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Most biomass reaction studies have focused on optimizing product yield without considering cost and emissions
as key metrics; they consider pure feeds without accounting for process integration resulting from separation and
recycling and often change one parameter at a time to maximize yield. Here, we propose a framework to
overcome the above issues. We demonstrate it for the hydrodeoxygenation (HDO) of 5-hydroxymethylfurfural
(HMF) to produce 2,5-dimethylfuran (DMF), a crucial reaction in making lignocellulosic biomass-based plat-
form chemicals. We consider the impact of water in the feed stemming from the sugar dehydration reactor on the
HDO in 2-pentanol over a Ru/C catalyst, guided by an active learning experimental design (NEXTorch toolkit),
combined with Aspen Plus process flowsheet simulation, techno-economic analysis and life cycle assessment. We
demonstrate that Bayesian optimization of process flowsheets significantly reduces production costs by 26% and
greenhouse gas emissions by 15% after striking a balance between raw material usage, solvent loss, and utility
consumption. Such reductions are strongly correlated to the product yield due to the dominant cost of the feed.
Interestingly, a slight amount of water negatively impacts greenhouse gas emissions more than production costs,

requiring relatively high purity in process integration.

1. Introduction

Lignocellulosic biorefineries can reduce petrochemical reliance and
combat climate change. Various pathways for lignocellulosic biomass
valorization have been investigated, and platform chemicals have been
identified. Among them, 5-hydroxymethylfurfural (HMF) is a "top-10"
platform chemical (Bozell and Petersen, 2010; van Putten et al., 2013).
It is produced via hexose dehydration, where three atomic oxygens are
removed as water molecules in an aqueous phase. Downstream utiliza-
tion of HMF for most applications requires further oxygen removal. 2,
5-dimethylfuran (DMF) is a critical HMF-derived intermediate for pro-
ducing alternatives to petroleum-derived chemical building blocks
(Nakagawa et al., 2013). DMF is produced via the hydrodeoxygenation
(HDO) of HMF (Jae et al., 2014, 2013; Wijaya et al., 2015). Process
integration requires feeding the product from one process to the next
and requires separations and purification, as a downstream process may
experience catalyst poisoning and undesirable reaction pathways.
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Cascading processes can benefit from a knowledge of process
integration.

Water is present in HMF and DMF production processes as a solvent
in fructose dehydration and as a product in HMF HDO (Fig. 1). In the
dehydration process, an organic phase is often also used to extract HMF
to avoid its further degradation through rehydration or condensation
reactions (Esteban et al., 2020; van Putten et al., 2013). An often
overlooked effect is that the solubility of water in high-performing HMF
extraction solvents at reaction temperatures is large (Wang et al., 2020).
For example, the water solubility in pentanol is as high as 35 wt% at
reaction temperatures. The effects of water on HDO include direct
participation in the reaction (e.g., on transition state stabilization),
catalyst site blocking, catalyst modification, etc (Gilcher et al., 2022;
Zhang and Li, 2022). Akpa et al. (2012) investigated the role of water in
2-butanone hydrogenation over Ru/SiO», revealing that water facilitates
the formation of certain intermediates via proton shuttling, without al-
ways lowering the activation barriers for all reaction steps. Zhao et al.
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reported an increase in the yield of hydrogenated products of furfural
over Pd/Al,03 when cyclohexane solvent was replaced with water. This
behavior was attributed to water-mediated proton transfer that assists in
reducing the activation barrier for hydrogenation of the carbonyl group
(Zhao et al., 2019). Gilcher et al. studied the hydrogenation of hydrox-
yl-a-angelicalactone (HAH) using Ru catalysts and found that a 1:1
molar ratio of water to isopropanol (IPA) maximizes the conversion to
the desired product. Exceeding this water ratio reduces efficacy, and
while low water levels boost furan hydrogenation, high levels cause
significant carbon loss, potentially due to byproduct formation.'® For
HMF HDO, high concentrations of water may decrease the reaction rate.
However, separating water can be expensive and energy consuming due
to its high heat of vaporization, and biomass intermediates are often
thermally unstable. Design decisions should thus rely on
experiment-driven comprehensive techno-economic analysis (TEA) and
life cycle assessment (LCA) to develop water mitigation strategies.

In this work, we assess the water effects on process integration of the
HMF HDO reaction with the fructose dehydration. We present a
framework that integrates lab bench-scale experiments, active learning,
TEA, and LCA to maximize HMF conversion and DMF selectivity, as
conventionally done, and minimize the economic and environmental
footprint. Specifically, we employ NEXTorch (Next EXperiment toolkit
in PyTorch) (Chen et al., 2020; Ebikade et al., 2020; Wang et al., 2021a)
to find optimal operating conditions and accelerate flowsheet design and
optimization.

2. Materials and methods
2.1. Materials

5-hydroxymethyl furfural (Sigma-Aldrich W501808, > 99%), 2,5-
dimethylfuran (Sigma-Aldrich 177,717, 99%), 2-pentanol (Sigma-
Aldrich W331600, > 98%), 2-propanol (Fisher Scientific A464-4, >
99.9%), ruthenium on carbon (Sigma-Aldrich 206,180, 5 wt% loading,
lot #MKBZ2792V), ASTM-Type 1 water (Millipore Direct-Q 3 UV), ni-
trogen (Keen Compressed Gas Co., Grade 5.0), and hydrogen (Matheson,
UHP grade) were used in this work.
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2.2. Experimental design space and optimization

Fig. 2 shows the workflow for Bayesian optimization in two stages.
The focus of stage 1 was to use Bayesian optimization and suggest
experimental conditions that improve reaction conversion and selec-
tivity. A design space was created spanning five factors, reaction time
(h), HMF feed concentration (wt%), water feed concentration (wt%),
reaction temperature ( °C), and hydrogen partial pressure (bar). The
Minitab (Minitab, LLC) generated a 251 factorial design with duplicates
(16 conditions) to collect data at the corners. For probing the internal
space, a 15-point Latin hypercube (LHC) design was initially generated
(Wang et al., 2021a). Five Bayesian optimization trials, each of three
individual runs were added using NEXTorch. The Monte Carlo g-ex-
pected improvement (qEI) acquisition function in NEXTorch was used to
suggest the next trial. For each trial, up to six candidate experimental
conditions were suggested, and three distinct conditions were selected
for experiments in three identical reactors. After reaching optimal re-
action conditions, the data points collected in each iteration were
regressed to provide HMF conversion and DMF selectivity surrogate
models. Finally, stage 2 of the Bayesian optimization aimed to find re-
action conditions with minimum production costs or emissions based on
the aforementioned reaction regression model and process flowsheet
simulation.

2.3. HDO experiments

In a typical reaction, a 50 mL Parr 4790 pressure vessel was charged
with 5 wt% fresh-from-bottle Ru/C catalyst at 35:1 HMF:Ru ratio, 30 mL
of a secondary alcohol, and the corresponding quantities of water and
HMF. For all reaction mixtures, the catalyst, water, and HMF weights
were calculated assuming that the final mixture has the density of 2-pen-
tanol, regardless of their composition. The reactor was then sealed and
nitrogen-purged three times and charged with sufficient nitrogen to
reach 20 barg total headspace pressure. The headspace was then filled
with the prescribed pressure of hydrogen. The reactor was heated with a
PID-controlled band heater, reaching the prescribed temperature typi-
cally within 20 min, while magnetically stirred at 300 rpm. The reactor
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Fig. 1. Reaction network of HMF over Ru/C in 2-pentanol.
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Fig. 2. Workflow of the two-stage process integration and systems optimization based on Bayesian optimization.

was quenched in an ice bath after holding at the reaction temperature
for a specified time. The reactor contents were then collected and
filtered for quantification. For high concentrations of water, the entire
post-reaction mixture was extracted and centrifuged at 5000 g for 1 min.
When a biphasic system was found after centrifugation, the aqueous and
organic phase volumes were recorded, and both phases were separately
extracted and filtered for GC characterization. For these runs, the DMF
selectivity and HMF conversion were calculated for the entire biphasic
system.

2.4. Product quantification

An Agilent 7890B gas chromatograph (GC) was used with a flame
ionization detector (FID) and an HP-INNOWax column (30 m x 0.25
mm, 0.25 pm, Agilent 19091N-133I) for product quantification.
External calibration curves were created for HMF and DMF for the
relevant concentration ranges. For furanic species in the reaction
network without attainable concentration standards, the calibration
curve of HMF was used instead. These species were identified using a
Shimadzu GC-2010 gas chromatograph coupled with an INNOWax col-
umn of identical specifications and a Shimadzu GCMS-QP2010 Plus gas
chromatograph-mass spectrometer. The standard deviation in HMF
conversion and DMF selectivity was ~1%.

For water-in-2-pentanol solubility estimates, the organic phase
samples’ water content was quantified using a Mettler Toledo V20 Karl
Fischer titrator, with the Honeywell Fluka Composite 5 titrant and
Honeywell Fluka Methanol Dry titration medium. The titrant concen-
tration was calibrated with ASTM Type 1 water (Millipore Direct-Q 3
UV). Detailed in situ sampling procedures for water-in-organic solubility
meassurements can be found in our previous works (Wang et al., 2020,
2021b).

2.5. Process simulation of representative HDO reaction conditions
Five representative HDO reaction conditions were selected from the
stage 1 reaction optimization for initial flowsheet simulation, TEA, and

LCA in Aspen Plus v11 (Table 1).

Table 1
Reaction conditions used for initial Aspen Plus process flowsheets.

The universal quasi-chemical activity coefficient (UNIQUAC) model
was chosen for the liquid-vapor and liquid-liquid phase behavior
(Abrams and Prausnitz, 1975). Due to the pentanol/water azeotrope and
vastly different feedstock compositions, four different flowsheet con-
figurations were designed for product separation. The flowsheet of re-
action condition case I is shown in Fig. 3, while the rest could be found in
the Supplementary Material.

The hydrogen gas and HMF solution were pressurized and heated to
the reaction condition before sending to R-1. After the HDO reaction,
flash drum F-1 cooled down the system to 65 °C and recycled the
hydrogen gas. Then, humins were removed by filtration. It was assumed
in the base case that most of the liquid phase was retained with 1% loss
in the waste humins stream. Future improvement on the filtration sys-
tem may reduce the solvent makeup, and its impact on the production
cost was evaluated through the sensitivity analysis (Fig. 8B). The liquid
stream was sent to two distillation columns in series, the first one of
which (C-1) recycled most of the pentanol solvent. The second column
(C-2) separated nearly all pentanol as the pentanol/water azeotrope,
leaving DMF mixed with water in the bottom. Two decanters cooled
down both the bottom (D-1) and distillate streams (D-2) to 40 °C, so that
excess water was removed by phase separation. The process capacity
was chosen as 10,000 kg HMF/h (80,000 t/year), which was in line with
the scale considered in a recent paper that produced HMF as an inter-
mediate (Chang et al., 2020).

2.6. Process techno-economic analysis and life cycle assessment

The Aspen Process Economic Analyzer V11 was used to calculate the
capital and operating costs (Aspen Economic Analyzer V11, 2019). The
minimum selling price (MSP), the selling price of the product when the
net present value is zero at the end of the recovery period, was deter-
mined through discounted cash flow analysis for each condition (Atha-
ley et al., 2019b). A 15% internal rate of return (ROR) on investment and
a 35% corporate tax were assumed (Luo et al., 2022). The straight-line
method for depreciation with 10% salvage value after 20 years was
applied (O’Dea et al., 2022). The catalyst cost for the HDO reaction was
estimated as the precious metal cost plus $11/kg for the supported

Case # Temp (°C) Water (wt.%) HMF (wt.%) Time (h) H,, Pressure (bar) DMF select (%) HMF conv (%) Sample method
I 190 20 1 6 10 68.5 100 Factorial

I 190 20 5 6 0 46.5 100 Factorial

111 210 0 5 3 10 44.7 70.9 Factorial

v 203 1 1 3 9 77.2 100 LHC

A 195 0 1 4.6 10 79.2 100 qEI
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Fig. 3. Hydrodeoxygenation process flowsheet under reaction condition case I (190 °C, 10 bar Hy, 20 wt% water, 1 wt% HMF loading, and 6 h reaction time).

catalyst manufacturing (Kazi et al., 2011). The unit price of ruthenium
used in the Ru/C catalyst was $6430/kg (BASF, 2024). The catalyst was
replaced every six months, and the catalyst manufacturer could recover
99% of the precious metal in the spent catalyst. Hydrogen’s price was
assumed $1570/t (Kuznetsov et al., 2020). The price of water was $0.5/t
and the purchase price of quicklime was $120/t when the water vapor in
the recycled hydrogen gas needed to be removed (U.S. Geological Sur-
vey, 2016). The biomass-based HMF cost was estimated to be as low as
$0.88/kg (Kazi et al., 2011). The solvent, pentanol, was mainly syn-
thesized by oxo synthesis, the price of which was assumed to be similar
to general oxo alcohols (e.g., butanol) at around $1500/t (Peter Lappe
and Hofmann, 2011).

A “cradle-to-gate” system boundary for LCA was defined, which
considers the upstream raw material (e.g., HMF (Athaley et al., 2019a;
Luo and Ierapetritou, 2020)) extraction, utility generation, and the DMF
production stages (Fig. S11). The functional unit is chosen as 1 kg of
DMF produced by the HDO reaction. Because quantifying greenhouse
gas emissions has attracted growing attention for its essential role in
renewable technology development and policy making, the global
warming potential (GWP) was selected for the environmental impact
evaluation (Zheng and Suh, 2019). It is assumed that only 1% of the
cooling water is lost during the operation while most of it could be
reused (Athaley et al., 2019a). The Ecoinvent v3.7 database was used to
provide the background emission data (Wernet et al., 2016), and the
Tool for the Reduction and Assessment of Chemical and other environ-
mental Impacts (TRACI) method was selected for the impact assessment
(Bare, 2011).

2.7. Flowsheet Bayesian optimization

Bayesian optimization of the process flowsheet follows the experi-
mental work. After the first stage of reaction conversion and selectivity
maximization (Fig. 2), 46 data points (Table S1) were collected to
perform regression (Figs. S1 and 2). An ordinary least squares (OLS)
regression model (Fig. S1) was chosen to predict reaction conversion
and selectivity for each candidate condition due to its low prediction
error. The manipulated inputs for the reactor unit were water content (0
wt% to 20 wt%), HMF loading (1 wt% to 5 wt%), temperature (190 °C to
210 °C), Hy pressure (0 bar to 10 bar), and reaction time (3 h to 6 h). In
the second-stage (Bayesian optimization of cost and emissions), new
reaction condition samples were suggested via NEXTorch, and the HMF
conversion and DMF selectivity were estimated from the OLS regression
model without carrying out new experiments. Next, the separation
sections (Figs. 3 and S8-S10) were adjusted accordingly to meet the

product requirements and the water contents in the recycle stream. TEA
and LCA were then conducted to evaluate the objective function — MSP
and GWP, which provide new data to update the Gaussian process cost
and emission surrogate models for the next Bayesian optimization
iteration.

3. Results and discussion

3.1. Reaction metrics: product composition in initial sampling and active
learning

Fig. 4 shows the overall optimization progression from the sampling
(Fig. 4A) and the average DMF selectivity and HMF conversion (Fig. 4B
and 4C). The average DMF selectivity and HMF conversion show sig-
nificant scatter due to the stochastic nature of the LHS and the iterative
nature of NEXTorch. In subsequent qEI optimization trials, the HMF
conversion reaches 100% (Fig. 4C) and the DMF selectivity exceeds
70%. After the 5 trials, a DMF selectivity of 79% was reached.

Figs. 5 and 6 show that the water content negatively influences both
DMF selectivity and yield; the DMF selectivity and yield peak at ~201
°C, between 4.2 and 4.8 hr.

We further investigated the yield toward the furan-2-pentanol ethers
(Fig. 7). At 190 °C, significant ether yield (>6%) at higher water loading
and low reaction times is observed. However, at 210 °C, the ether yield
dependence on time and water is negligible. Little dependence on time
and temperature is observed without water. However, at 20 wt% water,
the ether yield decreased as the temperature and batch time increased.
At 3 h batch time, strong total ether formation at high water contents
and low temperature is seen; at 6 h, insignificant dependence on tem-
perature and water content was found. Upon inspecting the overall furan
material balance based on ethers and DMF (combined ethers and DMF
yield divided by HMF conversion, Figs. S4 and S5), a slight reduction of
furan material balance at higher water loadings at both temperatures is
seen, with lower material balance at higher temperature, a potential
indication of humins formation. Ether concentration is maximized at
lower temperatures and higher water concentrations, potentially
because these conditions slow down the reaction progression and favor
the earlier products and ethers.

3.2. Systems metrics: techno-economic analysis (TEA) and life cycle
assessment (LCA) at representative reaction conditions

Fig. 8 illustrates the MSP breakdown for five representative processes
(shown in Table 1). In all cases, the raw material cost is the leading
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Fig. 4. Sampling point distribution and response progression. (A) Distribution of all sampling points in the design space. Only three of the five independent variables
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(16 conditions in duplicates), Latin hypercube (15 conditions), and qEI optimization trials (5 trials of 3 conditions each). (C) Progression of the average HMF

conversion throughout the optimization of DMF selectivity.

contributor to the MSP. Consequently, the production cost decreases
significantly when the DMF yield increases and less humins are gener-
ated. Processes with low or no water loading (case IV and case V), with
close to the optimum DMF selectivity, are among the most economically
viable ones. Although the high-water content and low HMF loading
scenario (case I) also give good DMF selectivity, high utility and sepa-
ration unit costs make it less attractive. Low solvent cases (case II and
case III) have much smaller equipment sizes and considerably lower
capital costs. In all cases, pentanol solvent loss during filtration impacts
the cost significantly. Thus, case III has not only the lowest pentanol loss
($1195/1) but also the lowest MSP. Since this HDO technology is still in
its early stage of development, improvements in the filtration operation
and upstream HMF production will have great cost-reduction potentials.
If the solvent loss during humins filtration could be eliminated, case IV
and case V would have slightly lower MSP than case III. Reduction in the
water content that is carried from the upstream dehydration reaction to
the HDO reactor will also be beneficial.

The LCA results are shown in Fig. S14, which follow the trend of
MSP. The HMF raw material and pentanol solvent are still the main
emission contributors, while the steam usage in the distillation also
leads to high GWP despite its low share in operating costs.

3.3. Bayesian optimization to minimize MSP and GWP

Based on the OLS regression model in Fig. S1, DMF production
process flowsheets with updated reaction yields and separation re-
quirements were generated. The MSP and GWP were calculated for each
reaction condition, providing a dataset to build the Gaussian process
surrogate model and keep iterating. Bayesian optimization was per-
formed to find HDO reaction conditions that minimize the cost and
greenhouse gas emissions.

As illustrated in Fig. 9A, the DMF’s MSP gradually decreases from
$5420/t to $4022/t as the iterations of Bayesian optimization continue.
As shown using TEA, the HMF cost is the leading cost contributor.
Hence, the MSP of DMF decreases significantly when the DMF yield
increases and less humins form. This typically happens with little or no
water loading, giving a high DMF selectivity. The water concentration in
the last few Bayesian optimization trials is 0% or 4%, with the zero-
water case having a slightly lower MSP ($ 312/t). The optimal HMF
loading of 3% balances the high solvent loss at low HMF concentration
and the reduced DMF selectivity at high HMF concentration. Moreover,
the best residence time is at the lowest limit of 3 h; higher residence
times do not necessarily improve the DMF selectivity yet requiring larger
equipment and thus a higher capital investment. The high reaction
temperature (210 °C) and Hy pressure (10 bar) result in a high HMF
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conversion at short reaction times. Although higher Hy pressures lead to
more expensive compressors and reactors, a slight drop in Hy pressure
causes a significant reduction in DMF yields and is undesirable.

The Bayesian optimization for the GWP paralleled the MSP trend
(Fig. 9B), following the increase of HMF conversion and DMF selectivity.
This is also confirmed by the multi-objective optimization results in
NEXTorch (Fig. S13), where trade-offs of MSP and GWP exist only at
very extreme points, while most points with a low MSP also have a low
GWP. As raw material consumption is the leading contributor to both

cost and emissions, improving HMF conversion and DMF selectivity
achieves GWP and MSP minimization goals simultaneously. Conse-
quently, cost and greenhouse gas emission were non-competing targets
for most points explored by multi-objective Bayesian optimization. High
Hj pressure, medium HMF loading (3 wt%), and no water in the feed-
stock are still favored for GWP minimization. Nevertheless, the utilities
to heat the inlet stream before the reaction play an essential role in the
GWP. Despite minimal effects on the MSP, the HDO reaction tempera-
ture needs to be reduced from 210 °C to 199 °C to lower greenhouse gas
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Fig. 8. Comparison of the minimum selling prices. (A) 1% solvent loss during filtration; (B) no solvent loss during filtration.

emissions, which illustrated only a slight trade-off between GWP and
MSP. Based on the conversion and selectivity OLS regression model
(Fig. S1), the lowest GWP is obtained with an increased reaction time
from 3 h to 4.3 h to achieve good DMF yields under a lower reaction
temperature. Longer reaction times result in larger reactors but impact
slightly the process greenhouse gas emissions since the plant will run for
many years and even serve for other purposes after its designed life
(Athaley et al., 2019a, 2019b). The GWP reduces from 26.5 kg CO,
eq/kg DMF to 22.5 kg CO4 eq/kg DMF after the Bayesian optimization.
Water in the reactant causes a drastic GWP increase since the azeotrope
compositions significantly affect the distillation operating conditions,
leading to high utility usage. 4 wt% water in the inlet gives a GWP of
31.1 kg COy eq/kg DMF, 38.4% higher than the conditions without
water. Since raw material and solvent usage are identified as the main
bottlenecks of the HDO process, future improvements on the upstream
HMF production and filtration technologies will most effectively cut
down MSP and GWP. Moreover, heat integration could potentially
further reduce greenhouse gas emissions due to high steam usage, but it

will not substantially lower DMF production costs.
4. Conclusions

Reaction engineering studies typically focus on optimizing the
product yield without considering the cost and emissions as ultimate
metrics for plant design. In such studies, yield optimization is typically
done by varying one parameter at a time or at best using a static design
of experiments. The current work combined bench-top experiments,
process simulation, and Bayesian optimization to optimize reaction
conditions iteratively by varying many parameters at once. Our goal was
to minimize the GWP and the cost (systems metrics) and correlate them
with selectivity and yield (reaction engineering metrics). We applied
this framework to produce DMF from HMF. We also considered small
fractions of water in the feed coming from the upstream dehydration
reactor to assess the impact of purity of the feed as a first attempt for
process integration.

Reduction of the production cost and GWP approximately follows the
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Fig. 9. Discovery plots of the process-level optimization of DMF production. (A) minimum selling price (MSP) and (B) global warming potential (GWP).

conversion and yield maximization strategy. This is a result of the
dominant cost of the feed (HMF), a general characteristic of biomass
processes (Athaley et al., 2019a; Luo et al., 2022). The solvent cost and
any loss of the solvent (e.g., in filtration) significantly increase the DMF
cost. Optimal reaction conditions favor a high hydrogen pressure, rela-
tively high temperatures, medium HMF loadings, and no or low water,
which correspond to low HMF feedstock usage, utility consumption, and
solvent loss. These conditions are overlooked in the reaction optimiza-
tion but selected during the systems optimization because process
integration is considered to include product purification and solvent
recovery steps. Interestingly, we see no significant tradeoff between
GWP and MSP. A non-intuitive result is that water in the feed impacts
the GWP negatively much more than its production cost.
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