

1 **Effect of reaction media on hydrogenolysis of polyethylene plastic waste:**
2 **Polymer-surface interactions in small alkane/polymer blends**

3 Mehdi Zare,¹ Pavel A. Kots,¹ Zachary R. Hinton,¹ Thomas H. Epps, III,^{1,2,3} LaShanda T. J.
4 Korley,^{1,2,3} Stavros Caratzoulas,^{1*} and Dionisios G. Vlachos^{1,2*}

5 ¹*Center for Plastics Innovation, University of Delaware, 221 Academy Street, Newark, Delaware 19716,
6 United States*

7 ²*Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street,
8 Newark, Delaware 19716, United States*

9 ³*Department of Materials Science and Engineering, University of Delaware, 127 The Green, Newark, DE
10 19716, USA*

11 *Corresponding authors: cstavros@udel.edu, vlachos@udel.edu

12 **Abstract**

13 The polymer reaction media and its properties can be altered by recycling a fraction of
14 liquid products or adding alkane solvents. Less clear is whether this strategy affects hydrogenolysis.
15 Herein, we investigated the effect of short-chain alkanes C_n consisting of n carbons (n=8, 16, and
16 32) on the upcycling of high-density polyethylene (HDPE) plastic waste to lubricant-range
17 products over Ru/TiO₂ catalysts by multiscale simulations and experiments. First, we trained a
18 force field for polymer/surface interactions on a Ru₂₂ nanoparticle (NP) supported on TiO₂. Using
19 replica exchange molecular dynamics simulations, we studied the effect of small hydrocarbons on
20 the adsorption of a surrogate polymer, C_{142} , on the catalyst. We found segregation of long chains
21 (C_{142}) at the catalyst surface due to the enthalpy gained by adsorbing more C-C bonds of the long
22 chains, compensating for entropic losses upon adsorption. Short-chain molecules decrease the
23 adsorbed carbons of long chains on the Ru NP due to blocking Ru active sites. Compared to the
24 bulk chains, competitive adsorption results in a broader, heavy-tailed distribution of end-to-end
25 distance of adsorbed chains. Our experiments demonstrated that catalyst activity declines
26 significantly beyond simple dilution due to changes in polymer adsorption, and tuning the reaction
27 media by creating suitable blends impacts hydrogenolysis. Density distributions for a 50:50 %wt
28 mixture of PP and PE show that PE chains are segregated at the surface, so they are prone to C-C
29 bond breaking much faster than PP chains. H/D exchange experiments show preferential
30 deuteration of PE, while CH₃ groups of PP remain undeuterated. This may be explained by the
31 preferential sorption of PE over PP, leading to specific distribution in the polymer blend.

32 **INTRODUCTION**

33 Chemical recycling of plastic waste to value-added products can complement mechanical
34 recycling to curtail plastic waste.¹ Chemical recycling aims to develop technically feasible,
35 economically viable, and environmentally sustainable processes.² Hydrogenolysis of high-density
36 polyethylene (HDPE), low-density polyethylene (LDPE), and polypropylene (PP) over Ru- and
37 Pt-based catalysts to lubricant range products has drawn much attention recently because of the
38 high market volume and market share. Tennakoon et al.³ successfully synthesized a core-shell
39 Pt/SiO₂ catalyst in which the Pt nanoparticles (NPs) are at the edge of nanopores in a mesoporous
40 silica shell. The catalyst yielded diesel and lubricant-range alkanes from PE. Kots et al. studied the
41 hydrogenolysis of PP over Ru/TiO₂ catalysts and achieved lubricant-range hydrocarbons with
42 narrow molecular weight distributions.⁴

43 The high activity of Ru and Pt catalysts often leads to cascade methane formation,^{5, 6}
44 reducing the yield to lubricants. Techno-economic analysis on the conversion of plastic waste into
45 lubricants showed that a 90% yield to C₃₅ lubricant significantly reduced the cost by 70% (capital
46 and operating) vs. a 60% yield.⁷ Consequently, catalyst and process development to increase the
47 lubricant yield is necessary. A fundamental understanding of interfacial phenomena at the
48 catalyst/polymer interface is critical to achieve this goal.

49 One crucial aspect of plastic depolymerization that has received little attention is the design
50 of the reaction media. One could intentionally add hydrocarbons as solvents to modify the reaction
51 media properties, such as the melt viscosity and polymer diffusivity. Recycling a suitable fraction
52 of products can achieve the same goal without using external solvents while alleviating the need
53 for high purity when separating the recycled stream from the product.

54 In this work, we employ molecular dynamics (MD) simulations to investigate the effect of co-
55 feeding short-chain alkanes on HDPE plastic waste upcycling over Ru/TiO₂ catalysts. We
56 hypothesize that adding short chains could alter the reactivity by modulating the adsorption and
57 structural properties of the polymer on the Ru NPs. We develop a force field for the
58 polymer/catalyst interfacial interactions. We simulate 50:50 wt% binary mixtures of C₈:C₁₄₂,
59 C₁₆:C₁₄₂, and C₃₂:C₁₄₂ over a Ru₂₂ nanoparticle supported on anatase TiO₂(101), and we present
60 experimental results demonstrating that small hydrocarbons in small hydrocarbon-polymer blends
61 significantly alter the hydrogenolysis reactivity. Finally, we model a 50:50 %wt mixture of

62 polypropylene (PP) and PE and study their relative adsorption on Ru₂₂/TiO₂ as it is relevant to the
63 recycling of mixed plastic waste; the predictions of the molecular dynamics simulations are
64 confirmed by H/D exchange experiments.

65 **METHODS**

66 **Computational**

67 Planewave periodic density functional theory (DFT) calculations were carried out in the
68 Vienna Ab Initio Simulation Package (VASP 5.4.1)^{8,9} to obtain the optimized anatase TiO₂(101)
69 slab, which is the most stable and dominant facet of TiO₂ anatase (used in the experiments). Using
70 the supercell approach, an 8×4 unit cell with three layers (20.90 × 15.51 × 9.50 Å³), in which
71 the bottom layer was fixed while the top two layers were relaxed, was constructed with a 25 Å
72 vacuum layer over the surface. To model the Ru/TiO₂ catalyst, geometry optimization was
73 performed for a Ru NP consisting of 22 atoms (Ru₂₂) supported on the optimized titania slab. This
74 Ru NP was used since it gives us reasonable characteristics of a particle model with different facets,
75 and its diameter (~0.8 nm) is close to the average size of Ru particles used in experiments (~1 nm).
76 The frozen-core, all-electron projector augmented-wave (PAW)¹⁰ method was utilized. The
77 exchange-correlation energy was calculated within the generalized gradient approximation
78 (GGA)¹¹ using the revised Perdew-Burke-Ernzerhof (PBE)¹²⁻¹⁴ functional with Grimme's D3
79 corrections.¹⁵ Brillouin zone integrations have been performed on a 3×3×1 Γ-centered k-point grid
80 (Γ point only used for adsorption of alkanes on Ru₂₂/TiO₂ in force-field validation), and electronic
81 wavefunctions at each k-point were expanded using a discrete plane-wave basis set with kinetic
82 energies limited to 450 eV. Fractional occupancies of bands were allowed within a window of 0.05
83 eV using Gaussian smearing. The self-consistent field (SCF) calculations converged to 1.0×10⁻⁵
84 eV. A force criterion of 0.05 eV Å⁻¹ was used on relaxed atoms for geometry optimization. The
85 geometry of the optimized NP is provided in Figure S1.

86 MD simulations were performed using the LAMMPS MD simulator.¹⁶ Using the supercell
87 approach, the clean Ru/TiO₂ surface was represented by a 16×12 slab comprising 576 Ti, 1152 O,
88 and 22 Ru atoms with dimensions of 41.80 × 46.52 × 77.00 Å³. The experimental PE melt
89 density¹⁷ of ~0.7 g.cm⁻³ at 523 K in the middle of the box, representing bulk PE, was achieved by
90 packing the simulation boxes with the PE chains (see Table S1 for the number of chains used).

91 The dimensions of the simulation boxes along the catalyst surface normal were selected so that the
92 PE melt layer be at least 3 times as large as the equilibrium root-mean-square radius-of-gyration
93 (R_g) of the PE chains in the bulk.¹⁸ The PE melts were exposed to the catalyst surface on one side
94 and vacuum on the other side along the surface normal. All catalyst atoms were kept fixed during
95 the simulations. The PE melts were initially built in Moltemplate¹⁹ with the OPLS-AA force field^{20,}
96²¹ for PE interactions. The TiO_2 -PE van-der-Waals interactions were represented by the Matsui-
97 Akaogi (MA) force field.^{22, 23} To describe the Ru-PE interactions and TiO_2 -PE electrostatic
98 interactions, we developed a force field explained in detail below (see Table S2 for all force field
99 parameters). The geometric mixing rules, $\sigma_{ij} = \sqrt{\sigma_i \sigma_j}$ and $\varepsilon_{ij} = \sqrt{\varepsilon_i \varepsilon_j}$ were used for cross-
100 interaction Lennard-Jones (LJ) parameters. Simulations were carried out in the canonical ensemble
101 (NVT) with the Nosé-Hoover thermostat with a temperature damping parameter of 100 ps.^{24, 25}
102 Electrostatic interactions were accounted for by using the particle-particle particle-mesh (PPPM)
103 method.²⁶ A 12 Å cutoff radius was used for the non-bonding interactions and the transition
104 between short- and long-range electrostatic interactions.

105 All systems were simulated in three stages. First, the bulk PE melt was equilibrated for 1
106 ns in the NPT simulation. Next, the equilibrated PE melt was brought to the catalyst surface and
107 the entire system was equilibrated for 25 ns in the NVT ensemble. Finally, the systems were
108 equilibrated for 5 ns using Replica-Exchange MD (REMD), and data were collected for another
109 10 ns for 8 replicas. Details of the REMD procedures can be found elsewhere.²⁷⁻³⁰ The swap
110 between replicas was tried every 10 ps and the snapshots were recorded for each replica every 5
111 ps. The replica exchange acceptance probability was ~20%, which ensured a free random walk in
112 the temperature space.^{28, 31} To prevent possible drift or rotation of atoms by the temperature
113 corrections, a momentum drift correction was applied every 50 ps. We used the Multi-State Bennet
114 Acceptance Ratio estimator (MBAR), implemented in the pymbar program package,³² to obtain
115 unbiased statistical distributions and averages.

116 **Force Field Parameterization**

117 We parameterized a force field to describe the Ru-PE interactions and TiO_2 -PE
118 electrostatic interactions using the methodology developed by Rouse et al.³⁵ First, we optimized
119 the geometry of Ru_{22}/TiO_2 (8×4 unit cell) using DFT. We next performed DDEC6 partitioning of
120 the electron density^{36, 37} to obtain the net atomic charges (NACs), bond orders (BOs),³⁸ and the

121 cubed atomic moment (CAM) that corresponds to the volume occupied by the atom in the material;
122 the analysis was performed in ChargeMol v3.9.³⁹ Next, we used the local connectivity of atoms
123 determined by the bond orders (we considered a threshold value of 0.25 for bonded atoms) to
124 determine the force field atom types. We identified two Ti atom types, bulk (Ti-O6) and surface
125 (Ti-O5/TiO6), two oxygen atom types, bulk (O-Ti3) and surface (O-Ti2), and three Ru atom types
126 in the Ru₂₂ NP, top, middle, and contact layer. Finally, we computed the averages of the net atomic
127 charges and cubed atomic volumes. The average NACs were directly used for partial atom charges
128 in the force field, with minor modifications providing total zero charge for the system. The average
129 net atomic volumes were used to determine the attractive Lennard-Jones (LJ) parameter B using
130 the theory developed by Tkachenko and Scheffler,⁴⁰ and the $B(V)$ dependencies reported for each
131 atom by Gould.^{41, 42} The attractive LJ parameters A were determined by simple scaling relations
132 from the atomic volumes:

133
$$A = \frac{1}{2} B (2R_A)^6 \quad (1)$$

134 wherein R_A is the effective van-der-Waals radius (equal to the minimum of the LJ potential)
135 corresponding to the atomic volume, V . For the TiO₂ atoms, we only used the partial charges
136 obtained from the force field. We used MA parameters for the LJ parameters of TiO₂,^{22, 23} which
137 showed better accuracy during force-field validation (see Figure S2). This behavior could be
138 attributed to the MA parameters being determined to reproduce the observed crystal structures of
139 rutile, anatase, and brookite, and the measured elastic constants of rutile. Force field parameters
140 for the Ru NP on anatase TiO₂(101) are provided in Tables S2.

141 **Experimental**

142 Ru/TiO₂ catalyst with a Ru loading of 3.3 wt% was prepared.³³ The catalyst was reduced
143 at 300 °C for 3 h in 50% H₂/He mixture, then mixed with 2 g of low-molecular-weight PE (Sigma-
144 Aldrich, 427772) and loaded in a 50 mL Parr reactor with a magnetic stirrer. The reactor was
145 purged 3 times with pure H₂, charged with 30 bar H₂, heated to 250 °C and kept at this temperature
146 for 10 min. Then, it was quickly quenched in an ice bath. The gas phase was collected in a 1 L
147 Tedlar gas bag. The reaction mixture was mixed with dichloromethane solvent (99.8%, Fisher),
148 which was premixed with known amount of octacosane (>98%, TCI, P/N 00002) standard) and

149 filtered through the Whatman 1001-090 paper. The solid residue was dried overnight under
150 ambient conditions.

151 The gas sample was analyzed using gas chromatography with flame ionization detector
152 (GC-FID) on 10m x 0.32mm x 10 μ m Poraplot Q column on an Agilent 8890 gas chromatograph.
153 A standard gas mixture (Millipore Sigma 303100-U by Airgas) was used to calibrate retention
154 times and FID response. An HP-1 column was used and calibrated for liquid analysis using an
155 alkane standard solution (Supelco 04071 and 49452-U). The solid residue, made up >95% of all
156 products, was dissolved in toluene (99.7%, Fisher) at 110 °C and separated from the catalyst
157 powder via decanting. The toluene was then removed from the solid residue in a rotary evaporator,
158 and the solid was further analyzed with high-temperature gel permeation chromatography (GPC)
159 using a Tosoh HLC-8312GPC/HT instrument according to a published procedure.³⁴ The resulting
160 molecular weight distribution was deconvoluted into 5 Gaussian components, and number-average
161 and weight-average molecular weights (M_n and M_w) were calculated among all components. For
162 samples containing hexadecane and dotriacontane (>97%, TCI), extra peaks were present in the
163 GPC curves. The contribution of light alkanes was fitted as a separate peak and subtracted. The
164 total content of C-C bonds in the solid residue was approximated with the following expression:

165
$$N_{CC} = \frac{m_i}{M_{n,i}} \left(\frac{M_{n,i}}{14} - 1 \right), \quad (2)$$

166 wherein⁷ N_{CC} is the number of C-C bonds, m_i is the mass of the i-th solid residue, and $M_{n,i}$ is the
167 molecular weight of the i-th solid residue, obtained from GPC analysis. For calculations in this
168 work, m_i was assumed to be 2 g, which corresponds to 100% solid yield. The solid yield was
169 above 95.5% in all experiments due to short reaction times. The number 14 is the molecular weight
170 of the constituent repeating unit of polyethylene (CH₂).

171 The rate of C-C bond breaking was calculated as:

172
$$r_{cc} = \frac{N_{CC}^0 - N_{CC}}{10 \text{ min} \cdot 0.05 \text{ g}_{cat}} \frac{\mu\text{mol of C-C bonds}}{\text{s} \cdot \text{g}_{cat}}, \quad (3)$$

173 wherein N_{CC}^0 is the number of C-C bonds in the initial polymer. r_{cc} is normalized by the reaction
174 time (10 min) and catalyst weight.

175 For the H/D exchange experiments, a Parr reactor was charged with 30 bar D₂ instead of
176 H₂ to probe selective labeling of PE over PP. A freshly reduced catalyst was mixed with 1 g of
177 HDPE (Sigma-Aldrich, 427985) and 1 g PP (Sigma-Aldrich, 427888). After that, the reaction
178 continued as usual.

179 Attenuated total reflectance Fourier-transform IR spectra (ATR-IR) were recorded in the
180 Nicolet Nexus spectrometer equipped with a liquid nitrogen cooled MCT detector and Smart Omni
181 ATR accessory. The polymer mixture and solid residue were homogenized before measurements
182 to avoid extensive phase separation. The solid was dissolved in toluene at 110 °C followed by
183 toluene removal in a rotary evaporator. This procedure led to more uniform PP and PE distribution
184 within the sample.

185 **RESULTS AND DISCUSSION**

186 **Force Field Assessment**

187 The force field of Ru₂₂/TiO₂ was validated by comparing adsorption energies (at 0 K) of
188 C₁ to C₁₀ alkanes to DFT values. Figure 1 shows the force field validation results within DFT
189 accuracy. The optimized structures of the molecules on the catalyst surface are provided in Figure
190 S4. We also provide the force-field performance using the universal forcefield (UFF)⁴³ Lenard-
191 Jones parameters for Ru atoms in Figure S3 to emphasize the need for force-field development for
192 Ru-PE interactions.

193 **Mixture Calculations and Experiments**

194 To shed light on how solvents impact the PE reactivity, we modeled a pure C₁₄₂ melt, along
195 with 50:50 wt% mixtures of C₈:C₁₄₂, C₁₆:C₁₄₂, and C₃₂:C₁₄₂ melts at 523 K over Ru₂₂/TiO₂ (Table
196 S1 lists the number of molecules in each simulation). The density distributions shown in Figure 2
197 indicate that long chains (C₁₄₂) segregate at the catalyst surface, in all mixtures. Increasing the
198 short chain size from C₈ to C₁₆ and C₃₂ decreases the C₁₄₂ segregation to the catalyst surface, which
199 is associated with the chemical similarity of the mixture components and relative entropy loss of
200 the short vs. long chains when absorbed to a solid surface. It has been suggested⁴⁴⁻⁴⁷ that surface
201 segregation is a strong function of the relative polymer-polymer and polymer-surface interactions;
202 due to entropy, long chains near weakly attractive surfaces prefer to diffuse away, but strong
203 polymer-surface attractive interactions can compensate for the entropic cost. Although the entropic

204 loss of short-chain adsorption is smaller than that of long chains, the enthalpic gain by adsorption
205 of a greater number of C-C bonds (long trains) in the long chains compensates for the entropic loss
206 that leads to the surface segregation of long chains. Strong polymer-surface interactions bring all
207 mixture components to the surface, and no preferred chain length surface segregation is observed.
208 This observation agrees with our previous work in which a decrease in the strength of Pt potential
209 led to more long-chain surface segregation in a 50:50 wt% mixture of C₂₀ and C₁₄₂.⁴⁸

210 To reveal the impact of small alkane addition on adsorption, we calculated the number of
211 adsorbed carbon atoms, C_{ads} , of short and long chains, on Ru₂₂ (see Figure 3); a carbon atom was
212 considered adsorbed when it was within 5 Å of a Ru. The inclusion of short chains (C₈, C₁₆, or
213 C₃₂) in the hydrocarbon mixture decreased the C_{ads} of C₁₄₂ chains on the Ru NP. This means that
214 short chains can block some Ru sites, potentially altering reactivity. Increasing the size of the short
215 chain in the mixture decreased C_{ads} of C₁₄₂ and increased that of short chains. This trend agrees
216 with the distributions in Figure 2, in which the population of short chains on the catalyst increases
217 with their size.

218 We conducted experiments for various mixtures to examine how differences in polymer
219 binding impact the reaction outcome. We evaluated the conversion of 50:50 wt% mixtures of small
220 alkane and polymer over a Ru/TiO₂ catalyst at 30 bar H₂ pressure at 250 °C. The solid residue
221 constitutes 98.2-95.7% of the total product yield at this short reaction time. Therefore, GPC
222 analysis of the remaining polymer provided quantitative insight into the PE conversion (Figure 4,
223 S5, and Table 1).

224 The starting polymer had a molecular weight distribution with two overlapping maxima
225 and a dispersity (D) 1.74. According to GPC, the peak maximum for pure PE after the reaction
226 shifted to a lower molecular weight than the initial polymer. In conjunction with a minor reduction
227 in D to 1.62, all chains underwent hydrogenolysis, with heavier chains reacting more, leading to a
228 more uniform distribution. Quantitative analyses in Table 1 indicated that pure PE's M_n was
229 reduced by ~30%.

230 The addition of octane (C₈), hexadecane (C₁₆), and dotriacontane (C₃₂) leads to a lower M_n
231 decrease, i.e., a slower evolution of the reaction. This finding is also reflected in the rate of broken
232 C-C bonds (r_{CC}), which was calculated using Equations 2 and 3. Estimation of r_{CC} indicates a
233 significant error due to the minor formation of liquid products, not considered in this calculation

234 (Supplementary Discussion I). In the case of C₁₆ and C₃₂, a substantial amount of short alkanes
235 was found in the solid residue (Figure S5).

236 M_w was more sensitive to heavier chains and decreased in all cases, indicating cleavage of
237 the heavier part of the distribution even with light alkanes added. The average number of cleaved
238 C-C bonds per starting polymer chain per unit of time was $1.7 \times 10^{-2} - 8.5 \times 10^{-4} \text{ s}^{-1} \cdot g_{cat}^{-1}$ depending
239 on the alkane. During 10 min, each chain was cleaved only 0.5 times without added alkanes. This
240 cleavage rate corresponds to a minor fraction of chains having higher reactivity than the rest. So
241 heavier chains dominate active sites and cleave initially with the attendant gradual shift of the
242 whole distribution to lower sizes. This behavior is consistent with previous reports on Ru- and Ni-
243 catalyzed PE conversion.^{49, 50}

244 Literature data indicate increased polymer self-diffusivity when adding small molecules.
245 For the octane-PE mixture, the polymer self-diffusion coefficient (D_s) increases fivefold, from
246 7.6×10^{-6} to $1.6 \times 10^{-6} \text{ cm}^2 \cdot \text{s}^{-1}$.⁵¹ An increase in D_s according to our data (Table 1) does not lead to
247 increased reaction rate, indicating bulk diffusion does not limit the reaction. The observed reaction
248 rate decrease with alkane addition is attributed to competitive adsorption with the polymer, as
249 shown in the MD simulations. Indeed, small octane or hexadecane molecules bind to the Ru NPs,
250 decreasing the polymer adsorbed on the active sites. Furthermore, the alkanes dilute the polymer
251 melt and reduce the overall polymer concentration. Apparent reaction rates (r_{CC}) were normalized
252 per PE concentration in the melt and polymer molar fraction in the adsorbed layer (Table S3).
253 Interestingly, the results demonstrate that the catalyst activity declines beyond simple effect of
254 dilution (see Supplementary Discussion I). The polymer binding to the Ru surface is altered by
255 short alkanes, which affects reaction rate. Formally, changes in polymer reactivity are expressed
256 in very low polymer activity coefficients within the adsorbed layer (Supplementary Discussion II).

257 The addition of octane or hexadecane leads to comparable polymer molar fractions in the
258 adsorbed layer of 0.44-0.49, but the calculated r_{CC} reaction rate in these cases differs 6x. The minor
259 inhibiting effect of octane, compared to hexadecane, can be attributed to high octane vapor
260 pressure under reaction conditions, which would lead to lower effective octane content in the melt.

261 For longer dotriacontane (C₃₂), we find a slight change in M_n and r_{CC} in comparison to the
262 alkane-free case. Hence, despite dilution with dotriacontane, we do observe only slight inhibition

263 of hydrogenolysis. Apparently, polymer reactivity depends on having short alkane size, and it was
264 studied in more detail with simulations.

265 **Structural Properties of Polymers over Ru/TiO₂ Catalysts**

266 We used the standard definitions of trains, tails, and loops to analyze the polymer structures
267 of PE chains on the Ru NP.^{52, 53} An illustration of these conformational features is provided in
268 Figure 5: contiguous backbone carbon atoms on the Ru surface define a train; two successive trains
269 are connected by a loop, whose carbon atoms do not lie on the Ru surface; and a tail succeeds a
270 train that is not followed by another one, *i.e.*, it is part of a chain extending into the melt. The
271 number of C-C bonds defines the length of a train, tail, or loop. In our analysis, trains are selected
272 such that the distance of every carbon atom in a train is less than 5 Å from at least one Ru surface
273 atom to cover the first adsorption shell over the Ru NP (see Lennard-Jones parameters of Ru atoms
274 in the SI). These features enable us to statistically predict which and how many C-C bonds lie
275 close to the Ru NP to qualitatively relate the structure of the polymer at the catalyst surface to
276 reactivity.

277 The conditional probability of trains in the long chain plotted in Figure 6a shows a peak at
278 train length of ~5 for all simulations independent of short-chain alkane size in the mixture. This
279 intuitive finding showcases that the size of Ru NP determines the number of consecutive adsorbed
280 C-C bonds (trains). Adding a short chain to C₁₄₂ in a 50:50 wt% mixture makes the loop
281 distributions broader and less structured. It also slightly alters the peak formed at a loop length of
282 ~25 for the pure C₁₄₂ and C₈+C₁₄₂ simulations vs. that of ~28 for the C₁₆+C₁₄₂ and C₃₂+C₁₄₂
283 simulations. Finally, a longer loop forms when increasing the size of the short chain in the mixture
284 (see Figure 6c).

285 The end-to-end distance (e2e) of chains was used to study the impact of the catalyst surface
286 on the conformations of polymer melts. We distinguished adsorbed chains on the catalyst surface
287 from those in the bulk and plotted the conditional probabilities of e2e of short and long chains.
288 Analysis for polymer melts over the Ru₂₂/TiO₂ catalyst surface provided in Figure 7 shows a
289 broader and heavy-tailed distribution of adsorbed chains compared to chains in the bulk. Adsorbed
290 chains have at least one carbon within 7 Å of the TiO₂ surface (see Figure 2) or 5 Å from the Ru
291 NP surface (see Figure 5). Adding short chains to pure C₁₄₂ melts does not impact the e2e of chains

292 in the bulk (see Figure 7a). Furthermore, short chains in the mixture make the e2e distribution in
293 long chains (C_{142}) broader and less structured.

294 **PP and PE mixtures**

295 An advantage of chemical recycling compared to mechanical recycling is its applicability
296 to mixed-plastics waste streams. These can undergo selective catalytic fractionation chemistry in
297 which sequential steps selectively deconstruct individual plastic materials.² Here, we have
298 modeled a 50:50 %wt mixture of polypropylene (PP) and PE to study their relative adsorption on
299 Ru_{22}/TiO_2 . C_{71} chains represent PE and C_{71} backbones branched with 34 methyl group represent
300 PP chains. The density distribution in Figure 8 clearly shows that PE chains segregate to the surface,
301 potentially becoming available for C-C bond breaking compared to PP chains. To confirm this
302 finding, we performed H/D exchange experiments. H/D exchange in polyolefins is highly sensitive
303 to polymer-catalyst interactions.^{54,55} A mixture of PP and HDPE with comparable M_n reacted over
304 Ru/TiO_2 catalyst for 10 min in D_2 gas to convert C-H bonds to C-D bonds, while avoiding complete
305 H/D averaging (Figure 9).

306 ATR spectra in the CH stretching region of the initial polymers mixture have peaks for
307 $\nu_{as}(CH_3)$ at $\sim 2953\text{ cm}^{-1}$, characteristic of PP.⁵⁶ A broad and intense peak at 2915 cm^{-1} corresponds
308 to $\nu_{as}(CH_2)$ in PE and PP,⁵⁷ and a sharper signal at 2848 cm^{-1} is due to $\nu_s(CH_2)$, also expected for
309 both polymers. The CD stretching region of the solid residue after reaction has peaks at 2187, 2136
310 and 2088 cm^{-1} due to deuterated CD_2 groups, which match the spectrum of deuterated HDPE
311 (Figure S7). On the other hand, the peak at $\sim 2209\text{ cm}^{-1}$, a typical of $\nu_{as}(CD_3)$ in PP,⁵⁶ is absent.
312 This shows preferential deuteration of PE, while CH_3 groups of PP remain undeuterated. This may
313 be explained by the preferential sorption of PE over PP, leading to specific D distribution of the
314 polymer blend.

315

316 **CONCLUSIONS**

317 We investigated the effect of short-chain alkanes on the upcycling of HDPE plastic waste
318 over Ru/TiO_2 catalysts. We first developed a force field for Ru/TiO_2 catalysts, which was validated
319 by comparing adsorption energies (at 0 K) of C_1 to C_{10} alkanes to DFT values. Unlike previous
320 simulations on infinitely large uniform surfaces, such a force field enabled us to perform the first

321 simulations for a finite metal catalyst particle size on a support and account for polymer-catalyst
322 and polymer-support interactions. Next, we modeled 50:50 wt% binary mixtures of C_n (n=8, 16,
323 and 32) with C₁₄₂ over Ru₂₂ nanoparticles supported on anatase TiO₂(101).

324 Density distributions suggest long chains (C₁₄₂) segregate at the catalyst surface due to the
325 enthalpic gain by adsorption of a greater number of C-C bonds (long trains) of long chains, which
326 compensates for entropic losses when bulk chains adsorb to the surface. The addition of short
327 chains (C₈, C₁₆, or C₃₂) to the polymer melt decrease the adsorbed carbons of C₁₄₂ chains on the
328 Ru NP due to blocking Ru active sites and potentially altering reactivity.

329 Experimental data demonstrate that catalyst activity declines beyond simple dilution. The
330 addition of octane or hexadecane leads to comparable polymer molar fractions in the adsorbed
331 layer of 0.44-0.49, but the reaction rate decreases 6x. Small alkanes change the polymer adsorption,
332 but it is hard to capture experimentally these phenomena. Molecular simulations can provide such
333 insights in future work. Additional simulation and experiments can better explain how branching
334 of short alkane will impact the properties of the polymer.

335 Structural analysis of adsorbed polymers on the Ru nanoparticle indicates that the trains of
336 long chains have a most probable train length of ~5, independent of short-chain alkane size. This
337 length is dictated by the Ru NP. The average length of loops increases when increasing the size of
338 the short chains. The end-to-end distance (e2e) shows a broader and heavy-tailed distribution for
339 adsorbed chains compared to those in the bulk. Short chains in the melts do not impact the e2e of
340 bulk chains but makes the distribution in long chains (C₁₄₂) broader and less structured. The work
341 can be extended to mixed plastics. For example, we showed that PE preferentially adsorbs at the
342 catalyst surface over PP in a 50:50 %wt mixture of PE and PP.

343 Our results demonstrate that interfacial polymer/surface interactions are crucial to
344 deconstruction. Small alkanes blended with polymers tune the reaction media bulk properties.
345 Importantly, they also change the adsorption of polymers and, thus, reactivity. Molecular
346 simulations are instrumental in providing insights and designing the reaction media.

347

348 **Associated Content**

349 **Supporting Information**

350 Information on structure and composition for simulations; force field validation; force field
351 parameters; DFT alkane structures; error in reaction rate; experimental data; thermodynamic
352 adsorption analysis.

353

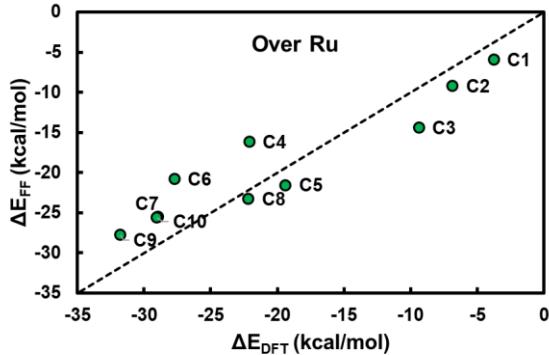
354 **Author contributions**

355 Z.R.H. performed GPC characterization and analysis guided by T.H.E. and L.T.J.K. M.Z.
356 performed all calculations and analysis. P.A.K. performed the experiments and associated analysis.
357 S.C. and D.G.V. conceived the overall idea, supervised the project, and obtained the funding
358 together with T.H.E. and L.T.J.K. The manuscript was written by M.Z. and S.C. with input from
359 all the authors.

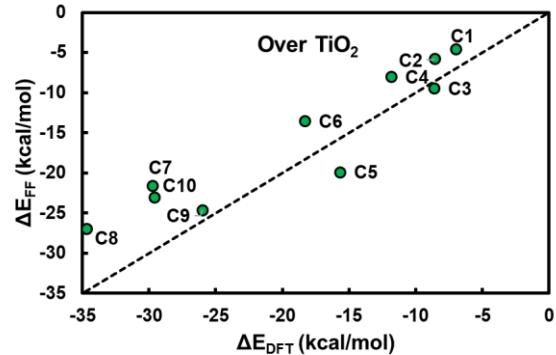
360 **Conflict of interest**

361 The authors declare no conflict of interest.

362 **Acknowledgments**


363 This work was intellectually led and supported as part of the Center for Plastics Innovation, an
364 Energy Frontier Research Center funded by the US Dept. of Energy, Office of Science, Office of
365 Basic Energy Sciences under award number DE-SC0021166. The data analysis was supported by
366 the National Science Foundation under Grant No. 2134471.

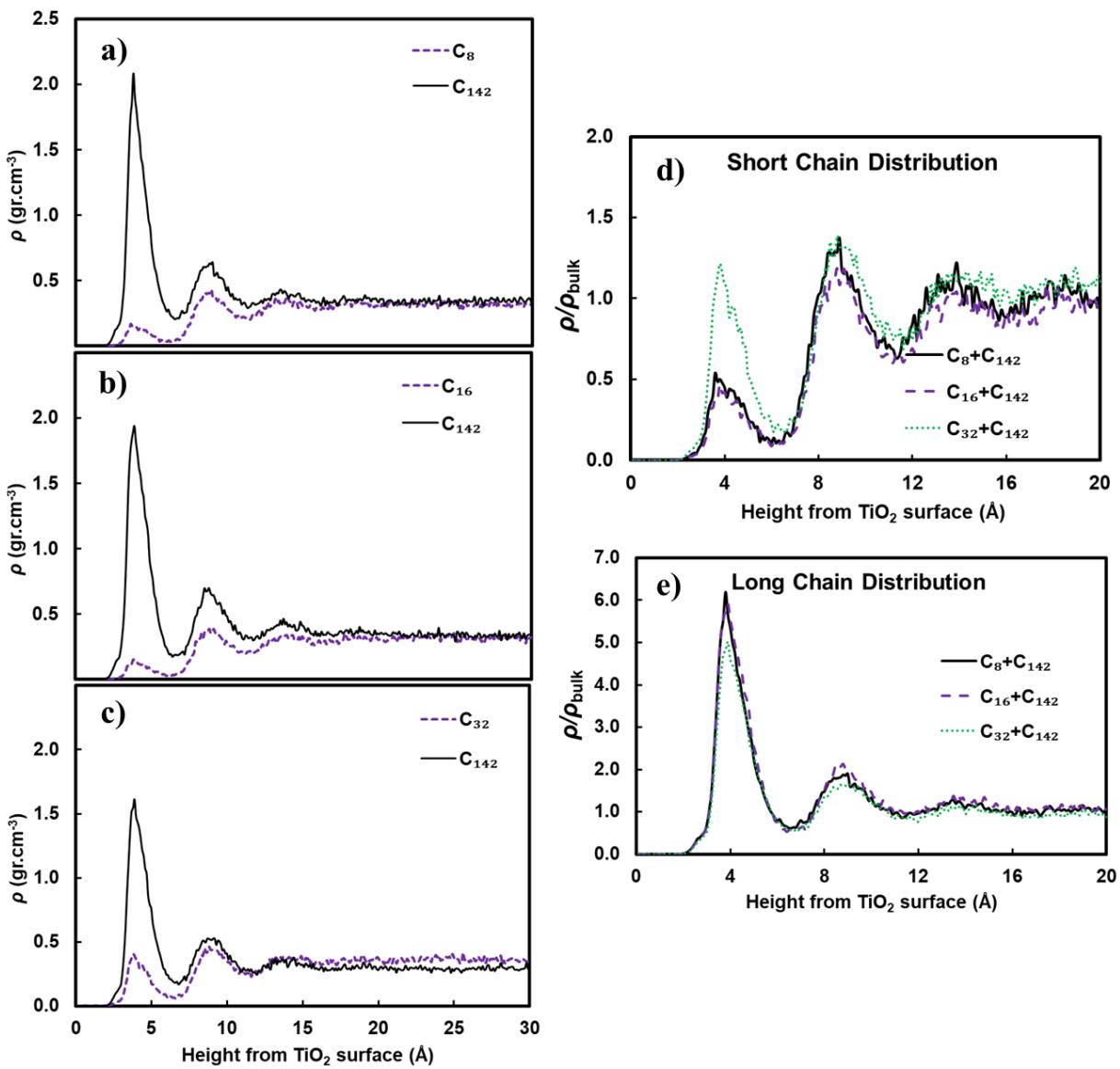
367


368 **Figures and Tables:**

369

a)

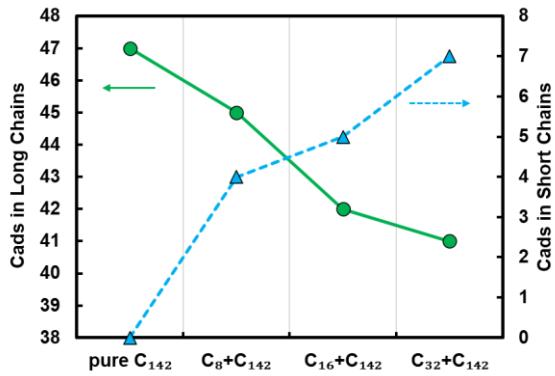
b)



370

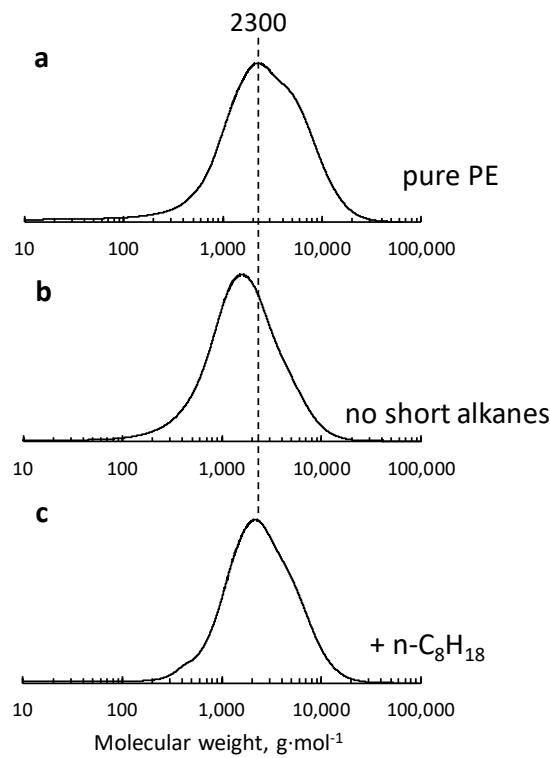
371 **Figure 1.** Force field performance in prediction of adsorption energies (at 0 K) of C₁ to C₁₀ alkanes on
 372 Ru₂₂/TiO₂ surface vs. DFT calculations. “Over Ru” and “Over TiO₂” represent adsorption on the Ru NP
 373 and the TiO₂ support, respectively (see Figure S4 for the optimized structures).

374


375

376

377 **Figure 2.** Density distribution plots for 50:50 wt% mixtures of a) $\text{C}_8:\text{C}_{142}$, b) $\text{C}_{16}:\text{C}_{32}$, and c) $\text{C}_{32}:\text{C}_{32}$
378 polyethylene melts at 523 K over $\text{Ru}_{22}/\text{TiO}_2$. Normalized short (C_8 , C_{16} , and C_{32}) and long (C_{142}) chains
379 density distributions are also provided in d) and e), respectively, to show the impact of short-chain size in
380 the mixture behavior.


381

382

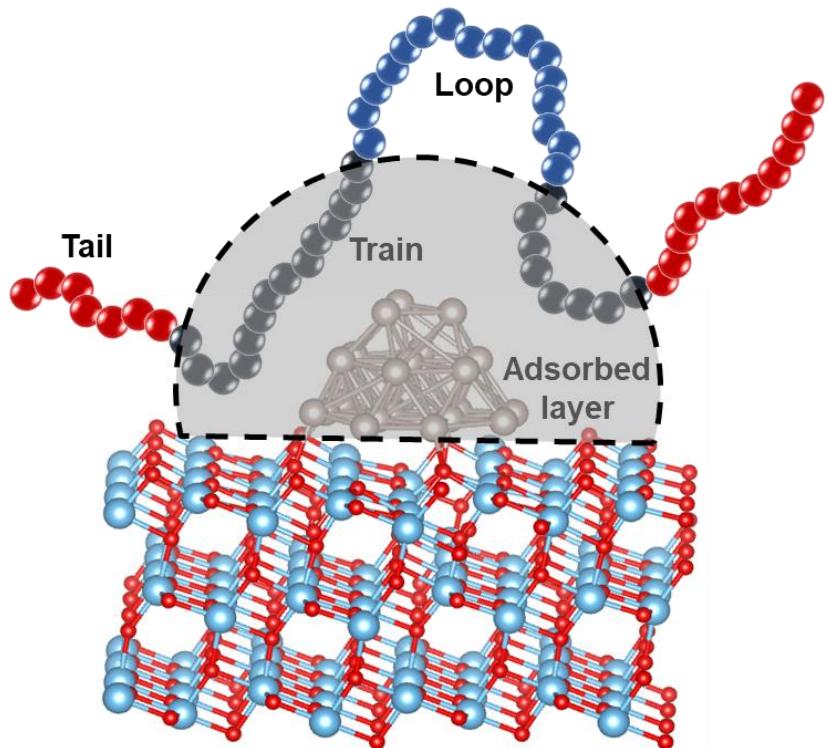
383 **Figure 3.** Adsorbed carbons over the Ru NP in short and long chains for 50:50 wt% mixtures of $C_8:C_{142}$,
 384 $C_{16}:C_{142}$, and $C_{32}:C_{142}$ polyethylene melts at 523 K over Ru_{22}/TiO_2 catalyst. C_{ads} is adsorbed carbons on the
 385 Ru NP.

386

387

388 **Figure 4.** GPC traces for initial PE (a), and solid residues recovered after reaction with no alkanes (b),
 389 and 50% mixture with octane (c). Reaction conditions: 250 °C, 30 bar H₂, 0.17 h, 2 g PE, (2 g octane), 50
 390 mg Ru/TiO₂ catalyst.

391

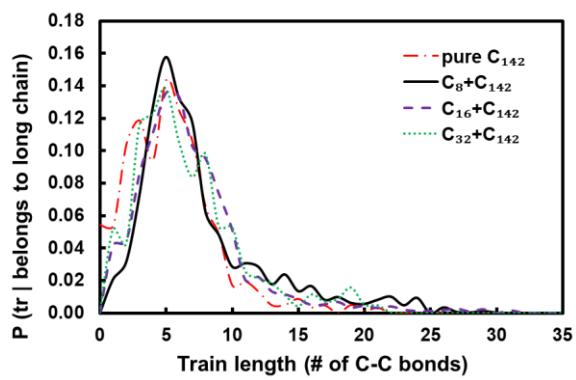

392 **Table 1.** Experimental data on PE hydrogenolysis.

Reaction media	$M_n, \text{kg}\cdot\text{mol}^{-1}$	$M_w, \text{kg}\cdot\text{mol}^{-1}$	$r_{CC},^1 \text{ rate of C-C bond breaking,}$ $\mu\text{mol}\cdot\text{s}^{-1}\cdot\text{g}_{\text{cat}}^{-1}$
initial, pure PE	2.22	3.86	-
no solvent	1.48	2.40	15.1
octane (n-C ₈ H ₁₈)	2.06	3.29	4.9
hexadecane (n-C ₁₆ H ₃₄)	2.20	3.14	0.8
dotriacontane (n-C ₃₂ H ₆₆)	1.73	2.21	17.2

393 ¹ Rate of C-C bond breaking in initial PE. Reaction conditions: 250 °C, 30 bar H₂, 0.17 h, 2 g PE
 394 (in some cases mixed with 2 g of short alkane), 50 mg Ru/TiO₂ catalyst.

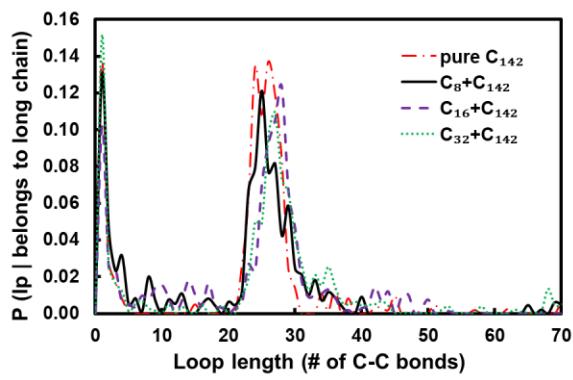
395

396

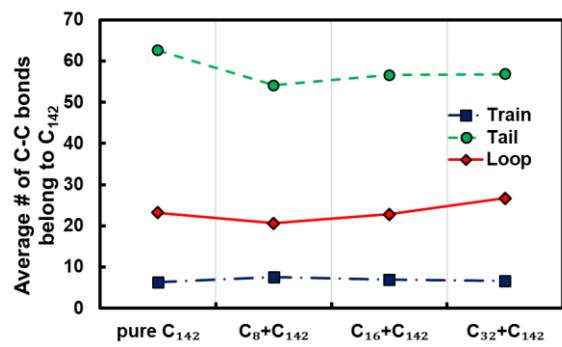


397

398 **Figure 5.** Schematic representation of trains (black), tails (red), and loops (blue). Trains are selected such
399 that the distance of every carbon atom in a train is less than 5 Å of at least one Ru surface atom to cover
400 the first adsorption shell over Ru NP (see Lennard-Jones parameters of Ru atoms in the SI).


401

a)


402

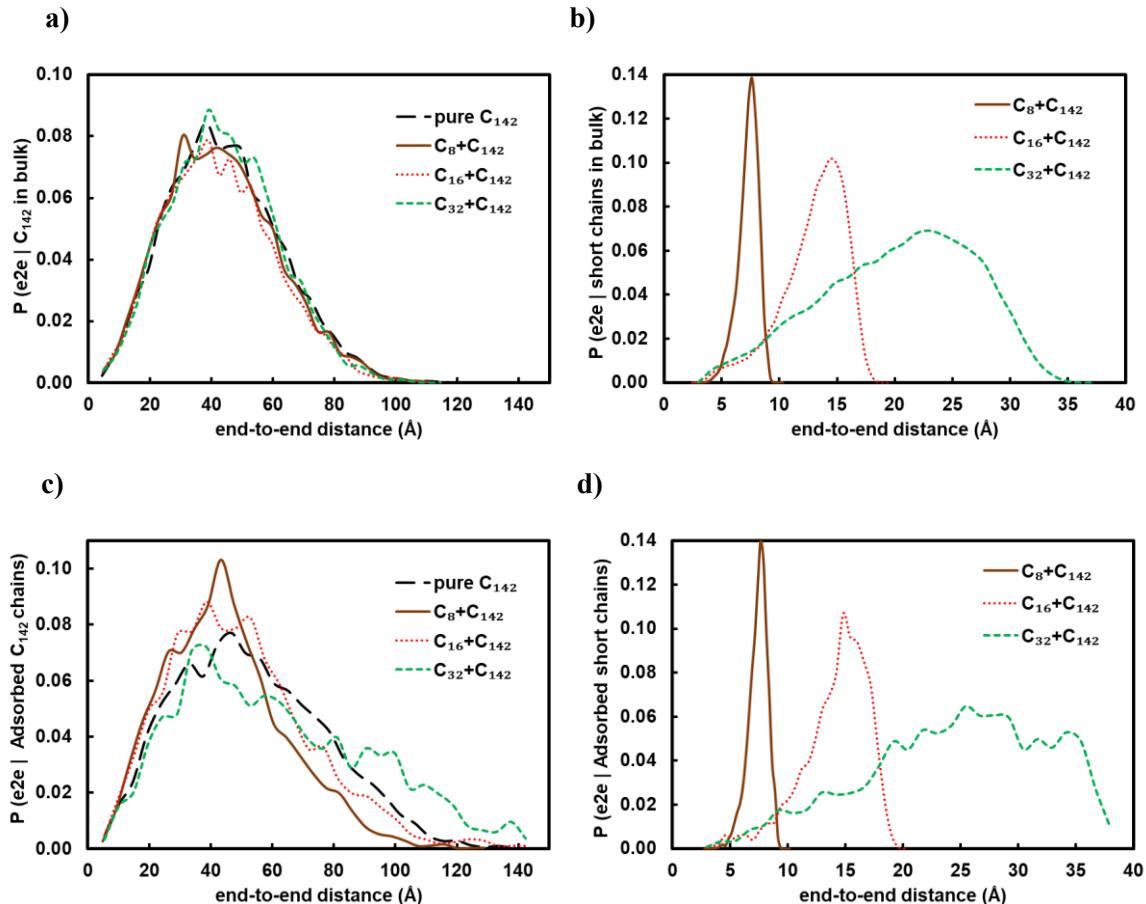
b)

403

c)

404

405


406

407

Figure 6. Conditional probabilities of length of a) trains and b) loops in C_{142} for pure C_{142} melt and 50:50 wt% binary mixtures of C_8 , C_{16} , and C_{32} with C_{142} over $\text{Ru}_{22}/\text{TiO}_2$ catalysts at 523K. c) Average length of trains, tails, and loops of C-C bonds in C_{142} .

408

409

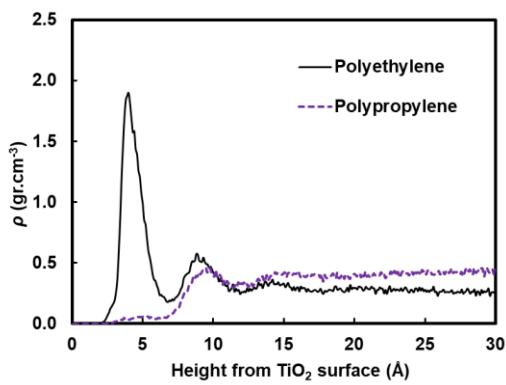
410

411

412

Figure 7. Conditional probabilities of end-to-end distances (e2e) a) in C₁₄₂ chains and in the bulk that are not adsorbed on the catalyst surface, b) in short chains (C₈, C₁₆, and C₃₂ chains for C₈:C₁₄₂, C₁₆:C₁₄₂, and C₃₂:C₁₄₂ mixtures, respectively) and in the bulk, c) in C₁₄₂ chains and adsorbed, and d) in short chains and adsorbed for different polyethylene mixture melts over a Ru₂₂/TiO₂ catalyst surface model at 523 K. If a chain has at least one carbon within a 7 Å height from TiO₂ surface (see Figure 2) or in the adsorbed layer of Ru NP (see Figure 5), it is considered adsorbed.

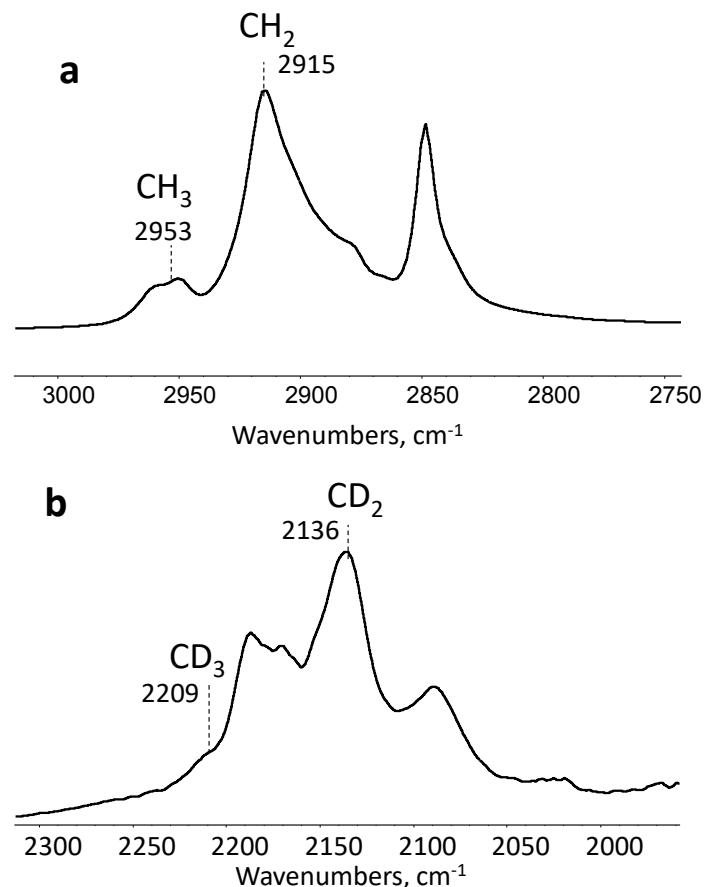
413


414

415

416

417


418

420

421 **Figure 8.** Density distribution plot for a 50:50 %wt mixture of PE (linear C_{71}), and PP (branched C_{71}
422 backbone with 34 methyl branches) over a $\text{Ru}_{22}/\text{TiO}_2$ catalyst surface at 523 K.

423

424

425 **Figure 9.** ATR-FTIR spectra for PP-PE mixture after reaction. Reaction conditions: 250 °C, 30 bar D_2 ,
426 0.17 h, 1 g HDPE, 1 g PP, 50 mg Ru/TiO₂ catalyst.

427

428

429 **References**

- 430 (1) Tsakona, M.; Baker, E.; Rucevska, I.; Maes, T.; Appelquist, L. R.; Macmillan-Lawler, M.;
431 Harris, P.; Raubenheimer, K.; Langeard, R.; Savelli-Soderberg, H.; et al. *Drowning in Plastics—*
432 *Marine Litter and Plastic Waste Vital Graphics*; United Nations Environment Programme, 2021.
- 433 (2) Nicholson, S. R.; Rorrer, J. E.; Singh, A.; Konev, M. O.; Rorrer, N. A.; Carpenter, A. C.;
434 Jacobsen, A. J.; Román-Leshkov, Y.; Beckham, G. T. The Critical Role of Process Analysis in
435 Chemical Recycling and Upcycling of Waste Plastics. *Annual Review of Chemical and*
436 *Biomolecular Engineering* **2022**, *13* (1), 301-324. DOI: 10.1146/annurev-chembioeng-100521-
437 085846.
- 438 (3) Tennakoon, A.; Wu, X.; Paterson, A. L.; Patnaik, S.; Pei, Y.; LaPointe, A. M.; Ammal, S. C.;
439 Hackler, R. A.; Heyden, A.; Slowing, I. I.; et al. Catalytic upcycling of high-density polyethylene
440 via a processive mechanism. *Nature Catalysis* **2020**, *3* (11), 893-901. DOI: 10.1038/s41929-020-
441 00519-4.
- 442 (4) Kots, P. A.; Liu, S.; Vance, B. C.; Wang, C.; Sheehan, J. D.; Vlachos, D. G. Polypropylene
443 Plastic Waste Conversion to Lubricants over Ru/TiO₂ Catalysts. *ACS Catalysis* **2021**, *11* (13),
444 8104-8115. DOI: 10.1021/acscatal.1c00874.
- 445 (5) Wang, C.; Yu, K.; Sheludko, B.; Xie, T.; Kots, P. A.; Vance, B. C.; Kumar, P.; Stach, E. A.;
446 Zheng, W.; Vlachos, D. G. A general strategy and a consolidated mechanism for low-methane
447 hydrogenolysis of polyethylene over ruthenium. *Applied Catalysis B: Environmental* **2022**, *319*,
448 121899. DOI: <https://doi.org/10.1016/j.apcatb.2022.121899>.
- 449 (6) Kots, P. A.; Vance, B. C.; Vlachos, D. G. Polyolefin plastic waste hydroconversion to fuels,
450 lubricants, and waxes: a comparative study. *Reaction Chemistry & Engineering* **2022**, *7* (1), 41-
451 54, 10.1039/D1RE00447F. DOI: 10.1039/D1RE00447F.
- 452 (7) Cappello, V.; Sun, P.; Zang, G.; Kumar, S.; Hackler, R.; Delgado, H. E.; Elgowainy, A.;
453 Delferro, M.; Krause, T. Conversion of plastic waste into high-value lubricants: techno-economic
454 analysis and life cycle assessment. *Green Chemistry* **2022**, *24* (16), 6306-6318,
455 10.1039/D2GC01840C. DOI: 10.1039/D2GC01840C.
- 456 (8) Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and
457 semiconductors using a plane-wave basis set. *Comp Mater Sci* **1996**, *6* (1), 15-50. DOI: Doi
458 10.1016/0927-0256(96)00008-0.
- 459 (9) Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations
460 using a plane-wave basis set. *Phys Rev B* **1996**, *54* (16), 11169-11186. DOI: DOI
461 10.1103/PhysRevB.54.11169.
- 462 (10) Blöchl, P. E. Projector augmented-wave method. *Phys Rev B* **1994**, *50* (24), 17953-17979.
463 DOI: 10.1103/PhysRevB.50.17953.
- 464 (11) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple.
465 *Phys Rev Lett* **1996**, *77* (18), 3865-3868. DOI: DOI 10.1103/PhysRevLett.77.3865.
- 466 (12) Perdew, J. P.; Yue, W. Accurate and Simple Density Functional for the Electronic Exchange
467 Energy - Generalized Gradient Approximation. *Phys Rev B* **1986**, *33* (12), 8800-8802. DOI: DOI
468 10.1103/PhysRevB.33.8800.
- 469 (13) Perdew, J. P.; Wang, Y. Accurate and Simple Analytic Representation of the Electron-Gas
470 Correlation-Energy. *Phys Rev B* **1992**, *45* (23), 13244-13249. DOI: DOI
471 10.1103/PhysRevB.45.13244.

- 472 (14) Hammer, B.; Hansen, L. B.; Nørskov, J. K. Improved adsorption energetics within density-
473 functional theory using revised Perdew-Burke-Ernzerhof functionals. *Phys Rev B* **1999**, *59* (11),
474 7413-7421. DOI: 10.1103/PhysRevB.59.7413.
- 475 (15) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio
476 parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu.
477 *The Journal of Chemical Physics* **2010**, *132* (15), 154104. DOI: 10.1063/1.3382344.
- 478 (16) Thompson, A. P.; Aktulga, H. M.; Berger, R.; Bolintineanu, D. S.; Brown, W. M.; Crozier, P.
479 S.; in 't Veld, P. J.; Kohlmeyer, A.; Moore, S. G.; Nguyen, T. D.; et al. LAMMPS - a flexible
480 simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales.
481 *Computer Physics Communications* **2022**, *271*, 108171. DOI:
482 <https://doi.org/10.1016/j.cpc.2021.108171>.
- 483 (17) Dee, G. T.; Ougizawa, T.; Walsh, D. J. The pressure-volume-temperature properties of
484 polyethylene, poly(dimethyl siloxane), poly(ethylene glycol) and poly(propylene glycol) as a
485 function of molecular weight. *Polymer* **1992**, *33* (16), 3462-3469. DOI:
486 [https://doi.org/10.1016/0032-3861\(92\)91104-A](https://doi.org/10.1016/0032-3861(92)91104-A).
- 487 (18) Daoulas, K. C.; Harmandaris, V. A.; Mavrntzas, V. G. Detailed Atomistic Simulation of a
488 Polymer Melt/Solid Interface: Structure, Density, and Conformation of a Thin Film of
489 Polyethylene Melt Adsorbed on Graphite. *Macromolecules* **2005**, *38* (13), 5780-5795. DOI:
490 10.1021/ma050176r.
- 491 (19) Jewett, A. I.; Stelter, D.; Lambert, J.; Saladi, S. M.; Roscioni, O. M.; Ricci, M.; Autin, L.;
492 Maritan, M.; Bashusqeh, S. M.; Keyes, T.; et al. Moltemplate: A Tool for Coarse-Grained
493 Modeling of Complex Biological Matter and Soft Condensed Matter Physics. *Journal of
494 Molecular Biology* **2021**, *433* (11), 166841. DOI: <https://doi.org/10.1016/j.jmb.2021.166841>.
- 495 (20) Jorgensen, W. L.; Tirado-Rives, J. Molecular modeling of organic and biomolecular systems
496 using BOSS and MCPRO. *Journal of Computational Chemistry* **2005**, *26* (16), 1689-1700. DOI:
497 <https://doi.org/10.1002/jcc.20297>.
- 498 (21) Rackers, J. A.; Wang, Z.; Lu, C.; Laury, M. L.; Lagardère, L.; Schnieders, M. J.; Piquemal,
499 J.-P.; Ren, P.; Ponder, J. W. Tinker 8: Software Tools for Molecular Design. *Journal of Chemical
500 Theory and Computation* **2018**, *14* (10), 5273-5289. DOI: 10.1021/acs.jctc.8b00529.
- 501 (22) Matsui, M.; Akaogi, M. Molecular Dynamics Simulation of the Structural and Physical
502 Properties of the Four Polymorphs of TiO₂. *Molecular Simulation* **1991**, *6* (4-6), 239-244. DOI:
503 10.1080/08927029108022432.
- 504 (23) Luan, B.; Huynh, T.; Zhou, R. Simplified TiO₂ force fields for studies of its interaction with
505 biomolecules. *The Journal of Chemical Physics* **2015**, *142* (23), 234102. DOI: 10.1063/1.4922618.
- 506 (24) Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. *The
507 Journal of Chemical Physics* **1984**, *81* (1), 511-519. DOI: 10.1063/1.447334.
- 508 (25) Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. *Physical Review
509 A* **1985**, *31* (3), 1695-1697. DOI: 10.1103/PhysRevA.31.1695.
- 510 (26) Hockney, R. W.; Eastwood, J. W. *Computer Simulation Using Particles*; Adam Hilger, 1989.
- 511 (27) Hukushima, K.; Nemoto, K. Exchange Monte Carlo Method and Application to Spin Glass
512 Simulations. *Journal of the Physical Society of Japan* **1996**, *65* (6), 1604-1608. DOI:
513 10.1143/JPSJ.65.1604 (acccesed 2022/04/21).
- 514 (28) Sugita, Y.; Okamoto, Y. Replica-exchange molecular dynamics method for protein folding.
515 *Chemical Physics Letters* **1999**, *314* (1), 141-151. DOI: [https://doi.org/10.1016/S0009-2614\(99\)01123-9](https://doi.org/10.1016/S0009-
516 2614(99)01123-9).

- 517 (29) Sugita, Y.; Kitao, A.; Okamoto, Y. Multidimensional replica-exchange method for free-
518 energy calculations. *The Journal of Chemical Physics* **2000**, *113* (15), 6042-6051. DOI:
519 10.1063/1.1308516.
- 520 (30) Earl, D. J.; Deem, M. W. Parallel tempering: Theory, applications, and new perspectives.
521 *Physical Chemistry Chemical Physics* **2005**, *7* (23), 3910-3916, 10.1039/B509983H. DOI:
522 10.1039/B509983H.
- 523 (31) Kone, A.; Kofke, D. A. Selection of temperature intervals for parallel-tempering simulations.
524 *The Journal of Chemical Physics* **2005**, *122* (20), 206101. DOI: 10.1063/1.1917749.
- 525 (32) Shirts, M. R.; Chodera, J. D. Statistically optimal analysis of samples from multiple
526 equilibrium states. *The Journal of Chemical Physics* **2008**, *129* (12), 124105. DOI:
527 10.1063/1.2978177.
- 528 (33) Kots, P. A.; Xie, T.; Vance, B. C.; Quinn, C. M.; de Mello, M. D.; Boscoboinik, J. A.; Wang,
529 C.; Kumar, P.; Stach, E. A.; Marinkovic, N. S.; et al. Electronic modulation of metal-support
530 interactions improves polypropylene hydrogenolysis over ruthenium catalysts. *Nature
531 Communications* **2022**, *13* (1), 5186. DOI: 10.1038/s41467-022-32934-5.
- 532 (34) Hinton, Z. R.; Kots, P. A.; Soukaseum, M.; Vance, B. C.; Vlachos, D. G.; Epps, T. H.; Korley,
533 L. T. J. Antioxidant-induced transformations of a metal-acid hydrocracking catalyst in the
534 deconstruction of polyethylene waste. *Green Chemistry* **2022**, *24* (19), 7332-7339,
535 10.1039/D2GC02503E. DOI: 10.1039/D2GC02503E.
- 536 (35) Rouse, I.; Power, D.; Brandt, E. G.; Schneemilch, M.; Kotsis, K.; Quirke, N.; Lyubartsev, A.
537 P.; Lobaskin, V. First principles characterisation of bio–nano interface. *Physical Chemistry
538 Chemical Physics* **2021**, *23* (24), 13473-13482, 10.1039/D1CP01116B. DOI:
539 10.1039/D1CP01116B.
- 540 (36) Manz, T. A.; Limas, N. G. Introducing DDEC6 atomic population analysis: part 1. Charge
541 partitioning theory and methodology. *RSC Advances* **2016**, *6* (53), 47771-47801,
542 10.1039/C6RA04656H. DOI: 10.1039/C6RA04656H.
- 543 (37) Limas, N. G.; Manz, T. A. Introducing DDEC6 atomic population analysis: part 2. Computed
544 results for a wide range of periodic and nonperiodic materials. *RSC Advances* **2016**, *6* (51), 45727-
545 45747, 10.1039/C6RA05507A. DOI: 10.1039/C6RA05507A.
- 546 (38) Manz, T. A. Introducing DDEC6 atomic population analysis: part 3. Comprehensive method
547 to compute bond orders. *RSC Advances* **2017**, *7* (72), 45552-45581, 10.1039/C7RA07400J. DOI:
548 10.1039/C7RA07400J.
- 549 (39) Limas, N. G.; Manz, T. A. Introducing DDEC6 atomic population analysis: part 4. Efficient
550 parallel computation of net atomic charges, atomic spin moments, bond orders, and more. *RSC
551 Advances* **2018**, *8* (5), 2678-2707, 10.1039/C7RA11829E. DOI: 10.1039/C7RA11829E.
- 552 (40) Tkatchenko, A.; Scheffler, M. Accurate Molecular Van Der Waals Interactions from Ground-
553 State Electron Density and Free-Atom Reference Data. *Phys Rev Lett* **2009**, *102* (7), 073005. DOI:
554 10.1103/PhysRevLett.102.073005.
- 555 (41) Gould, T. How polarizabilities and C6 coefficients actually vary with atomic volume. *The
556 Journal of Chemical Physics* **2016**, *145* (8), 084308. DOI: 10.1063/1.4961643.
- 557 (42) Gould, T.; Bučko, T. C6 Coefficients and Dipole Polarizabilities for All Atoms and Many
558 Ions in Rows 1-6 of the Periodic Table. *Journal of chemical theory and computation* **2016**, *12* 8,
559 3603-3613.
- 560 (43) Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A., III; Skiff, W. M. UFF, a full
561 periodic table force field for molecular mechanics and molecular dynamics simulations. *Journal
562 of the American Chemical Society* **1992**, *114* (25), 10024-10035. DOI: 10.1021/ja00051a040.

- 563 (44) Yethiraj, A.; Kumar, S.; Hariharan, A.; Schweizer, K. S. Surface segregation in polymer
564 blends due to stiffness disparity. *The Journal of Chemical Physics* **1994**, *100* (6), 4691-4694. DOI:
565 10.1063/1.466252.
- 566 (45) Yethiraj, A. Entropic and Enthalpic Surface Segregation from Blends of Branched and Linear
567 Polymers. *Phys Rev Lett* **1995**, *74* (11), 2018-2021. DOI: 10.1103/PhysRevLett.74.2018.
- 568 (46) Steiner, U.; Klein, J.; Eiser, E.; Budkowski, A.; Fetter, L. J. Complete Wetting from Polymer
569 Mixtures. *Science* **1992**, *258* (5085), 1126-1129. DOI: doi:10.1126/science.258.5085.1126.
- 570 (47) Sikka, M.; Singh, N.; Karim, A.; Bates, F. S.; Satija, S. K.; Majkrzak, C. F. Entropy-driven
571 surface segregation in block copolymer melts. *Phys Rev Lett* **1993**, *70* (3), 307-310. DOI:
572 10.1103/PhysRevLett.70.307.
- 573 (48) Zare, M.; Kots, P. A.; Caratzoulas, S.; Vlachos, D. G. Conformations of polyolefins on
574 platinum catalysts control product distribution in plastics recycling. *Chemical Science* **2023**, *14*
575 (8), 1966-1977, 10.1039/D2SC04772A. DOI: 10.1039/D2SC04772A.
- 576 (49) Vance, B. C.; Kots, P. A.; Wang, C.; Granite, J. E.; Vlachos, D. G. Ni/SiO₂ catalysts for
577 polyolefin deconstruction via the divergent hydrogenolysis mechanism. *Applied Catalysis B: Environmental* **2023**, *322*, 122138. DOI: <https://doi.org/10.1016/j.apcatb.2022.122138>.
- 579 (50) Wang, C.; Xie, T.; Kots, P. A.; Vance, B. C.; Yu, K.; Kumar, P.; Fu, J.; Liu, S.; Tsilomelekis,
580 G.; Stach, E. A.; et al. Polyethylene Hydrogenolysis at Mild Conditions over Ruthenium on
581 Tungstated Zirconia. *JACS Au* **2021**, *1* (9), 1422-1434. DOI: 10.1021/jacsau.1c00200.
- 582 (51) von Meerwall, E.; Feick, E. J.; Ozisik, R.; Mattice, W. L. Diffusion in binary liquid n-alkane
583 and alkane-polyethylene blends. *The Journal of Chemical Physics* **1999**, *111* (2), 750-757. DOI:
584 10.1063/1.479354 (acccesed 6/16/2023).
- 585 (52) Semenov, A. N.; Bonet-Avalos, J.; Johner, A.; Joanny, J. F. Adsorption of Polymer Solutions
586 onto a Flat Surface. *Macromolecules* **1996**, *29* (6), 2179-2196. DOI: 10.1021/ma950712n.
- 587 (53) Hoeve, C. A. J.; DiMarzio, E. A.; Peyser, P. Adsorption of Polymer Molecules at Low Surface
588 Coverage. *The Journal of Chemical Physics* **1965**, *42* (7), 2558-2563. DOI: 10.1063/1.1696332.
- 589 (54) Ertem, S. P.; Onuoha, C. E.; Wang, H.; Hillmyer, M. A.; Reineke, T. M.; Lodge, T. P.; Bates,
590 F. S. Hydrogenolysis of Linear Low-Density Polyethylene during Heterogeneous Catalytic
591 Hydrogen-Deuterium Exchange. *Macromolecules* **2020**, *53* (14), 6043-6055. DOI:
592 10.1021/acs.macromol.0c00696.
- 593 (55) Nicholson, J. C.; Crist, B. Hydrogen-Deuterium Exchange for Labeling Polyethylene.
594 *Macromolecules* **1989**, *22* (4), 1704-1708.
- 595 (56) Liang, C. Y.; Lytton, M. R.; Boone, C. J. Infrared spectra of crystalline and stereoregular
596 polymers. II. Carbon—hydrogen and carbon—deuterium stretching frequencies of polypropylene
597 and deuterated polypropylenes. *Journal of Polymer Science* **1960**, *47* (149), 139-148. DOI:
598 <https://doi.org/10.1002/pol.1960.1204714912>.
- 599 (57) Andreassen, E. Infrared and Raman spectroscopy of polypropylene. In *Polypropylene: An A-
600 Z reference*, Karger-Kocsis, J. Ed.; Springer Netherlands, 1999; pp 320-328.

601

602