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A B S T R A C T   

Most biomass reaction studies have focused on optimizing product yield without considering cost and emissions 
as key metrics; they consider pure feeds without accounting for process integration resulting from separation and 
recycling and often change one parameter at a time to maximize yield. Here, we propose a framework to 
overcome the above issues. We demonstrate it for the hydrodeoxygenation (HDO) of 5-hydroxymethylfurfural 
(HMF) to produce 2,5-dimethylfuran (DMF), a crucial reaction in making lignocellulosic biomass-based plat
form chemicals. We consider the impact of water in the feed stemming from the sugar dehydration reactor on the 
HDO in 2-pentanol over a Ru/C catalyst, guided by an active learning experimental design (NEXTorch toolkit), 
combined with Aspen Plus process flowsheet simulation, techno-economic analysis and life cycle assessment. We 
demonstrate that Bayesian optimization of process flowsheets significantly reduces production costs by 26% and 
greenhouse gas emissions by 15% after striking a balance between raw material usage, solvent loss, and utility 
consumption. Such reductions are strongly correlated to the product yield due to the dominant cost of the feed. 
Interestingly, a slight amount of water negatively impacts greenhouse gas emissions more than production costs, 
requiring relatively high purity in process integration.   

1. Introduction 

Lignocellulosic biorefineries can reduce petrochemical reliance and 
combat climate change. Various pathways for lignocellulosic biomass 
valorization have been investigated, and platform chemicals have been 
identified. Among them, 5-hydroxymethylfurfural (HMF) is a "top-10" 
platform chemical (Bozell and Petersen, 2010; van Putten et al., 2013). 
It is produced via hexose dehydration, where three atomic oxygens are 
removed as water molecules in an aqueous phase. Downstream utiliza
tion of HMF for most applications requires further oxygen removal. 2, 
5-dimethylfuran (DMF) is a critical HMF-derived intermediate for pro
ducing alternatives to petroleum-derived chemical building blocks 
(Nakagawa et al., 2013). DMF is produced via the hydrodeoxygenation 
(HDO) of HMF (Jae et al., 2014, 2013; Wijaya et al., 2015). Process 
integration requires feeding the product from one process to the next 
and requires separations and purification, as a downstream process may 
experience catalyst poisoning and undesirable reaction pathways. 

Cascading processes can benefit from a knowledge of process 
integration. 

Water is present in HMF and DMF production processes as a solvent 
in fructose dehydration and as a product in HMF HDO (Fig. 1). In the 
dehydration process, an organic phase is often also used to extract HMF 
to avoid its further degradation through rehydration or condensation 
reactions (Esteban et al., 2020; van Putten et al., 2013). An often 
overlooked effect is that the solubility of water in high-performing HMF 
extraction solvents at reaction temperatures is large (Wang et al., 2020). 
For example, the water solubility in pentanol is as high as 35 wt% at 
reaction temperatures. The effects of water on HDO include direct 
participation in the reaction (e.g., on transition state stabilization), 
catalyst site blocking, catalyst modification, etc (Gilcher et al., 2022; 
Zhang and Li, 2022). Akpa et al. (2012) investigated the role of water in 
2-butanone hydrogenation over Ru/SiO2, revealing that water facilitates 
the formation of certain intermediates via proton shuttling, without al
ways lowering the activation barriers for all reaction steps. Zhao et al. 
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reported an increase in the yield of hydrogenated products of furfural 
over Pd/Al2O3 when cyclohexane solvent was replaced with water. This 
behavior was attributed to water-mediated proton transfer that assists in 
reducing the activation barrier for hydrogenation of the carbonyl group 
(Zhao et al., 2019). Gilcher et al. studied the hydrogenation of hydrox
yl‑α-angelicalactone (HAH) using Ru catalysts and found that a 1:1 
molar ratio of water to isopropanol (IPA) maximizes the conversion to 
the desired product. Exceeding this water ratio reduces efficacy, and 
while low water levels boost furan hydrogenation, high levels cause 
significant carbon loss, potentially due to byproduct formation.10 For 
HMF HDO, high concentrations of water may decrease the reaction rate. 
However, separating water can be expensive and energy consuming due 
to its high heat of vaporization, and biomass intermediates are often 
thermally unstable. Design decisions should thus rely on 
experiment-driven comprehensive techno-economic analysis (TEA) and 
life cycle assessment (LCA) to develop water mitigation strategies. 

In this work, we assess the water effects on process integration of the 
HMF HDO reaction with the fructose dehydration. We present a 
framework that integrates lab bench-scale experiments, active learning, 
TEA, and LCA to maximize HMF conversion and DMF selectivity, as 
conventionally done, and minimize the economic and environmental 
footprint. Specifically, we employ NEXTorch (Next EXperiment toolkit 
in PyTorch) (Chen et al., 2020; Ebikade et al., 2020; Wang et al., 2021a) 
to find optimal operating conditions and accelerate flowsheet design and 
optimization. 

2. Materials and methods 

2.1. Materials 

5-hydroxymethyl furfural (Sigma-Aldrich W501808, ≥ 99%), 2,5- 
dimethylfuran (Sigma-Aldrich 177,717, 99%), 2-pentanol (Sigma- 
Aldrich W331600, ≥ 98%), 2-propanol (Fisher Scientific A464–4, ≥

99.9%), ruthenium on carbon (Sigma-Aldrich 206,180, 5 wt% loading, 
lot #MKBZ2792V), ASTM-Type 1 water (Millipore Direct-Q 3 UV), ni
trogen (Keen Compressed Gas Co., Grade 5.0), and hydrogen (Matheson, 
UHP grade) were used in this work. 

2.2. Experimental design space and optimization 

Fig. 2 shows the workflow for Bayesian optimization in two stages. 
The focus of stage 1 was to use Bayesian optimization and suggest 
experimental conditions that improve reaction conversion and selec
tivity. A design space was created spanning five factors, reaction time 
(h), HMF feed concentration (wt%), water feed concentration (wt%), 
reaction temperature ( ◦C), and hydrogen partial pressure (bar). The 
Minitab (Minitab, LLC) generated a 25-1 factorial design with duplicates 
(16 conditions) to collect data at the corners. For probing the internal 
space, a 15-point Latin hypercube (LHC) design was initially generated 
(Wang et al., 2021a). Five Bayesian optimization trials, each of three 
individual runs were added using NEXTorch. The Monte Carlo q-ex
pected improvement (qEI) acquisition function in NEXTorch was used to 
suggest the next trial. For each trial, up to six candidate experimental 
conditions were suggested, and three distinct conditions were selected 
for experiments in three identical reactors. After reaching optimal re
action conditions, the data points collected in each iteration were 
regressed to provide HMF conversion and DMF selectivity surrogate 
models. Finally, stage 2 of the Bayesian optimization aimed to find re
action conditions with minimum production costs or emissions based on 
the aforementioned reaction regression model and process flowsheet 
simulation. 

2.3. HDO experiments 

In a typical reaction, a 50 mL Parr 4790 pressure vessel was charged 
with 5 wt% fresh-from-bottle Ru/C catalyst at 35:1 HMF:Ru ratio, 30 mL 
of a secondary alcohol, and the corresponding quantities of water and 
HMF. For all reaction mixtures, the catalyst, water, and HMF weights 
were calculated assuming that the final mixture has the density of 2-pen
tanol, regardless of their composition. The reactor was then sealed and 
nitrogen-purged three times and charged with sufficient nitrogen to 
reach 20 barg total headspace pressure. The headspace was then filled 
with the prescribed pressure of hydrogen. The reactor was heated with a 
PID-controlled band heater, reaching the prescribed temperature typi
cally within 20 min, while magnetically stirred at 300 rpm. The reactor 

Fig. 1. Reaction network of HMF over Ru/C in 2-pentanol.  
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was quenched in an ice bath after holding at the reaction temperature 
for a specified time. The reactor contents were then collected and 
filtered for quantification. For high concentrations of water, the entire 
post-reaction mixture was extracted and centrifuged at 5000 g for 1 min. 
When a biphasic system was found after centrifugation, the aqueous and 
organic phase volumes were recorded, and both phases were separately 
extracted and filtered for GC characterization. For these runs, the DMF 
selectivity and HMF conversion were calculated for the entire biphasic 
system. 

2.4. Product quantification 

An Agilent 7890B gas chromatograph (GC) was used with a flame 
ionization detector (FID) and an HP-INNOWax column (30 m × 0.25 
mm, 0.25 μm, Agilent 19091N-133I) for product quantification. 
External calibration curves were created for HMF and DMF for the 
relevant concentration ranges. For furanic species in the reaction 
network without attainable concentration standards, the calibration 
curve of HMF was used instead. These species were identified using a 
Shimadzu GC-2010 gas chromatograph coupled with an INNOWax col
umn of identical specifications and a Shimadzu GCMS-QP2010 Plus gas 
chromatograph-mass spectrometer. The standard deviation in HMF 
conversion and DMF selectivity was ~1%. 

For water-in-2-pentanol solubility estimates, the organic phase 
samples’ water content was quantified using a Mettler Toledo V20 Karl 
Fischer titrator, with the Honeywell Fluka Composite 5 titrant and 
Honeywell Fluka Methanol Dry titration medium. The titrant concen
tration was calibrated with ASTM Type 1 water (Millipore Direct-Q 3 
UV). Detailed in situ sampling procedures for water-in-organic solubility 
meassurements can be found in our previous works (Wang et al., 2020, 
2021b). 

2.5. Process simulation of representative HDO reaction conditions 

Five representative HDO reaction conditions were selected from the 
stage 1 reaction optimization for initial flowsheet simulation, TEA, and 
LCA in Aspen Plus v11 (Table 1). 

The universal quasi-chemical activity coefficient (UNIQUAC) model 
was chosen for the liquid-vapor and liquid-liquid phase behavior 
(Abrams and Prausnitz, 1975). Due to the pentanol/water azeotrope and 
vastly different feedstock compositions, four different flowsheet con
figurations were designed for product separation. The flowsheet of re
action condition case I is shown in Fig. 3, while the rest could be found in 
the Supplementary Material. 

The hydrogen gas and HMF solution were pressurized and heated to 
the reaction condition before sending to R-1. After the HDO reaction, 
flash drum F-1 cooled down the system to 65 ◦C and recycled the 
hydrogen gas. Then, humins were removed by filtration. It was assumed 
in the base case that most of the liquid phase was retained with 1% loss 
in the waste humins stream. Future improvement on the filtration sys
tem may reduce the solvent makeup, and its impact on the production 
cost was evaluated through the sensitivity analysis (Fig. 8B). The liquid 
stream was sent to two distillation columns in series, the first one of 
which (C-1) recycled most of the pentanol solvent. The second column 
(C-2) separated nearly all pentanol as the pentanol/water azeotrope, 
leaving DMF mixed with water in the bottom. Two decanters cooled 
down both the bottom (D-1) and distillate streams (D-2) to 40 ◦C, so that 
excess water was removed by phase separation. The process capacity 
was chosen as 10,000 kg HMF/h (80,000 t/year), which was in line with 
the scale considered in a recent paper that produced HMF as an inter
mediate (Chang et al., 2020). 

2.6. Process techno-economic analysis and life cycle assessment 

The Aspen Process Economic Analyzer V11 was used to calculate the 
capital and operating costs (Aspen Economic Analyzer V11, 2019). The 
minimum selling price (MSP), the selling price of the product when the 
net present value is zero at the end of the recovery period, was deter
mined through discounted cash flow analysis for each condition (Atha
ley et al., 2019b). A 15% internal rate of return (ROR) on investment and 
a 35% corporate tax were assumed (Luo et al., 2022). The straight-line 
method for depreciation with 10% salvage value after 20 years was 
applied (O’Dea et al., 2022). The catalyst cost for the HDO reaction was 
estimated as the precious metal cost plus $11/kg for the supported 

Fig. 2. Workflow of the two-stage process integration and systems optimization based on Bayesian optimization.  

Table 1 
Reaction conditions used for initial Aspen Plus process flowsheets.  

Case # Temp (◦C) Water (wt.%) HMF (wt.%) Time (h) H2 Pressure (bar) DMF select (%) HMF conv (%) Sample method 

I 190 20 1 6 10 68.5 100 Factorial 
II 190 20 5 6 0 46.5 100 Factorial 
III 210 0 5 3 10 44.7 70.9 Factorial 
IV 203 1 1 3 9 77.2 100 LHC 
V 195 0 1 4.6 10 79.2 100 qEI  
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catalyst manufacturing (Kazi et al., 2011). The unit price of ruthenium 
used in the Ru/C catalyst was $6430/kg (BASF, 2024). The catalyst was 
replaced every six months, and the catalyst manufacturer could recover 
99% of the precious metal in the spent catalyst. Hydrogen’s price was 
assumed $1570/t (Kuznetsov et al., 2020). The price of water was $0.5/t 
and the purchase price of quicklime was $120/t when the water vapor in 
the recycled hydrogen gas needed to be removed (U.S. Geological Sur
vey, 2016). The biomass-based HMF cost was estimated to be as low as 
$0.88/kg (Kazi et al., 2011). The solvent, pentanol, was mainly syn
thesized by oxo synthesis, the price of which was assumed to be similar 
to general oxo alcohols (e.g., butanol) at around $1500/t (Peter Lappe 
and Hofmann, 2011). 

A “cradle-to-gate” system boundary for LCA was defined, which 
considers the upstream raw material (e.g., HMF (Athaley et al., 2019a; 
Luo and Ierapetritou, 2020)) extraction, utility generation, and the DMF 
production stages (Fig. S11). The functional unit is chosen as 1 kg of 
DMF produced by the HDO reaction. Because quantifying greenhouse 
gas emissions has attracted growing attention for its essential role in 
renewable technology development and policy making, the global 
warming potential (GWP) was selected for the environmental impact 
evaluation (Zheng and Suh, 2019). It is assumed that only 1% of the 
cooling water is lost during the operation while most of it could be 
reused (Athaley et al., 2019a). The Ecoinvent v3.7 database was used to 
provide the background emission data (Wernet et al., 2016), and the 
Tool for the Reduction and Assessment of Chemical and other environ
mental Impacts (TRACI) method was selected for the impact assessment 
(Bare, 2011). 

2.7. Flowsheet Bayesian optimization 

Bayesian optimization of the process flowsheet follows the experi
mental work. After the first stage of reaction conversion and selectivity 
maximization (Fig. 2), 46 data points (Table S1) were collected to 
perform regression (Figs. S1 and 2). An ordinary least squares (OLS) 
regression model (Fig. S1) was chosen to predict reaction conversion 
and selectivity for each candidate condition due to its low prediction 
error. The manipulated inputs for the reactor unit were water content (0 
wt% to 20 wt%), HMF loading (1 wt% to 5 wt%), temperature (190 ◦C to 
210 ◦C), H2 pressure (0 bar to 10 bar), and reaction time (3 h to 6 h). In 
the second-stage (Bayesian optimization of cost and emissions), new 
reaction condition samples were suggested via NEXTorch, and the HMF 
conversion and DMF selectivity were estimated from the OLS regression 
model without carrying out new experiments. Next, the separation 
sections (Figs. 3 and S8–S10) were adjusted accordingly to meet the 

product requirements and the water contents in the recycle stream. TEA 
and LCA were then conducted to evaluate the objective function – MSP 
and GWP, which provide new data to update the Gaussian process cost 
and emission surrogate models for the next Bayesian optimization 
iteration. 

3. Results and discussion 

3.1. Reaction metrics: product composition in initial sampling and active 
learning 

Fig. 4 shows the overall optimization progression from the sampling 
(Fig. 4A) and the average DMF selectivity and HMF conversion (Fig. 4B 
and 4C). The average DMF selectivity and HMF conversion show sig
nificant scatter due to the stochastic nature of the LHS and the iterative 
nature of NEXTorch. In subsequent qEI optimization trials, the HMF 
conversion reaches 100% (Fig. 4C) and the DMF selectivity exceeds 
70%. After the 5 trials, a DMF selectivity of 79% was reached. 

Figs. 5 and 6 show that the water content negatively influences both 
DMF selectivity and yield; the DMF selectivity and yield peak at ~201 
◦C, between 4.2 and 4.8 hr. 

We further investigated the yield toward the furan-2-pentanol ethers 
(Fig. 7). At 190 ◦C, significant ether yield (>6%) at higher water loading 
and low reaction times is observed. However, at 210 ◦C, the ether yield 
dependence on time and water is negligible. Little dependence on time 
and temperature is observed without water. However, at 20 wt% water, 
the ether yield decreased as the temperature and batch time increased. 
At 3 h batch time, strong total ether formation at high water contents 
and low temperature is seen; at 6 h, insignificant dependence on tem
perature and water content was found. Upon inspecting the overall furan 
material balance based on ethers and DMF (combined ethers and DMF 
yield divided by HMF conversion, Figs. S4 and S5), a slight reduction of 
furan material balance at higher water loadings at both temperatures is 
seen, with lower material balance at higher temperature, a potential 
indication of humins formation. Ether concentration is maximized at 
lower temperatures and higher water concentrations, potentially 
because these conditions slow down the reaction progression and favor 
the earlier products and ethers. 

3.2. Systems metrics: techno-economic analysis (TEA) and life cycle 
assessment (LCA) at representative reaction conditions 

Fig. 8 illustrates the MSP breakdown for five representative processes 
(shown in Table 1). In all cases, the raw material cost is the leading 

Fig. 3. Hydrodeoxygenation process flowsheet under reaction condition case I (190 ◦C, 10 bar H2, 20 wt% water, 1 wt% HMF loading, and 6 h reaction time).  
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contributor to the MSP. Consequently, the production cost decreases 
significantly when the DMF yield increases and less humins are gener
ated. Processes with low or no water loading (case IV and case V), with 
close to the optimum DMF selectivity, are among the most economically 
viable ones. Although the high-water content and low HMF loading 
scenario (case I) also give good DMF selectivity, high utility and sepa
ration unit costs make it less attractive. Low solvent cases (case II and 
case III) have much smaller equipment sizes and considerably lower 
capital costs. In all cases, pentanol solvent loss during filtration impacts 
the cost significantly. Thus, case III has not only the lowest pentanol loss 
($1195/t) but also the lowest MSP. Since this HDO technology is still in 
its early stage of development, improvements in the filtration operation 
and upstream HMF production will have great cost-reduction potentials. 
If the solvent loss during humins filtration could be eliminated, case IV 
and case V would have slightly lower MSP than case III. Reduction in the 
water content that is carried from the upstream dehydration reaction to 
the HDO reactor will also be beneficial. 

The LCA results are shown in Fig. S14, which follow the trend of 
MSP. The HMF raw material and pentanol solvent are still the main 
emission contributors, while the steam usage in the distillation also 
leads to high GWP despite its low share in operating costs. 

3.3. Bayesian optimization to minimize MSP and GWP 

Based on the OLS regression model in Fig. S1, DMF production 
process flowsheets with updated reaction yields and separation re
quirements were generated. The MSP and GWP were calculated for each 
reaction condition, providing a dataset to build the Gaussian process 
surrogate model and keep iterating. Bayesian optimization was per
formed to find HDO reaction conditions that minimize the cost and 
greenhouse gas emissions. 

As illustrated in Fig. 9A, the DMF’s MSP gradually decreases from 
$5420/t to $4022/t as the iterations of Bayesian optimization continue. 
As shown using TEA, the HMF cost is the leading cost contributor. 
Hence, the MSP of DMF decreases significantly when the DMF yield 
increases and less humins form. This typically happens with little or no 
water loading, giving a high DMF selectivity. The water concentration in 
the last few Bayesian optimization trials is 0% or 4%, with the zero- 
water case having a slightly lower MSP ($ 312/t). The optimal HMF 
loading of 3% balances the high solvent loss at low HMF concentration 
and the reduced DMF selectivity at high HMF concentration. Moreover, 
the best residence time is at the lowest limit of 3 h; higher residence 
times do not necessarily improve the DMF selectivity yet requiring larger 
equipment and thus a higher capital investment. The high reaction 
temperature (210 ◦C) and H2 pressure (10 bar) result in a high HMF 

Fig. 4. Sampling point distribution and response progression. (A) Distribution of all sampling points in the design space. Only three of the five independent variables 
are shown; the HMF load (1–5 wt%) and hydrogen partial pressure (0–10 bar) are not shown. (B) Optimization of the DMF selectivity, spanning the factorial design 
(16 conditions in duplicates), Latin hypercube (15 conditions), and qEI optimization trials (5 trials of 3 conditions each). (C) Progression of the average HMF 
conversion throughout the optimization of DMF selectivity. 
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conversion at short reaction times. Although higher H2 pressures lead to 
more expensive compressors and reactors, a slight drop in H2 pressure 
causes a significant reduction in DMF yields and is undesirable. 

The Bayesian optimization for the GWP paralleled the MSP trend 
(Fig. 9B), following the increase of HMF conversion and DMF selectivity. 
This is also confirmed by the multi-objective optimization results in 
NEXTorch (Fig. S13), where trade-offs of MSP and GWP exist only at 
very extreme points, while most points with a low MSP also have a low 
GWP. As raw material consumption is the leading contributor to both 

cost and emissions, improving HMF conversion and DMF selectivity 
achieves GWP and MSP minimization goals simultaneously. Conse
quently, cost and greenhouse gas emission were non-competing targets 
for most points explored by multi-objective Bayesian optimization. High 
H2 pressure, medium HMF loading (3 wt%), and no water in the feed
stock are still favored for GWP minimization. Nevertheless, the utilities 
to heat the inlet stream before the reaction play an essential role in the 
GWP. Despite minimal effects on the MSP, the HDO reaction tempera
ture needs to be reduced from 210 ◦C to 199 ◦C to lower greenhouse gas 

Fig. 5. DMF selectivity (%) heatmap cuts over the prescribed experimental conditions. For the heat maps, the HMF loading is 1 wt% and the hydrogen partial 
pressure is 10 bar. 

Fig. 6. DMF yield (%) heatmap cuts over the prescribed experimental conditions. For these graphs, the HMF loading is 1 wt% and the hydrogen partial pressure is 
10 bar. 
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emissions, which illustrated only a slight trade-off between GWP and 
MSP. Based on the conversion and selectivity OLS regression model 
(Fig. S1), the lowest GWP is obtained with an increased reaction time 
from 3 h to 4.3 h to achieve good DMF yields under a lower reaction 
temperature. Longer reaction times result in larger reactors but impact 
slightly the process greenhouse gas emissions since the plant will run for 
many years and even serve for other purposes after its designed life 
(Athaley et al., 2019a, 2019b). The GWP reduces from 26.5 kg CO2 
eq/kg DMF to 22.5 kg CO2 eq/kg DMF after the Bayesian optimization. 
Water in the reactant causes a drastic GWP increase since the azeotrope 
compositions significantly affect the distillation operating conditions, 
leading to high utility usage. 4 wt% water in the inlet gives a GWP of 
31.1 kg CO2 eq/kg DMF, 38.4% higher than the conditions without 
water. Since raw material and solvent usage are identified as the main 
bottlenecks of the HDO process, future improvements on the upstream 
HMF production and filtration technologies will most effectively cut 
down MSP and GWP. Moreover, heat integration could potentially 
further reduce greenhouse gas emissions due to high steam usage, but it 

will not substantially lower DMF production costs. 

4. Conclusions 

Reaction engineering studies typically focus on optimizing the 
product yield without considering the cost and emissions as ultimate 
metrics for plant design. In such studies, yield optimization is typically 
done by varying one parameter at a time or at best using a static design 
of experiments. The current work combined bench-top experiments, 
process simulation, and Bayesian optimization to optimize reaction 
conditions iteratively by varying many parameters at once. Our goal was 
to minimize the GWP and the cost (systems metrics) and correlate them 
with selectivity and yield (reaction engineering metrics). We applied 
this framework to produce DMF from HMF. We also considered small 
fractions of water in the feed coming from the upstream dehydration 
reactor to assess the impact of purity of the feed as a first attempt for 
process integration. 

Reduction of the production cost and GWP approximately follows the 

Fig. 7. Yield (%) heatmap of ethers 1–4 (combined) over the prescribed experimental conditions. The HMF loading is 1 wt% and the hydrogen partial pressure is 10 
bar. For the individual furan-alcohol ethers, the heatmaps are provided in the Supplementary Material. 

Fig. 8. Comparison of the minimum selling prices. (A) 1% solvent loss during filtration; (B) no solvent loss during filtration.  

Z. Wang et al.                                                                                                                                                                                                                                   



Computers and Chemical Engineering 184 (2024) 108644

8

conversion and yield maximization strategy. This is a result of the 
dominant cost of the feed (HMF), a general characteristic of biomass 
processes (Athaley et al., 2019a; Luo et al., 2022). The solvent cost and 
any loss of the solvent (e.g., in filtration) significantly increase the DMF 
cost. Optimal reaction conditions favor a high hydrogen pressure, rela
tively high temperatures, medium HMF loadings, and no or low water, 
which correspond to low HMF feedstock usage, utility consumption, and 
solvent loss. These conditions are overlooked in the reaction optimiza
tion but selected during the systems optimization because process 
integration is considered to include product purification and solvent 
recovery steps. Interestingly, we see no significant tradeoff between 
GWP and MSP. A non-intuitive result is that water in the feed impacts 
the GWP negatively much more than its production cost. 
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