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ABSTRACT 
Biorefineries can reduce carbon dioxide emissions while serving the global chemical demand mar-
ket. Governments are also using carbon pricing policies, such as carbon taxes, cap-and-trade 
models, and carbon caps, as a strategy to reduce emissions. The use of biomass feedstocks in 
conjunction with carbon capture usage and storage technologies are mitigation strategies for 
global warming. Businesses can invest in these technologies to accommodate the adoption of 
these policies. Rapid action is necessary to halt global warming, which results in aggressive poli-
cies. In this work, a multi-period process design and planning problem is developed for the design 
and capacity expansion of biorefineries. The three carbon pricing policies are integrated into the 
model and parameters are selected according to the aggressive scenario denoted by the Paris 
Agreement. The results show that the cap-and-trade policy achieves a higher net present value 
evaluation over the carbon tax model across all pareto points due to the flexibility of the allow-
ances in the cap-and-trade policy. The carbon cap model substantial investments are required in 
carbon capture technologies to adhere to the emissions constraints.  

Keywords: Biomass, Life Cycle Analysis, Technoeconomic Analysis, Technoeconomic Analysis, Process De-
sign 

INTRODUCTION 
CO2 emissions from energy combustion and indus-

trial processes have risen from 24.9 Gt CO2 to 36.8 Gt 
CO2 from 2000 to 2022[1]. The Intergovernmental Panel 
on Climate Change (IPCC) reported that urgent action is 
necessary to curb global warming to 1.5oC[2]. Towards 
that end, scientists and policymakers are developing so-
lutions to mitigate CO2 contributions to the global warm-
ing crisis.  

Traditional chemical manufacturing uses petroleum-
based feedstocks, which are unsustainable resources 
and result in high CO2 emissions. In an effort to reduce 
reliance on petroleum-based feedstocks, scientists have 
been researching lignocellulosic biomass as a feedstock 
alternative. Lignocellulosic biomass is an abundant re-
source and has the potential to be sustainable with low 
emissions. The biorefinery concept proposes that each 
major component from lignocellulosic biomass, i.e., 

cellulose, hemicellulose, and lignin, can be fractionated 
and valorized into chemicals, like petroleum refinery and 
chemical plant operations. Biorefineries supports decar-
bonization by transitioning towards a sustainable feed-
stock and lower emissions processes. 

Significant research has been conducted in the Car-
bon Capture, Utilization, and Storage (CCUS) field that 
aims to reduce the amount of CO2 currently emitted by 
industrial processes and capture CO2 already existing in 
the atmosphere. For example, Yusuf et al. evaluated the 
economic feasibility of producing soda ash from CO2 
heavy flue gas generated from power plants, a Carbon 
Capture and Utilization (CCU) technology[3]. Wang et al. 
performed a technoeconomic analysis on the sequestra-
tion of CO2 flue gas from power plants via compression 
and storage, a Carbon Capture and Storage (CCS) tech-
nology[4]. 

Governments are increasingly leveraging environ-
mental policies to reduce CO2 emissions. As of 2022, 23% 
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of all CO2 emissions are under some form of carbon pric-
ing policy[5]. Fifty-two countries enforce a carbon tax, 
Emissions Trading System (ETS), or both policies[5]. 
Twenty countries are currently considering the imple-
mentation of these policies as they can provide not only 
environmental but also social and economic benefits[5]. 
Under a carbon tax policy, carbon dioxide emitters are 
charged a financial penalty per ton of CO2 emitted. An 
ETS is a system enforcing a cap-and-trade model where 
the government provides allowances, an amount of per-
mitted CO2 emissions, for manufacturers. They can pur-
chase additional allowances or sell unused allowances on 
an open market. Benchmarks have been set via carbon 
pricing to limit global warming to 2oC. According to the 
Paris Agreement, emission levels should be reduced by 
45% by 2030 and reach net-zero carbon emissions by 
2050[5]. An additional benchmark provided by the World 
Bank states that carbon pricing should be between 61 
and 122$ by 2030[5]. 

Superstructure optimization is used as a framework 
for exploring multiple process design alternatives. Luo et 
al. utilized neural networks to model the biorefinery flex-
ibility index facilitating operational flexibility constraints 
in superstructure optimization[6]. Multi-period optimiza-
tion can be used for considering planning problems over 
a long-time horizon. Sabet et al. used a multi-period for-
mulation to model a global manufacturing capacity man-
agement problem[7]. These two approaches can be inte-
grated with environmental policy to optimize process de-
signs.  

This work incorporates the benchmarks provided by 
the World Bank and IPCC into a multi-period biorefinery 
design and optimization problem[2, 5]. Three different 
carbon emissions policies, namely carbon cap, cap and 
trade, and carbon tax, are considered as constraints in 
the formulation. Pareto fronts are constructed for eco-
nomic and environmental objective functions.   

MULTI-PERIOD PROGRAMMING FOR 
BIOREFINERY 

The multi-period programming formulation is uti-
lized for the long term biorefinery construction and ex-
pansion optimization problem. The planning horizon is set 
for thirty years corresponding to the Paris Agreement 
goals. Each time period represents one year. In the first 
year, an initial biorefinery is constructed. In each subse-
quent time period, the biorefinery can experience capac-
ity expansion or the construction of new units. The prob-
lem is constrained by three environmental policies that 
are increasingly restrictive over each time period to 
match the IPCC and Paris Agreement benchmarks while 
maximizing net present value.  

A superstructure approach is used. In this work, the 
superstructure represents all process alternatives 

consisting of chemical transformations and separation 
sequences. The reactions were selected to represent a 
broad range of chemicals, which is displayed in Figure 1. 
Commodity chemicals, such as ethanol, and biomass 
platform chemicals, such as furfural, were included. 
Drop-in chemicals, such as para-xylene, and biomass de-
rived alternatives, such as furan-dicarboxylic acid, were 
also included. Different separation steps were consid-
ered consisting of crystallization, distillation, extraction, 
membrane separation, and pervaporation. Shortcut 
methods and surrogate models are used to characterize 
the utility usages. Carbon capture storage and carbon 
capture and utilization technologies were also incorpo-
rated into the superstructure to accommodate the dy-
namic environmental policies.  

Figure 1. Biorefinery superstructure with CCUS 
technologies. 

Objective Functions 
The objective of the optimization problem is to max-

imize net present value (NPV) and minimize cumulative 
emissions (CE) while adhering to the carbon pricing poli-
cies. The net present value calculation is shown in Equa-
tion (1) where 𝑖𝑖𝑖𝑖 represents the interest rate, t represents 
the time period; 𝐼𝐼𝐶𝐶𝑡𝑡 represents the capital investment in 
time period t; 𝑅𝑅𝑡𝑡 represents the product revenue in time 
t; 𝑂𝑂𝑡𝑡 represents the operating cost in time t; and 𝐶𝐶𝐶𝐶𝐶𝐶2,𝑡𝑡 
represents the carbon dioxide cost in time period t.   

𝑁𝑁𝑁𝑁𝑁𝑁 = �(1 + 𝑖𝑖𝑖𝑖)−𝑡𝑡
𝑡𝑡∈𝑇𝑇

�−(𝐼𝐼𝐶𝐶𝑡𝑡 − ICt−1 ) + 𝑅𝑅𝑡𝑡 − 𝑂𝑂𝑡𝑡  ± 𝐶𝐶𝐶𝐶𝐶𝐶2,𝑡𝑡� (1) 

The power law model in Equation (2) captures the 
capital costs where 𝑎𝑎𝑢𝑢 and 𝑏𝑏𝑢𝑢 are parameters for unit op-
eration 𝑢𝑢, and 𝑥𝑥𝑢𝑢,𝑡𝑡 represents the cumulatively capacity 
of unit 𝑢𝑢 in period 𝑡𝑡. The cost of capacity expansion in 
time period t is captured as the difference between the 
cost of a plant with the cumulative capacity and the cost 
of the plant in the previous expansion period.  

𝐼𝐼𝐶𝐶𝑡𝑡 = Σ𝑢𝑢∈𝑈𝑈𝑎𝑎𝑢𝑢�𝑥𝑥𝑢𝑢,𝑡𝑡�
𝑏𝑏𝑢𝑢  , t > 1  (2) 

The revenue, 𝑅𝑅𝑡𝑡, generated in time period 𝑡𝑡 by the 
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products are captured in Equation (3), where 𝑏𝑏𝑖𝑖,𝑡𝑡 is the 
amount of chemical 𝑖𝑖 produced in time period 𝑡𝑡, and 𝐶𝐶𝑖𝑖 
represents the cost of chemical 𝑖𝑖.  

𝑅𝑅𝑡𝑡 = �𝑏𝑏𝑖𝑖,𝑡𝑡𝐶𝐶𝑖𝑖
𝑖𝑖∈𝐼𝐼

 (3) 

The operating cost, 𝑂𝑂𝑡𝑡, in time period t is captured 
in Equation (4), where 𝑓𝑓𝑗𝑗,𝑡𝑡 is the operating level of unit op-
eration j in time period t; 𝐶𝐶𝑗𝑗 is the unit cost of running unit 
j; 𝐸𝐸𝑤𝑤,𝑡𝑡𝑡𝑡 is the energy usage of utility 𝑤𝑤; 𝐶𝐶𝑤𝑤 is the unit cost 
of operating utility 𝑤𝑤; and 𝑓𝑓𝑓𝑓𝑓𝑓 is the fixed cost factor.  

𝑂𝑂𝑡𝑡 = �𝑓𝑓𝑗𝑗,𝑡𝑡𝐶𝐶𝑗𝑗  
𝑗𝑗∈𝑗𝑗

+ � 𝐸𝐸𝑤𝑤,𝑡𝑡𝐶𝐶𝑤𝑤
𝑤𝑤∈𝑊𝑊

+ 𝐼𝐼𝐶𝐶𝑡𝑡(𝑓𝑓𝑓𝑓𝑓𝑓) (4) 

The environment impact calculation is based on a 
cradle-to-gate life cycle assessment. The system bound-
ary is depicted in Figure 2 and considers biomass trans-
portation, raw material production, utilities, combustion 
products, landfill, and wastewater treatment. Biomass is 
assumed to be carbon neutral. The data for the calcula-
tions are obtained from the Ecoinvent v.3.8 database, 
and the Global Warming Potential (GWP) indicator from 
the ReCipE2016 impact assessment method is used[8, 9].  

 

Figure 2. System boundary depicted for environmental 
impact calculations. Biomass is transported to the 
biorefinery. Raw materials and utilities are imported into 
the biorefinery for chemical production. Wastewater is 
exported for wasterwater treatment. Emissions from the 
combustion of lignin to the atmosphere and the resulting 
ash sent to the landfill are included. 

The environmental impact in time period t, 𝑇𝑇𝐸𝐸𝑡𝑡 , is 
given by Equation (5) where 𝐺𝐺𝐺𝐺𝑃𝑃𝑤𝑤 represents the GWP 
of utility 𝑤𝑤; 𝑏𝑏𝑤𝑤𝑤𝑤,𝑡𝑡 represents the amount of waterwater 
generated in time period t; 𝐺𝐺𝐺𝐺𝑃𝑃𝑤𝑤𝑤𝑤 represents the GWP of 
wastewater treatment; 𝑓𝑓𝑟𝑟𝑟𝑟,𝑡𝑡 represents the amount of 
raw material rm used in time period t; 𝑏𝑏𝐴𝐴𝐴𝐴ℎ,𝑡𝑡 represents the 
amount of ash generated in time period 𝑡𝑡; 𝐺𝐺𝐺𝐺𝑃𝑃𝐴𝐴𝐴𝐴ℎ repre-
sents the GWP of sending the ash to the landfill; 𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
represents the combustion products in time period 𝑡𝑡; and 
𝐺𝐺𝐺𝐺𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 represents the GWP of the combustion product 
mixture. 

𝑇𝑇𝐸𝐸𝑡𝑡  = �𝐸𝐸𝑤𝑤,𝑡𝑡
w

GWPw + 𝑏𝑏𝑤𝑤𝑤𝑤,𝑡𝑡𝐺𝐺𝐺𝐺𝐺𝐺𝑤𝑤𝑤𝑤 + � 𝑓𝑓𝑟𝑟𝑟𝑟,𝑡𝑡𝐺𝐺𝐺𝐺𝐺𝐺𝑟𝑟𝑟𝑟
𝑟𝑟𝑟𝑟∈𝑅𝑅𝑅𝑅

+ b𝐴𝐴𝐴𝐴ℎ,𝑡𝑡GWPAsh + bcombGWPcomb (5)
 

The second objective function, cumulative emis-
sions (CE), is given by Equation (6) where 𝑇𝑇𝐸𝐸𝑡𝑡 represents 
the total emissions in time period 𝑡𝑡.  

𝐶𝐶𝐶𝐶 = �𝑇𝑇𝐸𝐸𝑡𝑡
𝑡𝑡

(6) 

 In this work, it is assumed that the residence time 
of CO2 emissions is longer than the planning period and, 
therefore, that the emissions across the time periods 
have equal weight. 

Constraints 
The processing of materials is described by the mo-

lar balance Equation (7) where ν𝑖𝑖,𝑗𝑗 represents the conver-
sion coefficient for compound 𝑖𝑖 in operation 𝑗𝑗; 𝑓𝑓𝑗𝑗,𝑠𝑠 is the 
extent of process 𝑗𝑗 in time period 𝑡𝑡; and 𝑏𝑏𝑖𝑖,𝑡𝑡 is the amount 
of chemical 𝑖𝑖 in time period t.  

Σ𝑗𝑗ν𝑖𝑖,𝑗𝑗𝑓𝑓𝑗𝑗,𝑠𝑠 = 𝑏𝑏𝑖𝑖,𝑠𝑠 (7) 

The unit operation expansion is described by Equa-
tions (8a) and (8b) where 𝑥𝑥𝑗𝑗,𝑡𝑡 represents the capacity of 
unit operation 𝑗𝑗 in time period t; where 𝑥𝑥𝑗𝑗,𝑡𝑡

𝑒𝑒𝑒𝑒𝑒𝑒 the additional 
capacity added to unit operation j in period 𝑡𝑡; and 
𝑥𝑥𝑗𝑗𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 represents the initial capacity built for unit operation 
𝑗𝑗.  

𝑥𝑥𝑗𝑗,𝑡𝑡 = 𝑥𝑥𝑗𝑗,𝑡𝑡−1 + 𝑥𝑥𝑗𝑗,𝑡𝑡−1
𝑒𝑒𝑒𝑒𝑒𝑒      ∀𝑗𝑗; 𝑡𝑡 > 1   (8𝑎𝑎) 

𝑥𝑥𝑗𝑗,𝑡𝑡 = 𝑥𝑥𝑗𝑗𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖     ∀𝑗𝑗;  𝑡𝑡 = 1   (8𝑏𝑏) 

The capacity expansion is limited in its lower and 
upper bound as expressed in Equation (9), where 𝑌𝑌𝑗𝑗,𝑡𝑡 is a 
binary variable that equals 1 when there is capacity ex-
pansion; where CapLo represents the minimum possible 
capacity expansion; and CapUp represents the maximum 
possible capacity expansion.  

𝐶𝐶𝐶𝐶𝑝𝑝𝐿𝐿𝐿𝐿𝑌𝑌𝑗𝑗,𝑡𝑡 ≤ 𝑥𝑥𝑗𝑗,𝑡𝑡
𝑒𝑒𝑒𝑒𝑒𝑒 ≤ 𝐶𝐶𝐶𝐶𝑝𝑝𝑈𝑈𝑈𝑈𝑌𝑌𝑗𝑗,𝑡𝑡 (9) 

The capacity is limited to a fixed number of expan-
sions represented by Equation (10), where 𝑌𝑌𝑗𝑗,𝑡𝑡 represents 
expansion in time period t, and Ej represents the number 
of expansions permitted for unit j.  

�𝑌𝑌𝑗𝑗,𝑡𝑡
𝑡𝑡

≤ 𝐸𝐸𝑗𝑗  ∀𝑗𝑗  (10) 

The operating level of unit j is constrained by the 
maximum capacity of unit j, which is expressed in Equa-
tion (11). xj,t represents the capacity of unit j in time period 
t; h represents the minimum operating ratio; and f𝑗𝑗,𝑡𝑡 rep-
resents the operating level of unit j in time period 𝑡𝑡. 



 

Huynh et al. / LAPSE:2024.1604 Syst Control Trans 3:757-762 (2024) 760 

hxj,t  ≤ 𝑓𝑓𝑗𝑗,𝑡𝑡 ≤ 𝑥𝑥𝑗𝑗,𝑡𝑡     ∀𝑗𝑗 ∈ 𝐽𝐽 ∀𝑡𝑡 ∈ 𝑇𝑇 (11) 
The plant size is limited to amount 𝑚𝑚𝑏𝑏𝑏𝑏 as expressed 

in Equation (12) where 𝑥𝑥𝑏𝑏𝑏𝑏,𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒 represents the biomass 
feedstock, 𝑏𝑏𝑏𝑏, processing capacity in the last period.  

𝑚𝑚𝑏𝑏𝑏𝑏 = � 𝑥𝑥𝑏𝑏𝑏𝑏,𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒
bm∈BM

  (12) 

Environmental Constraints 
The formulations for the carbon policies utilized in 

this work are presented below. These policies enforce 
environmental constraints and may affect the NPV calcu-
lation. 

The carbon cap policy enforces a fixed amount of 
CO2 emissions. In this work, we consider the cap to be 
placed on the aggregated amount of emissions in the 
time period of one year. The constraint is expressed in 
Equation (13) where 𝑇𝑇𝐸𝐸𝑡𝑡 represents the amount of CO2 
emitted in time period 𝑡𝑡, and 𝑇𝑇𝐸𝐸t

𝐶𝐶𝐶𝐶𝐶𝐶 represents the emis-
sions cap in time period 𝑡𝑡.  

𝑇𝑇𝐸𝐸𝑡𝑡 ≤ 𝑇𝑇𝐸𝐸t
𝐶𝐶𝐶𝐶𝐶𝐶     ∀𝑡𝑡 ∈ 𝑇𝑇 (13) 

In the cap-and-trade policy, the governing body al-
locates a number of allowances to manufacturers. This 
represents a soft emissions cap, which can be exceeded 
by purchasing additional allowances from other manu-
facturers or can be sold for profit. The constraint is ex-
pressed in Equations (14-16) where  𝑃𝑃𝐶𝐶𝐶𝐶2,t represents the 
price of CO2 in time period 𝑡𝑡; 𝐸𝐸𝑡𝑡+ represents the allow-
ances purchased in time period 𝑡𝑡; 𝐸𝐸𝑡𝑡− represents the al-
lowances sold in time period 𝑡𝑡; and 𝑇𝑇𝐸𝐸t

𝐶𝐶𝐶𝐶𝐶𝐶 represents the 
allowances provided in time period 𝑡𝑡.  

𝐶𝐶𝐶𝐶𝐶𝐶2,𝑡𝑡 = 𝑃𝑃𝐶𝐶𝐶𝐶2,t�𝐸𝐸𝑡𝑡+ − 𝐸𝐸𝑡𝑡−� (14) 
𝑇𝑇𝐸𝐸𝑡𝑡 ≤ 𝑇𝑇𝐸𝐸t

𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐸𝐸𝑡𝑡+ − 𝐸𝐸𝑡𝑡−     ∀𝑡𝑡 ∈ 𝑇𝑇 (15) 

𝐸𝐸𝑡𝑡+ > 0,𝐸𝐸𝑡𝑡− > 0 ∀𝑡𝑡 ∈ 𝑇𝑇 (16) 

Under a carbon tax policy, manufacturers are 
charged per tCO2 emitted. The total carbon tax is given 
by Equation (17), where  𝑃𝑃𝐶𝐶𝐶𝐶2,t represents the price of one 
ton of CO2 emitted in time period 𝑡𝑡; 𝑇𝑇𝐸𝐸𝑡𝑡 represents the 
amount of CO2 emitted in time period 𝑡𝑡; and 𝐶𝐶𝐶𝐶𝐶𝐶2,𝑡𝑡 repre-
sents the carbon tax cost associated with those emis-
sions in period 𝑡𝑡. 

𝐶𝐶𝐶𝐶𝐶𝐶2,𝑡𝑡 = 𝑃𝑃𝐶𝐶𝐶𝐶2,t𝑇𝑇𝐸𝐸𝑡𝑡 (17) 

CASE STUDY RESULTS AND DISCUSSION 
The epsilon constraint method is used to construct 

a Pareto front for the multi-period biorefinery optimiza-
tion problem. NPV and CE are the two functions consid-
ered in the bi-objective optimization. The nonlinear Equa-
tion (2) is reformulated via piecewise linearization to keep 

the formulation linear. Consequently, all instances of the 
model are formulated and solved in GAMS as a MILP us-
ing CPLEX solver on an Intel Xeon E-2247G @ 4.00 GHz 
CPU and 32.0 GB of RAM.  

In our case study, a biorefinery is considered in 
McClean, IL with a plant capacity set at 2984 metric tons 
per year corresponding to four times the nominal corn 
stover production in McClean. Additional biomass can be 
purchased within the five closest counties within 
McClean. The years 2020 to 2050 are considered to rep-
resent a thirty-year time horizon with each time period 
having a length of one year. The carbon pricing parame-
ters considered correspond with the aggressive scenario 
set by the Paris Agreement, which aims to maintain global 
warming below 2oC. Table 1 presents the parameter 
benchmarks. Linear interpolation is used to determine the 
parameters in the intermediate years. The carbon tax and 
cap-and-trade policies are evaluated by constructing pa-
reto fronts to compare economic and environmental 
trade-offs. The carbon cap policy is analyzed yearly to 
elucidate the effects of a shrinking carbon cap.  

Table 1: Carbon pricing policy parameters during mile-
stone years 

Year Carbon Cap (%) Carbon Tax ($/tCO) 
   
   
   

 
Figure 3 demonstrates increasing NPV with increas-

ing CE for both cap-and-trade and carbon tax policies. 
For the cap-and-trade policy, the allowances provided 
are equal to the carbon cap parameters given in Table 1. 
Similarly, the carbon prices are set at the carbon tax 
value in Table 1. At the minimum CE point for both poli-
cies, a positive NPV exists. Across all points on the pareto 
front, the cap-and-trade policy results in a higher NPV 
than the carbon tax policy. This is a consequence of the 
allowances that can be sold for a profit when the carbon 
cap is high as well as the allowances providing tax-free 
emissions. Additional production incurs a larger financial 
penalty under the carbon tax policy, resulting in lower 
overall production. This is noted through the maximum 
profit point for the carbon tax policy having lower CE than 
the cap-and-trade policy.  



 

Huynh et al. / LAPSE:2024.1604 Syst Control Trans 3:757-762 (2024) 761 

 
Figure 3. NPV and CE pareto curve for cap-and-trade 
and carbon tax policies 

 
Figure 4. Sensitivity analysis for NPV and CE pareto 
curve for a cap-and-trade policy 

A sensitivity analysis was performed for the cap-
and-trade and carbon tax policies. The raw material costs 
were varied by 25%. Figure 4 and Figure 5 show the 
changes in the pareto curves for the cap-and-trade and 
carbon tax policies, respectively. In both policies, in-
creasing the raw material price by 25% has a significantly 
greater impact than decreasing the raw material price by 
25%. For the carbon tax policy, the average relative dif-
ference to the base case for the 25% increase and de-
crease case is 9.0% and 2.2%, respectively. For the cap-
and-trade policy, the average relative difference to the 
base case between the 25% increase case and decrease 
case is 7.1% and 1.4%, respectively. The large decrease 
in NPV in the 25% increase case is explained by the 
change in production relative to the base case. In the 25% 
increase case, production shifts from ethyl lactate to eth-
anol production which has higher raw material costs. The 
average relative differences for the carbon tax policy are 
greater than those of the cap-and-trade policy because 

emissions are more heavily penalized under the carbon 
tax policy. 

 
Figure 5. Sensitivity analysis for NPV and CE pareto 
curve for carbon tax policy 

Figure 6 demonstrates the effect of an increasingly 
restrictive carbon cap over time. It is clear from the emis-
sions curve that the rate of carbon dioxide reduction is 
greater between 2020 to 2030 than between 2030 and 
2050. Despite the rapid reduction in emissions levels, the 
yearly profit generated is unaffected until 2029. This is a 
consequence of decreasing production in high carbon di-
oxide emitting chemicals that do not significantly contrib-
ute to profit. After 2030, emissions cannot continue to 
decrease without decreases to profit. Every year an in-
vestment is made, the slope of the annual profit line 
changes, reflecting the change in operation regimes as 
more CCS and CCU is required to maintain policy compli-
ance.  

 
Figure 6. Annual profit and emissions with time for 
carbon cap policy with reduced CCS and CCU costs 

Table 2 displays the investment capacities and ca-
pacity expansions for both CCS and CCU technologies 
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under the carbon cap policy. In year 2020, there is a small 
investment in both CCS and CCU technology during the 
initial construction of the biorefinery. Initially, annual 
emissions are reduced by altering operations. In year 
2033 and 2047, there is a significant investment in CCU 
technology. In the year 2041 and 2045, there is an addi-
tional investment in CCS technology. There is a higher in-
vestment in CCU technology overall due to its lower op-
erating cost, despite its higher capital cost.  

Table 2: Initial capacity and expansions for carbon cap-
ture technologies under a carbon cap policy 

 Carbon Capture Capacity (tCO/yr) 
Year CCS CCU 
 E E 
  E 
  E 
 E  
 E  

CONCLUSIONS 
This work formulated a biorefinery process design 

and capacity expansion problem. A multi-period pro-
gramming approach was utilized to consider the capacity 
expansion decisions when carbon pricing increases and 
carbon caps decrease with time in accordance with 
benchmarks of the Paris Agreements. The carbon tax, 
cap-and-trade, and carbon cap policies were formulated 
as constraints to evaluate their effects on the NPV and EI 
pareto fronts. The framework allows manufacturers to 
plan biorefinery product portfolios and future expansion 
projects considering carbon pricing policies.  

The cap-and-trade policy is evaluated to be more 
profitable compared to the carbon tax policy and includes 
greater flexibility as a consequence of the purchasing 
and selling of allowances mechanism as well as the por-
tion of carbon tax free emissions. The carbon cap policy 
has shown the importance and necessity of reducing the 
cost of CCUS technologies for chemical plants to adhere 
to increasingly strict carbon caps over time. The carbon 
tax policy results in decreased chemical production due 
to the financial penalty further highlighting the need for 
low cost CCUS technologies to offset emissions and 
achieve net zero carbon emissions.  
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