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Abstract

In this paper, a reaction-diffusion population model with Dirichlet boundary condition and a directed 
movement oriented by a temporally distributed delay is proposed to describe the lasting memory of animals 
moving over space. The temporal kernel of the memory is taken as Gamma distribution function, among 
which there are two biologically meaningful cases: one is the weak kernel which implies that animals can 
immediately acquire knowledge and memory decays over time, the other is the strong kernel by which we 
assume that animals’ memory undergoes learning and memory decay stages. It is shown that the population 
stabilizes to a positive steady state and aggregates in the interior of the territory when the delay kernel is the 
weak type. In the strong kernel case, oscillatory patterns can first arise via a Hopf bifurcation with a small 
memory delay and then vanish when the system undergoes a Hopf bifurcation with a large memory delay, 
which implies that stability switch occurs and spatial-temporal patterns emerge for intermediate value of 
delays.
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1. Introduction

The effect of animals’ memory and cognition on their diffusive spatial movement recently 
has received much attention in characterizing complex animal movement patterns [8]. In [23], 
a diffusive animal movement model with explicit spatial memory is proposed by assuming that 
animals have information gained via their long-distance sight or social communications with 
their conspecifics [17]:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u

∂t
(x, t) = d1�u(x, t) + d2div(u(x, t)∇u(x, t − τ)) + g(u(x, t)), x ∈ �, t > 0,

∂u

∂n
(x, t) = 0, x ∈ ∂�, t > 0,

u(x, t) = η(x, t), x ∈ �, t ∈ (−τ,0],
(1.1)

where the memory-based diffusion is related to the memory of a particular moment in the past, 
which induces a discrete delay. However, a spatially and/or temporally distributed delay for 
memory variation is more realistic as highly developed animals can remember the historic dis-
tribution or clusters of the species in space. Such delays may include decreases in intensity and 
spatial precision [8,23]. Based on this work, we formulate a scalar reaction-diffusion equation 
with a spatiotemporally distributed memory-based diffusion term in [25] to model the diffusive 
movement of animals who can memorize past information as well as the information from their 
surroundings. This new distributed memory-based model provides a more realistic quantitative 
framework for characterizing complicated memory waning and gaining processes in a relatively 
simple self-contained way.

In the natural world, there are also some solitary animals who spend a majority of their lives 
without others of their species, with possible exceptions for mating and raising their young. In 
particular, most carnivores are accounted as solitary and asocial because the costs of intraspecific 
competition outweigh the benefits accrued with group living [7]. There are a lot of examples for 
solitary animals, such as tigers (Panthera tigris), pumas (Puma con-color), and jaguars (Panthera 
onca) [7,16,18], and so on. In such situation, the influence of the spatial variation from other 
individuals of the species is negligible, thus we may reasonably assume that animals’ memory 
mainly makes a temporal contribution to the spatial movement.

In this paper, we formulate a partial differential equation model for a single species animal 
movement with the explicit incorporation of spatial memory via a temporally distributed delayed 
diffusion. Throughout the paper, we use u(x, t) to denote the population density of a biological 
species in spatial location x at time t . It is also assumed that the population is in a spatial habitat 
�, an open, bounded, and connected subset of Rm with m ≥ 1. The boundary ∂� is assumed to 
be smooth. The population density function u(x, t) satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ut (x, t) = d1�u(x, t) + d2∇ · (u(x, t)∇v(x, t)) + λu(x, t)(1 − u(x, t)), x ∈ �, t > 0,

v(x, t) = g ∗ u(x, t) =
t∫

−∞
g(τ, t − s)u(x, s)ds, x ∈ �, t > 0,

u(x, t) = 0, x ∈ ∂�, t > 0,

u(x, t) = η(x, t), x∈�, t∈(−∞,0].
(1.2)
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Here the parameters d1 > 0 and d2 ∈ R are the random diffusion coefficient and the memory-
based diffusion coefficient, respectively; the population satisfies a logistic growth law with a 
growth parameter λ > 0; the function u(x, t) satisfies a Dirichlet boundary condition u(x, t) = 0, 
which means the environment of the boundary is hostile; and η(x, t) ≥ 0 is the initial condition.

The function v(x, t) is the weighted temporal average of the population density before time 
t and at location x, which reflects the animal’s memory and knowledge of their previous spa-
tial distributions. The memory can cause the animals to possess a repulsive movement to past 
history when d2 > 0 and a attractive movement to their past when d2 < 0. The temporal kernel 
function g(τ, t) reflects the dependence on the distribution of memory in the past time. From the 
mathematical perspective, g : [0, ∞) → R+ is a probability distribution function satisfying

∞∫
0

g(τ, t)dt = 1. (1.3)

In our model, the temporal kernel is taken as Gamma distribution function of order n (with 
n ∈N ∪ {0}):

g(τ, t) = gn(τ, t) = tne−t/τ

τ n+1�(n + 1)
. (1.4)

In particular, we mainly consider the following two specific cases which are commonly employed 
in the biological modeling [5,9,13,24]:

g0(τ, t) = 1

τ
e− t

τ , g1(τ, t) = t

τ 2 e− t
τ , (1.5)

which are referred to as the weak kernel and the strong kernel, respectively. The weak kernel 
function g0(τ, t) is strictly decreasing in t , which biologically reflects one of the common ways of 
memory decay: the longer time goes by, the dimmer memories become. While the strong kernel 
g1(τ, t) is increasing first and then decreasing, which corresponds to the knowledge acquisition 
phase and the knowledge decay phase, respectively. The mean and variance of gn(τ, ·) are given 
by E(gn(τ, ·)) = (n + 1)τ and Var(gn(τ, ·)) = (n + 1)τ 2, from which we see that τ is related to 
the average of delay kernels. In this sense, we take τ as the bifurcation parameter to measure the 
influence of spatial memory on the dynamics.

The movement of population in (1.2) can be derived from mass conservation law and a modi-
fied Fick’s law following [23]:

J(x, t) = −d1∇xu(x, t) − d2w(x, t) · u(x, t),

where w(x, t) is a vector field indicating animal movement direction and strength, and we assume 
that

w(x, t) = ∇x

⎛
⎝ t∫

gn(τ, t − s)u(x, s)ds

⎞
⎠ , (1.6)
−∞
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where, in addition to the random diffusion with the coefficient d1, the flux is proportional to 
the negative gradient of a weighted average historic density distribution. In [9,40], some scalar 
diffusive equations with distributed delay in the reaction term under Neumann boundary condi-
tion were investigated. The instability and Hopf bifurcation in a scalar reaction-diffusion model 
with Dirichlet boundary problem and distributed delay included in growth function are studied 
in [24]. A two-species diffusive population model with Dirichlet boundary problem and dis-
tributed delay is considered in [10]. In all these existing works, the distributed delay is used to 
describe the growth of the population, while in our model (1.2), the distributed delay describes 
the directed diffusion of the population as a result of spatial memory. About the study of the 
effect of the memory-base diffusion, analysis of a reaction-diffusion model with discrete de-
lay memory-based movement was conducted in [21] for the Neumann boundary condition case 
(see also [34] for a model with spatial heterogeneity). In [23], a model with both discrete delay 
memory-based movement and maturation delay for Neumann boundary case was considered, 
and a more general model for Dirichlet boundary condition was studied in [1]. A model with ad-
ditional nonlocal effect was also studied in [29]. Memory-based movement with spatial-temporal 
distributed delays was considered in [25,30]. Effect of memory-based cross-diffusion on systems 
of reaction-diffusion equations was investigated in [22,28].

Our results show that Eq. (1.2) has a positive steady state solution under certain conditions 
on d1, d2 and λ. In particular, the positive steady state exists and is unique when d1, d2 > 0 and 
λ > λ∗ = d1λ1 where λ1 is the principal eigenvalue of −�. We then consider the stability of the 
unique positive steady state uλ when λ is slightly larger than λ∗ with the increase of the average 
time delay τ . It is shown that the non-homogeneous steady state remains locally asymptotically 
stable in the case of weak kernel. For the strong kernel case, uλ loses its stability via a Hopf 
bifurcation so that a spatially non-homogeneous time-periodic pattern emerges. If we continue 
to increase the delay value, the non-constant steady state can gain its stability again, so a stability 
switch occurs in this system. Note that this phenomenon is different from the reaction-diffusion 
systems with time delay incorporated in the reaction terms ([3,24,31]).

This paper is organized as follows. In Section 2, we show the existence and uniqueness of 
the non-homogeneous steady state of Eq. (1.2) via a bifurcation approach. The Hopf bifurcations 
near the non-homogeneous steady state are investigated for a general delay kernel parameter 
n in the system in Section 3. Particularly, for the weak and strong kernel cases which have 
biological meanings, we carry out a detailed bifurcation analysis. Some numerical simulations 
are shown in Section 4, some further remarks and comments about our work and possible future 
works in Section 5. In the paper, the space of measurable functions for which the p-th power of 
the absolute value is Lebesgue integrable defined on a bounded and smooth domain � ⊆Rm is 
denoted by Lp(�) and we use Wk,p(�) to denote the real-valued Sobolev space based on Lp(�)

space. Denote X = W 2,p(�) ∩W
1,p

0 (�) and Y = Lp(�), where p > m. For a linear vector space 
Z, we define its complexification to be ZC = {x1 + ix2 : x1, x2 ∈ Z}. Also, we denote by N the 
set of all the positive integers, and N0 =N ∪ {0}.

2. Spatially non-homogeneous steady states

The steady state solutions of Eq. (1.2) satisfy

{
d1�u(x) + d2∇ · (u(x)∇u(x)) + λu(x)(1 − u(x)) = 0, x ∈ �,

u(x) = 0, x ∈ ∂�,
(2.1)
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where d1 > 0, d2 ∈ R and λ > 0.
First we have the following a priori estimates for the solutions of Eq. (2.1).

Lemma 2.1. Suppose that d1 > 0 and d2 ∈ R. If u(x) is a nonnegative solution of Eq. (2.1)
satisfying d1 + d2u(x) > 0 for any x ∈ �, then either u ≡ 0 or u > 0 in �. In the latter case, 
0 < u(x) < 1, x ∈ �.

Proof. Suppose that u(x) is a nonnegative solution of Eq. (2.1) and u(x) �≡ 0. From (2.1), we 
know that u(x) satisfies

(d1 + d2u(x))�u(x) + d2|∇u(x)|2 + λu(x)(1 − u(x)) = 0. (2.2)

Let u(x0) = max
x∈�̄

u(x), from the maximum principle, we have u(x0) ≤ 1. Then, we apply the 

strong maximum principle and obtain that u(x0) < 1. Thus, it is true that u(x) < 1 for all x ∈ �. 
Similarly, u(x) > 0 holds for x ∈ � by the strong maximum principle. �

We have the following results regrading the existence, uniqueness and bifurcation of positive 
solutions of Eq. (2.1).

Theorem 2.2. Suppose that d1 > 0 and d2 ∈R.

(i) Let λ1 be the principal eigenvalue of −� and let φ be the corresponding positive eigenfunc-
tion, then λ = λ∗ � d1λ1 is a bifurcation point for Eq. (2.1). More precisely, near (λ∗, 0), 
there is a smooth curve �1 of positive solutions of Eq. (2.1) bifurcating from the line of 
constant solutions �0 = {(λ, 0) : λ > 0} with the following form:

�1 = {(λ(s), u(s)) = (λ∗ + λ′(0)s + o(s), sφ + o(s)) : 0 < s < δ}, (2.3)

where

λ′(0) = (2d1 + d2)λ∗
∫
�

φ3dx

2d1
∫
�

φ2dx
; (2.4)

(ii) if d2 > −2d1, the bifurcation at λ = λ∗ is forward, and there exists a positive solution uλ for 
λ ∈ (λ∗, λ∗), where λ∗ is a threshold value such that d1 + d2uλ > 0 holds for λ ∈ (λ∗, λ∗); 
if d2 < −2d1, the bifurcation at λ = λ∗ is backward, and there exists a positive solution 
uλ for λ ∈ (λ∗∗, λ∗), where λ∗∗ is a threshold value such that d1 + d2uλ > 0 holds for 
λ ∈ (λ∗∗, λ∗);

(iii) if d2 > −d1, Eq. (2.1) has a positive solution uλ for all λ > λ∗;
(iv) if d2 > 0, the positive solution uλ of Eq. (2.1) for λ > λ∗ is unique.

Proof. To prove (i), for fixed d1 > 0 and d2 ∈R, we define a nonlinear mapping F :R+ × X →
Y :

F(λ,u) = d1�u + d2∇ · (u∇u) + λu(1 − u), (2.5)
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where u ∈ X, and it is obvious that u = 0 is a trivial solution of F(λ, u) = 0 for all λ > 0. Then, 
we take the Fréchet derivative of F with respect to u and obtain

Fu(λ,u)[w] = d1�w + d2u�w + d2w�u + 2d2∇u · ∇w + λ(1 − 2u)w.

At u = 0, we have Fu(λ, 0)[w] = d1�w + λw.
We determine the null space and range space of the operator Fu(λ∗, 0). We know that the 

operator −d1� has a principle eigenvalue λ = λ∗ corresponding to a positive eigenfunction 
φ > 0. Hence the null space and the range space of Fu(λ∗, 0) are N (Fu(λ∗, 0)) = Span{φ}
and R(Fu(λ∗, 0)) = {h ∈ Lp(�) : ∫

�
hφdx = 0} (we denote it as Y1), respectively. Thus 

dim (N (Fu(λ∗,0))) = 1 and codim (R(Fu(λ∗,0))) = 1. Next we show that Fλu(λ∗, 0)[φ] �∈
R(Fu(λ∗, 0)). From (2.5), we have Fλu (λ,u) [w] = w(1 − 2u), thus Fλu(λ∗, 0)[φ] = φ. It is 
clear that Fλu(λ∗, 0)[φ] �∈ R(Fu(λ∗, 0)) as 

∫
�

φ2dx > 0. Therefore, the bifurcation from simple 
eigenvalue theorem [6] can be applied at (λ, u) = (λ∗, 0), thus there is a smooth curve �1 of 
positive solutions of Eq. (2.1) bifurcating from the line of constant solutions �0, and �1 is in 
form of (2.3).

For the bifurcation direction of �1, from [20], we know that the bifurcation direction can be 
determined by

λ′(0) = −〈l,Fuu(λ∗,0)[φ,φ])〉
2〈l,Fλu(λ∗,0)[φ])〉 , (2.6)

where l ∈ Y ∗ (the dual space of Y ) and 〈l, f 〉 = ∫
�

f φdx. From

Fuu(λ,u)[w1,w2] = d2w1�w2 + d2w2�w1 + 2d2∇w1∇w2 − 2λw1w2,

we have

Fuu(λ∗,0)[φ,φ] = 2d2φ�φ + 2d2|∇φ|2 − 2λ∗φ2

= − 2d2λ1φ
2 + 2d2|∇φ|2 − 2d1λ1φ

2 = −2λ1(d1 + d2)φ
2 + 2d2|∇φ|2,

(2.7)

where �φ = −λ1φ is applied. Substituting (2.7) into (2.6), we obtain

λ′(0) = −−2λ∗(d1 + d2)
∫
�

φ3dx + 2d2λ1
∫
�

|∇φ|2φdx

2d1
∫
�

φ2dx

= −−2λ∗(d1 + d2)
∫
�

φ3dx + d2λ∗
∫
�

φ3dx

2d1
∫
�

φ2dx

= (2d1 + d2)λ∗
∫
�

φ3dx

2d1
∫
�

φ2dx
.

(2.8)

Note that

d1

∫
φ2�φdx = −2d1

∫
φ|∇φ|2dx = −λ∗

∫
φ3dx (2.9)
� � �
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holds because of the fact that d1φ
2�φ = −λ∗φ3 according to d1�φ = −λ∗φ. Also we can 

conclude that the bifurcation occurs at λ = λ∗ is forward when d2 > −2d1 (λ′(0) > 0) and is 
backward when d2 < −2d1 (λ′(0) < 0). When λ′(0) > 0, there exists a threshold value λ∗ > λ∗
such that the solution uλ = u(s) satisfies d1 + d2uλ > 0 when s = λ − λ∗ is small enough. A 
similar threshold value λ∗∗ < λ∗ exists when λ′(0) < 0. This completes the proof for (i) and (ii).

For the proof of (iii), we use the method of upper-lower solution to prove the existence of a 
positive solution of Eq. (2.1) for all λ > λ∗. Let u = εφ with ε > 0, then

d1�(εφ) + d2∇ · (εφ∇εφ) + λεφ(1 − εφ)

=εd1�φ + d2ε
2φ�φ + d2ε

2|∇φ|2 + λεφ − λε2φ2

=ε(λ − λ∗)φ + ε2(d2φ�φ + d2|∇φ|2 − λφ2) ≥ 0

when λ > λ∗ for sufficiently small ε > 0. It is known that u = 0 for x ∈ ∂�. This means that 
u is a lower solution for Eq. (2.1). Also, one can easily verify that ū = 1 is an upper solution 
for Eq. (2.1). By choosing ε > 0 small enough, we have u < ū. Under the condition d2 > −d1, 
we claim that d1 + d2u(x) > 0 holds. We explain it in two cases: (1) if −d1 < d2 < 0, then 
d1 + d2u(x) > d1 + d2 > 0 as 0 < u(x) < 1; (2) if d2 ≥ 0, then d1 + d2u(x) > 0 holds for sure. 
Then, we know that Eq. (2.1) is elliptic type for any of its positive solution. From [15, Theorem 
3.1], there exists a minimal solution um

λ and a maximal solution uM
λ of Eq. (2.1) satisfying u <

um
λ ≤ uM

λ < ū = 1, which ensures the existence of steady state for λ > λ∗.
At the end, we prove the uniqueness of uλ when d2 > 0. Let uM

λ be the maximal solution 
obtained above. Suppose that there exists another positive solution of Eq. (2.1) ũλ �≡ uM

λ . Then 
from Lemma 2.1, we must have ũλ(x) ≤ uM

λ (x) for x ∈ �. Then, uM
λ is a positive solution for 

the following equation:

∇ ·
(
(d1 + d2u

M
λ )∇ϕ

)
+ λ(1 − uM

λ )ϕ = σϕ, x ∈ �, ϕ = 0, x ∈ ∂�, (2.10)

for σ = 0, thus σ = 0 is the principal eigenvalue for Eq. (2.10). Similarly, we know that σ̃ = 0 is 
the principal eigenvalue for the following equation:

∇ · ((d1 + d2ũλ)∇ϕ) + λ(1 − ũλ)ϕ = σ̃ ϕ, x ∈ �, ϕ = 0, x ∈ ∂�. (2.11)

From the variational characterization of σ and σ̃ , we have

0 = σ = − inf
ϕ∈X

∫
�
(d1 + d2u

M
λ )|∇ϕ|2 − λ

∫
�
(1 − uM

λ )ϕ2∫
�

ϕ2

≤ − inf
ϕ∈X

∫
�
(d1 + d2ũλ)|∇ϕ|2 − λ

∫
�
(1 − ũλ)ϕ

2∫
�

ϕ2
= σ̃ = 0,

(2.12)

as we have d1 + d2u
M
λ ≥ d1 + d2ũλ and 1 − uM

λ ≤ 1 − ũλ when d2 > 0. Since the equality in 
(2.12) only holds when ũλ ≡ uM

λ , we must have ũλ ≡ uM
λ . This completes the proof of (iv). �

Remark 2.3.
311



J. Shi and Q. Shi Journal of Differential Equations 389 (2024) 305–337
1. When d2 > −2d1, the positive solution uλ of Eq. (2.1) for λ ∈ [λ∗, λ∗] can also be expressed 
in the following form from (2.3) and (2.4):

uλ = (λ − λ∗)αλ[φ + (λ − λ∗)ξλ], αλ = 2d1
∫
�

φ2dx

(2d1 + d2)λ
∫
�

φ3dx
, (2.13)

where ξλ∗ ∈ X1 with X1 = {
h ∈ X : ∫

�
hφdx = 0

}
is the unique solution of the following 

equation:

(d1� + λ∗)ξλ∗ + φ + αλ∗ [d2∇ · (φ∇φ) − λ∗φ2] = 0. (2.14)

Note that the form (2.13) will be used to analyze the stability of uλ in the following section.
2. The condition d1 + d2u(x) > 0 is required to guarantee the ellipticity of Eq. (2.1), and 

this condition holds automatically when d2 ≥ 0. When d2 < 0, there may exist solutions 
of Eq. (2.1) not satisfying d1 + d2u(x) > 0.

3. Stability and Hopf bifurcations

In this section we always assume that the shape parameter n ∈N+ ∪ {0} is fixed and d2 > 0
so that Eq. (1.2) has a unique positive steady state uλ according to Theorem 2.2 (iv). Define

λ̂ = min

{
λ∗, λ∗ + d1

d2αλ∗M

}
, (3.1)

where λ∗, λ∗ is defined in Theorem 2.2, αλ∗ is defined as in (2.13) when λ = λ∗ and M =
max

λ∈(λ∗,λ∗]
‖φ + (λ − λ∗)ξλ‖∞. Now we consider the stability and associated bifurcations at uλ

when λ ∈ (λ∗, ̂λ].
By letting u(x, t) = uλ(x) + ũ(x, t), v(x, t) = uλ(x) + ṽ(x, t), we obtain the linearization of 

Eq. (1.2) at uλ:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ũt = d1�ũ + d2∇ · (uλ∇ṽ) + d2∇ · (ũ∇uλ) + λ(1 − 2uλ)ũ, x ∈ �, t > 0,

ṽ(x, t) =
t∫

−∞
gn(τ, t − s)ũ(x, s)ds =

0∫
−∞

gn(τ,−s)ũ(x, t + s)ds, x ∈ �, t > 0,

ũ(x, t) = ṽ(x, t) = 0, x ∈ ∂�, t > 0.

(3.2)

From [36] Chapter 3, the semigroup induced by the solutions of Eq. (3.2) has an infinitesimal 
generator Anτ (λ) which is given by

Anτ (λ)ϕn = ϕ̇n, (3.3)

and the domain of Anτ (λ) is

D(Anτ (λ)) =
⎧⎨
⎩ϕn ∈ CC ∩ C1

C : ϕ̇n(0) = A(λ)ϕn + d2∇ ·
⎛
⎝uλ

0∫
gn(τ,−s)∇ϕn(s)ds

⎞
⎠− λuλϕn

⎫⎬
⎭,
−∞
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where

A(λ)ϕn = d1�ϕn + d2∇ · (ϕn∇uλ) + λ(1 − uλ)ϕn,

CC = C((−∞,0], YC), C1
C = C1((−∞,0], YC), ϕn ∈ XC.

The spectral set of Anτ (λ) is

σ(Anτ (λ)) = {μ ∈ C : �(λ,μ, τ)ψn = 0, for some ψn ∈ XC\{0}}, (3.4)

where

�(λ,μ, τ) = A(λ) + d2∇ · (uλ∇)

0∫
−∞

gn(τ,−s)eμsds − λuλ − μ

= A(λ) + d2

(1 + μτ)n+1 ∇ · (uλ∇) − λuλ − μ.

(3.5)

Note that (3.5) holds from the integral

0∫
−∞

gn(τ,−s)eμsds = 1

τn+1�(n + 1)

0∫
−∞

snes/τ eμsds = 1

(1 + μτ)n+1 . (3.6)

When τ → 0, the stability of steady state of Eq. (1.2) is determined by the limiting operator

A0(λ) = A(λ) + d2∇ · (uλ∇) − λuλ, (3.7)

and we have the following conclusion.

Proposition 3.1. When d2 > 0 and λ ∈ (λ∗, ̂λ), for sufficiently small τ ≥ 0, the positive steady 
state uλ is locally asymptotically stable with respect to Eq. (1.2). Moreover, for any τ > 0, 0 �∈
σ(Anτ (λ)).

Proof. We first prove σ(A0(λ)) ⊆ {μ ∈ C : Re(μ) < 0}, from which the stability of uλ when 
τ = 0 can be achieved. We write A0(λ)ψ = μψ as follows

d1�ψ + d2∇ · (ψ∇uλ) + d2∇ · (uλ∇ψ) + λ(1 − 2uλ)ψ = μψ, (3.8)

which can be rewritten as

(d1 + d2uλ)�ψ + 2d2∇uλ∇ψ + d2�uλψ + λ(1 − 2uλ)ψ = μψ.

Because d2 > 0, so there must be a constant η such that d1 + d2uλ ≥ η > 0, which makes (3.8) a 
strongly elliptic equation. From [2], we know that A0(λ) has a principal eigenvalue μ1 ∈R with 
its corresponding real eigenfunction ψ1 > 0. Also we know that uλ satisfies
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d1�uλ + d2∇ · (uλ∇uλ) + λ(1 − uλ)uλ = 0. (3.9)

Multiplying (3.8) by uλ, multiplying (3.9) by ψ1, integrating them over � and subtracting each 
other, we obtain

μ1

∫
�

ψ1uλdx =d1

∫
�

(�ψ1uλ − �uλψ1)dx − λ

∫
�

u2
λψ1dx + d2

∫
�

∇ · (ψ1∇uλ)uλdx

+ d2

∫
�

∇ · (uλ∇ψ1)uλdx − d2

∫
�

∇ · (uλ∇uλ)ψ1dx

= − λ

∫
�

u2
λψ1dx − d2

∫
�

ψ1|∇uλ|2dx

− d2

∫
�

uλ∇ψ1∇uλdx + d2

∫
�

uλ∇uλ∇ψ1dx

= − λ

∫
�

u2
λψ1dx − d2

∫
�

ψ1|∇uλ|2dx,

which implies that μ1 < 0 as uλ > 0, ψ1 > 0 and d2 > 0. Therefore, all the eigenvalues of A0(λ)

have negative real parts, which implies that the steady state of Eq. (1.2) is locally asymptotically 
stable when τ = 0.

Next we claim that sup
μ∈σ(Anτ (λ))

Re(μ) < 0 holds for τ > 0 sufficiently small. Similar to 

Lemma 2.2 (ii) in [24], we know that lim
τ→0

σb(Anτ (λ)) = σb(A0(λ)) holds, where σb(Anτ (λ)) :=
σ(Anτ (λ)) ∩ {μ ∈ C : Re(μ) > b}. Together with σ(A0(λ)) ⊆ {μ ∈ C|Re(μ) < 0}, the claim is 
proved. Hence we know that all the eigenvalues of Anτ (λ) have negative real part for sufficient 
small τ > 0, which implies that uλ is locally asymptotically stable with respect to Eq. (1.2) for 
sufficiently small τ ≥ 0.

Finally if 0 ∈ σ(Anτ (λ)) for any τ > 0, then 0 is an eigenvalue of A0(λ), but we have shown 
that all the eigenvalues of A0(λ) have negative real parts. That is a contradiction. Hence for any 
τ > 0, 0 �∈ σ(Anτ (λ)). �

From Proposition 3.1, we see that uλ is locally asymptotically stable for sufficiently small 
τ ≥ 0. Next we show that uλ loses its stability when τ increases and Hopf bifurcations occur for 
the system (1.2). First the following boundedness will be needed later.

Lemma 3.2. For any (λ, μ, τ, ψn) ∈ (λ∗, ̂λ] ×C ×R+ × YC satisfying Anτ (λ)ψn = μψn which 
is defined as in (3.3), there exists a constant M1 > 0 depending on d1, d2 such that ‖∇ψn‖YC ≤
M1‖ψn‖YC when Re(μ) ≥ 0.

Proof. Since uλ ∈ X is the unique solution of (2.1) and 0 < uλ < 1 from Lemma 2.1, we have 
|uλ|1+γ ≤ M2 from the Sobolev embedding theorem, where γ ∈ (0, 1/2), M2 is a constant de-
pending on γ, λ∗, � and | · |1+γ is the norm in C1+γ (�̄). Moreover from the regularity theory 
for elliptic equations, we can obtain uλ ∈ C2+β(�̄) with 0 < β < γ and |uλ|2+β ≤ M3 with M3
depending on β, d1, d2, M2 and �. By the definition of Anτ (λ) in (3.3), we have
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〈[
A(λ) + d2

(1 + μτ)n+1 ∇ · (uλ∇) − λuλ − μ

]
ψn,ψn

〉
= 0. (3.10)

Taking the real part of (3.10), we obtain

d1‖∇ψn‖2
YC

=d2Re

⎧⎨
⎩
∫
�

∇ · (ψn∇uλ)ψ̄ndx

⎫⎬
⎭+ λ

∫
�

(1 − 2uλ)|ψn|2dx

+Re

⎧⎨
⎩ d2

(1 + μτ)n+1

∫
�

∇ · (uλ∇ψn)ψ̄ndx

⎫⎬
⎭−Re(μ)‖ψn‖2

YC
.

(3.11)

Since ∫
�

∇ · (ψn∇uλ)ψ̄ndx =
∫
�

(∇ψn∇uλ + ψn�uλ)ψ̄ndx

= −
∫
�

ψn∇ · (ψ̄n∇uλ)dx +
∫
�

|ψn|2�uλdx,

so we have

Re

⎧⎨
⎩
∫
�

∇ · (ψn∇uλ)ψ̄ndx

⎫⎬
⎭ = 1

2

∫
�

�uλ|ψn|2dx. (3.12)

Also one can verity that

Re

⎧⎨
⎩
∫
�

∇ · (uλ∇ψn)ψ̄ndx

⎫⎬
⎭ = −Re

⎧⎨
⎩
∫
�

uλ|∇ψn|2dx

⎫⎬
⎭ = −

∫
�

uλ|∇ψn|2dx. (3.13)

Combining Eqs. (3.11), (3.12), (3.13) and the fact that Re(μ) ≥ 0, ‖uλ‖∞ ≥ 0, we obtain

d1‖∇ψn‖2
YC

=d2

2

∫
�

�uλ|ψn|2dx + λ

∫
�

(1 − 2uλ)|ψn|2dx

−Re

(
d2

(1 + μτ)n+1

)∫
�

uλ|∇ψn|2dx −Re(μ)‖ψn‖2
YC

,

≤|d2|
2

‖�uλ‖∞‖ψn‖2
YC

+ λ‖ψn‖2
YC

+
∣∣∣∣Re

(
d2

(1 + μτ)n+1

)∣∣∣∣‖uλ‖∞‖∇ψn‖2
YC

.

By the fact that Re(μ) ≥ 0 and τ > 0, it can be verified that

∣∣∣∣Re

(
1

n+1

)∣∣∣∣ = ∣∣∣|1 + μτ |−(n+1) cos(arg((1 + μτ)n+1))

∣∣∣ ≤ |1 + μτ |−(n+1) ≤ 1,

(1 + μτ)
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where arg(·) stands for the argument of a complex number. Together with the boundedness of ξλ, 
uλ and ψn for λ ∈ (λ∗, ̂λ] and |uλ|2+β ≤ M3, we know that there exists a constant M4 > 0 such 
that

‖∇ψn‖2
YC

≤

(
d2

2
‖�uλ‖∞ + λ

)
‖ψn‖2

YC

d1 − d2‖uλ‖∞
≤ M4‖ψn‖2

YC
,

where

d1 − d2‖uλ‖∞ = d1 − d2(λ − λ∗)αλ‖φ + (λ − λ∗)ξλ‖∞ > d1 − d2(λ − λ∗)αλ∗M > 0

holds from the definition of λ̂ in (3.1). Thus, ‖∇ψn‖YC ≤ M1‖ψn‖YC holds with M1 =√
M4. �
From Proposition 3.1, uλ loses its stability and a Hopf bifurcation occurs when Anτ (λ) has a 

pair of purely imaginary eigenvalues μ = ±iωn (ωn > 0). From (3.5), we know that the operator 
Anτ (λ) has an eigenvalue iωn is equivalent to

[
A(λ) + d2∇ · (uλ∇)

1

(1 + iθn)n+1 − λuλ − iωn

]
ψn = 0, ψn ∈ XC \ {0}, (3.14)

where θn := ωnτ . Next we will show that there exist some triples (ωn, θn, ψn) which solve 
Eq. (3.14) for n ≥ 0. For further discussion, we need the following lemma.

Lemma 3.3. Recall that λ1 is the principal eigenvalue of −�, we have

(i) if z ∈ XC and 〈φ, z〉 = 0, then |〈(d1� +λ∗)z, z〉| ≥ d1(λ2 −λ1)‖z‖2
YC

with λ∗ = d1λ1, where 

λ2 is the second eigenvalue of −� on H 1
0 (�);

(ii) for each n ≥ 0, if there exist some (ωn, θn, ψn) satisfying Eq. (3.14) with ψn ∈ XC , then 
ωn/(λ − λ∗) is uniformly bounded for λ ∈ (λ∗, ̂λ].

Proof. The proof of part (i) is similar to that of Lemma 3.2 in [3], thus we omit it here and 
mainly prove part (ii). By Eq. (3.14), we have

〈[
A(λ) + d2∇ · (uλ∇)

1

(1 + iθn)n+1 − λuλ − iωn

]
ψn,ψn

〉
= 0. (3.15)

From 1 + iθn = √
1 + θ2

n eiηn with tanηn = θn, Eq. (3.15) can be rewritten as

〈[
A(λ) + d2∇ · (uλ∇)(1 + θ2

n)−(n+1)/2e−i(n+1)ηn − λuλ − iωn

]
ψn,ψn

〉
= 0. (3.16)

From the imaginary part of Eq. (3.16), we have

ωn〈ψn,ψn〉 = d2(1 + θ2
n)−(n+1)/2 sin((n + 1)ηn) 〈∇ · (uλ∇ψn),ψn〉

= −d (1 + θ2)−(n+1)/2 sin((n + 1)η ) 〈u ∇ψ ,∇ψ 〉 .
2 n n λ n n
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Let m(λ, ξλ) = φ + (λ − λ∗)ξλ, we obtain

|ωn|
λ − λ∗

=d2αλ

∣∣(1 + θ2
n)−(n+1)/2 sin((n + 1)ηn)〈m(λ, ξλ)∇ψn,∇ψn〉

∣∣
‖ψn‖2

YC

<
d2αλ‖m(λ, ξλ)‖∞‖∇ψn‖2

YC

‖ψn‖2
YC

,

as 
∣∣((1 + θ2

n)−(n+1)/2
)∣∣ < 1. From the boundedness of uλ = (λ − λ∗)αλm(λ, ξλ) proved in 

Lemma 2.1 m(λ, ξλ) is bounded in X. Together with the boundedness of ‖∇ψn‖2
YC

obtained 
in Lemma 3.2, we can obtain the boundedness of ωn/(λ − λ∗) by the continuity of λ �→
(αλ, ξλ). �

We know that XC and YC can be decomposed as

XC = Span{φ} ⊕ X1C, YC = Span{φ} ⊕ Y1C, (3.17)

where

X1C =
⎧⎨
⎩h ∈ XC :

∫
�

hφdx = 0

⎫⎬
⎭ , Y1C =

⎧⎨
⎩h ∈ YC :

∫
�

hφdx = 0

⎫⎬
⎭ .

Suppose that (ωn, θn, ψn) is a solution of Eq. (3.14) with ψn ∈ XC , then ψn can be decomposed 
and normalized as

ψn = βnφ + (λ − λ∗)zn, 〈φ, zn〉 = 0,

‖ψn‖2
YC

= β2
n‖φ‖2

YC
+ (λ − λ∗)2‖zn‖2

YC
= ‖φ‖2

YC
.

(3.18)

Substituting Eqs. (2.13), (3.18) and ωn = (λ −λ∗)hn into Eq. (3.14), we get the following equiv-
alent system:

g1(zn,βn,hn, θn, λ) :=(d1� + λ∗)zn + (βnφ + (λ − λ∗)zn){1 − ihn − 2λαλ[φ + (λ − λ∗)ξλ]}
+ d2αλ∇ · {[βnφ + (λ − λ∗)zn]∇[φ + (λ − λ∗)ξλ]}

+ d2αλ

(1 + iθn)n+1 ∇ · {[φ + (λ − λ∗)ξλ]∇[βnφ + (λ − λ∗)zn]} = 0,

g2(zn,βn,hn, θn, λ) :=
(
β2

n − 1
)

‖φ‖2
YC

+ (λ − λ∗)2‖zn‖2
YC

= 0.

(3.19)
We define G : X1C ×R3 ×R → YC ×R as

G(zn,βn,hn, θn, λ) := (g1, g2).

We will show that G = 0 can be solved for λ → λ∗, and we first solve the limiting equation when 
λ = λ∗ in the following lemma.
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Lemma 3.4. When λ = λ∗, define

mn = cosn+2
(

π

n + 2

)
, n ∈ N. (3.20)

Then the following statements are true:

(i) if n = 0, there is no solution for G(zn, βn, hn, θn, λ∗) = 0;
(ii) if n ≥ 1, mn is positive and increasing in n. When d2 ≥ 2d1/mn, G(zn, βn, hn, θn, λ∗) = 0

has at least one solution which can be expressed as

(zn,βn,hn, θn) = Wnλ∗ � (znλ∗ , βnλ∗ , hnλ∗ , θnλ∗) (3.21)

with

βnλ∗ = 1, θnλ∗ = tan(ηnλ∗), hnλ∗ = d2

2d1 + d2
sin((n + 1)ηnλ∗) cosn+1 ηnλ∗ ,

where ηnλ∗ satisfies

cos((n + 1)ηnλ∗) cosn+1 ηnλ∗ = −2d1

d2
, (3.22)

and znλ∗ is the unique solution of the following equation

(d1� + λ∗)znλ∗ + (1 − ihnλ∗)φ + d2αλ∗

(
1 + 1

(1 + iθnλ∗)n+1

)
∇ · (φ∇φ) − 2λ∗αλ∗φ

2 = 0.

(3.23)

Proof. We solve G(zn, βn, hn, θn, λ) = (g1, g2) = 0 when λ = λ∗. Firstly, we have βn = βnλ∗ =
1 through solving g2|λ=λ∗ = 0. When λ = λ∗, g1 = 0 is equivalent to

(d� + λ∗)zn + (1 − ihn)φ + d2αλ∗

(
1 + 1

(1 + iθn)n+1

)
∇ · (φ∇φ) − 2λ∗αλ∗φ

2 = 0. (3.24)

Multiplying (3.24) by φ and integrating over �, we have

(1 − ihn)

∫
�

φ2dx + d2αλ∗

(
1 + 1

(1 + iθn)n+1

)∫
�

∇ · (φ∇φ)φdx − 2λ∗αλ∗

∫
�

φ3dx

=(1 − ihn)

∫
�

φ2dx − d2λ∗αλ∗
2d1

(
1 + 1

(1 + iθn)n+1

)∫
�

φ3dx − 2λ∗αλ∗

∫
�

φ3dx

=
[

1 − ihn − d2

2d1 + d2

(
1 + 1

(1 + iθn)n+1

)
− 4d1

2d1 + d2

]∫
�

φ2dx = 0,

which can be inferred from (2.9) and the definition of αλ∗ in (2.13). Then, we have
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ihn = − d2

2d1 + d2

1

(1 + iθn)n+1 − 2d1

2d1 + d2
. (3.25)

Separating the real and imaginary parts of Eq. (3.25), we have

⎧⎪⎨
⎪⎩

sin((n + 1)ηn) = (2d1 + d2)hn

d2
(1 + θ2

n)(n+1)/2,

cos((n + 1)ηn) = −2d1

d2
(1 + θ2

n)(n+1)/2,

where tanηn = θn and ηn ∈ (0, π/2] as θn > 0. Since tan2 ηn + 1 = sec2 ηn, then we have (1 +
θ2
n)(n+1)/2 = secn+1 ηn, then the above equations are equivalent to

⎧⎪⎨
⎪⎩

sin((n + 1)ηn) = (2d1 + d2)hn

d2

1

cosn+1 ηn

,

cos((n + 1)ηn) = −2d1

d2

1

cosn+1 ηn

.

(3.26)

By the second equation of (3.26), we obtain Eq. (3.22) from which ηn can be solved. Once ηn is 
solved, then by the first equation of (3.26), hn can be solved as in Eq. (3.21). Finally, from (3.22)
and (3.25), we obtain that znλ∗ satisfies Eq. (3.23).

Now we consider the solvability of Eq. (3.22). When n = 0, Eq. (3.22) becomes cos2 ηn =
−d2

d1
which is not solvable as d1, d2 > 0, thus the conclusion in (i) is proved. For a general n ≥ 1, 

by the boundedness of cosine function, we know that Eq. (3.22) is not solvable if d2 < 2d1. When 
d2 ≥ 2d1, let

fn(ηn) = cos((n + 1)ηn) cosn+1 ηn, ηn ∈
(

0,
π

2

]
, (3.27)

then we have the following properties of the function fn(ηn):

(a) fn(0) = 1, fn

(π

2

)
= 0;

(b) the zeros of fn are ηnk = (2k − 1)π

2(n + 1)
, k = 1, 2, · · · , 

[
n + 1

2

]
, where [·] denotes the integer 

part of a real number;
(c) treating ηn as a continuous variable, we have f ′

n(ηn) = −(n + 1) cosn ηn sin((n + 2)ηn), thus 

the critical points of fn(ηn) are η̃nk = kπ

n + 2
, k = 1, 2, · · · , 

[
n + 1

2

]
;

(d) fn(ηn) reaches its global minimum at ηn = η̃n1 = π

n + 2
, and min

ηn∈[0,π/2]
fn(ηn) = −mn with 

mn defined by (3.20) which is increasing in n.

The results in (a), (b), (c) can be obtained by direct calculations. In the following, we prove (d)

in two steps.
Firstly, we will show that the global minimum of fn(ηn), ηn ∈ (0, π/2] exists. From (c), we 

know that fn(η̃nk) are extreme values of fn(ηn), and we claim that |fn(η̃nk)| is decreasing in k. 
By the definition of fn, we have
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|fn(η̃nk)| =
∣∣∣∣cos

(
(n + 1)kπ

n + 2

)
cosn+1

(
kπ

n + 2

)∣∣∣∣ =
∣∣∣∣cos

(
kπ

n + 2

)∣∣∣∣
n+2

,

which is decreasing in k when k ≤ [(n + 1)/2]. Also, it is not difficult to verify that f ′
n(ηn) < 0

for 0 < ηn < ηn1 and f ′
n(ηn) > 0 for ηn1 < ηn < ηn2, which implies that ηn1 is a local minimum 

value of fn(ηn). Together with the fact that |fn(η̃n1)| is the largest one in all of the extreme 
values of fn(ηn), we can draw the conclusion that fn(ηn) reaches its global minimum at ηn =
η̃n1 = π

n + 2
.

The second step, we prove that mn = − min
ηn∈[0,π/2]

fn is increasing in n. By a direct calculation, 

we know that

mn = −fn

(
π

n + 2

)
= − cos

(n + 1)π

n + 2
cosn+1

(
π

n + 2

)
= cosn+2

(
π

n + 2

)
.

By letting x = n + 2 > 2, we have mn(x) =
(

cos
π

x

)x

, where x is a continuous variable, thus 

mn(x) = ex ln(cos(π/x)). Then, we take the derivative of mn(x) with respect to x and obtain

m′
n(x) =

(
cos

π

x

)x [
ln
(

cos
π

x

)
+ π

x
tan

π

x

]
.

Define q(x) = ln
(

cos
π

x

)
+ π

x
tan

π

x
, then we have

q ′(x) = −π2

x3 sec2 π

x
< 0, x > 2.

Therefore, q(x) > qmin = lim
x→+∞q(x) = 0. Because cos

π

x
> 0 for x > 2, so we obtain m′

n(x) >

0, which implies that mn(x) is increasing with respect to x for x > 2. According to the relation-
ship that x = n + 2, we know that mn is also increasing with respect to n.

At the end, we prove that G(zn, βn, hn, θn, λ∗) = 0 has at least one valid solution. From the 
above discussion, we know that fn(ηn) ≥ −mn, thus Eq. (3.22) can be solved when −2d1/d2 ≥
−mn which is equivalent to d2 ≥ 2d1/mn. By the properties of the function fn(ηn), it can be 

inferred that Eq. (3.22) has at least one solution ηn = ηnλ∗ satisfying 
π

2(n + 1)
< ηnλ∗ ≤ π

n + 2

as ηn = π

2(n + 1)
is the first zero of fn(ηn) and fn(ηn) reaches its minimum −mn at ηn = π

n + 2
. 

From (3.26), we see that sin((n +1)ηn) > 0, cos((n +1)ηn) < 0, which implies that 
π

2(n + 1)
<

ηn <
π

n + 1
and ηnλ∗ is a valid solution. Therefore, it can be inferred that G(zn, βn, hn, θn, λ∗) =

0 has at least one solution. This completes the proof. �
Remark 3.5. Lemma 3.4 gives the necessary conditions for Hopf bifurcations to occur in system 
(1.2):

(i) For n = 0, G(zn, βn, hn, θn, λ∗) = 0 has no solution, which implies that it is impossible to 
have Hopf bifurcations for the weak kernel case.
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(ii) For n ≥ 1, G(zn, βn, hn, θn, λ∗) = 0 has at least one solution when d2 ≥ 2d1/mn where mn

is defined as (3.20), thus it is possible for Hopf bifurcations to occur when d2 ≥ 2d1/mn. In 
what follows, we give two examples: there are two Hopf bifurcation values for strong kernel 
(n = 1) case in Proposition 3.7 and there is a unique Hopf bifurcation critical value for n = 4
case in Example 4.2. Moreover, by the monotonicity of mn with respect to n, we know that 
there is a larger range of d2 (for a fixed d1 > 0) for Hopf bifurcations to occur when n is 
larger. Also when d2 is larger, the number of solutions of (3.22) could be more than two for 
larger n.

Now by applying the implicit function theorem, we obtain the following result regarding the 
eigenvalue problem (3.14) for λ ∈ [λ∗, ̂λ].

Theorem 3.6. For each n ∈N and Wnλ∗ defined in Eq. (3.21), we have the following results:

(i) there is a unique continuously differentiable map Wn(λ) : [λ∗, ̂λ] → X1C × R3 defined by 
Wn(λ) := (znλ,βnλ,hnλ, θnλ) such that G(Wn(λ), λ) = 0 and Wn(λ∗) = Wnλ∗ ;

(ii) for λ ∈ (λ∗, ̂λ], the eigenvalue problem

�(λ, iωn, τn)ψn = 0, τn > 0, ψn ∈ XC \ {0}

is solvable with � defined in (3.5), that is, iωn ∈ σ(Anτ (λ)) if and only if

ωn = ωnλ := (λ − λ∗)hnλ, τn = τnλ := θnλ/ωnλ,

ψn = rnψnλ with ψnλ := βnλφ + (λ − λ∗)znλ,
(3.28)

where rn is a nonzero constant.

Proof. We define Tn = (Tn1, Tn2) : X1C × R3 �→ YC × R by Tn := D(zn,βn,hn,θn)G 
(
Wnλ∗ , λ∗

)
, 

which is the Fréchet derivative of G with respect to (zn, βn, hn, θn) at (znλ∗ , βnλ∗ , hnλ∗ , θnλ∗). 
Then we have

Tn1(χ, κ, ε,ϑ) =(d� + λ∗)χ + κ

[
(1 − ihnλ∗ − 2λ∗φ)φ

+ d2αλ∗

(
1 + 1

(1 + iθnλ∗)n+1

)
∇ · (φ∇φ)

]

− iεφ − ϑ
i(n + 1)λ∗αλ∗∇ · (φ∇φ)(

1 + iθnλ∗
)n+2 ,

Tn2(χ, κ, ε,ϑ) =2κ‖φ‖2
YC

,

where αλ∗ is defined in (2.13). We can verify that Tn is bijective from X1C × R3 to YC × R in 
the following two steps.
Step 1. We prove that Tn is injective. Suppose Tn(χ, κ, ε, ϑ) = (Tn1, Tn2) = (0, 0), we imme-
diately obtain κ = 0 by solving Tn2 = 2κ‖φ‖2

YC
= 0 as ‖φ‖2

YC
> 0. Substituting κ = 0 into 

Tn1 = 0, we have
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(d� + λ∗)χ − iεφ − ϑ
i(n + 1)λ∗αλ∗∇ · (φ∇φ)(

1 + iθnλ∗
)n+2 = 0. (3.29)

Letting χ = χr + iχi , we obtain the following equation by separating the real part of (3.29):

(d� + λ∗)χr − ϑ
(n + 1)λ∗αλ∗∇ · (φ∇φ) sin

(
(n + 2)ηnλ∗

)
(

1 + θ2
nλ∗

) n+2
2

= 0, (3.30)

where 1 + iθnλ∗ =
√

1 + θ2
nλ∗e

iηnλ∗ is applied. Multiplying both sides of Eq. (3.30) by φ and 
integrating over �, we obtain

−ϑ
(n + 1)λ∗αλ∗ sin

(
(n + 2)ηnλ∗

)
(

1 + θ2
nλ∗

) n+2
2

∫
�

∇ · (φ∇φ)φdx = 0,

as 
∫
�
(d� + λ∗)χrφdx = ∫

�
(d� + λ∗)φχrdx = 0. By the fact that 

∫
�

∇ · (φ∇φ)φdx =
− 
∫
�

φ|∇φ|2dx �= 0, we know that ϑ = 0 as 
∫
�
(d� + λ∗)χiφdx = ∫

�
(d� + λ∗)φχidx = 0. 

From (3.29) and ϑ = 0, we have (d� + λ∗)χi − εφ = 0, which implies that ε = 0. Since ε = 0, 
ϑ = 0 and κ = 0, it can be inferred that χ = 0, thus Tn is injective.
Step 2. Here we show that Tn is surjective. Suppose (ξ, a) ∈ YC ×R and Tn(χ, κ, ε, ϑ) = (ξ, a), 
then we have κ = a/‖φ‖2

YC
by solving Tn2 = a. As χ ∈ X1C , then we know that 

∫
�

χφdx = 0. 
Multiplying both sides of Tn1 = 0 by φ and integrating it over �, it can be obtained that

a

‖φ‖2
YC

⎡
⎣(1 − ihnλ∗)

∫
�

φ2dx − 2λ∗
∫
�

φ3dx + d2αλ∗

(
1 + 1

(1 + iθnλ∗)n+1

)∫
�

∇ · (φ∇φ)φdx

⎤
⎦

− iε

∫
�

φ2dx − ϑ
i(n + 1)λ∗αλ∗(
1 + iθnλ∗

)n+2

∫
�

∇ · (φ∇φ)φdx = 0.

From the above equation, we obtain the following two equations by separating the real and imag-
inary parts:

a

‖φ‖2
YC

⎡
⎣∫

�

φ2dx − 2λ∗
∫
�

φ3dx + d2αλ∗

⎛
⎝1 + cos((n + 1)ηnλ∗)

(1 + θ2
nλ∗)

n+1
2

⎞
⎠∫

�

∇ · (φ∇φ)φdx

⎤
⎦

+ ϑ
(n + 1)λ∗αλ∗ sin((n + 2)ηnλ∗)(

1 + θ2
nλ∗

) n+2
2

∫
�

∇ · (φ∇φ)φdx = 0,

(3.31)

and
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a

‖φ‖2
YC

⎡
⎣hnλ∗)

∫
�

φ2dx + d2αλ∗

⎛
⎝1 + sin((n + 1)ηnλ∗)

(1 + θ2
nλ∗)

n+1
2

⎞
⎠∫

�

∇ · (φ∇φ)φdx

⎤
⎦− ε

∫
�

φ2dx

+ ϑ
(n + 1)λ∗αλ∗ cos((n + 2)ηnλ∗)(

1 + θ2
nλ∗

) n+2
2

∫
�

∇ · (φ∇φ)φdx = 0.

(3.32)

Then, ϑ can be solved from Eq. (3.31). Substituting the obtained value of ϑ into (3.32), we can 
get the value for ε. Finally, we put all the values of κ, ϑ and ε into Tn1 = 0 and we can uniquely 
solve χ . Thus, Tn is surjective.

By the implicit function theorem, there exists a continuously differentiable mapping Wn(λ) :
[λ∗, ̂λ] → X1C ×R3 such that G (Wn(λ),λ) = 0 with Wn(λ∗) = Wnλ∗ . This completes the proof 
of existence.

And we need also to prove the uniqueness of the solution, that is, we need to verify that if there 

exists another mapping W̃n(λ) such that G 
(
W̃n(λ), λ

)
= 0, then W̃n(λ) → Wnλ∗ as λ → λ∗ in 

the norm of X1C ×R3. From Lemma 3.3, we see that {h̃nλ} is bounded as h̃nλ = ω̃nλ/(λ − λ∗)
for each n. And {β̃nλ} is also bounded according to the second equation of Eq. (3.19). For the 
boundedness of {z̃nλ}, we first prove that ∇ z̃nλ is bounded. Multiplying the first equation of 
Eq. (3.19) by {z̃nλ} and integrating over �, we obtain

d1‖∇ z̃nλ‖2
YC

≤ λ∗‖z̃nλ‖2
YC

+ M5‖z̃nλ‖YC + (λ − λ∗)M6‖∇ z̃nλ‖2
YC

+ (λ − λ∗)M7‖z̃nλ‖2
YC

,

where

M5 =d2αλ

(‖∇φ‖YC‖∇m(λ, ξλ)‖∞ + ‖φ‖YC‖�m(λ, ξλ)‖∞
)

+ d2αλ

|(1 + iθnλ)n+1|
(‖∇φ‖YC‖∇m(λ, ξλ)‖∞ + ‖�φ‖YC‖m(λ, ξλ)‖∞

)
M6 =d2αλ‖m(λ, ξλ)‖∞

|(1 + iθnλ)n+1| , M7 = d2αλ‖�m(λ, ξλ)‖∞
2

,

with m(λ, ξλ) = φ + (λ − λ∗)ξλ and Hölder inequality being applied. Also, according to the 

boundedness of αλ, m(λ, ξλ),
1

|(1 + iθnλ)n+1| for λ ∈ (λ∗, ̂λ], we can obtain the boundedness 

of M5, M6 and M7. As λ ∈ (λ∗, ̂λ], we know that d1 − (λ − λ∗)M6 > 0 by the definition of λ̂
defined as (3.1), thus we have

‖∇ z̃nλ‖2
YC

≤ M5

d1 − (λ − λ∗)M6
‖z̃nλ‖YC + λ∗ + (λ − λ∗)M7

d1 − (λ − λ∗)M6
‖z̃nλ‖2

YC
(3.33)

On the other hand, from Lemma 3.3, we know that

|〈(d1� + λ∗)z̃nλ, z̃nλ〉| ≥ d1(λ2 − λ1)‖z̃nλ‖2
YC

,

where λ2 is the second eigenvalue of operator −�. Together with the first equation of Eq. (3.19)
and (3.33), we obtain
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(d1λ2 − λ∗)‖z̃nλ‖2
YC

≤ M5‖z̃nλ‖YC + (λ − λ∗)M6‖∇ z̃nλ‖2
YC

+ (λ − λ∗)M7‖z̃nλ‖2
YC

≤ d1M5

d1 − (λ − λ∗)M6
‖z̃nλ‖YC + (λ − λ∗)(λ∗M6 + d1M7)

d1 − (λ − λ∗)M6
‖z̃nλ‖2

YC
,

which implies that

‖z̃nλ‖YC ≤ d1M5

(d1λ2 − λ∗)(d1 − (λ − λ∗)M6)
+ (λ − λ∗)(λ∗M6 + d1M7)

(d1λ2 − λ∗)(d1 − (λ − λ∗)M6)
‖z̃nλ‖YC .

Hence, {z̃nλ} is bounded in YC when λ ∈ [λ∗, ̂λ]. Since the operator d1� + λ∗ : (X1)C �→ (Y1)C

has a bounded inverse, by applying (d1� + λ∗)−1 on g1

(
z̃nλ, β̃nλ, h̃nλ, θ̃nλ, λ

)
= 0, we find that 

{z̃nλ} is also bounded in XC , and hence 
{
W̃n(λ) : λ ∈ (λ∗, λ∗]

}
is precompact in X1C × R3. 

Therefore, there is a subsequence 
{
W̃n(λ

j ) :=
(
z̃nλj , β̃nλj , h̃nλj , θ̃nλj

)}
such that

W̃n(λ
j ) → W̃n(λ∗), λj → λ∗ as j → ∞.

By taking the limit of the equation (d1� + λ∗)−1G 
(
W̃n(λ

j ), λj
)

= 0 as j → ∞, we have that 

G 
(
W̃n(λ∗), λ∗

)
= 0. Also, by Lemma 3.4, we know that G (zn,βn,hn, θn, λ∗) = 0 has a unique 

solution given by (zn, βn, hn, θn) = Wnλ∗ , thus W̃n(λ∗) = Wnλ∗ . Because W̃n(λ) → Wnλ∗ as 
λ → λ∗ in the norm of X1C × R3, so W̃n(λ) = Wn(λ) by the continuity of Wn(λ) in λ. This 
proves part (i), and part (ii) is immediately observed from part (i). �

Although Eq. (3.22) is solvable for a general n ≥ 1, it is still difficult to give an explicit 
solution. For the strong kernel case (n = 1), we can explicitly solve Eq. (3.22), and the results 
are stated as follows.

Proposition 3.7. When n = 1 and d2 > 16d1, Eq. (3.22) has exactly two solutions:

η
(1)
1λ∗ = arccos

1

2

√√√√1 +
√

d2 − 16d1

d2
, η

(2)
1λ∗ = arccos

1

2

√√√√1 −
√

d2 − 16d1

d2
, (3.34)

and

h
(1)
1λ∗ = 2d2

2d1 + d2
sinη

(1)
1λ∗ cos3 η

(1)
1λ∗ , h

(2)
1λ∗ = 2d2

2d1 + d2
sinη

(2)
1λ∗ cos3 η

(2)
1λ∗ . (3.35)

Thus there are exactly two possible critical delay values τ (i)
1λ (i = 1, 2) for Hopf bifurcation 

satisfying

lim
λ→λ∗

(λ − λ∗)τ (1)
1λ = θ

(1)
1λ∗

h
(1)
1λ∗

, lim
λ→λ∗

(λ − λ∗)τ (2)
1λ = θ

(2)
1λ∗

h
(2)
1λ∗

(3.36)

where θ(i) = tanη
(i)

, i = 1, 2 and 0 < τ
(1)

< τ
(2).
1λ∗ 1λ∗ 1λ 1λ
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Proof. We put n = 1 into Eq. (3.22) and obtain

cos(2η1) cos2 η1 = (2 cos2 η1 − 1) cos2 η1 = −2d1

d2
. (3.37)

Let ρ = cos2 η1 ∈ (0, 1], Eq. (3.37) can be rewritten as

2ρ2 − ρ + 2d1

d2
= 0,

which has two roots

ρ1 = 1

4
−

√
1

16
− d1

d2
, ρ2 = 1

4
+

√
1

16
− d1

d2

satisfying 0 < ρ1 <
1

4
< ρ2 <

1

2
. Thus, η1 can be solved as

η
(1)
1λ∗ = arccos

√
ρ2, η

(2)
1λ∗ = arccos

√
ρ1,

satisfying 
π

4
< η

(1)
1λ∗ <

π

3
< η

(2)
1λ∗ <

π

2
, from which Eq. (3.34) can be derived. Substituting (3.34)

into (3.21), we obtain the values of h1 as in (3.35). At the end, by the fact that θn = ωnτn =
(λ − λ∗)hnτn, we know that

τn = τnλ = θn

(λ − λ∗)hn

= tanηn

(λ − λ∗)hn

,

thus we can calculate the possible critical values for n = 1 case as in Eq. (3.36). By the definition 
in (3.34), we see that η(1)

1λ∗ < π/3 and η(2)
1λ∗ > π/3 as d2 − 16d1 > 0, thus we immediately obtain 

that h(1)
1λ∗ > h

(2)
1λ∗ and θ(1)

1λ∗ < θ
(2)
1λ∗ . By (3.36), we reach our conclusion that 0 < τ

(1)
1λ < τ

(2)
1λ when 

λ is close to λ∗. �
Next we verify the transversality conditions for Hopf bifurcation when n = 1.

Lemma 3.8. When n = 1 and d2 > 16d1, for each λ ∈ (λ∗, ̂λ], let τ (i)
1λ , i = 1, 2 be defined as 

(3.36), we have

(i) μ = μ 
(
τ

(i)
1λ

)
:= iω

(i)
1λ is a simple eigenvalue of A1τ (λ) when τ = τ

(i)
1λ ;

(ii) Re

(
dμ

dτ

(
τ

(1)
1λ

))
> 0 and Re

(
dμ

dτ

(
τ

(2)
1λ

))
< 0.

Proof. The proof of part (i) is similar to that of Theorem 3.5 in [31], so we omit it here. For 
part (ii), by applying the implicit function theorem, we know that there exists a neighborhood 

O ×D ×H ⊂R ×C×XC of 
(
τ

(i)
, iω

(i)
, ψ

(i)
)

and a continuous differential function (μ, ψ) :
1λ 1λ 1λ
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O → D ×H such that, for each τ ∈ O , μ(τ) is the only eigenvalue of A1τ (λ) with its associated 
eigenfunction ψ(τ) and the following equalities hold:

μ
(
τ

(i)
1λ

)
= iω

(i)
1λ , ψ

(
τ

(i)
1λ

)
= ψ

(i)
1λ ,

�(λ,μ(τ), τ ) =
[
A(λ) + d2

(1 + μ(τ)τ)2 ∇ · (uλ∇) − λuλ − μ(τ)

]
ψ(τ) = 0, τ ∈ O.

(3.38)

Differentiating Eq. (3.38) with respect to τ at τ = τ
(i)
1λ , we get

−
dμ

(
τ

(i)
1λ

)
dτ

⎡
⎢⎣ 2d2τ

(i)
1λ(

1 + μ
(
τ

(i)
1λ

)
τ

(i)
1λ

)3 ∇ ·
(
uλ∇ψ

(i)
1λ

)
+ ψ

(i)
1λ

⎤
⎥⎦

−
2d2μ

(
τ

(i)
1λ

)
(

1 + μ
(
τ

(i)
1λ

)
τ

(i)
1λ

)3 ∇ ·
(
uλ∇ψ

(i)
1λ

)
+ �

(
λ, iω

(i)
1λ , τ

(i)
1λ

) dψ

dτ

(
τ

(i)
1λ

)
= 0.

(3.39)

Multiplying Eq. (3.39) by ψ(i)
1λ and integrating over �, we obtain

dμ

dτ

(
τ

(i)
1λ

)
=

−
2d2μ

(
τ

(i)
1λ

)
(

1 + μ
(
τ

(i)
1λ

)
τ

(i)
1λ

)3

∫
�

∇ ·
(
uλ∇ψ

(i)
1λ

)
ψ

(i)
1λ dx

2d2τ
(i)
1λ(

1 + μ
(
τ

(i)
1λ

)
τ

(i)
1λ

)3

∫
�

∇ ·
(
uλ∇ψ

(i)
1λ

)
ψ

(i)
1λ dx +

∫
�

∣∣∣ψ(i)
1λ

∣∣∣2 dx

=

2id2ω
(i)
1λ(

1 + iθ
(i)
1λ

)3

∫
�

uλ

∣∣∣∇ψ
(i)
1λ

∣∣∣2 dx

∫
�

(
ψ

(i)
1λ

)2
dx − 2d2τ

(i)
1λ(

1 + iθ
(i)
1λ

)3

∫
�

uλ

∣∣∣∇ψ
(i)
1λ

∣∣∣2 dx

.

(3.40)

When λ → λ∗, we can obtain the following results

lim
λ→λ∗

Re

(
1

(λ − λ∗)2

dμ

dτ

(
τ

(i)
1λ

))
=Re

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2id2h
(i)
1λ∗αλ∗(

1 + iθ
(i)
1λ∗

)3

∫
�

φ |∇φ|2 dx

∫
�

φ2dx − 2d2θ
(i)
1λ∗αλ∗

h1λ∗
(

1 + iθ
(i)

)3

∫
�

φ |∇φ|2 dx

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
1λ∗
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=Re

⎛
⎜⎝ 2id2

(
h

(i)
1λ∗

)2

(2d1 + d2)h
(i)
1λ∗

(
1 + iθ

(i)
1λ∗

)3 − 2d2θ
(i)
1λ∗

⎞
⎟⎠

=
2d2(2d1 + d2)

(
h

(i)
1λ∗

)3
(

1 +
(
θ

(i)
1λ∗

)2
)3/2

sin
(

3η
(i)
1λ∗

)
R2

n + I 2
n

,

where

Rn = (2d1 + d2))h
(i)
1λ∗

(
1 +

(
θ

(i)
1λ∗

)2
)3/2

cos
(

3η
(i)
1λ∗

)
− 2d2θ

(i)
1λ∗ ,

In = (2d1 + d2))h
(i)
1λ∗

(
1 +

(
θ

(i)
1λ∗

)2
)3/2

sin
(

3η
(i)
1λ∗

)
,

and the fact that 
∫
�

φ |∇φ|2 dx = λ∗
2d1

∫
�

φ3dx = 1

αλ∗(2d1 + d2)

∫
�

φ2dx from (2.9) and (2.13) is 

applied. Therefore, we see that the sign of Re

(
dμ

dτ

(
τ

(i)
1λ∗

))
depends on the sign of sin

(
3η

(i)
1λ∗

)
. 

From (3.34), it is known that 
π

4
< η

(1)
1λ∗ <

π

3
and 

π

3
< η

(2)
1λ∗ <

π

2
, thus we have

3π

4
< 3η

(1)
1λ∗ < π < 3η

(2)
1λ∗ <

3π

2
,

which implies that sin
(

3η
(1)
1λ∗

)
> 0 and sin

(
3η

(2)
1λ∗

)
< 0. Hence the results in part (ii) follow from

the continuous differentiability of μ(τ) with respect to λ. �
Based on the discussion above, we give the results about the stability of steady state of 

Eq. (1.2) in the following two theorems for weak kernel and strong kernel cases, respectively.

Theorem 3.9. When n = 0 (weak kernel), all the eigenvalues of A0τ (λ) have negative real parts 
for all τ > 0, and the positive steady state uλ of (1.2) is locally asymptotically stable for all 
τ > 0.

Proof. To prove our conclusion, we use a similar method as Proposition 2.9 in [4]. Assume that 
A0τ (λ) has eigenvalues with positive real parts, then there exists a sequence {λj }∞j=1, satisfying 

λj > λ∗ for j ≥ 1, lim
j→∞λj = λ∗, and for each j , the eigenvalue problem

⎧⎨
⎩A(λj )ψλj + d2

1 + μλj τ
∇ · (uλj ∇ψλj ) − λjuλj ψλj = μψλj , x ∈ �,

ψ j = 0, x ∈ ∂�,

(3.41)
λ
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has an eigenvalue μλj with Re(μλj ) ≥ 0 and the corresponding eigenfunction ψλj satisfy-
ing ‖ψλj ‖YC = 1. Define Ã(λ) � d1� + d2∇ · (uλ∇) + λ(1 − uλ), then one can verify that 
A(λj )uλj = Ã(λj )uλj = 0. Thus, Eq. (3.41) can be rewritten as

⎧⎨
⎩Ã(λj )ψλj + d2∇ · (ψλj ∇uλj ) − d2μλj τ

1 + μλj τ
∇ · (uλj ∇ψλj ) − λjuλj ψλj = μλj ψλj , x ∈ �,

ψλj = 0, x ∈ ∂�.

(3.42)
Then, we write ψλj as ψλj = cλj uλj +φλj , where cλj ∈C and cλj = 〈uλj , ψλj 〉/〈uλj , uλj 〉. Here 
uλj is the positive steady state of Eq. (1.2) for λ = λj , and φλj ∈ XC satisfies 〈φλj , uλj 〉 = 0.

From the fact that Ã(λj )uλj = A(λj )uλj = 0 and uλj > 0, we know that 0 is the principal 
eigenvalue of Ã(λj ) and uλj is the corresponding eigenfunction. Also, it is not difficult to verify 
that Ã(λj ) is a self-adjoint operator, thus

〈Ã(λj )φλj , uλj 〉 = 〈Ã(λj )uλj , φλj 〉 = 0.

Substituting ψλj = cλj uλj + φλj and μ = μλj into Eq. (3.42), innerproducting with ψλj , we 
have

〈Ã(λj )φλj , φλj 〉

=μλj +
〈
λjuλj ψλj − d2∇ · (ψλj ∇uλj ) + d2μλj τ

1 + μλj τ
∇ · (uλj ∇ψλj ),ψλj

〉
.

(3.43)

As Ã(λj ) is a self-adjoint operator and 0 is its principal eigenvalue, thus 〈Ã(λj )φλj , φλj 〉 ≤ 0
holds for any φλj ∈ XC . Define

Dj =
〈
λjuλj ψλj − d2∇ · (ψλj ∇uλj ) + d2μλj τ

1 + μλj τ
∇ · (uλj ∇ψλj ),ψλj

〉
,

then we can obtain that

|Dj | ≤ σ‖uλj ‖∞ + d2‖∇uλj ‖∞‖ψλj ‖YC‖∇ψλj ‖YC + d2‖uλj ‖∞‖∇ψλj ‖2
YC

≤ σ‖uλj ‖∞ + d2M1‖∇uλj ‖∞‖ψλj ‖2
YC

+ d2M
2
1‖uλj ‖∞‖ψλj ‖2

YC
,

(3.44)

where ‖∇ψλj ‖YC ≤ M1‖ψλj ‖YC from Lemma 3.2 is applied, σ = max
j≥1

λj , and

∣∣∣∣ μλj τ

1 + μλj τ

∣∣∣∣
2

=
∣∣∣∣∣Re2(μλj τ ) +Re(μλj ) + Im2(μλj ) + iIm(μλj )

Re2(μλj τ ) + 2Re(μλj ) + 1 + Im2(μλj )

∣∣∣∣∣
2

< 1,

which can be verified through elementary calculation. According to the assumption that 
Re(μλj ) ≥ 0, Eq. (3.43) and the fact that 〈Ã(λj )ψλj , ψλj 〉 ≤ 0, it can be inferred that

0 ≤ Re(μλj ) ≤ |Dj |, 0 ≤ ∣∣Im(μλj )
∣∣ ≤ |Dj |,
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together with (3.44), lim
j→∞‖uλj ‖∞ = 0, and lim

j→∞‖∇uλj ‖∞ = 0 which can be inferred from 

(2.13), we have

lim
j→∞Re(μλj ) = lim

j→∞
∣∣Im(μλj )

∣∣ = 0.

From (3.43) and using similar argument as in the proof of Lemma 2.3 in [3], we have

∣∣Dj

∣∣+ |μλj | ≥ |〈Ã(λj )φλj , φλj 〉| ≥ |λ2(λ
j )| · ‖φλj ‖2

YC
, (3.45)

where λ2(λ
j ) is the second eigenvalue of Ã(λj ). When j → ∞, both |Dj | and |μλj | go to 

zero as lim
j→∞‖uλj ‖∞ = 0 and lim

j→∞‖∇uλj ‖∞ = 0 hold, so the inequality (3.45) implies that 

lim
j→∞‖φλj ‖YC = 0.

Since ψλj = cλj uλj + φλj and ‖ψλj ‖YC = 1, then we obtain

lim
n→∞|cλj |(λj − λ∗) lim

j→∞

∥∥∥∥ uλj

λj − λ∗

∥∥∥∥
YC

= αλj lim
n→∞|cλj |(λj − λ∗) = 1,

and hence lim
j→∞|cλj |(λj − λ∗) = 1

αλj

> 0. Now we calculate that

Dj

λj − λ∗
= 1

λj − λ∗

〈
λjuλj (cλj uλj + φλj ) − d2∇ · ((cλj uλj + φλj )∇uλj )

+ d2μλj τ

1 + μλj τ
∇ · (uλj ∇(cλj uλj + φλj )), (cλj uλj + φλj )

〉

=J1 + J2 + J3 + J4 + J5 + J6 + J7 + J8 − J9 − J10 − J11 − J12,

(3.46)

where

J1 = λj |cλj |2(λj − λ∗)2
∫
�

u3
λj

(λj − λ∗)3 dx, J2 = λj cλj (λj − λ∗)
∫
�

u2
λj φλj

(λj − λ∗)2 dx,

J3 = λj cλj (λ
j − λ∗)

∫
�

u2
λj φλj

(λj − λ∗)2 dx, J4 = λj

∫
�

|φλj |2uλj

λj − λ∗
dx,

J5 = d2|cλj |2(λj − λ∗)2
∫
�

uλj |∇uλj |2
(λj − λ∗)3 dx, J6 = d2cλj (λ

j − λ∗)
∫
�

uλj ∇uλj ∇φλj

(λj − λ∗)2 dx,

J7 = d2cλj (λ
j − λ∗)

∫ |∇uλj |2φλj

(λj − λ∗)2 dx, J8 = d2

∫ ∇uλj φλj ∇φλj

λj − λ∗
dx,
� �
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J9 = d2μλj τ |cλj |2(λj − λ∗)2

1 + μλj τ

∫
�

uλj |∇uλj |2
(λj − λ∗)3 dx,

J10 = d2μλj τcλj (λj − λ∗)
1 + μλj τ

∫
�

uλj ∇uλj ∇φλj

(λj − λ∗)2 dx,

J11 = d2μλj τcλj (λj − λ∗)
1 + μλj τ

∫
�

uλj ∇φλj ∇uλj

(λj − λ∗)2 dx, J12 = d2μλj τ

1 + μλj τ

∫
�

uλj φλj ∇φλj

λj − λ∗
dx.

Since lim
j→∞‖φλj ‖YC = 0, then lim

j→∞‖φλj ‖L1 = 0. Also we know that ‖∇ψλj ‖YC is bounded, so 

‖∇φλj ‖YC is also bounded. Thus, together with lim
j→∞|cλj |(λj − λ∗) = 1

αλj

> 0, we have

lim
j→∞J1 = λ∗αλ∗

∫
�

φ3dx, lim
j→∞J5 = d2αλ∗

∫
�

φ|∇φ|2dx,

lim
j→∞J9 = d2μλj τ

1 + μλj τ
αλ∗

∫
�

φ|∇φ|2dx, lim
j→∞Ji = 0, i = 2,3,4,6,7,8,10,11,12.

Therefore, we have

lim
j→∞

Dj

λj − λ∗
= αλ∗

⎛
⎝λ∗

∫
�

φ3dx + d2

∫
�

φ|∇φ|2dx − d2μλj τ

1 + μλj τ

∫
�

φ|∇φ|2dx

⎞
⎠

= αλ∗(2d1 + d2)

∫
�

φ|∇φ|2dx − αλ∗d2μλj τ

1 + μλj τ

∫
�

φ|∇φ|2dx

where 2d1
∫
�

φ|∇φ|2dx = λ∗
∫
�

φ3dx is applied. Thus,

lim
j→∞

Re(Dj )

λj − λ∗
= αλ∗

∫
�

φ|∇φ|2dx

(
2d1 + d2 − d2Re

(
μλj τ

1 + μλj τ

))

> 2d1αλ∗

∫
�

φ|∇φ|2dx > 0.

Again by (3.43), it can be obtained that

Re(μλj ) =Re
(
〈Ã(λj )ψλj ,ψλj 〉

)
−Re(Dj ) < 0. (3.47)

That is a contradiction with Re(μλj ) ≥ 0 for j ≥ 1. Then we know that all the eigenvalues of 
A0τ (λ) have negative real parts and thus uλ is locally asymptotically stable for Eq. (1.2) when 
n = 0. �
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For the strong kernel case n = 1, from Theorem 3.6, Proposition 3.7 and Lemma 3.8, we have 
the following results about the Hopf bifurcations near the positive steady state uλ of (1.2) and 
the stability of uλ.

Theorem 3.10. Suppose that d1 > 0, d2 > 16d1 and λ ∈ (λ∗, ̂λ], let τ (i)
1λ be defined by (3.36) with 

i = 1, 2 and Anλ(τ) in (3.3) with n = 1, then we have the following results:

(i) there exists exactly two critical points τ (1)
1λ and τ (2)

1λ such that all the eigenvalues of A1τ (λ)

have negative real parts when τ ∈
(

0, τ
(1)
1λ

)
. A1τ (λ) has a pair of purely imaginary eigen-

values ±iω
(i)
1λ

(
ω

(i)
1λ > 0

)
when τ = τ

(i)
1λ for i = 1, 2, A1τ (λ) has two eigenvalues with 

positive real parts when τ ∈
(
τ

(1)
1λ , τ

(2)
1λ

)
, and when τ ∈

(
τ

(2)
1λ ,+∞

)
, all the eigenvalues of 

A1τ (λ) have negative real parts;
(ii) Hopf bifurcations occur at τ = τ

(1)
1λ and τ = τ

(2)
1λ for Eq. (1.2) so that there is a continuous 

family of periodic solutions when τ is in a neighborhood of τ (1)
1λ and τ (2)

1λ in the form of

{(τ1(s), u1(x, t, s), T1(s)) : s ∈ (0, δ1)}

where u1(x, t, s) is a T1(s)-periodic solution of (1.2) with τ = τ1(s), and τ1(0) = τ
(1)
1λ or 

τ1(0) = τ
(2)
1λ , lim

s→0+ u1(x, t, s) = uλ(x) and lim
s→0+ T1(s) = 2π/ω1λ;

(iii) the positive steady state uλ of Eq. (1.2) is locally asymptotically stable for τ ∈
(

0, τ
(1)
1λ

)
∪(

τ
(2)
1λ ,+∞

)
, and it is unstable for τ ∈

(
τ

(1)
1λ , τ

(2)
1λ

)
.

In Theorems 3.9 and 3.10, the stability/instability of positive steady state uλ of Eq. (1.2) is 
given for the weak kernel (n = 0) and strong kernel (n = 1) cases, respectively. In particular, it is 
shown that a delay-induced instability occurs for the positive steady state in a window of delay 

values τ ∈
(
τ

(1)
1λ , τ

(2)
1λ

)
, and the positive steady state regains the stability for τ > τ

(2)
1λ . This is an 

example of stability switch.
For a general n ≥ 2, we can also analyze the occurrence of Hopf bifurcation and the stability 

of the positive steady state in a similar way. For large n and large d2, from Lemma 3.4, we may 
have more than two bifurcation points and multiple stability switches, as long as the bifurcation 
value τnλ satisfies

lim
λ→λ∗

(λ − λ∗)τnλ = θnλ∗
hnλ∗

= sinηnλ∗
sin(n + 1)ηnλ∗ cosn+1 ηnλ∗

> 0. (3.48)

4. Numerical simulations

Here we show some numerical simulations of Eq. (1.2) to verify our theoretical results in 
Section 3. Numerical simulations of Eq. (1.2) is challenging as the distributed delay is an integral 
over an infinite interval. By a similar method as in [39] and [25], Eq. (1.2) with n = 0 (weak 
kernel) can be converted into an equivalent new system without time delays:
331



J. Shi and Q. Shi Journal of Differential Equations 389 (2024) 305–337
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ut (x, t) = d1�u(x, t) + d2div(u(x, t)∇v(x, t)) + λu(x, t)(1 − u(x, t)), x ∈ �, t > 0,

vt (x, t) = τ−1(u(x, t) − v(x, t)), x ∈ �, t > 0,

u(x, t) = v(x, t) = 0, x ∈ ∂�, t > 0,

u(x,0) = u0(x,0), v(x,0) = τ−1

0∫
−∞

e
s
τ u0(x, s)ds, x ∈ �.

(4.1)
And when n = 1 (strong kernel), Eq. (1.2) is equivalent to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut (x, t) = d1�u(x, t) + d2div(u(x, t)∇v(x, t)) + λu(x, t)(1 − u(x, t)), x ∈ �, t > 0,

vt (x, t) = τ−1w(x, t) − v(x, t)), x ∈ �, t > 0,

wt (x, t) = τ−1(u(x, t) − w(x, t)), x ∈ �, t > 0,

u(x, t) = v(x, t) = w(x, t) = 0, x ∈ ∂�, t > 0,

u(x,0) = u0(x,0), v(x,0) = −τ−2

0∫
−∞

se
s
τ u0(x, s)ds, x ∈ �,

w(x,0) = τ−1

0∫
−∞

e
s
τ u0(x, s)ds, x ∈ �.

(4.2)
We use the equivalent systems (4.1) and (4.2) for the numerical simulations of (1.2), and a similar 
system with n + 2 equations can be used for the simulations when n ≥ 2. In all simulations, we 
take d1 = 0.1 and � = (0, π), then we have λ∗ = 0.1.

In Fig. 1, we show the convergence of solutions of Eq. (4.1) for different d2 and λ values 
to verify Theorem 2.2. When d2 > −2d1 = −0.2, a forward bifurcation of steady state occurs 
and a positive steady state exists for λ > λ∗: the solution of Eq. (4.1) converges to zero when 
λ = 0.098 < λ∗ (see (a)) and to a spatially non-homogeneous steady state when λ = 0.11 > λ∗
(see (b)). When d2 < −2d1 = −0.2, a backward bifurcation occurs: when λ = 0.098 < λ∗, the 
solution of system (4.1) converges to a spatially non-homogeneous steady state for a large initial 
value (see (d)), while it comes to zero for a small initial value, which shows a bistable dynamics.

Example 4.1. When n = 1 (strong kernel case), from Proposition 3.7, we know that the condition 
for Hopf bifurcation to occur is d2 > 16d1. Taking d1 = 0.1 and the spatial domain as � = (0, π), 
we obtain λ∗ = d1λ1 = 0.1 and d∗

2 = 16d1 = 1.6. If d2 = 1.4 < 1.6, Hopf bifurcation will not 
occur; if d2 = 2 > 1.6, according to Proposition 3.7, the Hopf bifurcation values are

τ
(1)
1λ ≈ 140, τ

(2)
1λ ≈ 960.

In Fig. 2, we use system (4.2) to simulate the dynamical behavior of Eq. (1.2) for the strong 
kernel case. When we set λ = 0.13 > λ∗ = 0.1, we take d2 = 1.4 < 16d1 and d2 = 2 > 16d1
for the numerical simulations, respectively. When d2 = 1.4, we see that the solution of Eq. (4.2)
converges to the positive steady state for any τ > 0. For d2 = 2 case, a stability switch phe-
nomenon occurs by taking τ = 100, τ = 400, and τ = 1500: the solution converges to a stable 
steady state when τ = 100 < τ

(1)
1λ = 140 (see Fig. 2 (d)), then the steady state loses its stability 

and a spatially non-homogeneous oscillatory pattern arises when we increase τ value such that 
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Fig. 1. Numerical simulations of system (1.2) for the weak kernel case when the parameters are d1 = 0.1, τ = 10 and 
� = (0, π), where “IC” stands for “Initial condition”. In each figure, the color indicates the value of u(x, t) according to 
the colorbar. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

τ
(1)
1λ < τ = 400 < τ

(2)
1λ (see Fig. 2 (e)). However, if we continue to increase τ to τ = 1500 > τ

(2)
1λ , 

we see from Fig. 2 (f) that the solution of Eq. (4.2) converges again to the positive steady state.
When we increase n, Hopf bifurcation can still occur, however the dynamics of the system 

(1.2) may differ from the strong kernel case, for example, there is only one Hopf bifurcation 
value when n = 4.

Example 4.2. When n = 4, we have m4 = cos6
(π

6

)
= 0.4219 according to Lemma 3.4, and 

Hopf bifurcation can occur in system (1.2) when d2 ≥ 2d1/m4 = 4.741d1. Taking d1 = 0.1 and 
the spatial domain as � = (0, π), we obtain λ∗ = d1λ1 = 0.1 and d∗

2 = 2d1/m4 = 0.4741, 

Eq. (3.22) becomes cos(5η5λ) cos5 η5λ = −0.2 and has two solutions η(1)
4λ = 0.3720, η

(2)
4λ =

0.7305. By solving (3.35), we obtain h(1)
4λ = 0.5605 and h(2)

4λ = −0.0934 < 0 which is not valid. 
Finally, the unique Hopf bifurcation values can be computed as

τ
(1)
4λ =

tan
(
η

(1)
4λ

)
(1)

≈ 23.

(λ − λ∗)h4λ
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Fig. 2. Numerical simulations of system (1.2) for the strong kernel case when the parameters are d1 = 0.1, λ = 0.13
and � = (0, π). (Upper row): d2 = 1.4 < 16d1, Hopf bifurcation will not occur and the steady state remains stable for 
any τ > 0; (Lower row): d2 = 2 > 16d1, the steady state is stable for small and large τ value, and it is unstable for 
intermediate τ values (it converges to a spatially non-homogeneous time-periodic solution). In each figure, the color 
indicates the value of u(x, t) according to colorbar, and the initial value is taken as u0(x) = 0.04 sin(x) for (a)-(c) and 
u0(x) = 0.03 sin(x) for (d)-(e).

Fig. 3. Numerical simulations of system (1.2) for n = 4 case when the parameters are d1 = 0.1, d2 = 1, λ = 0.13 and 
� = (0, π). In each figure, the color indicates the value of u(x, t) according to colorbar, and the initial value is taken as 
u0(x) = 0.03 sin(x).

Then, we take different τ values to perform simulations for n = 4 case of system (1.2): τ = 10, 
τ = 30, and τ = 100 to perform the simulations: the solutions converge to a stable positive steady 
state when τ = 10 < τ4λ (see Fig. 3 (a)), then the steady state loses its stability and a spatially 
non-homogeneous oscillatory pattern arises when we increase τ value such that τ = 30 > τ4λ

(see Fig. 3 (b)). If we continue to increase τ to τ = 100, we see from Fig. 3 (c) that the time-
periodic pattern still exists but with a larger period.
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5. Discussion

In the past decade, spatial memory and cognition drew much attention in the mechanistic 
modeling of animal movements [8,14]. In the present work, we formulate a reaction-diffusion 
equation with a diffusive temporally distributed delay term. This work is inspired by the recent 
work [25] where a spatiotemporal distributed delay is considered to model the effect of social 
animals’ memory, and the memory of animals is assumed to rely on the whole historic infor-
mation as well as the spatial territory conditions. While, it is also known that many animals, 
especially most carnivores, are solitary and asocial because the costs of intraspecific competition 
outweigh the benefits accrued with group living [7]. Therefore it is of interest to study the role 
of spatial memory of solitary type animals in their spatial movement. As such animals have very 
weak connections with others of their species, the influence of the spatial variation from other 
individuals is negligible. The diffusive delay term caused by animals’ memory can be modeled 
by a weighted integral of the population density over all the past time, which is named as tem-
poral distributed delay according to the previous study [13]. It is also known that many solitary 
animals, such as tiger, are usually very territorial, which means that they will not allow others to 
step in their territory and they will be driven away when they invade others’ land as well. In this 
situation, we may reasonably assume that the boundary environment of the animals’ territory is 
hostile.

For the existence of spatially non-homogeneous steady state in the temporally distributed 
memory model (1.2), it is shown that the spatially non-homogeneous steady state is generated via 
a forward steady-state bifurcation when d2 > −2d1 and a backward steady-state bifurcation when 
d2 < −2d1. Also, the spatially non-homogeneous steady state is unique when d2 > 0. Under 
the condition that d2 > 0, we investigate the stability of the unique spatially non-homogeneous 
steady state. When the temporal kernel is take as weak kernel, the spatially non-homogeneous 
steady state remains stable for any τ which is the average delay of the temporal time delay in 
model (1.2). The result is similar to the weak kernel case of a spatiotemporal delay model [25]. In 
the strong kernel case, we show that when the strength of the memory-based movement is strong 
enough (d2 large), the positive non-homogeneous steady state solution could lose its stability 
if the average delay τ is in an intermediate range, and two Hopf bifurcations occur when τ
increases: the first one to destabilize the steady state, and the second one to regain the stability. 
This shows that a temporally distributed memory-based delay with a large average delay value is 
a stabilizing force, which is different from the cases of discrete delay [21] or spatiotemporal delay 
[25]. From the biological perspective, the oscillatory patterns generated via Hopf bifurcations 
reflect the periodically temporal distribution of the species, which is reasonable as the animals 
will periodically move in their habitat to gain better resources according to their memory and 
experience. Our study shows that this situation usually happens when the average memory is not 
too large or small.

In [33], Wang and Salmaniw summarize the study about the spatial memory models and 
leave some open problems. To be more concrete, we refer the readers to the works in 
[1,11,21–23,26–29,32,34,35,37] for the discrete spatial memory and [12,19,25,30,38] for dis-
tributed spatial memory (with Neumann boundary condition). Our work in the present paper 
contributes to the study of the effects of memory on animals’ spatial movements by proposing a 
temporally distributed delay term to model the diffusive memory under a hostile boundary condi-
tion. In the future, it is natural to extend the modeling idea to interacting species in an ecosystem, 
for instance, spatial memory of resource distribution by consumers and spatial memory of preda-
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tor distribution by prey. The aggregated research efforts in this direction will contribute to the 
ecological theory of cognitive animal movements.
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