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Summary

Interactionsbetweencarbon (C)andnitrogen (N) cycles in terrestrial ecosystemsare simulated in

advancedvegetationmodels, yetmethodologies varywidely, leading todivergent simulationsof

past land C balance trends. This underscores the need to reassess our understanding of

ecosystem processes, given recent theoretical advancements and empirical data. We review

current knowledge, emphasising evidence from experiments and trait data compilations for

vegetation responses to CO2 and N input, alongside theoretical and ecological principles for

modelling. N fertilisation increases leaf N content but inconsistently enhances leaf-level

photosynthetic capacity. Whole-plant responses include increased leaf area and biomass, with

reduced root allocation and increased aboveground biomass. Elevated atmospheric CO2 also

boosts leaf area and biomass but intensifies belowground allocation, depleting soil N and likely

reducing N losses. Global leaf traits data confirm these findings, indicating that soil N availability
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influences leaf N content more than photosynthetic capacity. A demonstration model based on

the functional balance hypothesis accurately predicts responses to N and CO2 fertilisation on

tissue allocation, growth and biomass, offering a path to reduce uncertainty in global C cycle

projections.

I. Introduction

An open challenge in understanding and modelling the terrestrial
carbon (C) cycle response to climate change is to understand the role
of soil nutrients and, specifically, the extent to which nitrogen (N)
limits the current and future land C sink. Resolving this question is
essential for understanding the climate-C cycle feedback under
rising atmospheric CO2 levels – a major source of uncertainty in
Earth system projections (Friedlingstein et al., 2014; Arora
et al., 2020; Wei et al., 2022) and a Grand Challenge identified
by the World Climate Research Programme (https://www.wcrp-
climate.org/gc-carbon-feedbacks). As N is an essential nutrient
required for biomass synthesis and used in enzymes responsible for
C assimilation,N availability constrainsC cycle dynamics (Vitousek
& Howarth, 1991; LeBauer & Treseder, 2008).
The first generation of models simulating the terrestrial C cycle

and climate change effects on ecosystems did not resolve
mechanisms of C and N cycle interactions explicitly. These
C-only Dynamic Global Vegetation Models (DGVMs) predicted
substantial, albeit diverging, increases in the terrestrial C stock as a
consequence of an enhancement of terrestrial gross and net biomass
productivity under elevated CO2 and a warming climate (Cramer
et al., 2001). However, limited flexibility in the C : N stoichio-
metry of plant tissues implies that additional N has to be made
available for plant acquisition and sequestration in rising biomass
stocks and other plant-derived organic matter, for example in soils.
Hungate et al. (2003) argued that the additional N required for
plant acquisition implied by these C-only model projections was
unrealistic and, therefore, that the projections of the future land C
sink were excessive. Early results from free-air CO2 enrichment
(FACE) experiments, conducted mostly on temperate grassland
and forest ecosystems, also provided evidence for a strong role of N
in regulating growth responses to elevated CO2 (Oren et al., 2001;
Schneider et al., 2004;Dukes et al., 2005; Reich et al., 2006). These
insights motivated the development of a second generation of
DGVMs that would explicitly resolve interactions with the N cycle
and thereby consider the constraints imposed by limiting plant N
acquisition (Shi et al., 2016). However, incorporation of the N
constraint has not reduced the uncertainty inC cycle projections, as
shown by diverging projections of the land-atmosphere C flux by
the current-generationmodel ensembles (Arora et al., 2020) and by
diverging global simulations of the response of biomass production
to elevated CO2 and N fertilisation (Davies-Barnard et al., 2020).

Comparison of the observed terrestrial C balance trend in recent
decades and the trends simulated by a recent generation ofDGVMs
corroborates this picture (Fig. 1). These models were used for the
model intercomparison activity Trends and Drivers of Terrestrial
Sources and Sinks of CarbonDioxide (TRENDY) (Sitch et al., 2024)
v.8, and for the quantification of the Global Carbon Budget

(Friedlingstein et al., 2022). The spread across individual models is
much larger for C–Nmodels than for C-only models, both for the
mean terrestrial sink between 2011 and 2020 (Fig. 1b) and for the
mean trend between 1959 and 2020 (Fig. 1c). Yet, on average
across the ensemble of models, the average land C sink
(2011–2020) and its multi-decadal trend since 1959 are in closer
agreement with the implied residual sink from the Global Carbon
Budget for C–N models than for C-only models. This suggests a
general improvement of landC balance trend simulations linked to
considering C–N interactions. However, the large variability
among models is a concern and several individual C–N model
simulations of the recent mean land C sink are outside the 95%
confidence interval of its temporal trend (Fig. 1c).

The terrestrial C sink and its evolution under future climate and
CO2 projections is a central quantity that has motivated the
inclusion of explicit N cycling in DGVMs. Yet, the apparent
divergence of simulations for the terrestrial C sink and its trend
indicates remaining challenges. The divergence cannot be
attributed solely to uncertainty in the process representations
relating to the terrestrial N cycle and its interaction with the C cycle
in C–N models since there are inherent uncertainties and
limitations in multiple aspects of simulations of the land C cycle
(O’Sullivan et al., 2022) and impacts by land use change (Dohner
et al., 2022). Nevertheless, the large difference in model spread
among C-only vs C–Nmodels suggests (1) that C–N coupling and
related ecosystem feedbacks are particularly influential for
long-term terrestrial C balance trends, (2) that there is a lack of
agreed principles governing plant responses to N availability and
limitation, and (3) that established observational benchmarks for
model development and testing provide insufficient or insuffi-
ciently used constraints on decadal-scale C cycle trends.

Current models include representations of multiple processes
linking the C and N cycles in ecosystems (Fig. 2). However, the
diversity of representations of individual processes among the
current generation of C–Nmodels is large (Box 1, Davies-Barnard
et al., 2020; Meyerholt et al., 2020) and insights gained from
experiments and field observations remain valuable for better
informing the next generation of C–Nmodels. A key finding from
earlier work has been that models overestimated leaf stoichiometric
flexibility and underestimated flexibility in allocation andNuptake
under elevated CO2 (Zaehle et al., 2014; Medlyn et al., 2015).
Flexible allocation with implications for N uptake remains
unresolved in most of the current generation of C–N models,
many of which simulate foliar C : N stoichiometry changes
exclusively as a function of soil N availability (Box 1).

Recent research suggests that an influence of the atmospheric
environment on leaf C : N stoichiometry and photosynthesis is
evident and can be predicted. Large variations in photosynthetic
capacity at the standard temperature of 25°C (Vcmax25) have been
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documented along climatic gradients (Smith et al., 2019; Peng
et al., 2020; Dong et al., 2022; Wang et al., 2023; Xu et al., 2023)
and an acclimating response ofVcmax25 is documented from FACE
experiments (Ainsworth & Rogers, 2007). A high Vcmax25 requires
a high amount of the N-rich enzyme Rubisco. Hence, a changing
climate and rising CO2 have direct implications for the demand for
N and foliar C : N stoichiometry (Dong et al., 2017) – a pathway
of C–N coupling that has not been considered in the current
generation of C–N models.

Predictions of leaf-level responses and reliable C cycle simula-
tions and projections to novel environmental conditions rely on
efficient theory and first principles that predict generally observed
patterns in ecosystems in response to the abiotic environment
(Marquet et al., 2014). Eco-evolutionary optimality (EEO) theory
has been developed for predicting howVcmax25 and leafN acclimate
to the atmospheric environment (Wright et al., 2003; Prentice
et al., 2014;Dong et al., 2017; Smith et al., 2019; Peng et al., 2021;
Dong et al., 2022) and formodelling flexible allocation and the role
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Fig. 1 Terrestrial carbon (C) balance and trends. (a) Residual terrestrial land sink (i.e. after removal of the land use fluxes) time series, (b) recent decadal
mean sink and sink trend. Shading in (a) indicates the model spread for C-only models (red) and C–N coupled models (blue). Data are from the TRENDY v.8
simulations and the Global Carbon Budget 2021 (Friedlingstein et al., 2022). Observations-based estimates (‘Obs.’ in a) represent the residual of the global
C budget, calculated as the difference between the sums of all emissions (from fossil fuel combustion and land use change) and the sum of the atmospheric
growth rate, the ocean sink and the sink of cement carbonation. Boxes in (b) and (c) represent the inter-quartile range (IQR) and whiskers the median
plus/minus 1.5 times the IQR for C–N coupled models and for C-only models. The vertical line for observations indicates 1.96 times the SD in (b) and 1.96
times the SE (corresponding to the 95% confidence interval) of the sink trend in (c). See Supporting Information Notes S1 for further information about the
methods of this analysis.
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ofN in constraining ecosystem responses to risingCO2 and climate
change (Bloom et al., 1985; Rastetter et al., 1997; Franklin, 2007;
Franklin et al., 2020; Harrison et al., 2021). However, key
governing principles for the prediction of acclimation of photo-
synthetic andother traits, allocation andC–Ninteractions are often
not considered in models that are used for global-scale simulations
and as components in coupled Earth System Models.

Large compilations of leaf traits and experimental data have
become available in recent years (Cleland et al., 2019; Kattge
et al., 2020; Liang et al., 2020; Van Sundert et al., 2023).
Ecosystem manipulation experiments provide particularly strong
empirical constraints on models’ responses to environmental
change factors and ensuing long-term shifts in ecosystem
dynamics (Medlyn et al., 2015; Wieder et al., 2019; Caldararu
et al., 2023), while field data compilations provide rich
information about global variations of N-related plant traits.
Together, these data may provide an opportunity to derive general
patterns of ecosystem responses to altered CO2 and soil N
availability for re-examining our understanding of the coupling
between the C and N cycles and how they respond to a changing
environment from a plant-centred point of view. This, in turn,
provides a basis for suggesting how these cycles could be
represented more realistically in models. In this review, we first
summarise the insights gained from meta-analyses of ecosystem
manipulation experiments and leaf traits data compilations across
large environmental gradients. We then show how the observed
patterns can be captured using EEO modelling approaches,
implemented in a simple demonstration model of the coupled
C–N cycle dynamics in terrestrial ecosystems. Finally, we discuss
how the insights from observations and theoretical considerations
could be used to improve our ability to simulate the C cycle
response to multi-decadal environmental change.

II. Insights from experimental manipulations

Ecosystem manipulation experiments at various scales have been
used to study terrestrial C–N cycle coupling. While results from
individual experiments can differ, a meta-analysis of the available
data can reveal consistent patterns. We performed a meta-analysis

of multiple response variables to elevated CO2 and N fertilisation,
drawing on multiple published data compilations of ecosystem
manipulation experiments (Notes S2). All data compilations focus
on responses observed under field conditions in natural soils with
native vegetation and should thus be indicative of global vegetation
responses to environmental change. We use data only from
experiments where a single factor was manipulated (CO2 or N
input) and exclude interactive responses recorded inmulti-factorial
experiments. For the CO2 response, we use data from the
Manipulation Experiments Synthesis Initiative (MESI) (Van
Sundert et al., 2023) – a combined dataset that integrates multiple
data compilations used for previous meta-analyses and results from
individual experiments (Table S1). For biomass-related responses
to N fertilisation, we use data from MESI, combined with data
from a network of standardised grassland field experiments
(NutNet) (Cleland et al., 2019) (Table S2). To complement our
analysis with a focus on leaf-level responses, we use data of
N-fertilisation effects on photosynthesis and leaf traits from the
published meta-analysis by Liang et al. (2020) (Table S3). We
quantified the logarithm of response ratios to compare relative
changes in a set of variables relevant for ecosystem C–N
interactions.

1. Nitrogen uptake responses to nitrogen availability

Our meta-analysis (Fig. 3) of published data on ecosystem
experiments (Cleland et al., 2019; Liang et al., 2020; Van Sundert
et al., 2023) shows that N fertilisation increases soil inorganic N
(Fig. 3b) and drives an enhancement of N uptake despite generally
absent changes in belowground biomass and root biomass
production. This indicates that more N is taken up by plants per
C spent to build roots. Enhanced N acquisition efficiency in
N-fertilisation experiments is also reflected by the general decrease
in root : shoot ratios and root mass fractions (RMFs) under N
fertilisation (Fig. 3b). This reduction in the relative resource
investment for N acquisition, or cost to acquire N (Terrer
et al., 2018; Eastman et al., 2021; Perkowski et al., 2021), results in
a greater relative resource investment in aboveground tissues
(Fig. 4), promoting increased C acquisition and growth.

Soil N availability

(N supply vs demand)

Growth

N uptake

Allocation Photosynthesis 
acclimation

Leaf C : N

Plant–soil–rock
interactions

N fixation

N losses
N2O emissions

Atmospheric environment

N deposition

N mineralization

Ecosystem N
balance

Fig. 2 Pathways of carbon–nitrogen (C–N)
interactions in terrestrial ecosystems. The
pathway indicated by the blue background colour
represents the traditional approach implemented
in many DGVMs, whereby the atmospheric
environment (mainly temperature, radiation and
vapour pressure deficit) exerts no direct effect on
leaf C : N. The importance of representing
pathways indicated by the red background colour
is emphasised in this review. Effects of soil N
availability on allocation is represented by some
DGVMs reviewed here (Box 1). Direct effects of
the atmospheric environment on acclimation
have implications for the leaf C : N and, through
that, on ecosystem N cycling.
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The increase inN uptake efficiency under N fertilisation is likely
the consequence of increasedmass flowofNuptake per root surface
area. The mechanics of root N uptake and its dependency on root
surface area and inorganic N concentrations in the soil solution can
be described in terms of the first principles of solute movement and
enzymatic uptake rates (McMurtrie & N€asholm, 2018). In
addition, the reliance on other forms of N uptake (e.g. N fixation
from symbiotic relationships with soil microbial communities) is
also affected by N fertilisation. For example, an increase in

plant-available soil inorganic N reduces the reliance on N uptake
pathways that rely on microbial symbionts, as a result of increased
mass flow uptake (Bloom et al., 1985; Rastetter et al., 2001;
Perkowski et al., 2021). Organic N forms (amino acids) can
constitute an important source of N to plants (N€asholm
et al., 2009), drive a similar response in aboveground plant
biomass (Shi et al., 2024), and affect soilN cycling and plant supply
differently from inorganic N in fertilisation experiments (Lim
et al., 2022). However, even in arctic environments where

Box 1 Representations of ecosystem C and N cycle interactions in models used for TRENDY v.8 and in the CN-model (Stocker & Prentice, 2024).
References for each model are given in the SI

N uptake: manymodels consider the effect of abiotic soil properties, including temperature, water content and inorganic soil N content, on N uptake, but
the formulations diverge. Somemodels scaleN uptake linearlywith inorganic soil N content (CLM4.5 (Oleson et al., 2010), SDGVM (Walker et al., 2017),
JULES (Wiltshire et al., 2021)), while others assume a saturating relationship (ISAM (Meiyappan et al., 2015), DLEM (Tian et al., 2015), CABLE (Haverd
et al., 2018), O-CN (Zaehle & Friend, 2010), ORCHIDEEv3 (Vuichard et al., 2019), LPJ-GUESS (Smith et al., 2014)) and CN-model (Stocker &
Prentice, 2024). Regarding plant properties, some models scale N uptake by the total N demand of the vegetation (JSBACH (Reick et al., 2021), CABLE,
CLM4.5, CLM5 (Lawrence et al., 2019)); somemodels additionally include a linear increase in N uptake with rootmass or surface area (CLM5, ISAM, O-
CN, ORCHIDEEv3, LPJ-GUESS and JULES), or with leaf N (ORCHIDEE). An explicit saturating relationship of N uptake and rootmass is not considered in
TRENDY v.8 models but in CN-model (Stocker & Prentice, 2024). Some models include an explicit increase in N uptake efficiency if the whole-plant
(nonwoody) C : N ratio increases (OCN, ORCHIDEEv3, LPJ-GUESS and CML5). CLM5 explicitly calculates a carbon (C) cost for N acquisition from
different potential sources, including direct root uptake, uptake via symbiotic mycorrhizas, fixation via symbiotic bacteria and resorption.

Allocation: mostmodels use dimensional relationships thatmay varywith phenology or environment but keep a constant balance between above- and
belowground allocation (root : shoot ratio) (CLM4.5, CLM5, CABLE, JULES, SDGVM, JSBACH, ORCHIDEEv3 and LPJ-GUESS). Some models allow
allocation to vary in response to N availability (IBIS (Yuan et al., 2014)) or demand (OCN, ORCHIDEEv3 and LPJ-GUESS). CN-model simulates fully
flexible allocation to achieve a match between N uptake and demand, given growth and stoichiometry in different tissues.

Stoichiometry: flexible stoichiometry allows plants to reduce their N demand for growthwhenN uptake is limited. Somemodels prescribe a fixedC : N
ratio for each plant tissue and PFT (CLM4.5, JULES, SDGVM, JSBACH and IBIS) or for nonleaf tissues (CN-model). Other models include flexible C : N
stoichiometry, either on a whole-plant basis with the between-tissue ratios of C : N ratios held constant (JULES and CLM4.5), or with flexible
stoichiometry on a tissue basis (OCN,ORCHIDEEv3, LPJ-GUESS, CLM5andCABLE). Somemodels additionally use the difference between current and
targeted tissueC : N tomodulateNuptake (O-CN,ORCHIDEEv3, JULES andCLM5). Flexible stoichiometry is commonly simulatedas a functionof soil
N availability vs demand. In CN-model, it is simulated via internally predicted photosynthetic capacities (Vcmax and Jmax) and their response to the
atmospheric environment.

Photosynthesis: net photosynthesis rates are simulated in most terrestrial biosphere models using the Farquhar et al. (1980) and Collatz et al. (1992)
models for C3 and C4 species, respectively (except ISBA (Delire et al., 2020) using the model by Goudriaan, 1986, see Delire et al., 2020). The key
parameters that drive rate-limiting steps (maximum Rubisco carboxylation rate, Vcmax; and maximum electron transport rate for RuBP regeneration,
Jmax) are commonly predicted through empirical relationships with leaf N content (O-CN, ORCHIDEEv3, LPJ-GUESS, CLM4.5, CLM5, CABLE, DLEM,
JULES). These rates are typically scaled through the canopy using light extinction coefficients simulated as a function of leaf N concentration (CLM4.5,
CLM5, JULES and ISBA) or specific leaf area (ORCHIDEEv3). Somemodels (CLM5,CABLE and LPJ-GUESS) include an optimality principle for allocating
a fixed total amount of leaf N into investments of carboxylation vs electron transport, depending on environmental conditions (e.g. using the LUNA
model, Ali et al., 2016). However, the total leaf N is determined in these models by soil N supply and is not subject to acclimation to the atmospheric
environment. In CN-model, Vcmax and Jmax are predicted in response to the atmospheric environment and are independent of soil N, while leaf N is
derived from predicted Vcmax and Jmax and is thus also independent of soil N.

Autotrophic respiration: most models treat autotrophic respiration as the sum of growth and maintenance respiration. In some models, autotrophic
respiration is a fixed proportion of themaximumRubisco carboxylation rate (JSBACH, CABLE), or tissueN content (JULES,ORCHIDEEv3 andO-CN). In
others, it is additionallymodifiedby temperature (DLEM,CLM4.5 andCLM5).Growth respiration is basedon the construction costs of allocating newC
to tissues (CLM4.5andCLM5)or set to afixedproportion ofGPP (DLEM). InCN-model, the leaf respirationbase rate scaleswithVcmax following (Wang
et al., 2020).

N limitation: N limitation is an emergent model behaviour, determined by multiple process representations, expressed through the effect by which N
limits photosynthesis, productivity, and/or the ecosystem-level C sequestration. N limitation is commonly measured in experiments through the
simulated effects of N fertilisation. The large variability in modelling N dynamics allows for categorising N limitation representations in several respects.
Focusing on the plant–soil axis, we categorised the effect of N limitation under elevatedCO2 into four partially intersecting groups: (1) Relatively simple
models that have no explicit N dynamics and constrain the response of biomass production under elevated CO2 with empirical functions (YIBs (Yue &
Unger, 2015), ISBA); (2)Models that simulate N limitation through downregulation of NPP due to lowN availability in the soil, but do not simulate any
plant response to this limitation (SDGVM, JSBACH, IBIS and CLM4.5); (3) Models that additionally consider within-plant responses, for example a
flexible stoichiometry that allows an increase in N use efficiency and, therefore, the maintenance of biomass production to some degree under N
limitation (CABLEandCLM5); and (4)Models that, in addition toflexible stoichiometry, includemore complex responses,whereplants respond to lowN
uptake by increasing their N uptake efficiency, increasing their root : shoot ratio, or increasing the C spent to acquire N from different sources (O-CN,
ORCHIDEEv3, LPJ-GUESS, CLM5 and CN-model).
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mineralisation is often suppressed by freezing temperatures and
organic N supply has been argued to be dominant, inorganic N
cycling rates are of similar magnitude as in temperate and tropical
soils (Ramm et al., 2022).

Our meta-analysis (Fig. 3b) further shows that inorganic N
availability responses to N fertilisation varied substantially, both in
sign and magnitude, across studies. This may reflect variability
in the amount of N added across studies (we excluded experiments
with N application rates of > 30 gNm�2 yr�1). However, it could
also imply that the distinct contexts of the studies altered the
fertilisation impact onNavailability and could be indicative of high
spatiotemporal heterogeneity of soil inorganic N availability (Van
Sundert et al., 2020; Akana et al., 2023; Ochoa-Hueso et al., 2023)
and soil microbiomes (Jansson & Hofmockel, 2020) in terrestrial
ecosystems.

2. Carbon allocation responses to nitrogen availability

Our meta-analysis shows a general relative C allocation shift to
aboveground tissues under increased N availability (Figs 3, 4).
Aboveground NPP and biomass increased despite no consistent
change in root NPP or belowground biomass across experiments.
This allocation response is reflected by the clear declines in the
root : shoot ratio and the RMF. The shift towards aboveground
tissues under N fertilisation likely reflects the aforementioned
increase in N uptake efficiency (McMurtrie & N€asholm, 2018;
Eastman et al., 2021; Perkowski et al., 2021) and implies a positive
feedback whereby additional N leads to increases in leaf area and
subsequently GPP, resulting in plants that are larger and havemore
aboveground biomass than their unfertilised counterparts.
Although the general pattern indicates relatively more investment
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Response to N
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Fig. 3 Meta-analysis of N fertilisation (a, b) and
elevated CO2 experiments (c). The response to N
fertilisation shown is based on (a) data from
(Liang et al., 2020), (b) combined data from
MESI (Van Sundert et al., 2023) and NutNet
(Cleland et al., 2019). The response to elevated
CO2 (c) is based on MESI data. Each point
represents the average log-transformed ratio of
means recorded across all years for one
experiment. The size of points represents the
inverse of the SE of the log response ratio. The
log response ratio is computed for N-fertilisation
experiments with varying manipulations, but
filtered to manipulations below < 30 gN
m�2 yr�1 to facilitate comparability. The log
response ratio is computed for CO2 experiments
by normalising with the log-transformed ratio of
control and elevated CO2 levels. The boxes
represent the meta-analytic 95% confidence
interval of the mean and the vertical line in each
box’ centre its mean. Asat is the leaf-level
assimilation rate measured at saturating light,
GPP is the gross primary production, Vcmax is the
maximum rate of Rubisco carboxylation rate,
Jmax is the maximum electron transport rate for
RuBP regeneration, Narea is the leaf N content per
unit leaf area, Nmass is the leaf N content per unit
leaf mass, LAI is the leaf area index, (A)NPP is the
(aboveground) net primary production
(corresponding to biomass production), AGB is
the aboveground biomass, BGB is the
belowground biomass, root : shoot is the root-
to-shoot mass ratio. See Supporting Information
Notes S2 for further information about methods
of this analysis.
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of C for biomass production above- than belowground, in some
experiments, the response is opposite (Fig. 4). Such responses have
previously been documented for severely nutrient-limited ecosys-
tems (Van Wijk et al., 2003).

3. Leaf-level responses to nitrogen availability

Leaf N, both on a mass and area basis, increases consistently with
soilN fertilisation (Fig. 3a). Even though leafN andphotosynthetic
capacity are positively correlated across species and sites
(Evans, 1989; Walker et al., 2014), there is no response of leaf
carboxylation capacity (Vcmax) to N fertilisation in the data we
analysed (Fig. 3a). Although we analysed the same data as (Liang
et al., 2020), this result differs from their finding of a positive, yet
nonsignificant, response because we excluded two experiments
where > 30 gN m�2 yr�1 were applied. Our result indicates a
decoupling of the leaf N-photosynthetic capacity relationship
under N fertilisation (Luo et al., 2021;Waring et al., 2023). While
the absent Vcmax response indicates little effect of N fertilisation on
leaf-level photosynthesis (and dark respiration), the strong positive
effect on LAI and leaf biomass suggests that increasing GPP in
response to increasing N availability is primarily the result of
increased leaf production, rather than an increase in the
photosynthetic capacity of individual leaves.

Liang et al. (2020) provided a larger dataset on the response of
the assimilation rate to N fertilisation than available for
photosynthetic capacities. These data show a significant increase
in assimilation rate (which we assume is assimilation under

light-saturated conditions, i.e. Asat) in response to N fertilisation.
However, there appear to be two separate populations of
experiments (fig. 4a in Liang et al., 2020). Some of the experiments
show an increase in assimilation rate that is proportional to the
increase in biomass, while a second group show a varying response
of biomass but no increase in assimilation rate (Table S2). There is
insufficient information given about the prior N availability in the
soil (or through N deposition) to determine whether these
differences in response reflect differences in the background state,
differences in the N-fertilisation treatments or differences in
responses across species. There is also no obvious pattern in terms of
plant groups, phenology or mycorrhizal type (Table S1). Thus, it is
currently impossible to resolve the cause of these different
responses. However, the mean change in assimilation rate is only
about a quarter of the magnitude of the change in leaf biomass.

4. The role of atmospheric CO2 availability in driving
nitrogen-related processes and responses

Elevated CO2 tends to increase LAI, biomass production and
biomass stocks, similar to the effects of N fertilisation. However,
opposite to the effects of N fertilisation, the increase in below-
ground production under elevated CO2 is stronger than the
increase in aboveground production, inducing a net shift towards
greater belowground growth and biomass allocation. This shift
towards belowground allocation in turn increases N uptake,
depleting available mineral N in the soil (Fig. 3c). This negative
feedback loop between plant N uptake and plant-available N may
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Fig. 4 Simultaneous response ratios of above and belowground biomass for (a) CO2 experiments and (b) nitrogen (N)-fertilisation experiments. Each point
represents the average log-transformed ratio of means recorded across all years for one experiment. The size of points represents the inverse of the SE of
the log response ratio. The log response ratio is computed for N-fertilisation experiments with varying manipulations, but filtered to manipulations below
< 30 gN m�2 yr�1 to facilitate comparability. The log response ratio is computed for CO2 experiments by normalising with the log-transformed ratio of
control and elevated CO2 levels. See Supporting Information Notes S2 for further information about methods of this analysis.
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constrain the positive effects of CO2 fertilisation on plant growth
and biomass production, especially in soils with low N availability
(Luo et al., 2004). This N constraint on CO2 fertilisation has been
substantiated by past studies showing greater positive biomass
responses when N availability is high in combination with elevated
CO2 as compared to elevated CO2 responses whenN availability is
low (Terrer et al., 2019). However, N uptake consistently increases
under elevated CO2 and it should be noted that the data analysed
here are from experiments where no N fertilisation was applied in
parallel to the elevated CO2 application. This suggests that a
progressive release from N limitation (Walker et al., 2015) may be
enabled by the increased capacity of plants to acquire (increasingly
scarce) soil N thanks to increased root biomass and surface area
under elevated CO2. At the leaf level, elevated CO2 reduces leaf N
by decreasing the demand for photosynthetic enzymes and
leaf-tissue N (Smith & Keenan, 2020; Dong et al., 2022). This
implies an additional mechanism by which N limitation on
biomass production under elevated CO2 may be partly alleviated.

III. Insights from environmental gradients

C cycle simulations of DGVMs are particularly sensitive to the
representations of leaf traits due to the role of traits in
photosynthetic CO2 assimilation and their influence on N cycling.
The amount of N in leaves is linked to photosynthetic capacity
through the N-rich enzyme Rubisco that is involved in
photosynthesis. The acclimation of photosynthesis to the atmo-
spheric environment should thus have implications for the leaf C :
N stoichiometry and plant N demand (Dong et al., 2022; Xu
et al., 2023). However, not all leaf N is in photosynthetic proteins.
Across ecosystems globally, LMA is a more important determinant
of leaf N than Vcmax25 (Dong et al., 2022). In this section, we
consider what can be learned from large-scale geographic patterns
of Vcmax25, LMA and leaf N and their relationships to environ-
mental variables, including soil C : N ratio (as an inverse index of

soil N availability) and N deposition, accounting for simultaneous
variations in temperature, light and atmospheric dryness.

1. Leaf-level responses to environment

The atmospheric environment influences photosynthetic capacity
in ways that can be understood via EEO principles (Reich
et al., 2007; Ali et al., 2016; Smith et al., 2019; Dong et al., 2020).
Fig. 5, based on a simplified analysis of the global leaf–trait dataset
presented inDong et al. (2022) (seeNotes S3), illustrates thewidely
observed reduction in Vcmax25 with growth temperature and
increase with light and vapour pressure deficit (VPD). These
dependencies are well understood in EEO terms. Vcmax25 increases
with light availability (enabling the leaf to use all of the light it
absorbs), declines with growth temperature because less Rubisco is
required for photosynthesis at higher temperatures, and increases
with VPD because more Rubisco is required to compensate for
reduced stomatal conductance – which represents the least-cost
response of air-to-leaf CO2 drawdown to VPD (Prentice
et al., 2014; Smith et al., 2019; Dong et al., 2020, 2022; Peng
et al., 2021).

Fig. 5 also shows that Vcmax25 decreases with an increasing soil
C : N ratio –whichmay reflect the higher costs ofN acquisition on
less fertile soils (Paillassa et al., 2020). However, N deposition does
not increase Vcmax25. These responses of Vcmax25 do not mimic
those of leaf N. In particular, soil C : N ratio has a stronger effect
on leaf N (both Nmass and Narea) than on Vcmax25, while N
deposition increasesNmass but reduces LMA so strongly thatNarea is
paradoxically reduced. The predictors considered in the models
here were almost all highly significant (Notes S3: Table 1), while
model fits achieved relatively modest adjusted R2 values of between
0.1 for Nmass and 0.2 for LMA. This reflects the influence of
differences in leaf traits between species and the limited capacity
of linear models to fit often interactive and nonlinear effects of
abiotic factors (Tian et al., 2024).

Nmass LMA

Vcmax25 Narea

−0.2 0.0 0.2 −0.2 0.0 0.2

Soil C : N

log Ndep

log VPD

PPFD

Tg

Soil C : N

log Ndep

log VPD

PPFD

Tg

Normalised slope

Fig. 5 Effects of different environmental factors
on leaf traits, including the maximum rate of
Rubisco carboxylation (Vcmax25), nitrogen (N)
content per unit area (Narea) and mass (Nmass)
and leaf mass per unit area (LMA). Effects are
determined as coefficients of multivariate linear
regression models of data with normalised values
of the predictors growth temperature (Tg),
photosynthetic photon flux density (PPFD), log-
transformed vapour pressure deficit (log VPD),
log-transformed N deposition rate (Ndep) and soil
C : N ratio (soil C : N). Error bars indicate the
95%-confidence interval. This is based on a
global dataset of leaf trait measurements along
large environmental gradients (Dong
et al., 2022). See Supporting Information
Notes S3 for further information about methods
of this analysis.
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2. Patterns in leaf traits data are consistent with experimental
evidence, but not with common assumptions

A widespread modelling paradigm emphasises stoichiometric
flexibility (Zaehle et al., 2014; Medlyn et al., 2015; Hauser et al.,
2023) and the control of photosynthesis and plant growth by soil N
supply (Box 1). It is commonly assumed that increased soil
N availability enhances N concentrations in leaves, enabling
increased photosynthetic capacity. Our analysis of large-scale field
data, however, is consistent with the experimental evidence (Fig. 3)
that photosynthetic capacity is not directly controlled by leaf N
content, and that increased N availability can increase leaf N
without consistently increasing photosynthetic capacity.

IV. An optimality-guided CN-model

As a relatively simple and transparent demonstrationmodel, we use
the CN-model (Stocker & Prentice, 2024), which draws on EEO
concepts to model the two pathways through which C and N cycle
interactions and ecosystem feedbacks arise– through allocation and
acclimation of photosynthesis. The model dynamically simulates
responses to experimental treatments and is comparable in model
scope (resolved processes, pools and fluxes) to terrestrial biosphere
models described in Box 1 and used for simulations of land C
balance trends for the Global Carbon Budget (Fig. 1), but is run
here for point-scale simulations. Allocation to roots and shoots is
predicted following a C–N functional balance approach (Bloom
et al., 1985) through which the root : shoot ratio is dynamically
simulated such that the ratio of C assimilation and N uptake
matches the demand by respiration and the C : N ratio of new
biomass production. Acclimation of photosynthesis is modelled
through the trade-off between optimising C assimilation relative to
water loss (Prentice et al., 2014; Wang et al., 2017) and predicts
Vcmax and Jmax, and – by implication – the total amount of leaf
metabolicN. Soil N is assumed to have no effect on the acclimation
of photosynthesis. Leaf structural N is modelled based on a linear
function of leaf metabolic N. N uptake is simulated based on a
simplified representation of N transport in the soil solution and
root uptake following McMurtrie & N€asholm (2018),
and saturates with increasing root mass and increasing soil
inorganic N. Organic N uptake is not considered. The model is
forced to simulate a representativeN-fertilisation (12 g m�2 yr�1)
and CO2 experiment (doubling of ambient levels) in a representa-
tive grassland.More detailed information aboutmodel simulations
is provided inNotes S4. A comprehensive description of the model
and its underlyinghypotheses is given inStocker&Prentice (2024).

Themodel predicts the correct response direction in all observed
variables from N-fertilisation and CO2 experiments simulta-
neously (Fig. 6), from photosynthesis (GPP, Vcmax and Jmax),
growth (ANPP and root NPP) and biomass (AGB, BGB, root :
shoot and RMF) to N cycling (N uptake, inorganic N), except for
Nmass and Narea, where the model predicts no response. Also, no
responses are (incorrectly) simulated for Asat in N-fertilisation
experiments and for leafC : N inCO2 experiments. The simulated
absence of an effect of N fertilisation on Vcmax25 is consistent with

the experimental meta-analysis. Patterns in the root : shoot ratio,
the RMF, above and belowground biomass and biomass produc-
tion under elevatedCO2 andN fertilisation are correctly predicted.
Consistent with experimental evidence, the model also predicts
enhancedNuptake under elevatedCO2 despite a (slight) depletion
of inorganic soil N and conditions suggestive of N limitation. The
systemmodelledhere appearsN-limited, considering the simulated
positive response in biomass and biomass production under N
fertilisation. The enhanced N uptake is enabled by a more efficient
recycling of N along the N uptake-turnover-mineralisation-loss
cycle. Overall, the simulated response ratios are within the 95%
confidence interval of the meta-analytic mean for 12 among the 23
observed response ratios in N-fertilisation and CO2 experiments
andwithin the range of individual experiments for 22 among the 23
observed response ratios. Deviations of the simulated vs meta-
analytic mean response for aboveground biomass and productivity
under eCO2 and for inorganic N under N fertilisation may be
related to the focus on a representative grassland for simulations (no
wood allocation), an incomplete representation of the controls on
inorganic soil N dynamics and other aspects of the model that will
have to be investigated in further work.

V. Discussion

The representation of C–N interactions in models of terrestrial
ecosystems is particularly influential for their simulations of long-
term landCbalance changes (Fig. 1) (Thornton et al., 2007;Zaehle
et al., 2010a,2010b; Thomas et al., 2013, 2015; Wieder
et al., 2015b; Meyerholt et al., 2020) and not sufficiently
constrained by commonly used benchmarks (Meyerholt
et al., 2020). Yet, representations of related processes in the current
generation of C–N models are very diverse, if not conflicting, for
key processes (Box 1). This context provided themotivation for our
review of collective empirical constraints from ecosystem experi-
ments and leaf traits data compilations. We took a plant-centric
perspective to identify patterns in allocation and photosynthesis
acclimation under N fertilisation, elevated CO2 and along climatic
gradients and showed that several related responses can be predicted
from EEO principles. Confronting CN-model with the results of
the meta-analysis of ecosystem experiments suggests that the EEO
principle of the functional balance in allocation is a powerful
approach to simulating observed responses. The strong influence of
climate on Vcmax indicates that reliable predictions of leaf
stoichiometry and photosynthesis responses to global change may
benefit from an existing EEO model of the acclimation of
photosynthesis (Prentice et al., 2014). The strong influence of N
deposition on LMA indicates an open challenge for modelling.
Taken together, considering EEO principles and a wide array of
empirical constraints are useful for informing the next generation
of C–N models.

1. Allocation

N fertilisation and increasing CO2 elicit opposite responses in C
allocation, as indicated by the general patterns in Fig. 4. N
fertilisation leads to increased N uptake efficiency and reduced
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allocation to roots. Exposure to elevated CO2 leads to increased
production with a stronger increase in belowground allocation,
which tends to deplete soil N. Similar responses have been
documented in the literature for CO2 experiments (Rogers
et al., 1995; Schneider et al., 2004; Ainsworth & Long, 2005;
Leakey et al., 2009; De Kauwe et al., 2014; Song et al., 2019; Jiang
et al., 2020) and N-fertilisation experiments (Poorter et al., 2012;
Cleland et al., 2019; Song et al., 2019; Li et al., 2020, 2024;
Eastman et al., 2021; Keller et al., 2023). Yet, there remains a
relatively high residual variability in response ratios across
experiments (Figs 3, 4). The general pattern of allocation shifts in
response to N fertilisation and CO2 is predicted by EEO-based
models (Thornley, 1995; Rastetter et al., 1997;M€akel€a et al., 2008;
Franklin et al., 2009). Related patterns of the effect of soil fertility
on allocation have also been documented based on field data.
Ecosystems on fertile soils have been found to produce biomass

more efficiently, suggesting that additional belowground C
allocation on infertile soils may, at least partly, fuel the rhizosphere
through exudation (Vicca et al., 2012).

According to experimental findings and model predictions,
elevated CO2 should drive a rise in belowground C allocation.
Decadal-scale temporal variations in root : shoot ratios under field
conditions have, to our knowledge, not yet been documented.
However, such a shift would have important consequences for the
C balance of terrestrial ecosystems across the globe, but is likely
missed since belowground biomass is commonly estimated via
nondestructive methods based on constant relationships with
aboveground biomass and allometric relations with tree diameter
and tree ring growth data.

Additional processes of plant–soil interaction are fuelled by
amplified belowground allocation under rising CO2. The decom-
position of soil organic matter and the N supply rate are governed
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Fig. 6 Modelled (green dots) and observed
responses (grey bars) to N fertilisation and
increased CO2. The response to nitrogen (N)
fertilisation shown (a) by data from (Liang
et al., 2020) and (b) by MESI (Van Sundert
et al., 2023) and NutNet (Cleland et al., 2019)
data. The response to elevated CO2 (c) is based
on MESI data. The boxes represent the 95%-
confidence intervals of the meta-analytic mean
and the vertical line in each box’ centre its mean
(same as blue and red boxes in Fig. 3). The
whiskers represent the full range of response
ratios across experiments. See Supporting
Information Notes S4 for further information
about methods of this analysis.
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by the depolymerisation by microbes (Schimel & Bennett, 2004)
and can be enhanced by additional C exudates and rhizosphere
priming – the increased soil organic matter mineralisation due to
enhanced microbial activity (Phillips et al., 2011; Zhu &
Cheng, 2011; Kuzyakov et al., 2019), for example via symbiotic
associations with mycorrhizas (Phillips et al., 2013; Frey, 2019).
Ectomycorrhizal (ECM) fungi are particularly effective in
mobilising soil N for plant uptake (Sulman et al., 2017; Bonsall
et al., 2020) and sustaining a positive aboveground biomass
response under elevated CO2 (Terrer et al., 2016), potentially by
oxidising soil organic matter (Shah et al., 2016), triggering a
simultaneous acceleration of SOM and litter decomposition (Zak
et al., 2011; van Groenigen et al., 2014) and reducing soil organic
matter stocks (Shah et al., 2016; Terrer et al., 2021). However, not
all ECM fungi appear to possess saprotrophic capabilities (Lindahl
& Tunlid, 2015; Pellitier & Zak, 2018) and the occurrence of
saprotrophic ECM may vary across ecosystems (Pellitier &
Zak, 2018). A mechanistic understanding of the effects of
exudation on N availability for plant uptake, losses and fixation,
considering feedbacks through organic C decomposition (Keuper
et al., 2020) and inorganic N immobilisation by the activated
rhizosphere, is only beginning to emerge (Coskun et al., 2017;
Kuzyakov et al., 2019) and remains an open challenge for
consideration in DGVMs.

The observed allocation shift also suggests a certain degree of
plant control on N availability for uptake and therefore an
interaction between C and N availability. For example, more C
could be invested under elevatedCO2 for plantN uptake, as seen in
many (but not all) Free-Air CO2 Experiments (Terrer et al., 2018).
Such an interactive effect of C and N is predicted by EEO models
(Rastetter et al., 1997; Franklin, 2007; Wang et al., 2007) and
questions the argument of an immutable sink limitation (a
limitation on producing biomass) under rising CO2 by limiting
N availability (Fatichi et al., 2019). It also appears incompatible
with a conceptualisation of N limitation based on Liebig’s law of
the minimum – a common approach for implementations of N
cycle effects on the C cycle in Earth System Models (Thomas
et al., 2015). The approach to modelling allocation and nutrient
uptake based on the C economy of plants has been extended for
modelling the uptake of phosphorus (Braghiere et al., 2022;
Reichert et al., 2023) on the basis of the observed link between plant
C investments into rhizodeposits and other functions and the
availability of P for plant uptake (Jin et al., 2015). One such model
that connects global N and P cycles through the C economy of
plants predicts widespread co-limitation of P and N (Braghiere
et al., 2022) – as is widely observed for effects on biomass
productivity in manipulative experiments (Fang et al., 2024).

2. Acclimation of photosynthesis

We found that the acclimation of photosynthetic traits is most
strongly influenced by the atmospheric environment, but less so by
soil N, despite soil N effects on foliar N content (by mass and
by area). EEO principles, formulated as a function of the
atmospheric environment, have been shown to be useful for
predicting the acclimation of photosynthesis parameters (Smith

et al., 2019; Dong et al., 2022). Consistent with an EEO principle
(Prentice et al., 2014;Dong et al., 2022),Narea declineswith growth
temperature and increases with VPD (Fig. 5). Embodied in our
demonstration CN-model, these principles also correctly predict
the average decline ofVcmax recorded elevated CO2. The associated
decline in the demand for N – arising through the link between
Vcmax, Rubisco and N – is thus predictable and should be
considered in the next generation of C–N models.

By contrast, leaf N, measured on a leaf area or leaf mass basis,
appears more strongly influenced by soil N than photosynthetic
traits that reflect enzyme activity (e.g. Vcmax and Jmax). This
suggests that the soil N effect on foliar C–N stoichiometry is only
weakly transmitted to photosynthesis. This is consistent with
findings of a decline in photosynthetic N use efficiency (PNUE,
leaf photosynthesis per unit leaf N) under N fertilisation (Waring
et al., 2023), with an observed increase in PNUE under elevated
CO2, and absent effects of soil N on leaf photosynthesis
acclimation to elevated CO2 (Lee et al., 2011; Pastore
et al., 2019). This suggests an open question for process
understanding (What, if not photosynthesis, is the additional
leaf N used for?) and EEO-informed modelling (What are the
competitive gains of higher foliar N contents?). The observation
of a weak transmittance of soil N to Vcmax and Jmax also suggests a
weak or absent effect on leaf dark respiration (which scales with
the leaf Rubisco concentration and thus with Vcmax). Leaf
respiration is modelled in several models to increase with leaf N
content (Box 1), inducing a feedback between N limitation and
plant respiration. However, such approaches are not supported in
view of the observed large variations in PNUE and the decoupling
of total leaf N and photosynthesis.

A focus on LMA for understanding the controls on foliar Nmay
be informative in this context. LMA appears highly responsive
across spatial gradients in N deposition (Fig. 5), suggesting an N-
related control. LMA is positively associated with leaf longevity
(Onoda et al., 2017; Wang et al., 2023) and should thereby have
implications for foliar N turnover and ecosystemN losses along the
litterfall-mineralisation-plant uptake pathway. Indeed, a decline in
LMA along a soil N availability gradient is predictable from EEO
principles (Weng et al., 2017, p. 20).

A further challenge is that, although the meta-analytic mean
response inVcmax to CO2 is predictable fromEEOprinciples, there
remains substantial unexplained variability in the response ratio
across experiments. Analyses of the Liang et al. (2020) dataset
provide no indication that the differences in response are
consistently related to plant type, phenology or mycorrhizal
association (Table S2). However, results from some experiments
have shown that the impact of N fertilisation on photosynthetic
capacity is most pronounced in experiments where N availability
was low before fertilisation, suggesting that there may be a strong
response at low N that saturates as N availability increases. This
saturating effect has indeed been shown in N-fertilisation
experiments under different levels of CO2 (Perkowski
et al., 2023). Although not emerging from the meta-analyses,
symbiosis with mycorrhizal fungi or soil N-fixing bacteria could
also have an influence on the acclimation of photosynthetic traits to
N fertilisation (Hoeksema et al., 2010).
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In addition to biotic factors influencing the response of
photosynthetic capacities to N fertilisation, abiotic factors may
also be important to consider. Evidence from experiments and leaf
traits data along environmental gradients indicate that the response
to N fertilisation is strongest in low temperature (Smith &
Keenan, 2020; Dong et al., 2022), dry (Wright et al., 2003;
Querejeta et al., 2022) and high light (Niinemets et al., 2015;
Poorter et al., 2019; Waring et al., 2023) environments –
conditions that are typically associated with a high demand for N
in the photosynthetic machinery (Wright et al., 2003; Prentice
et al., 2014; Dong et al., 2022).

The environmental effect on photosynthetic parameters is
commonly encoded in Earth system models by treating separate
plant functional types (PFTs) growing along climatic gradients. As
a consequence, changes in community-mean Vcmax only come
about in these models through a shifting occurrence of PFTs.
However, the Vcmax and N demand decline under elevated CO2

arises within individual plants subjected to experimental manip-
ulations (Fig. 3) and therefore evolves much more rapidly than
through species replacements. The comparatively immediate shift
in leaf N demand and implications for ecosystem N cycling in
response to decadal climatic trends and CO2 can thus not be
captured by traditional models.

Apart from the photosynthetic traits, other traits related to C–N
interactions also exhibit acclimation and within-PFT variations
that are related to the environment. In particular, root traits
(architectural, morphological and physiological properties) are
linked to root biomassN content, N uptake, C respiration and root
biomass turnover, and are highly plastic in response to environ-
mental change (Hodge, 2004; Nie et al., 2013; Bardgett
et al., 2014; Wang et al., 2021). However, empirical support for
a theory explaining variations of multiple root traits along a
resource conservation-exploitation spectrum and for systematic
relationships between soil properties related to N and P and root
traits is mixed (Roumet et al., 2006; Orwin et al., 2010; Chen
et al., 2013; Bardgett et al., 2014; Kramer-Walter et al., 2016;
Weemstra et al., 2016; Kong et al., 2017). This indicates a
remaining challenge for optimality-based predictions of multiple
root traits and their relations to mycorrhizal and microbial
associations and exudation (Gao et al., 2021; Sun et al., 2021),
and suggests a potential for modelling total belowground C
allocation and N uptake at a high level of abstraction.

3. Ecosystem N cycling

We have taken a plant-centric view. It is predominantly through
plants and their associations with microbes that atmospheric CO2

and N2 are converted to C and N that cycle in ecosystems.
Governing EEO principles that inform the modelling of plant
functioning thus have implications for ecosystem-level C and N
cycling. Although we have not addressed this aspect in our data
analysis, insights gained from EEO predictions and their
evaluation against experiments and field data are informative for
understanding and modelling ecosystem N losses, N cycle
openness and N fixation in response to environmental change
factors.

ProgressiveN limitation (PNL) has been hypothesised to govern
the dynamics of ecosystem C–N cycling in response to rising CO2

(Vitousek & Howarth, 1991; Comins & McMurtrie, 1993; Luo
et al., 2004). Thereby, the stimulated tree growth and biomass
stocks deplete soil N, aggravating N limitation and triggering an
increase in the C : N ratio of new biomass and a resulting
deterioration of decomposability of that biomass. This induces a
decline in N mineralisation, thereby further aggravating the initial
N limitation. However, the attenuated transmittance of the leaf N
signal on photosynthetic N and photosynthetic capacity at least
partly mutes the feedback of PNL. The widely observed allocation
shift and its consequence for plant N uptake further alleviate the
PNL feedback loop. The continued accumulation of ecosystem N
as a consequence of increased belowground allocation and
transiently reduced losses (Liang et al., 2016) suggest instead a
progressive release from N limitation (Walker et al., 2015). Such
a release is also predicted by relatively simplemodels based on EEO
principles but is sensitive to assumptions regarding dependencies of
N losses (Comins & McMurtrie, 1993; Wang et al., 2007).
Empirical evidence for the PNL ismixed (Liang et al., 2016). It was
found in some CO2 experiments (Reich et al., 2006; Newton
et al., 2010; Norby et al., 2010), but not in others (McCarthy
et al., 2010; Zak et al., 2011).

The predicted and observed allocation shift elicits a change in
ecosystem N losses. This flux is perhaps the most difficult-to-
measure component of the terrestrial N cycle. Gaseous losses are
mostly in the form of anN2 flux (Galloway et al., 2004) which, thus
far, cannot reliably be measured against the background of its high
atmospheric concentrations. N losses also occur through leaching.
Measured at the catchment-scale, large-scale N-fertilisation
experiments have documented enhanced leaching in response to
N fertilisation (Eastman et al., 2021). The allocation shift causes a
change in the relative magnitudes of N losses and internal N
cycling. This quantity has been referred to as the N cycle openness
(Cleveland et al., 2013). As predicted by the CN- model here,
elevated CO2 drives a reduction, while N fertilisation increases the
N cycle openness.

N losses from the terrestrial biosphere arise not only through
gaseous and leaching pathways, but also by fire, causing NOx

emissions (Pellegrini et al., 2018), and biomass removals through
wood harvesting (Hume et al., 2018).Despite the severe disruption
of N (and P) stocks, such disturbances are commonly followed by
regrowth and a re-accumulation of N in biomass within decades
(Batterman et al., 2013; Turner et al., 2019), albeit under low
availability of soil nutrients or repeated disturbances, this re-
accumulation may be reduced or delayed (Rastetter et al., 2013;
Pellegrini et al., 2018). It will be useful to quantify the rates of
postdisturbanceNaccumulation across biomes and toput numbers
into context withN deposition and fixation estimates to provide an
additional constraint for models on the rate of ecosystem N
accumulation through N fixation vs external inputs, including
atmospheric deposition.

The common view is that N inputs into ecosystems are under
plant control only whereN-fixing trees are present.While trees that
symbiotically interact with N-fixing bacteria are relatively
widespread in the tropics (Menge et al., 2019; Tamme
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et al., 2021), ‘N-fixing trees’ aremuch rarer in temperate and boreal
systems and are largely confined to early successional stages
(Chapin et al., 1994; Menge et al., 2019). Their exclusion in late
successional stages and the widespread N limitation of temperate
forests pose a research challenge (Menge et al., 2009). The discovery
and quantification of new processes and organisms with the
capability of N fixation has contributed to amore complete picture
of N fixation in terrestrial ecosystems (Vitousek et al., 2013;
Cleveland et al., 2022). Free-living microbes (Reed et al., 2011),
epiphytes and endophytes (F€urnkranz et al., 2008), and moss,
lichens and biocrusts (Elbert et al., 2012; Larmola et al., 2014) have
been described as substantial N sources through N2 fixation
(Cleveland et al., 2022). An incomplete understanding and
consideration of the full diversity of N-fixing organisms
and processes may imply a systematic underestimation of the
global biological N-fixation flux based on up-scaled measurements
of currently known sources (Cleveland et al., 1999; Galloway
et al., 2004; Davies-Barnard & Friedlingstein, 2020). However,
isotopic constraints suggest the global flux of biological N fixation
to be lower than published up-scaled values (Vitousek et al., 2013).
Modelling diverse N fixation fluxes and their response to
environmental change remains an outstanding challenge (Davies-
Barnard & Friedlingstein, 2020) and is not addressed by our data
analysis and modelling. Differences in assumptions about
dominant controls on N fixation are partly (but not dominantly
(Davies-Barnard et al., 2022)) responsible for the divergence of
simulated land C balance projections in a future climate (Wieder
et al., 2015a; Meyerholt et al., 2016, 2020). Yet, an empirical basis
exists for conceiving symbioticNfixation as being controlled by the
balance of soil N supply and demand by autotrophs, including
plants (Rastetter et al., 2001; Wang et al., 2017, p. 20; Perkowski
et al., 2021). EEO principles, used for predicting patterns of
biological N fixation in relatively simple models (Rastetter
et al., 2001; Wang et al., 2007), may guide a next generation of
global vegetation models’ representation of N fixation. For
example, the energy required for N fixation may be considered
for simulating its rate and may be linked to C cycling. Such a
representation forms the basis of the Fixation and Uptake of
Nitrogen (FUN) model’s representation of symbiotic N fixation
(Fisher et al., 2010). The FUN model is implemented in the
Community Land Model v.5.0 (Lawrence et al., 2019) and its
approachmay be applied generically for total ecosystemNfixation,
thereby accounting for documented abiotic controls on BNF
(Houlton et al., 2008; Cleveland et al., 2022). N inputs to the
plant–soil system arise not only from N fixation but also from
weathering parent material (Houlton et al., 2018). This process is
partly driven by chemical processes and fuelled by plant-derived
acids – containing C. Hence, this flux may also be, at least partly,
under plant control.

Large-scale vegetation changes under current environmental
change may provide additional constraints for models and their
representation of C–N interactions. For example, rapid Arctic
greening (Keenan & Riley, 2018) and widespread forest growth
increases (McMahon et al., 2010; Hubau et al., 2020) with an
accompanyingC sink in global forests (Pan et al., 2011) can only be
predicted in agreement with observations if vegetation is simulated

to access additional N during the biomass accrual stage. An
immutable cap on N and not considering a certain degree of plant
control onN loss and input fluxes may lead to an overestimation of
N-limitation effects inmodels. This could be tested by confronting
models’ simulations of large-scale vegetation changes with
observations and a focus on the role of N in shaping responses
and driving potential model bias.

4. Modelling C–N interactions

Balancing trade-offs in the light of EEO is a useful governing
principle for modelling C–N interactions. A rich body of literature
from at least four decades reflects the potential of EEO in the
context of modelling processes and traits that are directly relevant
for ecosystem C and N cycling. EEO principles and the
consideration of trade-offs in resource allocation, consumption
and acquisition have been used, for example for predicting canopy
(Dewar, 1996; Franklin, 2007) and foliar N (Dong et al., 2022),
LMA (Weng et al., 2017; Wang et al., 2023; Xu et al., 2023), N
allocation to enzymes sustaining Vcmax vs Jmax (Ali et al., 2016;
Thum et al., 2019), allocation to growth in different plant organs
(Thornley, 1995; Rastetter et al., 1997; Van Wijk et al., 2003;
Franklin, 2007; M€akel€a et al., 2008; Franklin et al., 2012; Weng
et al., 2019), balancing leaf area, N requirements and transpiration
losses (McMurtrie et al., 2008) or different N uptake pathways
(Fisher et al., 2010), including biological N fixation (Rastetter
et al., 2001;Wang et al., 2007;Menge et al., 2009) andmycorrhizal
associations (Franklin et al., 2014; Lu & Hedin, 2019).

Most (but not all) of these studies relied on models that are
strongly simplified representations of processes in terrestrial
ecosystems and lack the level of realism (and complexity) of the
C–N model types used for global biogeochemical cycle and land-
surface modelling studies, including the models used for the
analysis presented in Fig. 1. Some of the above-mentioned
theoretical work also relied on the premise of a fixed net
mineralisation rate (Franklin et al., 2014), or a fixed amount of
N in the system (Weng et al., 2019), or a fixed amount of N in the
biomass of an individual leaf (Ali et al., 2016; Thum et al., 2019) or
the canopy (Dewar, 1996). Tomodel the C andN dynamics of the
terrestrial biosphere, the system boundaries may be drawn more
widely for a complete accounting of C and N mass balances and
ecosystem feedbacks. Hence, the demonstrated success of EEO
principles for modelling individual processes or traits indicates a
potential for their application to improving C–N modelling.
However, the gap between the theoretical work implemented as
relatively simple EEOmodels and the demands and constraints for
implementing them intoDGVMs and land-surface components in
ESMs indicates a remaining challenge. As discussed more
extensively in Harrison et al. (2021), challenges are related, for
example, to linking individual leaf-level trait responses with the
coordination of multiple traits of multiple plant organs and plant
architecture, or to the treatment of temporal dynamics for
representing traits acclimating atmultiple time scales and emergent
trait distributions at the community level.

The representation of C and N cycle interactions in the CN-
model (Stocker & Prentice, 2024; Fig. 5) is comparable in scope
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and structure to DGVMs. However, the CN-model resolves
processeswith a focus onC–Ninteractions,while it does not resolve
energy and water exchanges and how they affect vegetation
functioning, nor does it resolve tree allometric relations or
competition between PFTs or plant age cohorts. Its aim is to
provide an architecture that is generally comparable to DGVMs
and to serve as a demonstration for how EEO principles for
allocation and photosynthesis acclimation could be embedded in
state-of-the-art global modelling frameworks.

The modelling performed here relied on EEO principles for
dynamically modelling instantaneous responses in allocation and
photosynthesis acclimation to a changing environment without the
explicit consideration of dynamic vegetation and competitively
optimal strategies (Franklin et al., 2020). This enabled the reliable
prediction of the widely observed and relatively strong response in
allocation to altered CO2 and soil N availability. With its
assumption thatVcmax is modelled through an optimal acclimation
to the atmospheric (but not soil) environment, the CN-model’s
respective predictions were consistent with observations. However,
other plant traits are less dynamic or cannot be altered within an
individual or a given species, but have direct consequences for theN
economy of plants. For example, a high LMA is typically associated
with a high C : N ratio and poor leaf decomposability and is
considered to be less plastic than leaf Narea. Mycorrhizal
associations are, for most species, exclusive to either ectomycor-
rhizae or arbuscular mycorrhizas. Associations with the former
appear to be advantageous in an N-scarce environment and to
facilitate the stimulation of plant biomass under elevated CO2

(Terrer et al., 2016, 2018). Thereby, environmental changes will
likely trigger changes in species composition through altering their
competitiveness in an altered C–N environment and syndromes of
slow vs fast-N-cycling systems emerge (Phillips et al., 2013).
Modelling such dynamics will have to rely on a resolution of
dynamic vegetation and forest demographic processes to simulate
species invasion and exclusion over time, niche differentiation,
community succession and evolutionarily stable (competitively
optimal) strategies. Demography-resolving DGVMs (Falster
et al., 2017; Fisher et al., 2018) offer potential for predicting such
patterns, as has been shown, for example for predicting LMA and
deciduousness shifts along a soil N gradient (Weng et al., 2017). In
the context of root : shoot ratio changes under N fertilisation, it
has been shown that opposite patterns as predicted from the
functional balance hypothesis are observed in a severely nutrient-
limited ecosystem and can be simulated considering optimality
under competition (VanWijk et al., 2003). It will be informative to
investigate how and whether the adoption of different EEO
principles and dynamic vegetation demography translate into
improved performance of DGVMs, evaluated against a compre-
hensive set of observational targets and considering data from a
large number of experiments and diverse environmental condi-
tions.

VI. Conclusions

Changes in C and N availability, caused by trends in rising CO2

and atmospheric N deposition, trigger dynamic responses in plants

with consequences for ecosystem C and N cycling. Plant responses
to N fertilisation and changing CO2 can be broadly captured by a
simple model based on EEO. Such concepts have been used to
predict various aspects of plant behaviour at the leaf and whole-
plant levels (Franklin et al., 2020; Harrison et al., 2021), providing
simple but powerful models with relatively few free parameters.
There is now a strong theoretical basis for modelling C–N cycle
interactions and the role of N in constraining ecosystem responses
to rising CO2 and climate change (Bloom et al., 1985; Rastetter
et al., 1997; Wright et al., 2003; Franklin, 2007; Franklin
et al., 2012, 2020; Prentice et al., 2014; Harrison et al., 2021;
Dong et al., 2022). These approaches for the prediction of C–N
interactions could be used in vegetation and land-surface
components of coupled Earth SystemModels, holding the promise
of reducing the large uncertainty in the current projections of the
global C cycle. It will, however, be important to extend the suite of
benchmarks used to evaluate such models (Kou-Giesbrecht
et al., 2023) since the current emphasis on evaluating C fluxes
and pools is insufficient to discriminate between alternative process
representations that underlie errors in simulated land C sink
trends.
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