relative
changes in a set of variables relevant for ecosystem C-N
interactions.

1. Nitrogen uptake responses to nitrogen availability

Our meta-analysis (Fig. 3) of published data on ecosystem
experiments (Cleland ez 4/, 2019; Liang et al., 2020; Van Sundert
et al., 2023) shows that N fertilisation increases soil inorganic N
(Fig. 3b) and drives an enhancement of N uptake despite generally
absent changes in belowground biomass and root biomass
production. This indicates that more N is taken up by plants per
C spent to build roots. Enhanced N acquisition efficiency in
N-fertilisation experiments is also reflected by the general decrease
in root : shoot ratios and root mass fractions (RMFs) under N
fertilisation (Fig. 3b). This reduction in the relative resource
investment for N acquisition, or cost to acquire N (Terrer
etal.,2018; Eastman ez al., 2021; Perkowski ez al., 2021), results in
a greater relative resource investment in aboveground tissues
(Fig. 4), promoting increased C acquisition and growth.

© 2024 The Author(s).
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Box 1 Representations of ecosystem C and N cycle interactions in models used for Trenpy v.8 and in the CN-model (Stocker & Prentice, 2024).
References for each model are given in the Sl

N uptake: many models consider the effect of abiotic soil properties, including temperature, water content and inorganic soil N content, on N uptake, but
the formulations diverge. Some models scale N uptake linearly with inorganic soil N content (CLM4.5 (Oleson et al., 2010), SDGVM (Walker et al., 2017),
JULES (Wiltshire et al., 2021)), while others assume a saturating relationship (ISAM (Meiyappan et al., 2015), DLEM (Tian et al., 2015), CABLE (Haverd
et al., 2018), O-CN (Zaehle & Friend, 2010), ORCHIDEEv3 (Vuichard et al., 2019), LPJ-GUESS (Smith et al., 2014)) and CN-model (Stocker &
Prentice, 2024). Regarding plant properties, some models scale N uptake by the total N demand of the vegetation (JSBACH (Reick et al., 2021), CABLE,
CLM4.5, CLM5 (Lawrence et al., 2019)); some models additionally include a linear increase in N uptake with root mass or surface area (CLM5, ISAM, O-
CN, ORCHIDEEv3, LPJ-GUESS and JULES), or with leaf N (ORCHIDEE). An explicit saturating relationship of N uptake and root mass is not considered in
TRENDY v.8 models but in CN-model (Stocker & Prentice, 2024). Some models include an explicit increase in N uptake efficiency if the whole-plant
(nonwoody) C : N ratio increases (OCN, ORCHIDEEv3, LPJ-GUESS and CML5). CLM5 explicitly calculates a carbon (C) cost for N acquisition from
different potential sources, including direct root uptake, uptake via symbiotic mycorrhizas, fixation via symbiotic bacteria and resorption.

Allocation: most models use dimensional relationships that may vary with phenology or environment but keep a constant balance between above- and
belowground allocation (root : shoot ratio) (CLM4.5, CLM5, CABLE, JULES, SDGVM, JSBACH, ORCHIDEEv3 and LPJ-GUESS). Some models allow
allocation to vary in response to N availability (IBIS (Yuan et al., 2014)) or demand (OCN, ORCHIDEEv3 and LPJ-GUESS). CN-model simulates fully
flexible allocation to achieve a match between N uptake and demand, given growth and stoichiometry in different tissues.

Stoichiometry: flexible stoichiometry allows plants to reduce their N demand for growth when N uptake is limited. Some models prescribe a fixed C : N
ratio for each plant tissue and PFT (CLM4.5, JULES, SDGVM, JSBACH and IBIS) or for nonleaf tissues (CN-model). Other models include flexible C : N
stoichiometry, either on a whole-plant basis with the between-tissue ratios of C : N ratios held constant JULES and CLM4.5), or with flexible
stoichiometry on a tissue basis (OCN, ORCHIDEEv3, LPJ-GUESS, CLM5 and CABLE). Some models additionally use the difference between current and
targeted tissue C : N to modulate N uptake (O-CN, ORCHIDEEv3, JULES and CLM5). Flexible stoichiometry is commonly simulated as a function of soil
N availability vs demand. In CN-model, it is simulated via internally predicted photosynthetic capacities (Vemax and Jmax) and their response to the
atmospheric environment.

Photosynthesis: net photosynthesis rates are simulated in most terrestrial biosphere models using the Farquhar et al. (1980) and Collatz et al. (1992)
models for C3 and C,4 species, respectively (except ISBA (Delire et al., 2020) using the model by Goudriaan, 1986, see Delire et al., 2020). The key
parameters that drive rate-limiting steps (maximum Rubisco carboxylation rate, Vmax; and maximum electron transport rate for RuBP regeneration,
Jmax) are commonly predicted through empirical relationships with leaf N content (O-CN, ORCHIDEEv3, LPJ-GUESS, CLM4.5, CLM5, CABLE, DLEM,
JULES). These rates are typically scaled through the canopy using light extinction coefficients simulated as a function of leaf N concentration (CLM4.5,
CLM5, JULES and ISBA) or specific leaf area (ORCHIDEEv3). Some models (CLM5, CABLE and LPJ-GUESS) include an optimality principle for allocating
a fixed total amount of leaf N into investments of carboxylation vs electron transport, depending on environmental conditions (e.g. using the LUNA
model, Ali et al., 2016). However, the total leaf N is determined in these models by soil N supply and is not subject to acclimation to the atmospheric
environment. In CN-model, V¢max and Jmax are predicted in response to the atmospheric environment and are independent of soil N, while leaf N is
derived from predicted Vi max and Jmax and is thus also independent of soil N.

Autotrophic respiration: most models treat autotrophic respiration as the sum of growth and maintenance respiration. In some models, autotrophic
respiration is a fixed proportion of the maximum Rubisco carboxylation rate (JSBACH, CABLE), or tissue N content JULES, ORCHIDEEv3 and O-CN). In
others, itis additionally modified by temperature (DLEM, CLM4.5 and CLM5). Growth respiration is based on the construction costs of allocating new C
to tissues (CLM4.5 and CLM5) or set to a fixed proportion of GPP (DLEM). In CN-model, the leaf respiration base rate scales with Vcmax following (Wang
etal., 2020).

N limitation: N limitation is an emergent model behaviour, determined by multiple process representations, expressed through the effect by which N
limits photosynthesis, productivity, and/or the ecosystem-level C sequestration. N limitation is commonly measured in experiments through the
simulated effects of N fertilisation. The large variability in modelling N dynamics allows for categorising N limitation representations in several respects.
Focusing on the plant-soil axis, we categorised the effect of N limitation under elevated CO, into four partially intersecting groups: (1) Relatively simple
models that have no explicit N dynamics and constrain the response of biomass production under elevated CO, with empirical functions (YIBs (Yue &
Unger, 2015), ISBA); (2) Models that simulate N limitation through downregulation of NPP due to low N availability in the soil, but do not simulate any
plant response to this limitation (SDGVM, JSBACH, IBIS and CLM4.5); (3) Models that additionally consider within-plant responses, for example a
flexible stoichiometry that allows an increase in N use efficiency and, therefore, the maintenance of biomass production to some degree under N
limitation (CABLE and CLM5); and (4) Models that, in addition to flexible stoichiometry, include more complex responses, where plants respond tolow N
uptake by increasing their N uptake efficiency, increasing their root : shoot ratio, or increasing the C spent to acquire N from different sources (O-CN,
ORCHIDEEv3, LPJ-GUESS, CLM5 and CN-model).

The increase in N uptake efficiency under N fertilisation is likely
the consequence of increased mass flow of N uptake per root surface
area. The mechanics of root N uptake and its dependency on root
surface area and inorganic N concentrations in the soil solution can
be described in terms of the first principles of solute movement and
enzymatic uptake rates (McMurtrie & Nisholm, 2018). In
addition, the reliance on other forms of N uptake (e.g. N fixation
from symbiotic relationships with soil microbial communities) is
also affected by N fertilisation. For example, an increase in

© 2024 The Author(s).
New Phytologist © 2024 New Phytologist Foundation.

plant-available soil inorganic N reduces the reliance on N uptake
pathways that rely on microbial symbionts, as a result of increased
mass flow uptake (Bloom er al, 1985; Rastetter er al, 2001;
Perkowski et al, 2021). Organic N forms (amino acids) can
constitute an important source of N to plants (Nisholm
et al., 2009), drive a similar response in aboveground plant
biomass (Shi ez al., 2024), and affect soil N cycling and plant supply
differently from inorganic N in fertilisation experiments (Lim
et al., 2022). However, even in arctic environments where
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Fig. 3 Meta-analysis of N fertilisation (a, b) and
elevated CO, experiments (c). The response to N
fertilisation shown is based on (a) data from
(Liang et al., 2020), (b) combined data from
MESI (Van Sundert et al., 2023) and NutNet
(Cleland et al., 2019). The response to elevated
CO, (c) is based on MESI data. Each point
represents the average log-transformed ratio of
means recorded across all years for one
experiment. The size of points represents the
inverse of the SE of the log response ratio. The

3 log response ratio is computed for N-fertilisation
experiments with varying manipulations, but
filtered to manipulations below < 30 gN
m~2 yr~" to facilitate comparability. The log
response ratio is computed for CO, experiments

2 by normalising with the log-transformed ratio of

control and elevated CO, levels. The boxes

represent the meta-analytic 95% confidence
interval of the mean and the vertical line in each
box' centre its mean. A, is the leaf-level
assimilation rate measured at saturating light,

GPP is the gross primary production, V¢max is the

maximum rate of Rubisco carboxylation rate,

Jimax is the maximum electron transport rate for

RuBP regeneration, N, is the leaf N content per

unit leaf area, Nmass is the leaf N content per unit

leaf mass, LAl is the leaf area index, (A)NPP is the

(aboveground) net primary production

(corresponding to biomass production), AGB is

the aboveground biomass, BGB is the

belowground biomass, root : shoot is the root-
to-shoot mass ratio. See Supporting Information
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mineralisation is often suppressed by freezing temperatures and
organic N supply has been argued to be dominant, inorganic N
cycling rates are of similar magnitude as in temperate and tropical
soils (Ramm et al., 2022).

Our meta-analysis (Fig. 3b) further shows that inorganic N
availability responses to N fertilisation varied substantially, both in
sign and magnitude, across studies. This may reflect variability
in the amount of N added across studies (we excluded experiments
with N application rates of > 30 gN m™ yr~'). However, it could
also imply that the distinct contexts of the studies altered the
fertilisation impact on N availability and could be indicative of high
spatiotemporal heterogeneity of soil inorganic N availability (Van
Sundert et al., 2020; Akana et al., 2023; Ochoa-Hueso et al., 2023)
and soil microbiomes (Jansson & Hofmockel, 2020) in terrestrial
ecosystems.
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3 Notes S2 for further information about methods
of this analysis.

2. Carbon allocation responses to nitrogen availability

Our meta-analysis shows a general relative C allocation shift to
aboveground tissues under increased N availability (Figs 3, 4).
Aboveground NPP and biomass increased despite no consistent
change in root NPP or belowground biomass across experiments.
This allocation response is reflected by the clear declines in the
root : shoot ratio and the RMF. The shift towards aboveground
tissues under N fertilisation likely reflects the aforementioned
increase in N uptake efficiency (McMurtrie & Nisholm, 2018;
Eastman ez al., 2021; Perkowski ez al., 2021) and implies a positive
feedback whereby additional N leads to increases in leaf area and
subsequently GPP, resulting in plants that are larger and have more
aboveground biomass than their unfertilised counterparts.
Although the general pattern indicates relatively more investment
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Fig. 4 Simultaneous response ratios of above and belowground biomass for (a) CO, experiments and (b) nitrogen (N)-fertilisation experiments. Each point
represents the average log-transformed ratio of means recorded across all years for one experiment. The size of points represents the inverse of the SE of
the log response ratio. The log response ratio is computed for N-fertilisation experiments with varying manipulations, but filtered to manipulations below
<30 gN m~2 yr" to facilitate comparability. The log response ratio is computed for CO, expetiments by normalising with the log-transformed ratio of
control and elevated CO, levels. See Supporting Information Notes S2 for further information about methods of this analysis.

of C for biomass production above- than belowground, in some
experiments, the response is opposite (Fig. 4). Such responses have
previously been documented for severely nutrient-limited ecosys-

tems (Van Wijk ez al., 2003).

3. Leaf-level responses to nitrogen availability

Leaf N, both on a mass and area basis, increases consistently with
soil N fertilisation (Fig. 3a). Even though leaf N and photosynthetic
capacity are positively correlated across species and sites
(Evans, 1989; Walker er al., 2014), there is no response of leaf
carboxylation capacity (V. to N fertilisation in the data we
analysed (Fig. 3a). Although we analysed the same data as (Liang
et al., 2020), this result differs from their finding of a positive, yet
nonsignificant, response because we excluded two experiments
where > 30 gN m™ yr ' were applied. Our result indicates a
decoupling of the leaf N-photosynthetic capacity relationship
under N fertilisation (Luo ez a/., 2021; Waring et al., 2023). While
the absent V., response indicates little effect of N fertilisation on
leaf-level photosynthesis (and dark respiration), the strong positive
effect on LAI and leaf biomass suggests that increasing GPP in
response to increasing N availability is primarily the result of
increased leaf production, rather than an increase in the
photosynthetic capacity of individual leaves.

Liang et al. (2020) provided a larger dataset on the response of
the assimilation rate to N fertilisation than available for
photosynthetic capacities. These data show a significant increase
in assimilation rate (which we assume is assimilation under
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light-saturated conditions, i.e. A, in response to N fertilisation.
However, there appear to be two separate populations of
experiments (fig. 4a in Liang ez al., 2020). Some of the experiments
show an increase in assimilation rate that is proportional to the
increase in biomass, while a second group show a varying response
of biomass but no increase in assimilation rate (Table S2). There is
insufficient information given about the prior N availability in the
soil (or through N deposition) to determine whether these
differences in response reflect differences in the background state,
differences in the N-fertilisation treatments or differences in
responses across species. There is also no obvious pattern in terms of
plant groups, phenology or mycorrhizal type (Table S1). Thus, itis
currently impossible to resolve the cause of these different
responses. However, the mean change in assimilation rate is only
about a quarter of the magnitude of the change in leaf biomass.

4. The role of atmospheric CO, availability in driving
nitrogen-related processes and responses

Elevated CO, tends to increase LAI, biomass production and
biomass stocks, similar to the effects of N fertilisation. However,
opposite to the effects of N fertilisation, the increase in below-
ground production under elevated CO, is stronger than the
increase in aboveground production, inducing a net shift towards
greater belowground growth and biomass allocation. This shift
towards belowground allocation in turn increases N uptake,
depleting available mineral N in the soil (Fig. 3c). This negative
feedback loop between plant N uptake and plant-available N may
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constrain the positive effects of CO, fertilisation on plant growth
and biomass production, especially in soils with low N availability
(Luo et al., 2004). This N constraint on CO, fertilisation has been
substantiated by past studies showing greater positive biomass
responses when N availability is high in combination with elevated
CO, as compared to elevated CO, responses when N availability is
low (Terrer et al., 2019). However, N uptake consistently increases
under elevated CO, and it should be noted that the data analysed
here are from experiments where no N fertilisation was applied in
parallel to the elevated CO, application. This suggests that a
progressive release from N limitation (Walker ez 4/, 2015) may be
enabled by the increased capacity of plants to acquire (increasingly
scarce) soil N thanks to increased root biomass and surface area
under elevated CO,. At the leaf level, elevated CO, reduces leaf N
by decreasing the demand for photosynthetic enzymes and
leaf-tissue N (Smith & Keenan, 2020; Dong er a/., 2022). This
implies an additional mechanism by which N limitation on
biomass production under elevated CO, may be partly alleviated.

lll. Insights from environmental gradients

C cycle simulations of DGVMs are particularly sensitive to the
representations of leaf traits due to the role of traits in
photosynthetic CO, assimilation and their influence on N cycling.
The amount of N in leaves is linked to photosynthetic capacity
through the N-rich enzyme Rubisco that is involved in
photosynthesis. The acclimation of photosynthesis to the atmo-
spheric environment should thus have implications for the leaf C :

N stoichiometry and plant N demand (Dong ez al, 2022; Xu
et al., 2023). However, not all leaf N is in photosynthetic proteins.
Across ecosystems globally, LMA is a more important determinant
of leaf N than V.05 (Dong er al., 2022). In this section, we
consider what can be learned from large-scale geographic patterns
of Vimaxzs, LMA and leaf N and their relationships to environ-
mental variables, including soil C : N ratio (as an inverse index of
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of this analysis.

soil N availability) and N deposition, accounting for simultaneous
variations in temperature, light and atmospheric dryness.

1. Leaf-level responses to environment

The atmospheric environment influences photosynthetic capacity
in ways that can be understood via EEO principles (Reich
et al., 2007; Ali et al., 2016; Smith ez al., 2019; Dong ez al., 2020).
Fig. 5, based on a simplified analysis of the global leaf—trait dataset
presented in Dong ezal. (2022) (see Notes S3), illustrates the widely
observed reduction in V.05 with growth temperature and
increase with light and vapour pressure deficit (VPD). These
dependencies are well understood in EEO terms. V,,,.,05 increases
with light availability (enabling the leaf to use all of the light it
absorbs), declines with growth temperature because less Rubisco is
required for photosynthesis at higher temperatures, and increases
with VPD because more Rubisco is required to compensate for
reduced stomatal conductance — which represents the least-cost
response of air-to-leaf CO, drawdown to VPD (Prentice
et al., 2014; Smith ez al., 2019; Dong et al., 2020, 2022; Peng
et al., 2021).

Fig. 5 also shows that V_,..25 decreases with an increasing soil
C : Nratio—which may reflect the higher costs of N acquisition on
less fertile soils (Paillassa ez al., 2020). However, N deposition does
not increase V_,.c0s. These responses of V.05 do not mimic
those of leaf N. In particular, soil C : N ratio has a stronger effect
on leaf N (both N, and N,.) than on V.5, while N
deposition increases Ny, but reduces LMA so strongly that V., is
paradoxically reduced. The predictors considered in the models
here were almost all highly significant (Notes S3: Table 1), while
model fits achieved relatively modest adjusted R values of between
0.1 for N, and 0.2 for LMA. This reflects the influence of
differences in leaf traits between species and the limited capacity
of linear models to fit often interactive and nonlinear effects of
abiotic factors (Tian et al., 2024).
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2. Patternsin leaf traits data are consistent with experimental
evidence, but not with common assumptions

A widespread modelling paradigm emphasises stoichiometric
flexibility (Zachle ez al., 2014; Medlyn et al., 2015; Hauser ez al.,
2023) and the control of photosynthesis and plant growth by soil N
supply (Box 1). It is commonly assumed that increased soil
N availability enhances N concentrations in leaves, enabling
increased photosynthetic capacity. Our analysis of large-scale field
data, however, is consistent with the experimental evidence (Fig. 3)
that photosynthetic capacity is not directly controlled by leaf N
content, and that increased N availability can increase leaf N
without consistently increasing photosynthetic capacity.

IV. An optimality-guided CN-model

As a relatively simple and transparent demonstration model, we use
the CN-model (Stocker & Prentice, 2024), which draws on EEO
concepts to model the two pathways through which C and N cycle
interactions and ecosystem feedbacks arise — through allocation and
acclimation of photosynthesis. The model dynamically simulates
responses to experimental treatments and is comparable in model
scope (resolved processes, pools and fluxes) to terrestrial biosphere
models described in Box 1 and used for simulations of land C
balance trends for the Global Carbon Budget (Fig. 1), but is run
here for point-scale simulations. Allocation to roots and shoots is
predicted following a C—N functional balance approach (Bloom
et al., 1985) through which the root : shoot ratio is dynamically
simulated such that the ratio of C assimilation and N uptake
matches the demand by respiration and the C : N ratio of new
biomass production. Acclimation of photosynthesis is modelled
through the trade-off between optimising C assimilation relative to
water loss (Prentice ez al., 2014; Wang ez al., 2017) and predicts
Vimax and Ja0 and — by implication — the total amount of leaf
metabolic N. Soil N is assumed to have no effect on the acclimation
of photosynthesis. Leaf structural N is modelled based on a linear
function of leaf metabolic N. N uptake is simulated based on a
simplified representation of N transport in the soil solution and
& Nasholm (2018),
and saturates with increasing root mass and increasing soil
inorganic N. Organic N uptake is not considered. The model is
forced to simulate a representative N-fertilisation (12 g m ™ yr ')
and CO, experiment (doubling of ambient levels) in a representa-
tive grassland. More detailed information about model simulations

root uptake following McMurtrie

is provided in Notes S4. A comprehensive description of the model
and its underlying hypotheses is given in Stocker & Prentice (2024).

The model predicts the correct response direction in all observed
variables from N-fertilisation and CO, experiments simulta-
neously (Fig. 6), from photosynthesis (GPP, V.. and Joao)»
growth (ANPP and root NPP) and biomass (AGB, BGB, root :
shoot and RMF) to N cycling (N uptake, inorganic N), except for
Niass and N,e,, where the model predicts no response. Also, no
responses are (incorrectly) simulated for A, in N-fertilisation
experiments and forleaf C : N in CO, experiments. The simulated
absence of an effect of N fertilisation on V.05 is consistent with

© 2024 The Author(s).
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the experimental meta-analysis. Patterns in the root : shoot ratio,
the RMF, above and belowground biomass and biomass produc-
tion under elevated CO, and N fertilisation are correctly predicted.
Consistent with experimental evidence, the model also predicts
enhanced N uptake under elevated CO, despite a (slight) depletion
of inorganic soil N and conditions suggestive of N limitation. The
system modelled here appears N-limited, considering the simulated
positive response in biomass and biomass production under N
fertilisation. The enhanced N uptake is enabled by a more efficient
recycling of N along the N uptake-turnover-mineralisation-loss
cycle. Overall, the simulated response ratios are within the 95%
confidence interval of the meta-analytic mean for 12 among the 23
observed response ratios in N-fertilisation and CO, experiments
and within the range of individual experiments for 22 among the 23
observed response ratios. Deviations of the simulated vs meta-
analytic mean response for aboveground biomass and productivity
under eCO, and for inorganic N under N fertilisation may be
related to the focus on a representative grassland for simulations (no
wood allocation), an incomplete representation of the controls on
inorganic soil N dynamics and other aspects of the model that will
have to be investigated in further work.

V. Discussion

The representation of C-N interactions in models of terrestrial
ecosystems is particularly influential for their simulations of long-
term land C balance changes (Fig. 1) (Thornton ez4l., 2007; Zaehle
er al, 2010a,2010b; Thomas er al, 2013, 2015; Wieder
et al., 2015b; Meyerholt et al, 2020) and not sufficiently
constrained by commonly used benchmarks (Meyerholt
etal., 2020). Yet, representations of related processes in the current
generation of C—N models are very diverse, if not conflicting, for
key processes (Box 1). This context provided the motivation for our
review of collective empirical constraints from ecosystem experi-
ments and leaf traits data compilations. We took a plant-centric
perspective to identify patterns in allocation and photosynthesis
acclimation under N fertilisation, elevated CO, and along climatic
gradients and showed that several related responses can be predicted
from EEO principles. Confronting CN-model with the results of
the meta-analysis of ecosystem experiments suggests that the EEO
principle of the functional balance in allocation is a powerful
approach to simulating observed responses. The strong influence of
climate on V.. indicates that reliable predictions of leaf
stoichiometry and photosynthesis responses to global change may
benefit from an existing EEO model of the acclimation of
photosynthesis (Prentice ez al., 2014). The strong influence of N
deposition on LMA indicates an open challenge for modelling.
Taken together, considering EEO principles and a wide array of
empirical constraints are useful for informing the next generation

of C—N models.

1. Allocation

N fertilisation and increasing CO, elicit opposite responses in C
allocation, as indicated by the general patterns in Fig. 4. N
fertilisation leads to increased N uptake efficiency and reduced
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allocation to roots. Exposure to elevated CO, leads to increased
production with a stronger increase in belowground allocation,
which tends to deplete soil N. Similar responses have been
documented in the literature for CO, experiments (Rogers
et al., 1995; Schneider er al,, 2004; Ainsworth & Long, 2005;
Leakey et al., 2009; De Kauwe ez al., 2014; Song et al., 2019; Jiang
et al., 2020) and N-fertilisation experiments (Poorter et al., 2012;
Cleland ez al., 2019; Song et al., 2019; Li er al, 2020, 2024;
Eastman ez al., 2021; Keller ez al, 2023). Yet, there remains a
relatively high residual variability in response ratios across
experiments (Figs 3, 4). The general pattern of allocation shifts in
response to N fertilisation and CO, is predicted by EEO-based
models (Thornley, 1995; Rastetter ez al., 1997; Mikeld ez al., 2008;
Franklin ez al., 2009). Related patterns of the effect of soil fertility
on allocation have also been documented based on field data.
Ecosystems on fertile soils have been found to produce biomass
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about methods of this analysis.

more efficiently, suggesting that additional belowground C
allocation on infertile soils may, at least partly, fuel the rhizosphere
through exudation (Vicca ez al., 2012).

According to experimental findings and model predictions,
elevated CO, should drive a rise in belowground C allocation.
Decadal-scale temporal variations in root : shoot ratios under field
conditions have, to our knowledge, not yet been documented.
However, such a shift would have important consequences for the
C balance of terrestrial ecosystems across the globe, but is likely
missed since belowground biomass is commonly estimated via
nondestructive methods based on constant relationships with
aboveground biomass and allometric relations with tree diameter
and tree ring growth data.

Additional processes of plant—soil interaction are fuelled by
amplified belowground allocation under rising CO,. The decom-
position of soil organic matter and the N supply rate are governed

© 2024 The Author(s).
New Phytologist © 2024 New Phytologist Foundation.

ASUAOIT SUOWIWIO)) 0ANNEAI) d[qedrjdde oy Aq pauIdA0S o1k SO[ANIE V() oSN JO SI[NI 10J AIRIqIT SUI[UQ AJ[IA\ UO (SUONIPUOI-PUE-SULIA} W0 AA[IM" ATeIqI[out[uo//:sdny) Suonipuoy) pue suo oy} 39S “[z0z/11/1¢] uo Areiqry sutjuQ Adip ‘82107 qdu/[ 1 [ 1°01/10p/wod Kojim Arerqrjoutjuo-yduy/:sdny woiy papeojumod 0 ‘LE186971



New
Phytologist

by the depolymerisation by microbes (Schimel & Bennett, 2004)
and can be enhanced by additional C exudates and rhizosphere
priming — the increased soil organic matter mineralisation due to
enhanced microbial activity (Phillips er al, 2011; Zhu &
Cheng, 2011; Kuzyakov ez al., 2019), for example via symbiotic
associations with mycorrhizas (Phillips ez /., 2013; Frey, 2019).
Ectomycorrhizal (ECM) fungi are particularly effective in
mobilising soil N for plant uptake (Sulman ez 4/, 2017; Bonsall
et al., 2020) and sustaining a positive aboveground biomass
response under elevated CO, (Terrer ez al., 2016), potentially by
oxidising soil organic matter (Shah er al, 2016), triggering a
simultaneous acceleration of SOM and litter decomposition (Zak
et al., 2011; van Groenigen et al., 2014) and reducing soil organic
matter stocks (Shah ez al, 2016; Terrer et al., 2021). However, not
all ECM fungi appear to possess saprotrophic capabilities (Lindahl
& Tunlid, 2015; Pellitier & Zak, 2018) and the occurrence of
saprotrophic ECM may vary across ecosystems (Pellitier &
Zak, 2018). A mechanistic understanding of the effects of
exudation on N availability for plant uptake, losses and fixation,
considering feedbacks through organic C decomposition (Keuper
et al., 2020) and inorganic N immobilisation by the activated
thizosphere, is only beginning to emerge (Coskun ez al., 2017;
Kuzyakov ez al, 2019) and remains an open challenge for
consideration in DGVMs.

The observed allocation shift also suggests a certain degree of
plant control on N availability for uptake and therefore an
interaction between C and N availability. For example, more C
could be invested under elevated CO, for plant N uptake, as seen in
many (but not all) Free-Air CO, Experiments (Terrer ez al., 2018).
Such an interactive effect of C and N is predicted by EEO models
(Rastetter ¢t al., 1997; Franklin, 2007; Wang et al., 2007) and
questions the argument of an immutable sink limitation (a
limitation on producing biomass) under rising CO, by limiting
N availability (Fatichi ez @/, 2019). It also appears incompatible
with a conceptualisation of N limitation based on Liebig’s law of
the minimum — a common approach for implementations of N
cycle effects on the C cycle in Earth System Models (Thomas
et al., 2015). The approach to modelling allocation and nutrient
uptake based on the C economy of plants has been extended for
modelling the uptake of phosphorus (Braghiere ez al, 2022;
Reichert ezal., 2023) on the basis of the observed link between plant
C investments into rhizodeposits and other functions and the
availability of P for plant uptake (Jin ez al., 2015). One such model
that connects global N and P cycles through the C economy of
plants predicts widespread co-limitation of P and N (Braghiere
et al., 2022) — as is widely observed for effects on biomass
productivity in manipulative experiments (Fang ez al., 2024).

2. Acclimation of photosynthesis

We found that the acclimation of photosynthetic traits is most
strongly influenced by the atmospheric environment, but less so by
soil N, despite soil N effects on foliar N content (by mass and
by area). EEO principles, formulated as a function of the
atmospheric environment, have been shown to be useful for
predicting the acclimation of photosynthesis parameters (Smith
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et al., 2019; Dong ez al., 2022). Consistent with an EEO principle
(Prentice etal., 2014; Dong et al., 2022), N, declines with growth
temperature and increases with VPD (Fig. 5). Embodied in our
demonstration CN-model, these principles also correctly predict
the average decline of V,,,,, recorded elevated CO,. The associated
decline in the demand for N — arising through the link between
Vimaw Rubisco and N — is thus predictable and should be
considered in the next generation of C—N models.

By contrast, leaf N, measured on a leaf area or leaf mass basis,
appears more strongly influenced by soil N than photosynthetic
traits that reflect enzyme activity (e.g. Vimax and Joao). This
suggests that the soil N effect on foliar C-N stoichiometry is only
weakly transmitted to photosynthesis. This is consistent with
findings of a decline in photosynthetic N use efficiency (PNUE,
leaf photosynthesis per unit leaf N) under N fertilisation (Waring
et al., 2023), with an observed increase in PNUE under elevated
CO,, and absent effects of soil N on leaf photosynthesis
(Lee et al, 2011;
et al, 2019). This suggests an open question for process
understanding (What, if not photosynthesis, is the additional
leaf N used for?) and EEO-informed modelling (What are the
competitive gains of higher foliar N contents?). The observation

acclimation to elevated CO, Pastore

of a weak transmittance of soil N to V,,.x and [, also suggests a
weak or absent effect on leaf dark respiration (which scales with
the leaf Rubisco concentration and thus with V_.,). Leaf
respiration is modelled in several models to increase with leaf N
content (Box 1), inducing a feedback between N limitation and
plant respiration. However, such approaches are not supported in
view of the observed large variations in PNUE and the decoupling
of total leaf N and photosynthesis.

A focus on LMA for understanding the controls on foliar N may
be informative in this context. LMA appears highly responsive
across spatial gradients in N deposition (Fig. 5), suggesting an N-
related control. LMA is positively associated with leaf longevity
(Onoda et al., 2017; Wang ez al., 2023) and should thereby have
implications for foliar N turnover and ecosystem N losses along the
licterfall-mineralisation-plant uptake pathway. Indeed, a decline in
LMA along a soil N availability gradient is predictable from EEO
principles (Weng ez al., 2017, p. 20).

A further challenge is that, although the meta-analytic mean
response in Vo, to CO, is predictable from EEO principles, there
remains substantial unexplained variability in the response ratio
across experiments. Analyses of the Liang er a/ (2020) dataset
provide no indication that the differences in response are
consistently related to plant type, phenology or mycorrhizal
association (Table S2). However, results from some experiments
have shown that the impact of N fertilisation on photosynthetic
capacity is most pronounced in experiments where N availability
was low before fertilisation, suggesting that there may be a strong
response at low N that saturates as N availability increases. This
saturating effect has indeed been shown in N-fertilisation
experiments under different of CO, (Perkowski
et al., 2023). Although not emerging from the meta-analyses,

levels

symbiosis with mycorrhizal fungi or soil N-fixing bacteria could
also have an influence on the acclimation of photosynthetic traits to
N fertilisation (Hoeksema et /., 2010).
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In addition to biotic factors influencing the response of
photosynthetic capacities to N fertilisation, abiotic factors may
also be important to consider. Evidence from experiments and leaf
traits data along environmental gradients indicate that the response
to N fertilisation is strongest in low temperature (Smith &
Keenan, 2020; Dong et al., 2022), dry (Wright ez al, 2003;
Querejeta er al., 2022) and high light (Niinemets er al, 2015;
Poorter et al, 2019; Waring et al, 2023) environments —
conditions that are typically associated with a high demand for N
in the photosynthetic machinery (Wright ez al., 2003; Prentice
et al., 2014; Dong ez al., 2022).

The environmental effect on photosynthetic parameters is
commonly encoded in Earth system models by treating separate
plant functional types (PFTs) growing along climatic gradients. As
a consequence, changes in community-mean V., only come
about in these models through a shifting occurrence of PFTs.
However, the V_,... and N demand decline under elevated CO,
arises within individual plants subjected to experimental manip-
ulations (Fig. 3) and therefore evolves much more rapidly than
through species replacements. The comparatively immediate shift
in leaf N demand and implications for ecosystem N cycling in
response to decadal climatic trends and CO, can thus not be
captured by traditional models.

Apart from the photosynthetic traits, other traits related to C-N
interactions also exhibit acclimation and within-PFT variations
that are related to the environment. In particular, root traits
(architectural, morphological and physiological properties) are
linked to root biomass N content, N uptake, C respiration and root
biomass turnover, and are highly plastic in response to environ-
mental change (Hodge, 2004; Nie ez al, 2013; Bardgett
et al., 2014; Wang et al., 2021). However, empirical support for
a theory explaining variations of multiple root traits along a
resource conservation-exploitation spectrum and for systematic
relationships between soil properties related to N and P and root
traits is mixed (Roumet ez al, 2006; Orwin et al., 2010; Chen
et al., 2013; Bardgett et al., 2014; Kramer-Walter et al., 2016;
Weemstra er al., 2016; Kong er al, 2017). This indicates a
remaining challenge for optimality-based predictions of multiple
root traits and their relations to mycorrhizal and microbial
associations and exudation (Gao ez 4, 2021; Sun et al., 2021),
and suggests a potential for modelling total belowground C
allocation and N uptake at a high level of abstraction.

3. Ecosystem N cycling

We have taken a plant-centric view. It is predominantly through
plants and their associations with microbes that atmospheric CO,
and N, are converted to C and N that cycle in ecosystems.
Governing EEO principles that inform the modelling of plant
functioning thus have implications for ecosystem-level C and N
cycling. Although we have not addressed this aspect in our data
analysis, insights gained from EEO predictions and their
evaluation against experiments and field data are informative for
understanding and modelling ecosystem N losses, N cycle
openness and N fixation in response to environmental change
factors.
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Progressive N limitation (PNL) has been hypothesised to govern
the dynamics of ecosystem C—N cycling in response to rising CO,
(Vitousek & Howarth, 1991; Comins & McMurtrie, 1993; Luo
et al., 2004). Thereby, the stimulated tree growth and biomass
stocks deplete soil N, aggravating N limitation and triggering an
increase in the C: N ratio of new biomass and a resulting
deterioration of decomposability of that biomass. This induces a
decline in N mineralisation, thereby further aggravating the initial
N limitation. However, the attenuated transmittance of the leaf N
signal on photosynthetic N and photosynthetic capacity at least
partly mutes the feedback of PNL. The widely observed allocation
shift and its consequence for plant N uptake further alleviate the
PNL feedback loop. The continued accumulation of ecosystem N
as a consequence of increased belowground allocation and
transiently reduced losses (Liang e¢# al, 2016) suggest instead a
progressive release from N limitation (Walker ez 4/, 2015). Such
arelease is also predicted by relatively simple models based on EEO
principles but is sensitive to assumptions regarding dependencies of
N losses (Comins & McMurtrie, 1993; Wang et al., 2007).
Empirical evidence for the PNL is mixed (Liang ez al., 2016). It was
found in some CO, experiments (Reich ez al, 2006; Newton
et al., 2010; Norby ez al., 2010), but not in others (McCarthy
et al., 2010; Zak et al., 2011).

The predicted and observed allocation shift elicits a change in
ecosystem N losses. This flux is perhaps the most difficult-to-
measure component of the terrestrial N cycle. Gaseous losses are
mostly in the form of an N, flux (Galloway ez al., 2004) which, thus
far, cannot reliably be measured against the background of its high
atmospheric concentrations. N losses also occur through leaching.
Measured at the catchment-scale, large-scale N-fertilisation
experiments have documented enhanced leaching in response to
N fertilisation (Eastman ez al., 2021). The allocation shift causes a
change in the relative magnitudes of N losses and internal N
cycling. This quantity has been referred to as the N cycle openness
(Cleveland et al., 2013). As predicted by the CN- model here,
elevated CO, drives a reduction, while N fertilisation increases the
N cycle openness.

N losses from the terrestrial biosphere arise not only through
gaseous and leaching pathways, but also by fire, causing NO,
emissions (Pellegrini ez al., 2018), and biomass removals through
wood harvesting (Hume ez a/., 2018). Despite the severe disruption
of N (and P) stocks, such disturbances are commonly followed by
regrowth and a re-accumulation of N in biomass within decades
(Batterman et al., 2013; Turner et al., 2019), albeit under low
availability of soil nutrients or repeated disturbances, this re-
accumulation may be reduced or delayed (Rastetter e al., 2013;
Pellegrini er al., 2018). It will be useful to quantify the rates of
postdisturbance N accumulation across biomes and to put numbers
into context with N deposition and fixation estimates to provide an
additional constraint for models on the rate of ecosystem N
accumulation through N fixation vs external inputs, including
atmospheric deposition.

The common view is that N inputs into ecosystems are under
plant control only where N-fixing trees are present. While trees that
symbiotically interact with N-fixing bacteria are relatively
widespread in the tropics (Menge et al, 2019; Tamme
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eral.,2021), ‘N-fixing trees’ are much rarer in temperate and boreal
systems and are largely confined to early successional stages
(Chapin et al., 1994; Menge et al., 2019). Their exclusion in late
successional stages and the widespread N limitation of temperate
forests pose a research challenge (Menge ez al., 2009). The discovery
and quantification of new processes and organisms with the
capability of N fixation has contributed to a more complete picture
of N fixation in terrestrial ecosystems (Vitousek et al, 2013;
Cleveland et al., 2022). Free-living microbes (Reed et al., 2011),
epiphytes and endophytes (Firnkranz ez af, 2008), and moss,
lichens and biocrusts (Elbert ez 4/, 2012; Larmola et al., 2014) have
been described as substantial N sources through N, fixation
(Cleveland et al, 2022). An incomplete understanding and
consideration of the full diversity of N-fixing organisms
and processes may imply a systematic underestimation of the
global biological N-fixation flux based on up-scaled measurements
of currently known sources (Cleveland ez al, 1999; Galloway
et al., 2004; Davies-Barnard & Friedlingstein, 2020). However,
isotopic constraints suggest the global flux of biological N fixation
to be lower than published up-scaled values (Vitousek ez al., 2013).
Modelling diverse N fixation fluxes and their response to
environmental change remains an outstanding challenge (Davies-
Barnard & Friedlingstein, 2020) and is not addressed by our data
analysis and modelling. Differences in assumptions about
dominant controls on N fixation are partly (but not dominantly
(Davies-Barnard ez al., 2022)) responsible for the divergence of
simulated land C balance projections in a future climate (Wieder
etal., 2015a; Meyerholt ez al., 2016, 2020). Yet, an empirical basis
exists for conceiving symbiotic N fixation as being controlled by the
balance of soil N supply and demand by autotrophs, including
plants (Rastetter ez al., 2001; Wang ez al., 2017, p. 20; Perkowski
et al., 2021). EEO principles, used for predicting patterns of
biological N fixation in relatively simple models (Rastetter
et al., 2001; Wang et al., 2007), may guide a next generation of
global vegetation models’ representation of N fixation. For
example, the energy required for N fixation may be considered
for simulating its rate and may be linked to C cycling. Such a
representation forms the basis of the Fixation and Uptake of
Nitrogen (FUN) model’s representation of symbiotic N fixation
(Fisher ez al., 2010). The FUN model is implemented in the
Community Land Model v.5.0 (Lawrence et al, 2019) and its
approach may be applied generically for total ecosystem N fixation,
thereby accounting for documented abiotic controls on BNF
(Houlton ez al., 2008; Cleveland et al., 2022). N inputs to the
plant—soil system arise not only from N fixation but also from
weathering parent material (Houlton ez 4/, 2018). This process is
partly driven by chemical processes and fuelled by plant-derived
acids — containing C. Hence, this flux may also be, at least partly,
under plant control.

Large-scale vegetation changes under current environmental
change may provide additional constraints for models and their
representation of C-N interactions. For example, rapid Arctic
greening (Keenan & Riley, 2018) and widespread forest growth
increases (McMahon ez /., 2010; Hubau et 4/, 2020) with an
accompanying C sink in global forests (Pan ezal., 2011) can only be
predicted in agreement with observations if vegetation is simulated
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to access additional N during the biomass accrual stage. An
immutable cap on N and not considering a certain degree of plant
control on N loss and input fluxes may lead to an overestimation of
N-limitation effects in models. This could be tested by confronting
models’ simulations of large-scale vegetation changes with
observations and a focus on the role of N in shaping responses
and driving potential model bias.

4. Modelling C-N interactions

Balancing trade-offs in the light of EEO is a useful governing
principle for modelling C—N interactions. A rich body of literature
from at least four decades reflects the potential of EEO in the
context of modelling processes and traits that are directly relevant
for ecosystem C and N cycling. EEO principles and the
consideration of trade-offs in resource allocation, consumption
and acquisition have been used, for example for predicting canopy
(Dewar, 1996; Franklin, 2007) and foliar N (Dong ez al., 2022),
LMA (Weng et al., 2017; Wang et al., 2023; Xu et al., 2023), N
allocation to enzymes sustaining Vipay V8 Jmax (Ali ez al., 20165
Thum ez al., 2019), allocation to growth in different plant organs
(Thornley, 1995; Rastetter et al., 1997; Van Wijk ez al., 2003;
Franklin, 2007; Mikela ez al., 2008; Franklin et al., 2012; Weng
etal., 2019), balancing leaf area, N requirements and transpiration
losses (McMurtrie ez al., 2008) or different N uptake pathways
(Fisher er al., 2010), including biological N fixation (Rastetter
eral.,2001; Wang ez al., 2007; Menge ez al., 2009) and mycorrhizal
associations (Franklin ez /., 2014; Lu & Hedin, 2019).

Most (but not all) of these studies relied on models that are
strongly simplified representations of processes in terrestrial
ecosystems and lack the level of realism (and complexity) of the
C-N model types used for global biogeochemical cycle and land-
surface modelling studies, including the models used for the
analysis presented in Fig. 1. Some of the above-mentioned
theoretical work also relied on the premise of a fixed net
mineralisation rate (Franklin et 4/, 2014), or a fixed amount of
N in the system (Weng ¢t al., 2019), or a fixed amount of N in the
biomass of an individual leaf (Ali ez 2/, 2016; Thum ez /., 2019) or
the canopy (Dewar, 1996). To model the C and N dynamics of the
terrestrial biosphere, the system boundaries may be drawn more
widely for a complete accounting of C and N mass balances and
ecosystem feedbacks. Hence, the demonstrated success of EEO
principles for modelling individual processes or traits indicates a
potential for their application to improving C-N modelling.
However, the gap between the theoretical work implemented as
relatively simple EEO models and the demands and constraints for
implementing them into DGVMs and land-surface components in
ESMs indicates a remaining challenge. As discussed more
extensively in Harrison ez al. (2021), challenges are related, for
example, to linking individual leaf-level trait responses with the
coordination of multiple traits of multiple plant organs and plant
architecture, or to the treatment of temporal dynamics for
representing traits acclimating at multiple time scales and emergent
trait distributions at the community level.

The representation of C and N cycle interactions in the CN-
model (Stocker & Prentice, 2024; Fig. 5) is comparable in scope
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and structure to DGVMs. However, the CN-model resolves
processes with a focus on C—N interactions, while it does not resolve
energy and water exchanges and how they affect vegetation
functioning, nor does it resolve tree allometric relations or
competition between PFTs or plant age cohorts. Its aim is to
provide an architecture that is generally comparable to DGVMs
and to serve as a demonstration for how EEO principles for
allocation and photosynthesis acclimation could be embedded in
state-of-the-art global modelling frameworks.

The modelling performed here relied on EEO principles for
dynamically modelling instantaneous responses in allocation and
photosynthesis acclimation to a changing environment without the
explicit consideration of dynamic vegetation and competitively
optimal strategies (Franklin e 4/, 2020). This enabled the reliable
prediction of the widely observed and relatively strong response in
allocation to altered CO, and soil N availability. With its
assumption that V., is modelled through an optimal acclimation
to the atmospheric (but not soil) environment, the CN-model’s
respective predictions were consistent with observations. However,
other plant traits are less dynamic or cannot be altered within an
individual or a given species, but have direct consequences for the N
economy of plants. For example, a high LMA is typically associated
with a high C: N ratio and poor leaf decomposability and is
considered to be less plastic than leaf N, Mycorrhizal
associations are, for most species, exclusive to either ectomycor-
rhizae or arbuscular mycorrhizas. Associations with the former
appear to be advantageous in an N-scarce environment and to
facilitate the stimulation of plant biomass under elevated CO,
(Terrer ez al., 2016, 2018). Thereby, environmental changes will
likely trigger changes in species composition through altering their
competitiveness in an altered C-N environment and syndromes of
slow vs fast-N-cycling systems emerge (Phillips er al, 2013).
Modelling such dynamics will have to rely on a resolution of
dynamic vegetation and forest demographic processes to simulate
species invasion and exclusion over time, niche differentiation,
community succession and evolutionarily stable (competitively
optimal) strategies. Demography-resolving DGVMs (Falster
et al., 2017; Fisher ez al., 2018) offer potential for predicting such
patterns, as has been shown, for example for predicting LMA and
deciduousness shifts along a soil N gradient (Weng ez /., 2017). In
the context of root : shoot ratio changes under N fertilisation, it
has been shown that opposite patterns as predicted from the
functional balance hypothesis are observed in a severely nutrient-
limited ecosystem and can be simulated considering optimality
under competition (Van Wijk ez a/., 2003). It will be informative to
investigate how and whether the adoption of different EEO
principles and dynamic vegetation demography translate into
improved performance of DGVMs, evaluated against a compre-
hensive set of observational targets and considering data from a
large number of experiments and diverse environmental condi-
tions.

VI. Conclusions

Changes in C and N availability, caused by trends in rising CO,

and atmospheric N deposition, trigger dynamic responses in plants
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with consequences for ecosystem C and N cycling. Plant responses
to N fertilisation and changing CO, can be broadly captured by a
simple model based on EEO. Such concepts have been used to
predict various aspects of plant behaviour at the leaf and whole-
plant levels (Franklin ez 4/, 2020; Harrison ez al., 2021), providing
simple but powerful models with relatively few free parameters.
There is now a strong theoretical basis for modelling C-N cycle
interactions and the role of N in constraining ecosystem responses
to rising CO, and climate change (Bloom ez al, 1985; Rastetter
et al, 1997; Wright ez al, 2003; Franklin, 2007; Franklin
et al., 2012, 2020; Prentice er al., 2014; Harrison er al., 2021;
Dong et al., 2022). These approaches for the prediction of C-N
interactions could be used in vegetation and land-surface
components of coupled Earth System Models, holding the promise
of reducing the large uncertainty in the current projections of the
global C cycle. It will, however, be important to extend the suite of
benchmarks used to evaluate such models (Kou-Giesbrecht
et al., 2023) since the current emphasis on evaluating C fluxes
and pools is insufficient to discriminate between alternative process
representations that underlie errors in simulated land C sink
trends.
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