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Abstract

In this paper, a reaction-diffusion population model with Dirichlet boundary condition and a directed
movement oriented by a temporally distributed delay is proposed to describe the lasting memory of animals
moving over space. The temporal kernel of the memory is taken as Gamma distribution function, among
which there are two biologically meaningful cases: one is the weak kernel which implies that animals can
immediately acquire knowledge and memory decays over time, the other is the strong kernel by which we
assume that animals’ memory undergoes learning and memory decay stages. It is shown that the population
stabilizes to a positive steady state and aggregates in the interior of the territory when the delay kernel is the
weak type. In the strong kernel case, oscillatory patterns can first arise via a Hopf bifurcation with a small
memory delay and then vanish when the system undergoes a Hopf bifurcation with a large memory delay,
which implies that stability switch occurs and spatial-temporal patterns emerge for intermediate value of
delays.
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1. Introduction

The effect of animals’ memory and cognition on their diffusive spatial movement recently
has received much attention in characterizing complex animal movement patterns [8]. In [23],
a diffusive animal movement model with explicit spatial memory is proposed by assuming that
animals have information gained via their long-distance sight or social communications with
their conspecifics [17]:

0
—I:(x, ty=d1Au(x,t) + dodiv(u(x,t)Vu(x,t — 1))+ gu(x,1)), xe€Q, t>0,

B_M(x’t)zo’ x€d, t>0,
n

u(x,t) =n(x,t), xeQ, te(—r0]

(1.1)
where the memory-based diffusion is related to the memory of a particular moment in the past,
which induces a discrete delay. However, a spatially and/or temporally distributed delay for
memory variation is more realistic as highly developed animals can remember the historic dis-
tribution or clusters of the species in space. Such delays may include decreases in intensity and
spatial precision [8,23]. Based on this work, we formulate a scalar reaction-diffusion equation
with a spatiotemporally distributed memory-based diffusion term in [25] to model the diffusive
movement of animals who can memorize past information as well as the information from their
surroundings. This new distributed memory-based model provides a more realistic quantitative
framework for characterizing complicated memory waning and gaining processes in a relatively
simple self-contained way.

In the natural world, there are also some solitary animals who spend a majority of their lives
without others of their species, with possible exceptions for mating and raising their young. In
particular, most carnivores are accounted as solitary and asocial because the costs of intraspecific
competition outweigh the benefits accrued with group living [7]. There are a lot of examples for
solitary animals, such as tigers (Panthera tigris), pumas (Puma con-color), and jaguars (Panthera
onca) [7,16,18], and so on. In such situation, the influence of the spatial variation from other
individuals of the species is negligible, thus we may reasonably assume that animals’ memory
mainly makes a temporal contribution to the spatial movement.

In this paper, we formulate a partial differential equation model for a single species animal
movement with the explicit incorporation of spatial memory via a temporally distributed delayed
diffusion. Throughout the paper, we use u(x, t) to denote the population density of a biological
species in spatial location x at time ¢. It is also assumed that the population is in a spatial habitat
2, an open, bounded, and connected subset of R” with m > 1. The boundary 92 is assumed to
be smooth. The population density function u(x, ) satisfies

ur(x,t)=d1Au(x,t) + V- (u(x,t)Vo(x, 1)) + ru(x,t)(1 —u(x,t)), xe€, t>0,
t
v(x,t)=g*u(x,t)= / g(t,t —s)u(x, s)ds, xeR, t>0,
—0o0
u(x,t) =0, x €0, t >0,
u(x,t)=n(x,1), xeQ, te(—o00,0].
(1.2)
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Here the parameters d; > 0 and d> € R are the random diffusion coefficient and the memory-
based diffusion coefficient, respectively; the population satisfies a logistic growth law with a
growth parameter A > 0; the function u(x, ¢) satisfies a Dirichlet boundary condition u(x, t) =0,
which means the environment of the boundary is hostile; and 7 (x, ) > 0 is the initial condition.
The function v(x, ¢) is the weighted temporal average of the population density before time
¢t and at location x, which reflects the animal’s memory and knowledge of their previous spa-
tial distributions. The memory can cause the animals to possess a repulsive movement to past
history when d» > 0 and a attractive movement to their past when d, < 0. The temporal kernel
function g (7, t) reflects the dependence on the distribution of memory in the past time. From the
mathematical perspective, g : [0, 00) — R is a probability distribution function satisfying

o]

/g(r, t)ydt =1. (1.3)

0

In our model, the temporal kernel is taken as Gamma distribution function of order n (with
n e N U{0}):

tneft/r

7r"+11”(n+ 0 (1.4)

g(t. 1) =gu(r. 1) =

In particular, we mainly consider the following two specific cases which are commonly employed
in the biological modeling [5,9,13,24]:

1 t
gO(Tvt)=?€ T, g](Tst)zﬁe ) (15)

A~

which are referred to as the weak kernel and the strong kernel, respectively. The weak kernel
function go(t, 1) is strictly decreasing in ¢, which biologically reflects one of the common ways of
memory decay: the longer time goes by, the dimmer memories become. While the strong kernel
g1(t, t) is increasing first and then decreasing, which corresponds to the knowledge acquisition
phase and the knowledge decay phase, respectively. The mean and variance of g, (z, -) are given
by E(g,(r,)) =+ 1)t and Var(g,(z,-)) =n+ 1)72, from which we see that 7 is related to
the average of delay kernels. In this sense, we take t as the bifurcation parameter to measure the
influence of spatial memory on the dynamics.

The movement of population in (1.2) can be derived from mass conservation law and a modi-
fied Fick’s law following [23]:

Jx,t) =—d1Viulx,t) —dow(x,t) -u(x,t),

where w(x, t) is a vector field indicating animal movement direction and strength, and we assume
that

t

w(x,t) =V, / gn(t, t —)u(x,s)ds |, (1.6)

[e.¢]
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where, in addition to the random diffusion with the coefficient dj, the flux is proportional to
the negative gradient of a weighted average historic density distribution. In [9,40], some scalar
diffusive equations with distributed delay in the reaction term under Neumann boundary condi-
tion were investigated. The instability and Hopf bifurcation in a scalar reaction-diffusion model
with Dirichlet boundary problem and distributed delay included in growth function are studied
in [24]. A two-species diffusive population model with Dirichlet boundary problem and dis-
tributed delay is considered in [10]. In all these existing works, the distributed delay is used to
describe the growth of the population, while in our model (1.2), the distributed delay describes
the directed diffusion of the population as a result of spatial memory. About the study of the
effect of the memory-base diffusion, analysis of a reaction-diffusion model with discrete de-
lay memory-based movement was conducted in [21] for the Neumann boundary condition case
(see also [34] for a model with spatial heterogeneity). In [23], a model with both discrete delay
memory-based movement and maturation delay for Neumann boundary case was considered,
and a more general model for Dirichlet boundary condition was studied in [1]. A model with ad-
ditional nonlocal effect was also studied in [29]. Memory-based movement with spatial-temporal
distributed delays was considered in [25,30]. Effect of memory-based cross-diffusion on systems
of reaction-diffusion equations was investigated in [22,28].

Our results show that Eq. (1.2) has a positive steady state solution under certain conditions
on dy, d> and A. In particular, the positive steady state exists and is unique when dj, d> > 0 and
A > A, =d1 A1 where X is the principal eigenvalue of —A. We then consider the stability of the
unique positive steady state u; when A is slightly larger than X, with the increase of the average
time delay 7. It is shown that the non-homogeneous steady state remains locally asymptotically
stable in the case of weak kernel. For the strong kernel case, u, loses its stability via a Hopf
bifurcation so that a spatially non-homogeneous time-periodic pattern emerges. If we continue
to increase the delay value, the non-constant steady state can gain its stability again, so a stability
switch occurs in this system. Note that this phenomenon is different from the reaction-diffusion
systems with time delay incorporated in the reaction terms ([3,24,31]).

This paper is organized as follows. In Section 2, we show the existence and uniqueness of
the non-homogeneous steady state of Eq. (1.2) via a bifurcation approach. The Hopf bifurcations
near the non-homogeneous steady state are investigated for a general delay kernel parameter
n in the system in Section 3. Particularly, for the weak and strong kernel cases which have
biological meanings, we carry out a detailed bifurcation analysis. Some numerical simulations
are shown in Section 4, some further remarks and comments about our work and possible future
works in Section 5. In the paper, the space of measurable functions for which the p-th power of
the absolute value is Lebesgue integrable defined on a bounded and smooth domain 2 C R™ is
denoted by L?(€2) and we use WX 7 (2) to denote the real-valued Sobolev space based on L?(£2)
space. Denote X = WZP(Q)N Wé’p(Q) and Y = L?(L2), where p > m. For a linear vector space
Z, we define its complexification to be Z¢ = {x] +ixy : x1, x3 € Z}. Also, we denote by N the
set of all the positive integers, and Nog = N U {0}.

2. Spatially non-homogeneous steady states

The steady state solutions of Eq. (1.2) satisfy

diAu(x) +doV - (u(x)Vu(x)) + Aux)(1 —u(x)) =0, xeg,

u(x) =0, x €9, @b
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where d; >0, d» e Rand A > 0.
First we have the following a priori estimates for the solutions of Eq. (2.1).

Lemma 2.1. Suppose that di > 0 and dy € R. If u(x) is a nonnegative solution of Eq. (2.1)
satisfying dy + dau(x) > 0 for any x € Q, then either u =0 or u > 0 in Q. In the latter case,
O<ux)<l1, xeQ.

Proof. Suppose that u(x) is a nonnegative solution of Eq. (2.1) and u(x) % 0. From (2.1), we
know that u(x) satisfies

(di + dau(x)) Au(x) 4+ da| Ve (x)|> + du(x) (1 — u(x)) =0. 2.2)

Let u(xp) = maxu(x), from the maximum principle, we have u(xg) < 1. Then, we apply the
xeQ
strong maximum principle and obtain that u(xg) < 1. Thus, it is true that u(x) < 1 for all x € Q.

Similarly, #(x) > 0 holds for x € 2 by the strong maximum principle. O

We have the following results regrading the existence, uniqueness and bifurcation of positive
solutions of Eq. (2.1).

Theorem 2.2. Suppose that di > 0 and dp € R.
(i) Let A1 be the principal eigenvalue of — A and let ¢ be the corresponding positive eigenfunc-
tion, then A = A, = diA is a bifurcation point for Eq. (2.1). More precisely, near (A, 0),

there is a smooth curve T'1 of positive solutions of Eq. (2.1) bifurcating from the line of
constant solutions I'g = {(X, 0) : A > 0} with the following form:

Iy = {(A(s), u(s)) = Ay + 1 (0)s + 0(s), s¢ +0(s5)) : 0 < 5 < 8}, 2.3)
where

Qdy + d2)ry [q P dx 24
2dy [q¢?dx '

2 (0) =

(ii) if dy > —2d, the bifurcation at A = A, is forward, and there exists a positive solution u;_for
A € (Mg, A¥), where A* is a threshold value such that d| + dru), > 0 holds for ) € (Ay, A™);
if d» < —2d,, the bifurcation at . = A, is backward, and there exists a positive solution
uy for A € (A™*, Ay), where A** is a threshold value such that d| + dyu) > 0 holds for
A eV, 0y,

(iii) if dp > —dy, Eq. (2.1) has a positive solution u;_for all A > A;

(iv) if d» > O, the positive solution u) of Eq. (2.1) for A > A, is unique.

Proof. To prove (i), for fixed d| > 0 and d, € R, we define a nonlinear mapping F : R™ x X —
Y:

FOo,u)=diAu+doV - uVu) + u(l —u), 2.5)
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where u € X, and it is obvious that # = 0 is a trivial solution of F (XA, u) = 0 for all A > 0. Then,
we take the Fréchet derivative of F with respect to u and obtain

F,(A,w)w]l=diAw + dbulAw + dwAu + 2dr)Vu - Vw + A(1 — 2u)w.

Atu =0, we have F,(A, 0)[w] =d;Aw + Aw.

We determine the null space and range space of the operator F,(A«, 0). We know that the
operator —dj A has a principle eigenvalue A = X, corresponding to a positive eigenfunction
¢ > 0. Hence the null space and the range space of F, (A4, 0) are N'(F, (A, 0)) = Span{¢p}
and R(F, (A4, 0)) = {h € LP(Q) : fg h¢dx = 0} (we denote it as Yp), respectively. Thus
dim (N (F, (M4, 0))) =1 and codim (R(F, (7, 0))) = 1. Next we show that Fj, (A, 0)[¢] &
R(F, (A, 0)). From (2.5), we have F, (A, u) [w] = w(1 — 2u), thus Fy,(As, 0)[¢] = ¢. It is
clear that Fy, (A, 0)[¢] € R(F, (A, 0)) as fQ ¢2dx > 0. Therefore, the bifurcation from simple
eigenvalue theorem [6] can be applied at (A, u) = (A4, 0), thus there is a smooth curve I'y of
positive solutions of Eq. (2.1) bifurcating from the line of constant solutions I'g, and I'y is in
form of (2.3).

For the bifurcation direction of I'{, from [20], we know that the bifurcation direction can be
determined by

(I, Fuu (A4, 0)[, 91))
2<17 F)Lu()\-*, 0)[¢])> '

V() =— (2.6)

where [ € Y* (the dual space of Y) and (I, f) = fQ fodx. From

Fuu (L, w)[wr, wa] = dowi Awy + dawa Awy + 2d,Vwi Vwy — 20w wa,
we have

Fuu O, 0)[$, 9] = 2d29 A + 25| V|* — 20,

2 2 2 2 2 27)
= — 22019 + 22| VPI® = 2d10197 = =201 (d1 + d)§” + 22|V,

where A¢ = —A1¢ is applied. Substituting (2.7) into (2.6), we obtain

2 (d1 + o) [ *dx + 2o [ VI pdx

2d, fQ ¢2dx
_ 2udi+ ) Jq#3dx + dahy [ p>dx 28
B 2d; [ ¢2dx '

_ Qdi+dy)i Jg ¢Pdx
N 2d) [ ¢*dx '

A0)=—

Note that

d; / &> Apdx = —2d, / d|IVP|Pdx = —, / d dx (2.9)
Q Q

Q
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holds because of the fact that dj¢p>A¢ = —Ar.¢> according to diA¢ = —ry¢. Also we can
conclude that the bifurcation occurs at A = A, is forward when d» > —2d; (A'(0) > 0) and is
backward when d» < —2d; (A'(0) < 0). When A'(0) > 0, there exists a threshold value A* > A,
such that the solution u; = u(s) satisfies d; + du; > 0 when s = A — A, is small enough. A
similar threshold value A** < A, exists when A’(0) < 0. This completes the proof for (i) and (ii).

For the proof of (iii), we use the method of upper-lower solution to prove the existence of a
positive solution of Eq. (2.1) for all A > A,. Let u = e¢ with € > 0, then

diA(e) +drV - (epVed) + rep (1 — €)
=edi Ap + dre’Pp AP + dre?|VP|> + Aep — Ae¢p?
=€(A — AP + €2 (dap A + do| Vo> — 1¢?) >0

when A > A, for sufficiently small € > 0. It is known that ¥ = 0 for x € 2. This means that
u is a lower solution for Eq. (2.1). Also, one can easily verify that i = 1 is an upper solution
for Eq. (2.1). By choosing € > 0 small enough, we have u < u. Under the condition d» > —d,
we claim that d; 4 du(x) > 0 holds. We explain it in two cases: (1) if —d; < dy < 0, then
di +dyu(x)>dy+dry>0as0<u(x)<1;2)if dy >0, then di + dru(x) > 0 holds for sure.
Then, we know that Eq. (2.1) is elliptic type for any of its positive solution. From [15, Theorem
3.1], there exists a minimal solution u}' and a maximal solution uﬁ” of Eq. (2.1) satisfying u <
uT < ui” < u = 1, which ensures the existence of steady state for A > A,.

At the end, we prove the uniqueness of u; when dp > 0. Let ui"’ be the maximal solution
obtained above. Suppose that there exists another positive solution of Eq. (2.1) i) uf\"’ . Then
from Lemma 2.1, we must have iy (x) < ui‘” (x) for x € Q. Then, uﬁ” is a positive solution for
the following equation:

V. ((dl +d2uf\”)Vgo) Fal—uMyp =09, xeQ, p=0, x €, (2.10)

for 0 =0, thus 0 = 0 is the principal eigenvalue for Eq. (2.10). Similarly, we know that ¢ =0 is
the principal eigenvalue for the following equation:

V.-((di+dity)Vo)+A(1 —t))p =69, x €, 9p=0, x €0Q. 2.11)
From the variational characterization of o and &, we have

g Jatd DYoo [o(1 - uiDe?

0:0‘ =
= Jas? (2.12)
o g Jo DIV —h fo( —ie® |
peX quJz ’

as we have d| + dzuy >d| + doui; and 1 — uﬁf’l <1 —uy when d> > 0. Since the equality in
(2.12) only holds when i) = uﬁ‘:[ , we must have i) = uﬁ‘f’ . This completes the proof of (iv). O

Remark 2.3.
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1. When d, > —2dj, the positive solution u) of Eq. (2.1) for A € [A,, A*] can also be expressed
in the following form from (2.3) and (2.4):

2d, [ ¢*dx

up == rda o+ — 1), o= Qdy + do)i [ 3dx

(2.13)

where &, € X; with X = {h € X : [, h¢dx =0} is the unique solution of the following
equation:

(1A +21)E, + ¢+ a3, [daV - (pV) — Aep®] = 0. (2.14)

Note that the form (2.13) will be used to analyze the stability of u, in the following section.

2. The condition di + du(x) > 0 is required to guarantee the ellipticity of Eq. (2.1), and
this condition holds automatically when d» > 0. When d> < 0, there may exist solutions
of Eq. (2.1) not satisfying d; + dou(x) > 0.

3. Stability and Hopf bifurcations

In this section we always assume that the shape parameter n € N* U {0} is fixed and d» > 0
so that Eq. (1.2) has a unique positive steady state u;, according to Theorem 2.2 (iv). Define

A= min{a® 2, + —2 3.1)
s Ak dzol)\*M s .
where A,, A* is defined in Theorem 2.2, «;, is defined as in (2.13) when A = A, and M =

max ||¢ + (A — Ay)éxllco. Now we consider the stability and associated bifurcations at u)
AE (s, A¥]

when A € (A, A].
By letting u(x,t) = u; (x) + u(x, ), v(x,t) = uy(x) + v(x, t), we obtain the linearization of
Eq. (1.2) at uy:

i =diAt +doV - (u; Vo) +doV - (tVuy) + A(1 — 2u;)u, xeQ, t>0,
t 0
v(x, 1) = / gn(t, t —s)u(x,s)ds = / gn(t,—s)u(x,t+s)ds, xe€, t>0, (3.2)
—0oQ —o0
u(x,t)=v(x,r)=0, x€d, t>0.

From [36] Chapter 3, the semigroup induced by the solutions of Eq. (3.2) has an infinitesimal
generator A, (A) which is given by

Ane ()\)(pn = (/.)na (3.3)
and the domain of A,,; (1) is
0
D(Ap: (M) = {pn €Cc N C(IC 20n(0) = AW gn + d2V - | u / gn(T, —=)Vu(s)ds | — Aur@ng,
-0
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where

AMN)op =d1Agn +d2V - (9 Vuy) + (1 — up)@n,
Cc = C((=0,01, Y¢), C& = C'((—00,01, Y¢), ¢u € Xc-

The spectral set of A7 (1) is

0(Ap: (V) ={nueC: AN, u, )¢, =0, for some v, € X \{0}}, (3.4

where

0
A, 1) =AM +d2V - (U V) / gn(t, —8)eds — huy —

—o0 (3.5)
A+ — v vy -2
= —— V- (u — AUy — .
ST Py P
Note that (3.5) holds from the integral
0 | 0 |
LS Je n,S/T S o _
/ gn(t,—58)e ds_ir”+1F(n+l) / "’ Tet S ds = EEEE (3.6)
—0o0 —0oQ

When t — 0, the stability of steady state of Eq. (1.2) is determined by the limiting operator
Ag(A) = A\) +daV - uaV) — Auy, 3.7

and we have the following conclusion.

Proposition 3.1. When dy > 0 and A € (A, 2, for sufficiently small t > 0, the positive steady

state u;, is locally asymptotically stable with respect to Eq. (1.2). Moreover, for any t >0, 0 &

o (Apz (X)).

Proof. We first prove o (Ag(A)) C {u € C : Re(u) < 0}, from which the stability of u; when
T = 0 can be achieved. We write Ag(A)Y = uyr as follows

diAY + oV - (Y Vu) +doV - (V) + A= 2u) Y = py, (3.8)

which can be rewritten as

(d1 + daup) AY + 2doVup Vi + do Au i + A(1 = 2u) 9 = uip.
Because d> > 0, so there must be a constant 5 such that d; + dau; > n > 0, which makes (3.8) a
strongly elliptic equation. From [2], we know that Ag(}) has a principal eigenvalue 1 € R with

its corresponding real eigenfunction v > 0. Also we know that u,_ satisfies
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diAuy +doV - (upVuy) + A1 —uy)uy, =0. 3.9

Multiplying (3.8) by u; , multiplying (3.9) by ¥, integrating them over €2 and subtracting each
other, we obtain

i [ s =d [ @ = dupnds =[x+ da [V 0w
Q

Q Q Q

+d2[V-(ukvwl)u;\dx—dQ/V-(u;LVu;L)l/fldx
Q Q

:—A/u%l/fldx—dzflﬂ]Wuﬂzdx
Q

Q

—dzfu,\VIMVu;hdx+d2/u;LVu,\V1p1dx

Q Q
- xfuiwldx - dszwuzdx,
Q Q

which implies that 1] <0 as u; > 0, ¥; > 0 and d5 > 0. Therefore, all the eigenvalues of Ag(A)
have negative real parts, which implies that the steady state of Eq. (1.2) is locally asymptotically
stable when T = 0.

Next we claim that sup  Re(u) < 0 holds for T > 0 sufficiently small. Similar to

neo (Apr (1))
Lemma 2.2 (ii) in [24], we know that lin}) op(Anr (X)) = 0p(Ag(X)) holds, where o (A, (1)) :=
T—>

o (A (M) N{un e C:Re(u) > b}. Together with o (Ag(L)) C {u € C|Re(u) < 0}, the claim is
proved. Hence we know that all the eigenvalues of A,;(A) have negative real part for sufficient
small T > 0, which implies that u, is locally asymptotically stable with respect to Eq. (1.2) for
sufficiently small T > 0.

Finally if 0 € 0 (A, (1)) for any T > 0, then O is an eigenvalue of Ag(X), but we have shown
that all the eigenvalues of Ag(A) have negative real parts. That is a contradiction. Hence for any
1>0,0€0(A,:(A)). O

From Proposition 3.1, we see that u is locally asymptotically stable for sufficiently small
T > 0. Next we show that u, loses its stability when 7 increases and Hopf bifurcations occur for
the system (1.2). First the following boundedness will be needed later.

Lemma 3.2. For any (., (1, T, ) € (hs. Al x C x RT x Y satisfying Ape (A = i which
is defined as in (3.3), there exists a constant My > 0 depending on dy, dy such that |V |lye <
MYy when Re(u) > 0.

Proof. Since u; € X is the unique solution of (2.1) and 0 < u) < 1 from Lemma 2.1, we have
[t).]14y < M from the Sobolev embedding theorem, where y € (0, 1/2), M5 is a constant de-
pending on y, A*, Qand | - |14, is the norm in C'*7 (). Moreover from the regularity theory
for elliptic equations, we can obtain u; € crth (S_Z) with 0 < 8 <y and |u; |24 < M3 with M3
depending on B, di, d», M3 and Q2. By the definition of A,; () in (3.3), we have
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dy
<|:A(K)+mv'(ukv)—)\uk_ﬂi| l”nawn>=0~ (3.10)

Taking the real part of (3.10), we obtain

il =diRe | [ V- Tuidn p + [0~ 2010, P
Q Q

(3.11)
L/V«u V) Undx § — Re(w) ¥l
(1_{_“_’:)”_’_1 A n)¥n nllye:
Q
Since
/V . (anuk)‘/_fndx = /(VWnVMA + wnAuk)lﬁndx
Q Q
=—/WV~(&nVux)der/II/fnleuxdx,
Q Q
so we have
Re /V-(wnvm)&ndx =%/Auk|wn|2dx. (3.12)
Q Q

Also one can verity that

Re /v.(ukw,,)lﬁndx =—Re /‘M)L|V1/fn|2dx =—'/.M)L|V1/fn|2dx. (3.13)
Q

Q Q

Combining Egs. (3.11), (3.12), (3.13) and the fact that Re(u) >0, |[ux]lco > 0, we obtain

2

d
vl =5 [ sustinPax + [ (=20l Pdx
Q Q

R & \v4 2d R 2
M\ 0 aot ur |Vl "dx — Re( ¥y
Q

ldal
2

=

dy
s+ 2+ (R (et

2
it )|l llcll V¥l

By the fact that Re() > 0 and t > 0, it can be verified that

1
‘Re <W>' = ‘H + /L'L’|—(n+l) cos(arg((1 + Mf)n"'l))‘ <1+ M.[|—(n+l) <1,
Ut

315



J. Shi and Q. Shi Journal of Differential Equations 389 (2024) 305-337

where arg(-) stands for the argument of a complex number. Together with the boundedness of &,
u;, and ¥, for A € (A4, A] and |uy |24 < M3, we know that there exists a constant M4 > 0 such
that

b A + 1 2
> [Auylloo 1n Iy

d — da|luyllo

2 2
IVYnl}, < < MallYull3..

where
dy — dalluyllco =dy — da(h — A llg + (A — Aéillo > di — d2(A — Ay )aa M >0

holds from the definition of A in (3.1). Thus, |[Viyullye < Mill¥ullye holds with M; =
vMy. O

From Proposition 3.1, u; loses its stability and a Hopf bifurcation occurs when A, () has a
pair of purely imaginary eigenvalues u = +iw, (w, > 0). From (3.5), we know that the operator
Apr () has an eigenvalue i w, is equivalent to

|:A()L) +doV - (upV) — Aly — iwn:| Y, =0, ¥, eXc\{0}, (3.14)

(1+i6,)"+!

where 6, := w, 7. Next we will show that there exist some triples (wy, 6,, ¥,,) which solve
Eq. (3.14) for n > 0. For further discussion, we need the following lemma.

Lemma 3.3. Recall that A1 is the principal eigenvalue of — A, we have

(i) ifz€ Xc and (¢, z) =0, then |((d1 A+2)z, 2)| = dl()\Z_)\l)”Z”%/C with Ay = di 1y, where

Ay is the second eigenvalue of — A on HO1 (2);
(it) for each n = 0O, if there exist some (wn,6n, ¥u) satisfying Eq. (3.14) with ¥, € Xc, then
Wy [ (M — Ay) is uniformly bounded for A € (Ay, A].

Proof. The proof of part (i) is similar to that of Lemma 3.2 in [3], thus we omit it here and
mainly prove part (ii). By Eq. (3.14), we have

<|:A(A)+d2V-(u,\V) —)»uk—ia)ni| wn,wn>=o. (3.15)

From 1+ i6, = m ¢! with tan 5, = 6,, Eq. (3.15) can be rewritten as
<[A(A) Ay - (V) (1 + 02~V 2mi@d Dm0 iwn] Y, ¢n> —0. (3.16)
From the imaginary part of Eq. (3.16), we have

n (Y, Yn) = da(1 +62)" "D 2sin((n + D)ny) (V- (@ Vi), ¥n)
= —dr(1+ 62" D2 sin((n 4 1)n) Ua Vhn, Vi) .
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Letm(X, &) = ¢ 4+ (A — Ly)E), we obtain
lon|  daas [(1 467D sin((n + Dna) (m O, £) Vi, Vi) |
A= A

dra [lm Gy E) oo | V¥ 13,

2
1¥nll3,.

)

as |((1+62)~*1/2)| < 1. From the boundedness of u; = (A — A )om (A, &) proved in
Lemma 2.1 m(A, &,) is bounded in X. Together with the boundedness of ||V1ﬂ,,||%,(C obtained
in Lemma 3.2, we can obtain the boundedness of w,/(A — A,) by the continuity of A

(ap, 8. O

We know that X¢ and Y can be decomposed as

Xc = Span{¢p} ® X ¢, Y = Span{p} ® Y, (3.17)

where
Xic = hEX(C:/h¢dx=0 , Yic = heth/hqbdx:O
Q Q

Suppose that (w,, 6,, ¥,) is a solution of Eq. (3.14) with v, € X, then ,, can be decomposed
and normalized as

Yn=PBnd+ A —2r)zn, (P,24) =0,

(3.18)
1¥nllFe = Ball¢lFe + O — 1) llzallFe = 17,

Substituting Eqgs. (2.13), (3.18) and w, = (A — Ay)h,, into Eq. (3.14), we get the following equiv-
alent system:
81zn, Bus i, O, A) :i=(d1A + M)z + (Bnd + (A — A z){] — ihy — 2han[¢ + (A — A1}

+ 2o,V A[Bnd + (A — 1) za V[P + (A — 2,061}
dzOl)\
(14 i6,)"+!

82 B i, O, 1) 1= (ﬂ,? — 1) I¢17e + G = 1) lznllF. =0.

VAlp+ A =25 1V[Bnd + (A — 1)z} =0,

(3.19)
We define G : X;c x R3>xR — Y x R as

G(Zn7 ﬂn’hnvel’l’)\') = (81782)~

We will show that G = 0 can be solved for A — X, and we first solve the limiting equation when
A = A4 in the following lemma.
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Lemma 3.4. When A = A, define
(3.20)

m, = cos" 2 L , neN.
n+2

Then the following statements are true:

(i) if n =0, there is no solution for G(zy, Bn, hn, 6n, As) =0;
(i) if n > 1, m, is positive and increasing in n. When dr > 2d/my, G2y, Bn, hn,6n, Ax) =0

has at least one solution which can be expressed as

ns Brs hns 00) = Wi, = oy B Bini s O (3.21)
with
Pri =1, bus, = tan(nus,), s, = 50— sin((n + D1nr,) cos" s,
where 1y, satisfies
24, (3.22)

)

cos((n + D, ) cos" s, = ===
dr
and zpy, is the unique solution of the following equation

. 1 2
(3.23)

Proof. We solve G(zy, Bn, hn, 61, A) = (g1, 82) = 0 when A = A,. Firstly, we have 8, = B, =
1 through solving g2|5=3, = 0. When A = A,, g1 =0 is equivalent to

. 1
AdA+ 1 )zn + (1 —ihy)¢ 4+ dray, (1 + W) V- (Vo) — 2)»*(“*4‘)2 =0. (3.24)

Multiplying (3.24) by ¢ and integrating over €2, we have
/ ¢3 dx

. 1
(1 —zhn)/qbzdx—i-dzak* <1 + W)/v-(qbwmdx — 2ty
Q Q Q

. daAso, 1
=1 —lhn)/¢2dx - 221 (1 + q +i0n)n+l)/¢3dx —2x*ak*/¢3dx
Q Q Q

1 —ih D (4 ! 4di / ¢dx =0
= —1 - - X =V,
" 2di+do (1 +i6,)n+! 2d; + do
Q

which can be inferred from (2.9) and the definition of «;,, in (2.13). Then, we have
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d> 1 2d,

ih, = — - .
Y A ¥ ds (1 + 6" 2dy +db

(3.25)

Separating the real and imaginary parts of Eq. (3.25), we have

2d) +dr)h
sin((n + )n,) = (1—;72)”(] + 93)(}14»])/27
2

2d
cos((n+ ny) = —d—l(l + 9’%)("+1)/2’
2

where tann, =6, and n, € (0, r/2] as 6, > 0. Since tan? nm+1= sec? N, then we have (1 +
92)("+1/2 — sec"*1 y,, | then the above equations are equivalent to

(2dy + d2)hy 1

d> cos"tly,’
2% 1 n (3.26)

dr cos"tlyp,”

sin((n + Dn,) =

cos((n + D)np) = —

By the second equation of (3.26), we obtain Eq. (3.22) from which 7, can be solved. Once 7,, is
solved, then by the first equation of (3.26), &, can be solved as in Eq. (3.21). Finally, from (3.22)
and (3.25), we obtain that z,;, satisfies Eq. (3.23).

Now we consider the solvability of Eq. (3.22). When n = 0, Eq. (3.22) becomes cos?n, =

-2 which is not solvable as dy, d» > 0, thus the conclusion in (i) is proved. For a general n > 1,

1
by the boundedness of cosine function, we know that Eq. (3.22) is not solvable if dy < 2d;. When
dr > 2dy, let
n+1 T
Fa1a) = cos((n + D) cos™ .y € (0.5 ] (3.27)

then we have the following properties of the function f;,(,):

@ fO=1 fu(3)=0:

2k — 1 1
(b) the zeros of f, are nux = % k=1,2,---, [n + ], where [-] denotes the integer
n

part of a real number;

(c) treating 1, as a continuous variable, we have f, (7,) = —(n + 1) cos” n,, sin((n + 2),), thus
km 1
the critical points of f,(n,) are fy = ——, k=1,2,---, nt ;
n—+2 2
T

(d) fn(n,) reaches its global minimum at 7, = 7,| = and min  f,(n,) = —m, with

n+2" " nel0/2]
my, defined by (3.20) which is increasing in n.

The results in (a), (b), (c) can be obtained by direct calculations. In the following, we prove (d)
in two steps.

Firstly, we will show that the global minimum of f,(n,), n, € (0, 7/2] exists. From (c), we
know that f;, (7,x) are extreme values of f,(1,), and we claim that | f,, (77,«)| is decreasing in k.
By the definition of f,, we have
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(n+ Dkx ar1 [ kT ki
cos | ————— ) cos —— )| = |cos
n+2 n—+2 n+2
which is decreasing in k when k < [(n + 1)/2]. Also, it is not difficult to verify that f, (17,) <0
for 0 <, < ny1 and £, (n,) > 0 for n,1 < 1, < yu2, which implies that 7, is a local minimum
value of f;,(n,). Together with the fact that | f;,(77,1)| is the largest one in all of the extreme
values of fn (1), we can draw the conclusion that f;(n,) reaches its global minimum at 7, =

n+2

|fn(7~7nk)| =

)

=

The second step, we prove that m, = — II(I) ) fn is increasing in n. By a direct calculation,
n.€[0,7

we know that

1
my =—fu T )= —cosucos’”] ) o2 ().
n+2 n+2 n—+2 n—+2

. TN\~ . . .
By letting x =n + 2 > 2, we have m, (x) = (cos —) , where x is a continuous variable, thus
X

my, (x) = *M(eos(T/¥) Then, we take the derivative of m, (x) with respect to x and obtain

m(x) = (cos %)x [ln (cos g) + gtan %] .

b4 b4 b4
Define g(x) =1n (cos —) + — tan —, then we have
X

X x
2 b4
q (x)= ——secz— <0, x> 2.
X
Therefore, g(x) > gmin = hm q(x) = 0. Because cos z > 0 for x > 2, so we obtain m},(x) >

0, which implies that mn(x) 1s mcreasmg with respect to x for x > 2. According to the relation-
ship that x = n + 2, we know that m,, is also increasing with respect to n.

At the end, we prove that G(z,, By, hn, 04, 2+«) = 0 has at least one valid solution. From the
above discussion, we know that f,(n,) > —m,, thus Eq. (3.22) can be solved when —2d;/d, >
—m, which is equivalent to dy > 2d;/m,. By the properties of the func7ttion fa(np), it cal}[ be

inferred that Eq. (3.22) has at least one solution 1, = n,,, satisfying < Mpa, <

2(n+1) n+2

b4 b4
as 7, = — is the first zero of and reaches its minimum —m,, atn, = ——.
Nn 2+ 1) Su(n) Su(n) n atMp P

From (3.26), we see that sin((n + 1)n,) > 0, cos((n+ 1)n,) < 0, which implies that ﬁ <
n

and 7y, is a valid solution. Therefore, it can be inferred that G(z,,, B, hn, On, As) =

M <
0 has at least one solution. This completes the proof. O

Remark 3.5. Lemma 3.4 gives the necessary conditions for Hopf bifurcations to occur in system

(1.2):

(i) For n =0, G(zp, Bn, hn, On, Ax) = 0 has no solution, which implies that it is impossible to
have Hopf bifurcations for the weak kernel case.
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(ii) Forn > 1, G(zu, Bn, hn, On, A+) = 0 has at least one solution when d, > 2d;/m,, where m,,
is defined as (3.20), thus it is possible for Hopf bifurcations to occur when dp > 2dy/m,,. In
what follows, we give two examples: there are two Hopf bifurcation values for strong kernel
(n = 1) case in Proposition 3.7 and there is a unique Hopf bifurcation critical value for n =4
case in Example 4.2. Moreover, by the monotonicity of m, with respect to n, we know that
there is a larger range of d» (for a fixed d; > 0) for Hopf bifurcations to occur when 7 is
larger. Also when d; is larger, the number of solutions of (3.22) could be more than two for
larger n.

Now by applying the implicit function theorem, we obtain the following result regarding the
eigenvalue problem (3.14) for A € [Ay, A].

Theorem 3.6. For each n € N and W, defined in Eq. (3.21), we have the following results:
(i) there is a unique continuously differentiable map W,(}) : [Ax, Al — Xic x R3 defined by

W, (A) == (Zq)w By B, Ony) such that G(W, (1), 1) =0 and Wy, (Ay) = Wnk* y
(ii) for A € (My, A], the eigenvalue problem

A iwy, t)¥n =0, 7, >0, ¥, € Xc \ {0}
is solvable with A defined in (3.5), that is, iw, € 0 (A (X)) if and only if

wp = Wpy i= (A — A )hpn, Tn = Tn 1= Opa/0pi,

Yn =1 Ynp. With Yy := B + (A — A Znas

(3.28)

where r, is a nonzero constant.
Proof. We define T, = (T;,1, Ty2) : X1 X R3 — Yo xRby T, := Dz, ,,h0,60)C (Wn;\*, A*),

which is the Fréchet derivative of G with respect to (z,,, Bn, hn, 0n) at (Zna,, Buiss Pnrys Onny)-
Then we have

Tai (X, k. €,9) =(dA+ ) x +« [(1 —ihny, —2049)@

+ dray, (1 + W) V. (¢V¢):|
ieg— 19i(n + DA,V ‘JEZ)WP)’
(1+i6,.,)"

T (x, k. €,0) =2l

where o is defined in (2.13). We can verify that T, is bijective from X;c x R3 to Y¢ x R in
the following two steps.

Step 1. We prove that 7, is injective. Suppose T, (x, «, €, 9) = (Ty1, Tn2) = (0, 0), we imme-
diately obtain k = 0 by solving Tj» = 2;c||¢||2y(C =0 as ||¢||§V(C > 0. Substituting ¥ = 0 into
T,1 =0, we have
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i(n+Dray, V- (@Ve)

dA+ 1)y —iep—
(1 +i9nk*)n+2

(3.29)

Letting x = x + i xi, we obtain the following equation by separating the real part of (3.29):

(n + DAy, V- (@V) sin ((n 4+ 2)nns,)

n+2

(1 +%*) ’

dA+2)xr — 0 =0, (3.30)

where 1 +i6p,, =,/1+ 6’3)\*6"’7’”* is applied. Multiplying both sides of Eq. (3.30) by ¢ and
integrating over €2, we obtain

(n + DAsa;, sin ((ZZ_ 2)i,) /V (GVP)pdx =0,
(1 + 931*) ’ Q

as fQ(dA + A xrpdx = fQ(dA + A)@xrdx = 0. By the fact that fQV - (pVo)pdx =
— Jo#IVé|>dx # 0, we know that ¥ =0 as [ (dA + L) xipdx = [o(dA + A xidx = 0.
From (3.29) and ¥ = 0, we have (dA + A,) xi — €¢ = 0, which implies that € = 0. Since € =0,
¥ =0 and x =0, it can be inferred that y = 0, thus 7, is injective.

Step 2. Here we show that T}, is surjective. Suppose (§,a) € Yo x Rand T,,(x, k, €, %) = (£, a),
then we have x = a/||¢||%,c by solving 7;,» = a. As x € X, then we know that fQ x¢dx =0.
Multiplying both sides of 7,1 =0 by ¢ and integrating it over €2, it can be obtained that

2 la —ihnx*)/qbzdx—2)»*/q§3dx+d2a,\* (1+W>/V~(¢V¢)¢dx
I$113,. J 600" ) ]
_ ’6/¢>2d l(n + l)k*ai*z /V (¢Vd)pdx = 0.

+19nk )n o

From the above equation, we obtain the following two equations by separating the real and imag-
inary parts:

/¢2dx—2k*/¢ dx + dras, 1+M /V~(¢V¢)¢dx
J a+ex)s )

g (1t Dhsens, (2 + D) f V- (¢Vh)pdx =0,

|I¢>||

(1 +93X*) :
(3.31)

and
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a

2
1613,

(1 D, cos(@n :; 21, f V- ($V)pdx =0.
(1+62.)° 2

Then, ¥ can be solved from Eq. (3.31). Substituting the obtained value of # into (3.32), we can
get the value for €. Finally, we put all the values of «, ¢ and € into 7;,; = 0 and we can uniquely
solve y. Thus, T, is surjective.

By the implicit function theorem, there exists a continuously differentiable mapping W, () :
[As, ):] — X X R3 such that G (W, (L), A) =0 with W, (A,) = Wj,,. This completes the proof
of existence.

And we need also to prove the uniqueness of the solution, that is, we need to verify that if there

exists another mapping W, (1) such that G (W,, A), A) =0, then W, () — Wi, as A — Ay in

sin((n 4+ Dnny,)

hnk*)/¢2dx+d2ak* 1+ = /V‘(¢V¢)¢dx —6/¢>2dx
(1463 )7 2

(3.32)

the norm of X ¢ x R3. From Lemma 3.3, we see that {ﬁn,\} is bounded as ﬁ,,,\ =/ (A — Ay)
for each n. And {B,,} is also bounded according to the second equation of Eq. (3.19). For the
boundedness of {Z,,}, we first prove that Vz,, is bounded. Multiplying the first equation of
Eq. (3.19) by {zZn.} and integrating over €2, we obtain

Vi lFe < 2alZunllye + MslZallve + O = A Mol Vamlly. + (o — k) M1 Zuall.
where

Ms =d>a; (IIVllyc IV, 6l + 11l 1AM, §) lloo)

+A(HV¢HY IVm, E) Moo + 1A lve Im(h, £2) o)
|(1+i6,)" c ’ © ’
dra |lm (O, &) lloo dro || Am(h, €)loo
B Gl 2 ’

with m(A, &) = ¢ + (A — Ay)&, and Holder inequality being applied. Also, according to the

boundedness of «;, m(), &) for A € (A, )AL], we can obtain the boundedness

"I+ 16,0 A
of M5, Mg and M7. As A € (A, A], we know that di — (A — L,) Mg > 0 by the definition of A
defined as (3.1), thus we have

Ms - )»* + (A =AMy

IVZal3 lEnllve + 55— e Znllye

<—F 3.33
e = G =G =M 3339

On the other hand, from Lemma 3.3, we know that

(1 A+ 2)Z Zud| = di o = 2D a3

where A5 is the second eigenvalue of operator —A. Together with the first equation of Eq. (3.19)
and (3.33), we obtain
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(dir2 = 2 Znallye < MslZmallve + O = 2 Mgl Vi llye + O — 1) M7[1Z0a 15

dy Ms . (A — A (A Mg + d1 M7)
< —————Zullyc +
di — (A — Ay) Mg di — (L — A Mg

1Znn I3

which implies that

dMs (A = X) (A Mo + d1 M7)
(did2 — A )(dr — (A=A M) (dir — Ay)(dy — (A — Ay) Me)

IZnnllye = IZnnllye -

Hence, {Z,, } is bounded in Y when A € [A,, X]. Since the operator di A + Ay : (X1)c = (Y1)¢
has a bounded inverse, by applying (d; A + A*)_l on g (Zn)u ,gn,\, ﬁnx, én;” A) =0, we find that

{Zna} is also bounded in X, and hence [Wn(k) A€ (A, A*]} is precompact in X ¢ X R3.

Therefore, there is a subsequence iWn W)= (Z,W-, Brsi Ty énkj)} such that
Wo(W) = W, (hy), A — Agas j — oo.

By taking the limit of the equation (d; A + r) LG (Wn ), )J) =0as j — oo, we have that
G (W,, (), )\*) — 0. Also, by Lemma 3.4, we know that G (2, B, Fin, On, Ax) = 0 has a unique

solution given by (z,, Bn, hn, 6n) = W’“w thus Wn()\*) = W,,. Because W,,()») — Wy, as
A — Ay in the norm of X ;¢ x R3, so W, (L) = W, (1) by the continuity of W,(X) in A. This
proves part (i), and part (i) is immediately observed from part (i). O

Although Eq. (3.22) is solvable for a general n > 1, it is still difficult to give an explicit
solution. For the strong kernel case (n = 1), we can explicitly solve Eq. (3.22), and the results

are stated as follows.

Proposition 3.7. When n =1 and dy > 16d,, Eq. (3.22) has exactly two solutions:

1 d) — 16d 1 dr — 16d
M 2 [ ) 2 1
My, = arecos - 1+ 4, T, Tarecosy 1— /70[2 , (3.34)
and
2d 2d
1 _ 2 SN C)) 3, @ _ 2 BN ) 3,2
IA*—mslnnlk*COS 7’}1}"*, hlk*—msmnu* COosS nl}»*' (335)

Thus there are exactly two possible critical delay values ‘L’l(i) (i =1,2) for Hopf bifurcation
satisfying

(1) )

6 =
. 6] Lo . 2) 12
1 A—A = , lim (A —A 3.36
)m*)ln)}*( *)TIA hgl)h)* A 1’ )‘*( *)le h%\)* ( )

where 01(;)* =tan UY;?*7 i=1,2and0 < 71(){) < Tl(i)'
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Proof. We put n =1 into Eq. (3.22) and obtain

—2d;

cos(2n1)coszm = (20052171 — 1)0052771 = 7
2

3.37)
Let p = cos? n1 € (0, 1], Eq. (3.37) can be rewritten as

207 —p+— =0,
o p+d2

1 dl _l+ 1 dl
6 & P71 4
1

satisfying 0 < p; < 1 << 7 Thus, 11 can be solved as

which has two roots

nﬁ)* = arccos i/p2, 77%)* = arccos 4/p1,

satisfying % < nﬁ) < =< nﬁ) < %, from which Eq. (3.34) can be derived. Substituting (3.34)

into (3.21), we obtain the values of %; as in (3.35). At the end, by the fact that 6, = w, 1, =
(A — Ay)hy, T, we know that

0, _ tanp,
()‘ - )\*)hn ()L - k*)hn '

Tp =Ty =

thus we can calculate the possible critical values for n = 1 case as in Eq. (3.36). By the definition
in (3.34), we see that n(l) < /3 and nﬁ)* > /3 as d» — 16d; > 0, thus we immediately obtain

that hﬁ) > h(2) and 91(1) < 9(2) By (3.36), we reach our conclusion that 0 < tl(){) < rl(i) when

Ais close to A* O

Next we verify the transversality conditions for Hopf bifurcation when n = 1.

Lemma 3.8. When n = 1 and dy > 16dy, for each A € (A, 1], let 7\, i = 1,2 be defined as
(3.36), we have

(i) u=nu (r( )) = lwh) is a simple eigenvalue of A1 (\) when T = tl(;);

(ii) Re <cjir (rf?)) > 0 and Re (flr (rf?)) < 0.

Proof. The proof of part (i) is similar to that of Theorem 3.5 in [31], so we omit it here. For
part (ii), by applying the implicit function theorem, we know that there exists a neighborhood

OxDxHCRxCxXc¢ of (rl(;), zwi’f, 1/f(’)) and a continuous differential function (u, ¥) :

325



J. Shi and Q. Shi Journal of Differential Equations 389 (2024) 305-337

O — D x H such that, for each t € O, u(7) is the only eigenvalue of A1, (A) with its associated
eigenfunction v (t) and the following equalities hold:

@) (@) @Y\ _ .0
M (Tu) =iy, ¥ (tu) =Y

J (3.38)
2
A, nu(), 1) =|AQ) + ————=V - (u, V) — Auy — u(t 7)=0, T€0.
*, u(7), 1) [() T+ @02 (V) )\M():|‘ﬁ()
Differentiating Eq. (3.38) with respectto T at T = Tl(k)’ we get
~ du (fu> 2yt ( 1//(,)> 4y
dt @Y @)
<1+“<T1A)fu)
(3.39)
2 (7))

(akvw(’)) ()»,la)%?,fl(;)) d_w( m) 0.

(1 (=) )’

Multiplying Eq. (3.39) by w(') and integrating over €2, we obtain

21 (1)) W)
N T e A
dt ( ) 2d2.5(’) /V( (t) (l)d +/ ’w(l)
(14 () 82) s (3.40)

2idsool) / ‘Vw(z)
(14 9(‘)) ’

/(wu)) _ 2B )/ )vw(’)

2 (1+9

When A — X, we can obtain the following results

2idah\Y) o,
7(*)f¢lv¢l dx
1
lim Re édﬂ (‘L'(l)) (I_HG )
Ay (= 1e)? dt / 5 2626 o;
¢rdx — ———2 /¢>|V¢| dx

hu* 1+19(’> A
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N\ 2
2idy (1))
. A\ 3 .
@di +dyhf) (1+i6f) ) —2a:61)

N 2\ 2\ Y2
2d>(2d; + dy) (hglx)*) (1 + (9&1) ) sin (3;7(1) )
= R2 412

=TRe

’

where
4 L\ 2) 2 ;
Ry = 2y +d2))h). <1 + (617 > cos (3n{], ) — 2426 .

N2
I = Qdy + ), (1 + (o) ) sin (3015, ).

1
d the fact that Vo|*dx = 3dx = —————— | ¢p?dx from (2.9) and (2.13) i
and the fact tha /d)l ¢| X = /d) (2d1+d2)/¢ x from (2.9) and ( )is

Ol)L*
dp () (i)
applied. Therefore, we see that the sign of Re < (‘L’l Y )) depends on the sign of sin (377 )

b4
From (3.34), it is known that 1 < 771 < 3 and 3 < n(z) < 5’ thus we have

which implies that sin <3r]ﬁ)*> > 0 and sin (3173)*) < 0. Hence the results in part (ii) follow from
the continuous differentiability of p(t) with respectto A. O

Based on the discussion above, we give the results about the stability of steady state of
Eq. (1.2) in the following two theorems for weak kernel and strong kernel cases, respectively.

Theorem 3.9. When n = 0 (weak kernel), all the eigenvalues of Ao; ()) have negative real parts
for all T > 0, and the positive steady state u; of (1.2) is locally asymptotically stable for all
T>0.

Proof. To prove our conclusion, we use a similar method as Proposition 2.9 in [4]. Assume that
Aor (A) has eigenvalues with positive real parts, then there exists a sequence {1/ } > |, satisfying

A > A, for j=1, lim M= A, and for each j, the eigenvalue problem
]*)OO

: dr
A/ i 7V \% — A i, € Q,
A+ 1+t (W, Vi) wyj Vi = uiy, X (3.41)

Y =0, X €0Q,
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has an eigenvalue p;; with Re(u,;) = 0 and the corresponding eigenfunction v,; satisfy-
ing [|¥;)llyc = 1. Define A(X) L2 diA +dyV - (u; V) + A(1 — uy), then one can verify that
A(W)u;; = A(A)u,;; = 0. Thus, Eq. (3.41) can be rewritten as

~ dopyitT ;
A()L'l)lﬂ)\j +doV - (Y, Vu,j) — —=—V - (u,; V) — )\/M)J Vg =MV, XxX€EL,
L4+t
Yy =0, x €082.
(3.42)

Then, we write ¥, as ¥, ; = c,ju,; +,;, where c,; € Cand cy; = (uy;, ¥,5)/(u,j, uy). Here
u,; is the positive steady state of Eq. (1.2) for A = A4, and ¢, € Xc satisfies (¢,,, u,;) =0.

From the fact that A’(}\.j)l/l)\j = A()J)u}»,- =0 and u,,; > 0, we know that O is the principal
eigenvalue of A(\J) and u 5 1s the corresponding eigenfunction. Also, it is not difficult to verify
that A(A/) is a self-adjoint operator, thus

(A0, uyi) = (AT uy i, ¢55) =0.

Substituting ¥, ; = ¢,u,; + ¢,; and u = p,,; into Eq. (3.42), innerproducting with ¥, ;, we
have

(A5, $55)
(3.43)

dapyiT

=Wy +<)»j14x/1/fu — oV - (Vi Vuy,) + T Vo (u; ;i V), %j>~

My T

As A(A/) is a self-adjoint operator and 0 is its principal eigenvalue, thus (A(r/ Vbyis $5) <0
holds for any ¢, € X¢. Define

dajy ;T

Dj=(Muy ¥ —daV - () Vuy,
Jj < umh./ 2 (I/IM MM)+1+M)JT

Vo (u;; V), %./>,
then we can obtain that

D1 < o lltyslloo + a2l Vity illoo 1 v 1 V¥ v + dallug ool V3 15,

) ) ) (3.44)
< ollupilloo +d2MillViyilloo 1V Iy +d2Milluyilloo 1Y Iy »

where |V, llye < M1,y from Lemma 3.2 is applied, o = maf A/, and
iz

iT
‘ My <1,

2
R ) + Re(uy) +Im? () +iZm ()
L4yt

Re* (13 T) 4+ 2Re(uyi) + 1+ Im* (1)

which can be verified through elementary calculation. According to the assumption that
Re(ixy;) > 0, Eq. (3.43) and the fact that (A(A\/) ¥, ;, ¥,,) <0, it can be inferred that

0 <Re(u;;) <|Djl, 0= |Im(uy)|=<IDjl,
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together with (3.44), lim |ju,;llcc =0, and lim [|Vu,;|lcc = O which can be inferred from
j—o00 j—o00

(2.13), we have
lim Re(u;;) = lim |Zm(u;,)| =0.
J—>00 J—>00
From (3.43) and using similar argument as in the proof of Lemma 2.3 in [3], we have
1Dj| + 113 = KAQ) i, 1)1 = 10200 - b3 5. (3.45)
where A(1/) is the second eigenvalue of A()/). When j — oo, both |D;| and |u;;| go to

Zero as hm lu; ) lloo = 0 and 11m [IVu,illoc = 0 hold, so the inequality (3.45) implies that

hm ||¢>M ”YC =0.

Slnce Yy = cCpiuy + ¢, and ||y llye = 1, then we obtain

: Uy
. ) J_ A
nhm [y (A *) hm H)\ ly

=a; lim e |7 = 1) =1,

; 1
and hence lim |c;;|(A/ — A4) = — > 0. Now we calculate that
Jj—00 o,
D, 1
M= M=y
dapyi T
I+t
=h+h+h+h+Js+Je+ J7+Jg—Jog— Jio — J11 — J12,

<A-juk_; (C)Ju)xj + ¢)J) —dhV - ((C)\juxj + ¢Aj)vux.f)

Vo (i V(cpiuyi +00)), iy + ¢)J)> (3.46)

where

Fi 20 2 “ii d j j 414%’% d
Jl =A |C)Lj| ()\, _)\,*) /\4()\"] _X*)?’ X, JZ—)\. C}Lj()\z _)\4*)/ (}\.] _)\'*)2 X,
Q Q

2
|¢)J | Uyj

. dx,
A — Ay

B =M = Ay 9y dx, Jy=M\
3=ATC — Ax m X, J4g=
Q

_ i e [ W Vu U, ; Vi, iV,
Js =da|cy |7 (A Ax) 7()»1 )\)Sd J6—dsz(A As) T~ A)Z A A T gy,

. Vi, i[>, Vu, i, iV,
_ () _ - A TA — _
Jr = s A*)/(u_x*)zdx’ Jy=dy | AL g,
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dopy i tles i POF = a)? [y Vuy|?

Jo =

T+t (A = Ay)?
Q
Jg = i Od =) f ;) Vidy Vfi;u dr,
I+pyt (A —2y)
dopyi T (M — i) [ w5V Vuy, Aoy it [ Uy b3 VP
Jii= - 7 dx, Jip= - dx.
L+ pyit (A —Ay) 1+;mtQ — hx

Since lim [|¢;;llyc =0, then lim |l¢; ;][ 1 = 0. Also we know that ||V, ||y, is bounded, so
/—)OO /—)OO

; 1
Ve, llyc is also bounded. Thus, together with lim |c;;|(A/ — A4) = — >0, we have
Jj—>00 Ol)Lj

lim Ji = Ao, /¢3dx, lim Js =d2a;\*/‘¢|v¢|2dx,
Jj—>00

j—o0

d
lim Jo = —2HT /¢|v¢|2dx lim J; =0, i =2,3,4,6,7,8,10, 11,12
j=0 1+M)J

Therefore, we have

D.
tim 2 =, (e [ @dxtan [ovapax - 2ET f¢IV¢I2dx
j—o00 A X J J L4yt

o, Aol ;T

=, (2d) + dy) / PV dx — f PIVo|Pdx
I+t
Q

where 2d; [, $|V¢|>dx = A, [, ¢>dx is applied. Thus,

 Re(D;) , ™
1 = Vol|“dx | 2d) +dr —dryRe | ———
I T =, /¢| Pldx (2d1 +dz — dyRe 1+t

>2d1ax*/¢|v¢|2dx > 0.

Again by (3.43), it can be obtained that

Re(1;) = Re ((AG/ W, ¥)) = Re(D;) <0. (3.47)
That is a contradiction with Re(u,,) > 0 for j > 1. Then we know that all the eigenvalues of
Aoz (A) have negative real parts and thus u; is locally asymptotically stable for Eq. (1.2) when

n=0. O
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For the strong kernel case n = 1, from Theorem 3.6, Proposition 3.7 and Lemma 3.8, we have
the following results about the Hopf bifurcations near the positive steady state u; of (1.2) and
the stability of u;.

Theorem 3.10. Suppose that di > 0, d» > 16dy and ). € (A, 1], let T\%) be defined by (3.36) with
i=1,2and A, (7) in (3.3) with n = 1, then we have the following results:

(i) there exists exactly two critical points 1:1(){) and rl(i) such that all the eigenvalues of A1;())

have negative real parts when Tt € (0, 1'1()1\)). A1 (A) has a pair of purely imaginary eigen-

values j:iwgi)f (a)gl)f > 0) when T = r](i) fori =1,2, A1 (A) has two eigenvalues with

positive real parts when t € (rl(i), ‘L'l(i)>, and when t € <T1(§)’ +oo), all the eigenvalues of

A1z (X) have negative real parts;

(ii) Hopf bifurcations occur at T = 1'1(){) and t = rl(i) for Eq. (1.2) so that there is a continuous

family of periodic solutions when t is in a neighborhood of Tl(i) and ‘l,'l(i) in the form of

{(T1(s), u1(x,1,5), Ti(s)) : 5 € (0, 81)}
where u1(x,t,s) is a Ti(s)-periodic solution of (1.2) with T = 11(s), and 11(0) = rl()lL) or
71(0) = rl(i), Iim uj(x,t,s)=u;(x) and lim Ti(s) =27 /w1,
s—0F s—0t

(iii) the positive steady state u) of Eq. (1.2) is locally asymptotically stable for T € (O, tfi)) U

(‘L’l(i), +oo>, and it is unstable for T € (Tl(i), tfi)).

In Theorems 3.9 and 3.10, the stability/instability of positive steady state u, of Eq. (1.2) is
given for the weak kernel (n = 0) and strong kernel (n = 1) cases, respectively. In particular, it is

shown that a delay-induced instability occurs for the positive steady state in a window of delay

values 7 € (rl(i), rf?), and the positive steady state regains the stability for T > ‘Cl(i). This is an

example of stability switch.

For a general n > 2, we can also analyze the occurrence of Hopf bifurcation and the stability
of the positive steady state in a similar way. For large n and large d», from Lemma 3.4, we may
have more than two bifurcation points and multiple stability switches, as long as the bifurcation
value T, satisfies

an* _ sin NMnis
huy,  sin(n + Dy, cos™ i,

lim (A — A) Ty = > 0. (3.48)
A=Ay

4. Numerical simulations

Here we show some numerical simulations of Eq. (1.2) to verify our theoretical results in
Section 3. Numerical simulations of Eq. (1.2) is challenging as the distributed delay is an integral
over an infinite interval. By a similar method as in [39] and [25], Eq. (1.2) with n = 0 (weak
kernel) can be converted into an equivalent new system without time delays:
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u;(x,t) =diAu(x,t) + dydiv(u(x,t)Vo(x,t)) + Au(x,t)(1 —u(x,1)), xe€,t>0,
v, ) =1t u(x, 1) —v(x, 1), xeQ, t>0,
ulx,t)=v(x,t)=0, xe€d2, t>0,
0
u(x,0) =ug(x,0), v(x,O):r’1 / e%uo(x,s)ds, x e Q.
—0o0
@4.1n

And when n =1 (strong kernel), Eq. (1.2) is equivalent to

us(x,t) =diAu(x,t) + dydiv(u(x,t)Vo(x,t)) + Au(x,t)(1 —u(x,1)), xe€, t>0,
v(x, ) =1t wx, 1) —v(x, 1)), xeQ, t>0,
w (e, 1) =1 Hulx, 1) — wx, 1)), xeQ, t>0,
ulx,t)=v(x,t)=w(x,1) =0, x€d, t >0,
0
u(x,0) =ug(x,0), v(x,0) = —r2 / se%uo(x, s)ds, x €2,
—0oQ
0
wx,0)=1"" /e%uo(x,s)ds, x € Q.
—o0
4.2)

We use the equivalent systems (4.1) and (4.2) for the numerical simulations of (1.2), and a similar
system with n 4 2 equations can be used for the simulations when n > 2. In all simulations, we
take d; = 0.1 and 2 = (0, ), then we have A, =0.1.

In Fig. 1, we show the convergence of solutions of Eq. (4.1) for different d» and A values
to verify Theorem 2.2. When d, > —2d; = —0.2, a forward bifurcation of steady state occurs
and a positive steady state exists for A > A,: the solution of Eq. (4.1) converges to zero when
A =0.098 < A, (see (a)) and to a spatially non-homogeneous steady state when A =0.11 > A,
(see (b)). When dr» < —2d; = —0.2, a backward bifurcation occurs: when A = 0.098 < A,, the
solution of system (4.1) converges to a spatially non-homogeneous steady state for a large initial
value (see (d)), while it comes to zero for a small initial value, which shows a bistable dynamics.

Example 4.1. When n = 1 (strong kernel case), from Proposition 3.7, we know that the condition
for Hopf bifurcation to occur is dy > 16d;. Taking d; = 0.1 and the spatial domain as Q2 = (0, &),
we obtain A, = dijA; = 0.1 and d; = 16d; = 1.6. If dp = 1.4 < 1.6, Hopf bifurcation will not
occur; if dp =2 > 1.6, according to Proposition 3.7, the Hopf bifurcation values are

') A 140, 72 % 960.

In Fig. 2, we use system (4.2) to simulate the dynamical behavior of Eq. (1.2) for the strong
kernel case. When we set A =0.13 > A, = 0.1, we take dp) = 1.4 < 16d; and dp = 2 > 16d;
for the numerical simulations, respectively. When d> = 1.4, we see that the solution of Eq. (4.2)
converges to the positive steady state for any t > 0. For d, = 2 case, a stability switch phe-
nomenon occurs by taking v = 100, r =400, and 7 = 1500: the solution converges to a stable
steady state when 7 = 100 < rl(i) = 140 (see Fig. 2 (d)), then the steady state loses its stability
and a spatially non-homogeneous oscillatory pattern arises when we increase t value such that
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50 50 0.05
0 0
0.5 1 15 2 25 3 1.5 2 25 3
Space x Space x
(a) (d2,\) = (—0.15,0.098), IC=0.1sin(z) (b) (d2,A) = (-0.15,0.11), IC=0.3 sin(z)
%107
1 300
l 08 250 0.1
200 0.08
T 0.6 o
£ £ 150 006
= 0.4 =
100 0.04
02 50 0.02
0 0
0.5 1 1.5 2 25 3 0.5 1 1.5 2 25 3
Space x Space x
(¢) (d2,A) = (—0.25,0.098), IC=0.001sin(x) (d) (d2,A) = (—0.25,0.098), IC=0.1sin(z)

Fig. 1. Numerical simulations of system (1.2) for the weak kernel case when the parameters are d; = 0.1, v =10 and
Q = (0, ), where “IC” stands for “Initial condition”. In each figure, the color indicates the value of u(x, t) according to
the colorbar. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

rfi) <1 =400 < ‘L’l(i) (see Fig. 2 (e)). However, if we continue to increase 7 to 7 = 1500 > ‘L'l(i),
we see from Fig. 2 (f) that the solution of Eq. (4.2) converges again to the positive steady state.

When we increase n, Hopf bifurcation can still occur, however the dynamics of the system
(1.2) may differ from the strong kernel case, for example, there is only one Hopf bifurcation
value when n = 4.

14

Example 4.2. When n = 4, we have m4 = cos® (—) = 0.4219 according to Lemma 3.4, and
Hopf bifurcation can occur in system (1.2) when d> > 2d;/m4 = 4.741d;. Taking di = 0.1 and

the spatial domain as © = (0, ), we obtain A, = diA; = 0.1 and d} = 2d;/m4 = 0.4741,
Eq. (3.22) becomes cos(57s) cos’ 15, = —0.2 and has two solutions n‘(&) = 0.3720, nf&) =
0.7305. By solving (3.35), we obtain A4} = 0.5605 and h3) = —0.0934 < 0 which is not valid.
Finally, the unique Hopf bifurcation values can be computed as

1)
(0 _ tan (1) ~
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0.015

0.01

0.005
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(d) d2 =2, T =100 (e) dz =2, =400 (F) do =2, 7= 1500

Fig. 2. Numerical simulations of system (1.2) for the strong kernel case when the parameters are d; = 0.1, A =0.13
and 2 = (0, ). (Upper row): dy = 1.4 < 16d;, Hopf bifurcation will not occur and the steady state remains stable for
any t > 0; (Lower row): dp =2 > 16d1, the steady state is stable for small and large t value, and it is unstable for
intermediate T values (it converges to a spatially non-homogeneous time-periodic solution). In each figure, the color
indicates the value of u(x, t) according to colorbar, and the initial value is taken as uq(x) = 0.04sin(x) for (a)-(c) and
ug(x) = 0.03sin(x) for (d)-(e).

Time t
Time t
Time t

0.5 1 15 2 25 3 0.5 1 15 2 25 3 0.5 1 15 2 25 3
Space x Space x Space x
(a) T=10 (b) 7=130 (¢) 7 =100

Fig. 3. Numerical simulations of system (1.2) for n =4 case when the parameters are dj = 0.1, dp =1, A =0.13 and
2 = (0, 7). In each figure, the color indicates the value of u(x, t) according to colorbar, and the initial value is taken as
ug(x) =0.03sin(x).

Then, we take different T values to perform simulations for n = 4 case of system (1.2): T = 10,
T =30, and 7 = 100 to perform the simulations: the solutions converge to a stable positive steady
state when t = 10 < 4, (see Fig. 3 (a)), then the steady state loses its stability and a spatially
non-homogeneous oscillatory pattern arises when we increase t value such that 7 = 30 > 74,
(see Fig. 3 (b)). If we continue to increase t to T = 100, we see from Fig. 3 (c) that the time-
periodic pattern still exists but with a larger period.
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5. Discussion

In the past decade, spatial memory and cognition drew much attention in the mechanistic
modeling of animal movements [8,14]. In the present work, we formulate a reaction-diffusion
equation with a diffusive temporally distributed delay term. This work is inspired by the recent
work [25] where a spatiotemporal distributed delay is considered to model the effect of social
animals’ memory, and the memory of animals is assumed to rely on the whole historic infor-
mation as well as the spatial territory conditions. While, it is also known that many animals,
especially most carnivores, are solitary and asocial because the costs of intraspecific competition
outweigh the benefits accrued with group living [7]. Therefore it is of interest to study the role
of spatial memory of solitary type animals in their spatial movement. As such animals have very
weak connections with others of their species, the influence of the spatial variation from other
individuals is negligible. The diffusive delay term caused by animals’ memory can be modeled
by a weighted integral of the population density over all the past time, which is named as tem-
poral distributed delay according to the previous study [13]. It is also known that many solitary
animals, such as tiger, are usually very territorial, which means that they will not allow others to
step in their territory and they will be driven away when they invade others’ land as well. In this
situation, we may reasonably assume that the boundary environment of the animals’ territory is
hostile.

For the existence of spatially non-homogeneous steady state in the temporally distributed
memory model (1.2), it is shown that the spatially non-homogeneous steady state is generated via
a forward steady-state bifurcation when d> > —2d; and a backward steady-state bifurcation when
dr < —2d,. Also, the spatially non-homogeneous steady state is unique when d > 0. Under
the condition that d, > 0, we investigate the stability of the unique spatially non-homogeneous
steady state. When the temporal kernel is take as weak kernel, the spatially non-homogeneous
steady state remains stable for any t which is the average delay of the temporal time delay in
model (1.2). The result is similar to the weak kernel case of a spatiotemporal delay model [25]. In
the strong kernel case, we show that when the strength of the memory-based movement is strong
enough (d, large), the positive non-homogeneous steady state solution could lose its stability
if the average delay t is in an intermediate range, and two Hopf bifurcations occur when t
increases: the first one to destabilize the steady state, and the second one to regain the stability.
This shows that a temporally distributed memory-based delay with a large average delay value is
a stabilizing force, which is different from the cases of discrete delay [21] or spatiotemporal delay
[25]. From the biological perspective, the oscillatory patterns generated via Hopf bifurcations
reflect the periodically temporal distribution of the species, which is reasonable as the animals
will periodically move in their habitat to gain better resources according to their memory and
experience. Our study shows that this situation usually happens when the average memory is not
too large or small.

In [33], Wang and Salmaniw summarize the study about the spatial memory models and
leave some open problems. To be more concrete, we refer the readers to the works in
[1,11,21-23,26-29,32,34,35,37] for the discrete spatial memory and [12,19,25,30,38] for dis-
tributed spatial memory (with Neumann boundary condition). Our work in the present paper
contributes to the study of the effects of memory on animals’ spatial movements by proposing a
temporally distributed delay term to model the diffusive memory under a hostile boundary condi-
tion. In the future, it is natural to extend the modeling idea to interacting species in an ecosystem,
for instance, spatial memory of resource distribution by consumers and spatial memory of preda-
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tor distribution by prey. The aggregated research efforts in this direction will contribute to the
ecological theory of cognitive animal movements.
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