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Abstract 11 
 12 

Most watersheds have human impacts that modify hydrological responses differently over a 13 
range of timescales. However, these impacts are not accounted for in most hydrological models. 14 
Human impacts in watersheds are diverse and case specific, unlike natural hydrologic processes. 15 
Incorporating all plausible human impacts comes at a high data acquisition and modeling cost. 16 
This raises the question, which human impacts do we need to incorporate to represent observed 17 
streamflow patterns at different timescales? To answer this question, we develop a diagnostic 18 
approach to modeling watersheds with human interference. This mixed methods approach is 19 
informed by the case history and builds on the top-down hydrological modeling approach where 20 
process complexity is incrementally added with changing timescales to identify and respond to 21 
changing dominant hydrological processes in a given watershed. Here we implement this 22 
modeling approach in the East Fork watershed in California, USA for which data on changes in 23 
water imports, withdrawals, irrigation and agriculture land cover is available from the early 24 
1940’s, making it an ideal demonstration case. In the East Fork watershed, we find that 25 
incorporation of water imports and rights are sufficient to replicate annual patterns of runoff 26 
variability, and that adding crop water demand and irrigation enables replication of monthly and 27 
daily patterns, while incorporation of groundwater pumping results in negligible improvements. 28 
To demonstrate the capabilities of the diagnostic approach in and beyond this case we conducted 29 
two computational experiments: checking for needed model structural change and exploring a 30 
counterfactual scenario of intensified agriculture.  31 

1.0 Introduction 32 

Human activity has shaped the hydrological cycle for generations. As far back as 1864, G.P. 33 
Marsh observed that human actions can both spark and halt hydrological change. Marsh 34 
observed that clearing forests for agriculture changes the patterns of soil drainage and affects 35 
local humidity levels. Similarly, he found that clearing fallen trees and other debris from 36 
waterways stops the formation of bogs and the lateral movement of streams (Marsh, 1965). Over 37 
time our understanding of the extent of human impacts on the hydrological cycle has increased. 38 
Land cover change alone impacts infiltration, groundwater recharge, surface water flow regimes, 39 
water quality, biodiversity, and water and energy budgets (Sehot & Wal, 1992; Sivapalan, 1996; 40 
Tong & Chen, 2002; Vahmani & Hogue, 2014; Vörösmarty et al., 2010; Wissmar et al., 2004). 41 
Further, these impacts span the sub-meter, watershed, and global scales (Bhaduri et al., 2000; 42 
Reyes et al., 2015; Vörösmarty et al., 2010). In recent decades, human impacts on Earth systems, 43 
including hydrological systems, have accelerated (Steffen et al., 2015) and most watersheds now 44 
have some degree of human impacts on hydrological responses (Bosmans et al., 2017; 45 
Haddeland et al., 2014).  46 
 47 

This increased human influence on hydrological responses intensifies the challenge of 48 
building process understanding and predicting hydrological variables of interest as human 49 
influence can amplify or dampen hydrological processes, introduce new processes, and 50 
restructure the system (Wagener et al., 2010). There is growing recognition of the need to 51 
account for human impacts in hydrological modeling. Researchers have integrated human 52 
impacts into watershed hydrological models to a range of degrees. For example, Zhang et al. 53 
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(2020) investigated the impact of a single human impact, the construction of check dams. In 54 
contrast, Zhou et al. (2018) coupled the WEP-L distributed hydrological model (Jia et al., 2006) 55 
with a social water cycle model to simulate human impacted hydrology in the Haihe River Basin, 56 
an intensively developed watershed in China. Their social water cycle model included water 57 
withdrawals and use, wastewater discharge, irrigation, leakage, and drainage. A wide range of 58 
data sets were required to build and test this model including reservoir characteristics, reservoir 59 
storage time series, agricultural land area and crop types, irrigation patterns and water use data 60 
for agriculture, industry and domestic use, in addition to hydroclimatic data sets typically 61 
required for hydrological modeling. Wendt et al. (2021) developed a stylized model which 62 
reduced data demands. They modified the lumped HBV model (Van Lanen et al., 2013) structure 63 
to incorporate regional water management activities during drought, using drought management 64 
plans to parameterize the model to a series of representative systems in the UK. In recent years, 65 
several large-scale hydrological models have been developed that incorporate water use, 66 
reservoir regulation and land cover change (Veldkamp et al., 2018; Wada et al., 2017). However, 67 
data availability remains a major hurdle to incorporating these interferences and to adding 68 
processes such as groundwater pumping and interbasin transfers in large scale hydrological 69 
models (Wada et al., 2017). Regardless of scale, the genre of models currently used to study 70 
human influence have tended to be bottom-up models within which the human impacts are 71 
prescribed with appropriate parameterizations, and then the observed flow records are used to 72 
calibrate and validate these models.  73 
 74 

The data challenges of integrating human impacts into hydrological models raise the 75 
question, which human impacts do we need to incorporate to represent observed streamflow 76 
patterns at different timescales? A particular challenge in the development of watershed models 77 
to study hydrologic change is the paucity of precise historical records of the nature and extent of 78 
human-induced land cover changes and other human interferences in the hydrologic cycle. In the 79 
absence of such records hydrologists are then forced to infer or reconstruct these changes, 80 
including human interferences, from available historical records of precipitation, streamflow and 81 
proxy variables such as population. To address this challenge, in this paper we present what we 82 
call a diagnostic approach to modeling watersheds with human interferences. The purpose of 83 
taking this approach is to build understanding of the relative impact of various human impacted 84 
processes on streamflow patterns across time scales. Our approach builds upon the top-down 85 
modeling method which incrementally develops a hydrological model of appropriate complexity 86 
while generating process understanding (Sivapalan et al., 2003). The top-down approach starts 87 
with an observed temporal pattern in the variable of interest at a chosen (time) scale, and then 88 
hypothesizes and investigates the steps or processes at a lower level that could have generated 89 
that pattern. This approach stands in contrast to the bottom-up approach which integrates small 90 
scale processes at a lower level to discover what patterns might emerge at the higher system level 91 
(Klemeš, 1983). The way that Sivapalan et al. (2003) implemented it, the top-down approach 92 
involves incrementally adding complexity to hydrological models to generate understanding of 93 
which hydrological processes are required to generate specific streamflow patterns at different 94 
timescales. There have been several applications of the top-down approach to hydrologic 95 
modeling (Farmer et al., 2003a; C Jothityangkoon et al., 2001), which have helped to not only 96 
generate parsimonious models of watershed water balances but have also generated novel 97 
insights into process controls on observed hydrologic responses in different climate settings 98 
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(Atkinson et al., 2002; Chatchai Jothityangkoon & Sivapalan, 2009; Massmann, 2020). More 99 
complex modeling approaches have advantages in explaining a higher percentage of streamflow 100 
variation or achieving better predictive performance. However, the complexity introduced 101 
challenges to the attribution of model performance to specific processes or features. Therefore, 102 
we apply the top-down approach as our goal is to diagnose what human influenced hydrological 103 
processes are important across time scales in the context of a specific case study.  104 

In this paper, for the first time, we extend the top-down, diagnostic approach to modeling as 105 
a vehicle to interrogate observed historical precipitation-streamflow records in human impacted 106 
watersheds to make inferences about the historical, human-induced changes to the water balance 107 
and along the way also develop a parsimonious model of the changing hydrology. The goal is not 108 
to develop a universal model of human impacted catchments but introduce and test a transferable 109 
methodology to develop site-specific models based on data inference. By incrementally adding 110 
complexity in the way we model human impacts we test which processes are important in a 111 
particular catchment across timescales of interest to hydrologists: daily, monthly and annual. We 112 
demonstrate this approach in the watershed of the East Fork of the Upper Russian River in 113 
California, USA. Human activity has shaped the hydrology in the Upper Russian River for 114 
decades through well-documented water imports, allocation of rights to withdrawal surface 115 
water, irrigation and land cover change, making it an ideal test case for this modeling study. The 116 
availability of over seven decades of data presents a unique opportunity to examine the 117 
hydrological signatures of human development. The lessons learned from this modeling case 118 
study are however applicable to other human-impacted watersheds, both in terms of 119 
methodology and in terms of fundamental insights about the effects of human interferences in the 120 
hydrologic cycle. Further, the rich case history and long period of available data make this case 121 
ideal for developing an approach and setting the groundwork for future comparative studies.   122 

2.0 Materials and Methods 123 

Our primary goal in this study is to develop a minimalist model of the water balance response of 124 
the Upper Russian River watershed over the 1942-2013 period, a period over which there has 125 
been significant human interference in the watershed hydrologic cycle. Critically, we propose a 126 
mixed-methods approach to developing this model, synthesizing qualitative data from the case 127 
history with time series data to craft hypotheses of the model structure. The top-down modeling 128 
methodology in “pristine” catchments begins with descriptions of the hydroclimatic setting and 129 
assembling multi-year time series of hydroclimate data (e.g., precipitation, potential evaporation, 130 
and streamflow), as seen in the work of Jothityangkoon et al. (2001) and Farmer et al. (2003). 131 
Modeling of the water balance of human-impacted catchments requires, in addition to the 132 
hydroclimatic data, information on the history of human interferences that may have contributed 133 
to the changes in hydrology. Some of this information may be in the form of time series, while 134 
other information may only be qualitative, in the form of case narratives, which may have to be 135 
converted to quantitative information for modeling purposes. The putting together of a case 136 
narrative thus becomes part of the methodology of model development, which is what makes it a 137 
mixed-methods approach. The case study description, including the hydroclimatic setting and the 138 
case narrative is presented in section 2.1. 139 
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 140 

     Then, given the availability of a “naturalized streamflow” record over the corresponding 141 
period, we carried out the model development in two phases. In the first phase, we use the top-142 
down methodology to develop a model of “natural” hydrology prior to human interventions. In 143 
the second phase, we then extend the baseline model developed during the first phase to add 144 
features to account for the human interventions, again using the top-down methodology. It 145 
should be noted in passing that the “naturalized” streamflow record is a product of another 146 
hydrologic model. Therefore, the modeling of naturalized streamflow is simply an intermediate 147 
methodological step, a building block, on the way to a model of observed streamflow that 148 
reflects a combination of natural and human-influenced hydrological processes. This step was 149 
forced on us because historical data under pristine conditions was not available in this catchment, 150 
or in neighboring catchments. We further test all feasible combinations of hydrological and 151 
human impacts models to ensure that the use of naturalized streamflow has not biased the final 152 
model selection. Lastly, we demonstrate the use of the diagnostic approach in two applications: 153 
testing for structural change and selecting a model under a counterfactual scenario.  154 

2.1 Case Study Description: Hydroclimate and Human Impact History 155 

The East Fork of the Upper Russian River is in the Northern California Coast Range in 156 
Mendocino County, CA with the headwaters located in Potter Valley (Fig. 1). The Northern 157 
California Coastal Range has a Mediterranean climate (Koppen-Geiger climate type Csb (Peel et 158 
al., 2007)) characterized by warm dry summers and cool wet winters with approximately 80% of 159 
the precipitation occurring between November and March (Flint et al., 2018). The region 160 
experiences Pacific storm systems, due to its proximity to the northeast Pacific (Sumargo et al., 161 
2020). Precipitation and average annual temperature also vary between years as seen in Fig. 2A-162 
B. Streamflow patterns in the East Fork also show both the intra- and interannual variability seen 163 
in precipitation. The average annual streamflow in the East Fork is approximately 8.83 m3/s 164 
(1167 mm/yr normalized by watershed area), with a peak annual inflow of 17.32 m3/s (2287 165 
mm/yr) in 1983 and a minimum annual inflow of 1.75 m3/s (231 mm/yr) in 1977 (Fig. 2C). Note 166 
that we use calendar years and not water years in this study as some data sets are only available 167 
on an annual basis by calendar year. This choice is justified because snow processes are not 168 
dominant in this watershed as the precipitation record shows only 19 total days of snow in the 169 
study period, resulting in no more than 2.4% of precipitation in any water year. This is to be 170 
expected as prior studies have found that the snow line during winter storms is between 1000 m 171 
and 2000 m elevation and the highest elevation in the East Fork watershed is 1195 m, making the 172 
watershed below the snow line for most storms (Kim et al., 1998). 173 

 Historic vegetation cover in the East Fork watershed included a mixture of hardwood, 174 
conifer, oak, and chaparral (Moidu et al., 2021). Currently predominant land covers include 175 
mixed forest, chaparral, orchards, hay fields, and vineyards (Potter Valley Irrigation District, 176 
2022; USGS, 2016). This change in vegetation is hypothesized to alter monthly patterns in 177 
streamflow. Further a shift from natural to agricultural land cover is often accompanied by the 178 
construction of drainage systems which influence runoff timing. Ditch drainage systems with fast 179 
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response times are dominant in Mendocino County. As our finest time scale is daily, we did not 180 
further consider the effects of drainage. 181 

The basin is underlain by the Franciscan Complex, which is dominated by sandstones, shales 182 
and conglomerates (Berkland & Ray, 1972). Alluvium deposits are also present, and these are 183 
characterized by a high silt and clay content, with pockets of sand and gravel (Cardwell, 1965).  184 
Throughout the Russian River basin, headwaters remain wetted throughout the year through 185 
baseflow contributions (Grantham, 2013), and in the East Fork a water transfer from the adjacent 186 
Eel River keeps flows elevated during the summer dry season. Groundwater levels at many wells 187 
show seasonal declines in the summer, although other locations show a seasonal increase due to 188 
irrigation in excess of crop water demands (Cardwell, 1965). Potter Valley annual groundwater 189 
withdrawal in 1954 was estimated to be on the order of 2.38 mm/yr (500 ac-feet/yr) (Cardwell, 190 
1965). No more recent estimates are available at the watershed level, but the 2010 USGS 191 
estimate of Mendocino County groundwater withdrawals yields an estimate of 5.23 mm/yr 192 
normalized over the county area (Maupin et al., 2014). This leads us to hypothesize that 193 
groundwater pumping may influence the daily distribution of streamflow through its impact on 194 
baseflow and runoff generation.  195 

 196 

 197 

Figure 1: Location of the East Fork Watershed and the Calpella stream gauge. 198 
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The East Fork watershed above the Calpella gauge is approximately 238.7 km2 (92.2 mi2) 199 
and ranges from 246 m to 1195 m above mean sea level. Lake Mendocino, formed by the Coyote 200 
Valley Dam, is located just downstream of the gauge. Lake Mendocino regulates streamflow 201 
from our study catchment including flow generated in the East Fork watershed and water 202 
diversions on the Eel River conveyed via the Potter Valley Project as a byproduct of hydropower 203 
generation. The Sonoma County Water Agency operates Lake Mendocino by collecting water 204 
for storage in the reservoir’s water-supply pools when water is available for collection, and by 205 
releasing stored water to supplement natural flows as necessary (Sonoma County Water Agency, 206 
2015). Understanding streamflow patterns in the East Fork is critical to inform long term 207 
operation of this reservoir.  208 

The Potter Valley Project was initiated by the Eel River Power and Irrigation Company in 209 
1900 and first generated power in 1908 (Potter Valley Irrigation District, 2022). Without 210 
upstream storage, however, the project could only generate hydropower at capacity during fall 211 
and spring; Scott Dam was constructed to store water and facilitate year-round power generation. 212 
Eel Valley residents protested the construction of Scott Dam due to concerns about damages to 213 
fish habitat and lost natural resource development opportunities locally (Langridge, 2002). In 214 
1922, Pacific Gas & Electric Company (PG&E) acquired the system, Scott Dam was completed, 215 
and Lake Pillsbury Reservoir began to fill (Potter Valley Irrigation District, 2022). In addition to 216 
stabilizing hydropower production, Scott Dam also changed the seasonal pattern of streamflow 217 
in the East Fork, significantly increasing summer streamflow. Prior to the Potter Valley Project, 218 
the Potter Valley was dry farmed as there was little streamflow during summer months of peak 219 
crop water demand. Large scale irrigation began in 1922 and expanded in 1924 with the 220 
formation of the Potter Valley Irrigation District (Cardwell, 1965). In 1950, PG&E expanded the 221 
capacity of the Potter Valley Project transmission tunnel and entered into a contract with the 222 
Potter Valley Irrigation District to provide 1.4 m3/s (50 ft3/s) (State Water Resources Control 223 
Board Division of Water Rights, 1997). The water transferred into and withdrawn from the river 224 
is hypothesized to alter the annual water balance and therefore streamflow patterns across 225 
timescales.   226 

The original hydroelectric power plant license issued in 1922 expired in 1972; the renewal 227 
process triggered an Environmental Impact Statement (EIS) which brought the decades old 228 
concerns about fish habitat back to the forefront (Langridge, 2002). Ultimately, the Federal 229 
Energy Regulatory Commission recommended a reduction of the water transferred from the Eel 230 
River to the East Fork. This reduction can be seen in Fig. 2D.  231 

Fig. 2C illustrates the annual variation in streamflow observed at the Calpella gauge, 232 
normalized by watershed area (USGS, 2022). Fig. 2C also illustrates the annual variation in 233 
naturalized or unimpaired streamflow, a model product developed by the USGS that 234 
approximates streamflow in absence of human activity (Flint et al., 2015).  Flint and colleagues 235 
(2013) developed the Basin Characterization Model, a gridded (270-m grid cell resolution) 236 
regional water-balance model developed for the state of California that partitions precipitation 237 
into evapotranspiration, infiltration, runoff and percolation. Applying the model Basin 238 
Characterization Model at a daily time step, Flint et al. (2015) used undisturbed upland 239 
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tributaries to calibrate the model for unimpaired flows in the Russian River. For model testing, 240 
they then used regression to estimate streamflow losses due to irrigation diversions and applied a 241 
conditioning method to reduce error in high and low flows and refine the calibration. Comparing 242 
the two streamflow time series gives us a window into the magnitude and patterns of human 243 
influence. From Fig. 2C we see that the magnitude of observed streamflow is higher than 244 
naturalized flow and that a decreasing trend is present only for observed streamflow. The 245 
availability of well vetted naturalized streamflow makes this case ideal for modeling the impacts 246 
of human activity on hydrological processes. In this study, we examine the trajectory of the East 247 
Fork of the Upper Russian River from 1942 (the first full year when observed streamflow is 248 
available) through to 2013 (the latest when year naturalized streamflow is available).  249 

Variability in precipitation and temperature (Fig. 2A and B, respectively) shape both 250 
observed and naturalized streamflow. Human actions such as water imports (Fig. 2D, normalized 251 
by watershed area), expansion of agricultural and irrigated lands (Fig. 2E), and water 252 
withdrawals affect only observed streamflow. Historical data on water withdrawals is not 253 
available for this case; alternatively, we use the record of surface water rights within the 254 
watershed to approximate the upper limit of water withdrawals (California State Water 255 
Resources Control Board, 2022). Note that Fig. 2F shows water rights normalized by watershed 256 
area to facilitate comparison across variables. The State Water Resources Control Board notes 257 
that while Riparian and pre-1914 water rights holders are required to file diversion and use 258 
statements, not all water users have, leading to data gaps (State Water Resources Control Board 259 
Division of Water Rights, 1997). In addition, Grantham and Viers (2014) found that face-value 260 
water rights across California are approximately five times greater than surface water 261 
withdrawals. Therefore, we use the water rights record to approximate the maximum allowable 262 
withdrawal (irrespective of demand or physical availability of water). Water rights do not specify 263 
how water use can be distributed throughout the year. Here we assume that the usage of water 264 
rights follows the intra-annual distribution of losses (primarily due to agricultural water use) 265 
between the Capella gauge and Lake Mendocino (Sonoma County Water Agency, 2015). A full 266 
summary of data sources can be found in Table 1.  267 

 268 
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 269 

Figure 2: Annual time series of: A) precipitation, B) temperature, C) observed and naturalized 270 
streamflow, D) water Imports, E) irrigated area as a percent of total watershed area, F) water 271 
rights,  272 

 273 

Table 1: Data sets and sources 274 

Data Type Source 
Precipitation Climate Data Online (NOAA, 2022a) 
Temperature Climate Data Online (NOAA, 2022b) 

Streamflow 
National Water Information System 
(USGS, 2022) 

Irrigated Agricultural 
Area 

Census of Agriculture from 1940 to 2012 
(USDA, 2017) 
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Water Rights 

Electronic Water Rights Information 
Management System (eWRIMS) 
(California State Water Resources Control 
Board, 2022) 

Observed Imported Water 
from the Potter Valley 
Project Sonoma County Water Agency (2020) 
Soil Types & Properties Web Soil Survey (USDA, 2019) 

Presettlement Land Cover 
Wieslander Vegetation Type Mapping 
(Kelly et al. 2022) 

Current Land Cover 
National Land Cover Database (USGS, 
2016) 

 275 

2.2 Modeling “Natural” Hydrology 276 

We first model the natural hydrology of the Upper Russian River using the top-down 277 
approach to identify the level of hydrological process detail that must be included to reproduce 278 
annual, monthly and daily streamflow patterns. Unfortunately, we do not have streamflow and 279 
meteorological records before intensive human activity in the watershed, nor do we have an 280 
appropriate adjacent catchment for a paired catchment analysis. Therefore, we use the 281 
naturalized streamflow described above as an approximation of streamflow patterns without 282 
human influence. While naturalized streamflow is a model product not observational data, it is 283 
well vetted and used by Federal agencies (Johnson et al., 2016) and the Sonoma County Water 284 
Authority (Sonoma Water, 2021).  285 

We use four versions of the hydrological model, developed in a series of papers by 286 
Jothityangkoon et al. (2001), Atkinson et al. (2002) and Farmer et al. (2003), starting with the 287 
simple Manabe bucket model (Manabe, 1969). More recently, these models have also been 288 
applied with minor changes by Bai et al. (2009) and Massmann (2020). Here, we apply the 289 
version of the models presented by Bai et al. (2009). All four models apply continuous moisture 290 
accounting to the chosen bucket configuration, and estimate actual evapotranspiration and forms 291 
of runoff generation, as parameterized functions of soil moisture storage. Note that potential 292 
evapotranspiration is computed using the Hamon equation and adjusted to the watershed 293 
vegetation through the selection of kv (Dingman, 2015). The models proceed from S1, the 294 
simplest, to S4, the most complex (Figure 3). Model S1 tracks moisture in a single soil volume 295 
and employs just the saturation excess runoff mechanism and accounts for evaporation and 296 
transpiration separately. Model S2 adds subsurface flow as an additional runoff mechanism, 297 
which is controlled by soil moisture in excess of a field capacity threshold. Model S3 divides the 298 
soil profile into saturated and unsaturated zones and adapts the evaporation and transpiration to 299 
separately determine fluxes from both saturated and unsaturated soil components. Lastly, model 300 
S4 adds a groundwater storage recharged via percolation and runoff generated in the form of 301 
baseflow (Bai et al., 2009). Infiltration excess, triggered by rainfall intensities greater than the 302 
infiltration capacity, is episodic. Comparing precipitation frequency estimates (NOAA, 2017) 303 
with average surface saturated hydrologic conductivity across the watershed (USDA, 2019), the 304 
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occurrence of infiltration excess with a duration of 10 minutes (26 mm/hr) would be a one-year 305 
return period event. Given the daily rainfall-runoff data, the rarity of infiltration excess in the 306 
catchment, and the challenge of diagnosing in daily data, we will only test the addition of this 307 
mechanism if model performance warrants further revisions. Snow processes are also not 308 
included in the model because of the limited snow fall as explained in Section 2.1. The full set of 309 
equations for models S1 through S4 can be found in Bai et al. (2009) and all variables and 310 
parameters are defined in the Appendix (Table A1). All models are implemented with a daily 311 
timestep and consider the East Fork watershed as a single control volume. 312 

 313 

Figure 3: Schematic diagram of hydrological bucket models of increasing complexity (S1 314 
simplest to S4 most complex) adapted from Farmer et al. (2003) 315 

Most model parameters are specified directly from the data. For example, soil depth (D) and 316 
texture were extracted from 30m resolution Web Soil Survey data (USDA, 2019) and texture is 317 
used along with the relationship between texture and soil properties from Clapp and Hornberger 318 
(1978) to specify the porosity (φ), field capacity (θfc) and wilting point (θwp). Reconstructed pre-319 
settlement land cover data (Kelly et al., 2005; Kelly et al., 2008) with a minimum mapping unit 320 
of 0.16 km2 is used to specify the fraction of vegetation coverage (M). Spatial averages of soil 321 
and land cover parameters were used for the lumped model. For model S1 we have one 322 
calibration parameter, the interception coefficient (αi). We add the recession coefficients for 323 
subsurface flow from saturated zone (αss) for S2. S3 has the same two calibration parameters as 324 
S2. In model S4 we add a groundwater storage volume. We further add the recession coefficient 325 
for baseflow from deep storage (αbf) and the deep recharge coefficient (kd) for S4. The four 326 
models are fitted to the naturalized flow data in sequence. Model fit is compared using three 327 
hydrological signature plots, inter-annual streamflow variability, the monthly regime curve, and 328 
the flow duration curve, and two metrics, percent bias (Eqn. 1) and Nash Sutcliff Efficiency 329 
(NSE, Eqn. 2), computed for both real and log space streamflow (Moriasi et al., 2007). Log 330 
space metrics are used to reduce the influence of high flows on the metrics and assess model 331 
performance on average and low flows. The four metrics are used collectively to avoid a focus 332 
on matching one aspect of the hydrograph at the expense of other features (Boyle et al., 2000). 333 
Where metrics disagree, we select the model that balances performance across the metrics. 334 
Manual alternate year calibration is used to ensure that calibration and validation data sets both 335 
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contain periods with minimal and present-day levels of human activity in the watershed (Garcia 336 
& Islam, 2019; Gowda et al., 2012).  337 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 1
100

�1
𝑁𝑁
∑ 𝑄𝑄𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑁𝑁
𝑖𝑖=1 − 1

𝑁𝑁
∑ 𝑄𝑄𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑁𝑁
𝑖𝑖=1 � = 1

100
�𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜�     Eqn. 1 338 

𝑁𝑁𝑁𝑁𝑁𝑁 = 1 − �
∑ �𝑄𝑄𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜−𝑄𝑄𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠�

2𝑁𝑁
𝑖𝑖=1

∑ �𝑄𝑄𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜−𝑄𝑄𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�
2𝑁𝑁

𝑖𝑖=1
�        Eqn. 2 339 

In Eqn. 1 and Eqn. 2 above, Qobs is the observed streamflow, Qsim is the modeled streamflow and 340 
N is the number of total observations. 341 

2.3 Modeling Human-Impacted Hydrology  342 

We begin our development of the human-impacted hydrological model using the best fit 343 
natural hydrological model as the foundation. However, we update the vegetation fraction (M) 344 
based on the 2016 National Land Cover Database (USGS, 2016). Then, once again, following 345 
the top-down modeling philosophy articulated by Jothityangkoon et al. (2001), we begin by 346 
adding fluxes and processes that are hypothesized to affect the annual water balance. Then we 347 
sequentially proceed to processes hypothesized to streamflow patterns at the monthly and finally 348 
daily time scales. This approach is also guided by our research question and interest in 349 
identifying the requisite complexity for each timescale of interest. We begin with the natural 350 
hydrology model (S4) as a zero-order model of the human-impacted hydrology which we term 351 
H0. (Subsequent models are named from H1 to HN in order of increasing complexity.) While not 352 
expected to perform well in a watershed with intensive human impacts, it serves as baseline for 353 
performance comparison.  354 

We start the model development for human-impacted hydrology with processes hypothesized 355 
to influence annual streamflow pattern (our longest time scale) and proceed to add processes 356 
hypothesized to influence monthly and then daily streamflow patterns. From the case 357 
background and time series data (Figure 2) presented in Section 2.1, we know that there is a 358 
water transfer from the Eel River via the Potter Valley Project and a long history of water 359 
withdrawals, primarily for agricultural use. Both the transfer into the Russian River and direct 360 
withdrawals from the Russian River are likely to impact the annual water balance. However, as 361 
we have no record of withdrawals, we use water rights, a legal maximum of withdrawals, as an 362 
approximation. Therefore, our first version of the human-impacted hydrology, model H1, adds 363 
these two fluxes (Eqn. 3): 364 

𝑄𝑄 = 𝑄𝑄𝑠𝑠𝑠𝑠 + 𝑄𝑄𝑠𝑠𝑠𝑠 + 𝑄𝑄𝑏𝑏𝑏𝑏 + 𝑇𝑇 −𝑊𝑊        Eqn. 3 365 

where T is the water transfer into the East Fork and W is water rights extraction. As these are 366 
fluxes to and from the river, there is no change to the soil moisture accounting or actual 367 
evapotranspiration, and all other equations remain the same.  368 

After accounting for fluxes directly in and out of the river, we move to incorporate human 369 
activities affecting soil moisture dynamics, which are hypothesized to influence streamflow 370 
patterns on a monthly timescale for model H2. We first compute the irrigation demand (I) as a 371 
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function of potential evapotranspiration (Ep), precipitation (P), the percent of the watershed that 372 
is irrigated agriculture (Ai) and the irrigation efficiency (λi) in Eqn. 4. λi was estimated as 0.6 up 373 
until 1990 and 0.8 from 1990 on based on local irrigation practices and irrigation technology 374 
efficiency (Evans, n.d.; Lewis et al., 2008). The water for irrigation is limited to W. 375 

𝐼𝐼 = min �(𝐸𝐸𝑝𝑝−𝑃𝑃)𝐴𝐴𝑖𝑖
𝜆𝜆𝑖𝑖

,𝑊𝑊�        Eqn. 4 376 

Then we modify the equations to update the unsaturated zone soil moisture (Eqn. 5) and the total 377 
soil moisture (Eqn. 6) to incorporate the addition of irrigation water with changes bolded:  378 

𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢
𝑑𝑑𝑑𝑑� = 𝑃𝑃 − 𝐸𝐸𝑖𝑖 + 𝑰𝑰         Eqn. 5 379 

 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑� = 𝑃𝑃 − 𝐸𝐸 + 𝑰𝑰         Eqn. 6 380 

where Sus the unsaturated zone soil moisture, Ei is the interception evaporation, and S is the total 381 
soil moisture. We also modify Eqn. 3 to set the actual withdrawal from the river to the minimum 382 
of W and I.  383 

Lastly, we account for changes in groundwater and baseflow which may affect daily streamflow, 384 
particularly during low flow periods. Here we assume that irrigation demand, unmet by surface 385 
water rights, is pumped from groundwater (Qp) if there is sufficient groundwater in the deep 386 
groundwater store (Sdeep) and sufficient well capacity (Qp,Cap):   387 

𝑄𝑄𝑝𝑝 = �𝑚𝑚𝑚𝑚𝑚𝑚�𝑚𝑚𝑚𝑚𝑚𝑚�𝐼𝐼 −𝑊𝑊, 𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�,𝑄𝑄𝑝𝑝,𝐶𝐶𝐶𝐶𝐶𝐶�      𝐼𝐼 > 𝑊𝑊
0                                       𝐼𝐼 ≤ 𝑊𝑊

     Eqn. 7 388 

Irrigation water applied is updated to the limit of water available if insufficient water is available 389 
to meet irrigation demand.  390 

𝐼𝐼 = �
𝐼𝐼                    𝑊𝑊 + 𝑄𝑄𝑝𝑝 ≥ 𝐼𝐼
𝑊𝑊 + 𝑄𝑄𝑝𝑝,       𝑊𝑊 + 𝑄𝑄𝑝𝑝 <  𝐼𝐼       Eqn. 8 391 

Lastly, the deep groundwater store is updated to account for recharge (rg), baseflow (Qbf), and 392 
pumping.  393 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑� = 𝑟𝑟𝑔𝑔 − 𝑄𝑄𝑏𝑏𝑏𝑏 − 𝑄𝑄𝑝𝑝        Eqn. 9 394 
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 395 

Figure 4: Schematic diagram of hydrological bucket models of increasing complexity with 396 
human directed or modified processes highlighted in red, adapted from Farmer et al. (2003) 397 

The sequence of model development steps is presented in Figure 4, building on model S4 398 
developed during the first phase of model development. We employ the same hydrologic 399 
signatures and metrics (percent bias and NSE) to evaluate the performance of the human-400 
impacted hydrological model(s) and add no additional calibration parameters. Equations of 401 
model S4H3 can be found in the Appendix along with variable and parameter definitions. All 402 
other model equations can be found in the Supplemental Material (S1-S4).   403 

2.4 Investigating Structural Change 404 

A challenge of hydrological modeling in human impacted watersheds is that over time, 405 
human actions may add new processes or amplify or diminish the influence of existing processes 406 
such that model structure needs to undergo changes. The iterative diagnostic method introduced 407 
above can be applied to portions of a time series to test for model structure change. Here we 408 
identify a sharp increase in water rights in 1980 (Figure 2E). This increase is presumably in 409 
response to a general increase in irrigated agriculture and follows shortly after the record lows in 410 
annual observed flow and water imports in 1977 (Figure 2A&D). We hypothesize that this could 411 
represent a significant change in the hydrologic system, which needs to be accommodated with a 412 
change in appropriate model structure between the pre and post 1980 periods. Specifically, we 413 
hypothesize that this change could alter the relative importance of groundwater pumping (if 414 
surface water use replaced groundwater use) or change the percent of time that all irrigation 415 
demands are met, both of which have the potential to impact the model structure. To assess this, 416 
we apply the diagnostic process described in Section 2.3 separately for each period and compare 417 
the selected conceptual models.  418 

2.5 Counterfactual Experiment 419 

Counterfactuals are hypothetical scenarios of what would have occurred under conditions 420 
that differ from the historical reality (D. Lewis, 1973; Müller & Levy, 2019). Counterfactual 421 
experiments with the model can illustrate how the system would have responded if different 422 
decisions were made but exogenous factors remain as observed in the historical record. This 423 
strategy was effectively used by Srinivasan (2015) to generate key insights into human responses 424 
to droughts in the city of Chennai, India and by Penny et al. (2020) to assess the effects of the 425 
Ganges water treaty on salinity levels in the Ganges Delta. Here we examine the case of 426 
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agricultural and irrigation intensification by scaling the historical record of expansion of irrigated 427 
land such that it covers 80% of the catchment by 2013 (the last year in the study period). This 428 
choice preserves but magnifies the existing trend and allows us to explore the hydrological 429 
impacts of an alternate development trajectory and the impact of model structure on streamflow 430 
simulation in that alternate past. Thus, the counterfactual experiment enables us to test the 431 
diagnostic approach under alternate conditions within a single case.  432 

3.0 Results 433 

The results are described in four parts below: modeling natural hydrology, modeling human-434 
impacted hydrology, investigating structural change and applying the diagnostic approach to a 435 
counterfactual scenario. 436 

3.1 Natural Hydrological Model Results 437 

Figure 5 shows the hydrological signatures for naturalized streamflow and the four versions 438 
of simulated streamflow. Figure 5A illustrates the annual pattern in streamflow and shows that 439 
all four versions of the model capture most of the year-to-year variation in streamflow. Moving 440 
to monthly and seasonal patterns, we examine the regime curve in Figure 5B, which shows that 441 
model S1 tends to underestimate flows during the winter (high flow) months (December to 442 
February), while models S2 and S3 show a slight tendency to over-estimate flows during these 443 
same months. Model S4 shows the least bias during the winter months. In the spring (March 444 
through May) models S1 to S3 underestimate flows while model S4 is unbiased for March and 445 
April and biased high in May. The differences in the models are most stark at the daily timescale, 446 
as shown in the flow duration curve (Figure 5C). All models can replicate high flow days (flow 447 
exceeded on 10% of days or less) but only model S4 captures the distribution of medium to low 448 
flows. The advantages of model S4 are also clear in the model performance metrics for both the 449 
calibration and validation periods shown in Table 2. Note that the associated best fit parameters 450 
are shown in Table 3. Specifically, only model S4 shows good performance during low flows, as 451 
evidenced by the log space NSE and log space percent bias. This finding shows that surface 452 
groundwater connectivity and baseflow contributions are key to replicating the distribution of 453 
streamflow at the daily timescale. Note in passing that in previous applications of the top-down 454 
approach (e.g., Farmer et al., 2003, Atkinson et al., 2003), there was an opportunity to add 455 
further complexity to the model structure to more accurately reproduce daily streamflow in 456 
(especially) arid regions. However, we did not choose to do this here because of the good fits we 457 
already obtained with model S4. Previous work by Massman (2020) across the United States has 458 
shown that required model complexity is minimal for watersheds experiencing the 459 
Mediterranean climate, as in California.   460 
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 461 

 462 

Figure 5: Hydrological signatures for naturalized streamflow and models S1-S4: A) Mean 463 
Annual Streamflow, B) Mean Monthly Streamflow, C) Flow Duration Curve 464 

 465 

Table 2: Metrics of Model Fit for Naturalized Streamflow & Models S1-S4 466 

Calibration 
Metric S1 S2 S3 S4 

NSE 0.68 0.77 0.77 0.73 
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Log NSE -4.29 -1.34 -0.52 0.56 
% Bias -8.91 -1.57 -1.07 -0.42 

Log % Bias 79.3 76.1 72.1 -3.71 
Validation 

Metric S1 S2 S3 S4 
NSE 0.70 0.77 0.76 0.72 

Log NSE -4.64 -1.45 -0.63 0.51 
% Bias -6.24 1.64 2.18 3.33 

Log % Bias 79.2 76.1 72.2 3.95 
 467 

 468 

3.2 Human Modified Hydrological Model Results 469 

Based on the results of modeling natural hydrology (Section 3.1), we use model S4 as a 470 
hydrological basis for adding human impacts on hydrological processes. Figure 6 illustrates the 471 
hydrological signatures for observed streamflow and the four versions of simulated streamflow. 472 
Model S4H0 (equivalent to model S4) is biased low and cannot account for interannual 473 
variability as seen in Figure 6A. The addition of water transfer and water withdrawal fluxes in 474 
S4H1 improves the model as seen in the annual timeseries (Figure 6A) and addressed the 475 
negative bias in the previous model (Table 4). However, model S4H1 cannot replicate the 476 
summer and fall (June through October) observed low flow patterns (Figure 6B). Note that 477 
streamflow simulated with S4S1 remains higher than streamflow simulated with S4H0 even as 478 
rights and irrigation increase and the transfer declines. This is because not all rights can be met 479 
due to the temporal mismatch of crop water demand and available water. The addition of 480 
irrigation driven by crop water demand in S4H2 improves the model fit at the monthly and daily 481 
timescales (Figure 6B&C). The calibration log space NSE and percent bias improve to 0.82 (0.77 482 
for validation) and 8.00 (6.94 for validation) respectively, clearly demonstrating that model 483 
S4H2 has an improved representation of low flow processes. Lastly, model S4H3 adds 484 
groundwater pumping when surface water rights cannot meet irrigation demand. There are 485 
negligible differences between models S4H2 and S4H3 in terms of hydrological signatures 486 
(Figure 6) and metrics (Table 4). This indicates that representing groundwater pumping is not 487 
critical to matching streamflow patterns across timescales in the East Fork watershed. Note that 488 
each model version was calibrated manually and that the best fit parameters for each model 489 
versions can be found in Table 3. 490 

 491 
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 492 

Figure 6: Hydrological signatures for observed streamflow and models S4H0-S4H3: A) Mean 493 
Annual Streamflow, B) Mean Monthly Streamflow, C) Flow Duration Curve 494 

  495 
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Table 3: Best Fit Parameters 496 

Model Version αei αss αbf kd 
N

at
ur

al
iz

ed
 

S1 0.23 NA NA NA 
S2 0.33 0.45 NA NA 
S3 0.34 0.45 NA NA 
S4 0.34 0.45 0.025 0.15 

H
um

an
-

Im
pa

ct
ed

 S4H0 0.10 0.45 0.025 0.15 
S4H1 0.18 0.45 0.05 0.15 
S4H2 0.38 0.5 0.01 0.05 
S4H3 0.38 0.5 0.01 0.05 

 497 

Table 4: Metrics of model fit for Observed Streamflow & Models S4H0-S4H3 498 

Calibration 
Metric S4H0 S4H1 S4H2 S4H3 
NSE 0.69 0.77 0.73 0.73 

Log NSE -0.49 -0.12 0.82 0.82 
% Bias -55.6 2.18 0.64 0.51 

Log % Bias 160.2 135.7 8.00 7.65 
Validation 

Metric S4H0 S4H1 S4H2 S4H3 
NSE 0.68 0.77 0.77 0.77 

Log NSE -0.43 -0.13 0.77 0.74 
% Bias -57.9 0.85 1.38 1.23 

Log % Bias 150 128.4 6.94 5.75 
 499 

As a model product, naturalized streamflow has embedded assumptions that could impact our 500 
understanding of hydrological processes presented in Section 4.1, and subsequently bias the 501 
selected model of human impacted hydrology in the East Fork watershed. To reduce the risk of 502 
such bias, we compared all feasible combinations of hydrological modules (S1-S4) and human 503 
impacts modules (H0-H3; Figure 7). Note that groundwater pumping can only be represented if 504 
groundwater storage is included in the hydrological model, therefore, only hydrological module 505 
S4 is compatible with H3. This comparison shows that while any of the selected hydrological 506 
models performs well with average to high flows as evidenced by NSE and percent bias 507 
computed in real space (Figure 7A-B), only hydrological model S4 with human impact modules 508 
H2 or H3 can adequately represent low flows as evidenced by NSE and percent bias computed in 509 
log space (Figure 7C-D). The comparison confirms that model S4H2 remains the model choice 510 
that maximizes performance across all three timescales while minimizing model complexity.  511 

 512 
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 513 

 514 

Figure 7: Comparison of all feasible combinations of hydrological models and human impacts 515 
models for: A) NSE, B) Percent Bias, C) Log space NSE, D) Log space Percent Bias. 516 

 517 

3.3 Investigating Structural Change Results 518 

While model S4H2 is a good fit for the full period, changes in water rights and irrigated area 519 
warrant investigation of structural changes over time. We apply the models for human-impacted 520 
hydrology developed above and, in this comparison, we applied the best fit parameters found in 521 
Section 4.2 and did not perform further calibration. Table 4 compares the model metrics for the 522 
period from 1942 through the end of 1979 (pre-1980) and the period from 1980 through 2013 523 
(post-1980). Figures S5 and S6 in the Supplemental Material show the hydrological signatures 524 
for both periods. Consistent with the analysis of the full study period, models S4H0 and S4H1 do 525 
not replicate the patterns in the observed data for either pre-1980 or post-1980 periods as 526 
evidenced by low log space NSE and high log space NSE percent bias. Further, we find that in 527 
both pre- and post-1980 periods model S4H2 has improved model performance on all metrics 528 
and that introducing groundwater pumping in model S4H3 does not improve model performance. 529 
These results support the null hypothesis of no structural change in the catchment, indicating that 530 
we can proceed to apply a single model for the full period.  531 
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Table 5: Comparison of best fit models between pre- and post-1980 periods 532 

Period Metric S4H0 S4H1 S4H2 S4H3 
Pr

e-
19

80
 

NSE 0.68 0.79 0.76 0.76 
Log 
NSE 

-0.61 0.14 0.77 0.77 

% Bias -71.8 3.83 0.18 0.17 
Log % 
Bias 

161.2 337.1 2.97 2.96 

Po
st

-1
98

0 

NSE 0.67 0.73 0.69 0.69 
Log 
NSE 

-0.29 -0.45 0.82 0.82 

% Bias -40.4 -2.98 1.95 1.95 
Log % 
Bias 

146.9 114.0 13.47 13.47 

 533 

3.4 Counterfactual Experiment 534 

The counterfactual experiment tested the diagnostic approach’s ability to detect the 535 
appropriate model structure under alternate conditions, specifically the case of agricultural and 536 
irrigation intensification. As no additional surface water is available, increased irrigation results 537 
in higher groundwater pumping. Figure 9, illustrates the differences in simulated streamflow 538 
between model structures S4H2 (irrigation but no pumping) and S4H3 (adds pumping). 539 
Compared to the historical case, there are visible differences in the simulated streamflow across 540 
annual, monthly and flow duration curve plots. Figure 9A shows that the differences between 541 
simulated streamflow from S4H2 and S4H3 grows over time which is consistent with the 542 
increase in groundwater pumping over the counterfactual period, which we attribute to reduced 543 
baseflow caused by groundwater drawdown. Figure 9C supports this interpretation as the flow 544 
duration curve shows that high and average simulated streamflow is similar across the two 545 
models while low flows are notably lower for S4H3 when groundwater pumping is incorporated. 546 
An additional computational experiment attributing streamflow change can be found in the 547 
Supplemental Material (S7). 548 
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 549 

Figure 8: Hydrological signatures for observed streamflow and models S4H2 and S4H3 for the 550 
counterfactual scenario: A) Mean Annual Streamflow, B) Mean Monthly Streamflow, C) Flow 551 
Duration Curve 552 

4.0 Discussion 553 

4.1 Timescales and model complexity 554 

The diagnostic approach to modeling human-impacted hydrology in the Upper Russian River 555 
has both generated case specific insights and demonstrated the potential to build generalizable 556 
knowledge of human-impacted watersheds. In the case of the East Fork of the Upper Russian 557 
River, applying the diagnostic approach to modeling natural hydrology showed that a single 558 
bucket soil moisture module with surface runoff paired with an actual evapotranspiration module 559 
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was able to capture year to year variability but not monthly or daily patterns. The addition of 560 
sub-surface runoff improved the model’s ability to represent monthly patterns but only with the 561 
addition of deep groundwater storage and baseflow can the model replicate the daily streamflow 562 
distribution. This is consistent with findings in other watersheds with similar climatic aridity 563 
(Atkinson et al., 2002). Applying this diagnostic approach to the observed human-impacted 564 
streamflow demonstrated that accounting for water imports and water rights is sufficient to 565 
replicate annual streamflow patterns. However, at monthly and daily timescales, modeling 566 
irrigation based on crop water demand and irrigation efficiency is critical to replicating observed 567 
streamflow patterns. Adding groundwater pumping provides marginal improvements to the 568 
model, indicating that pumping has not impacted baseflow significantly during the study period. 569 
This is likely due to the fact that pumping has had a minimal effect on aquifer levels in this case 570 
(California Department of Water Resources, 2021), as surface-groundwater connectivity is high 571 
in the Upper Russian River (Marquez et al., 2017). The counterfactual experiment reinforces this 572 
interpretation as it illustrates that higher levels of groundwater pumping in the same catchment 573 
would result in baseflow impacts.  574 

Collectively these findings tell us that in the East Fork watershed: 1) the annual water 575 
balance is dominated by precipitation, potential evapotranspiration, water imports and water 576 
withdrawals; 2) the monthly water balance is influenced by sub-surface runoff, crop water 577 
demand and irrigation efficiency; and 3) the daily water balance can only be explained by 578 
accounting for baseflow contributions. This is significant because different management 579 
applications emphasize different timescales. For example, water supply management typically 580 
requires an understanding of and an ability to predict monthly streamflow (U.S. Bureau of 581 
Reclamation, 2012; Wurbs, 2005). In contrast, riverine flood control operations require process 582 
understanding and predictions at the daily timescale (or shorter). Paired with this diagnostic 583 
approach, the water management application and its timescale can inform the information 584 
required to represent human impacted hydrology. Identifying the required complexity helps to 585 
decrease the data challenges of modeling human-impacts on watershed hydrology. 586 

More broadly, the diagnostic approach presented above provides the foundation for further 587 
research to identify patterns in both human and hydrological characteristics that influence the 588 
required model complexity and best fit model structure. In comparing nine pristine catchments 589 
Atkinson et al. (2002) found that the aridity index of the catchment along with the timescale of 590 
interest determined the hydrological model complexity needed to replicate streamflow patterns. 591 
More recent work by Bai (2009) and Massmann (2020) confirmed these findings. Analogously, 592 
future comparative modeling studies focused on human-impacted catchments may shed light on 593 
the characteristics that influence the dominant human-impacted hydrological processes and 594 
therefore the required model structure. While further comparative work is needed to develop and 595 
test robust hypotheses, from this single case we identify relationships between catchment 596 
characteristics and direct-human impacts that may influence the model structure and complexity 597 
needed. First, we hypothesize that the strength of the surface-groundwater connection in 598 
combination with the intensity of pumping impacts model complexity. Second, we hypothesize 599 
that a larger phase shift between PET and P increases the importance of irrigation in explaining 600 
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streamflow seasonality. Future comparative work can refine and test these hypotheses as well as 601 
inform other hypotheses.  602 

Note that while naturalized streamflow is not frequently available, the top-down approach 603 
can be applied directly to observed streamflow as demonstrated in Figure 7. However, a key 604 
obstacle to applying this approach to many catchments is that many of the required data sets are 605 
not available in a consistent form across the U.S. (or other countries) or are only available 606 
aggregated by county, which does not correspond with watershed boundaries (Maupin et al., 607 
2018). Initiatives to assemble spatially explicit databases such as the current effort to assemble a 608 
national database of water transfers within the U.S. (Dickson et al., 2020), would greatly 609 
facilitate such comparative analyses.  610 

4.2 Diagnosing changes over time 611 

Watersheds, as with any natural system, change over time. However, human activity has 612 
accelerated the pace and expanded the scope of change, creating an additional challenge for 613 
hydrological modeling (Wagener et al., 2010). To address this challenge, in this paper we applied 614 
this diagnostic modeling approach to check for changes in the required model complexity over 615 
time. Based on a significant expansion in water rights in 1980, we separated the time series data 616 
into two periods, before and after this expansion. The diagnostic modeling approach identified 617 
the same best fit model, S4H2, for both time periods, consistent with the analysis of the full 618 
study period. This indicates that there were only quantitative and not qualitative process changes 619 
between these two periods. In contrast, the counter-factual experiment demonstrates a situation 620 
in which a model change would be needed. The experiment showed that if irrigated agriculture 621 
intensified in this watershed the magnitude of groundwater pumping could reach a level where 622 
accounting for the pumping in a hydrological model would be needed to accurately simulate 623 
streamflow. Beyond the case of the Upper Russian River, the approach can be applied to assess 624 
the need to adapt the model structure over time to account for human induced hydrological 625 
change.  626 

4.3 Limitations and Next Steps 627 

     The diagnostic approach and model developed in this study is intended to aid in diagnosis of 628 
the natural and human influenced hydrological processes that explain streamflow variability 629 
from the annual to the daily scale. Following this objective, the simplicity of the model and its 630 
iterative development is both intentional and supported by prior research (Bai et al., 2009; 631 
Farmer et al., 2003c; Chatchai Jothityangkoon & Sivapalan, 2009; Massmann, 2020). In focusing 632 
on the objective of diagnosis, the model has not been designed for prediction or decision support. 633 
However, the knowledge gained through the diagnostic analysis presented here could inform the 634 
development of improved prediction and decision support models for the East Fork watershed by 635 
targeting data collection and model refinement efforts to the most impactful variables and 636 
processes.  637 

    The diagnostic capabilities of this model could also be improved through further data 638 
collection and model refinement. The model developed in this paper is lumped and a next step is 639 
to develop a semi-distributed version of the model that breaks the East Fork watershed into sub-640 
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catchments to better represent spatial heterogeneity in catchment properties, including land 641 
cover. Additional research could also target refinement of the representation of surface-642 
groundwater connectivity in specific areas of the watershed and collecting additional data to 643 
assess the relationship.  644 

5.0 Conclusions 645 

Human activity impacts hydrological responses in most watersheds globally. Hydrologists 646 
are increasingly called upon to isolate hydrologic impacts of past human actions and make 647 
predictions of future impacts under projected scenarios of human-induced changes. These human 648 
interferences and their hydrologic impacts are highly site specific, and continually evolve over 649 
time. Because of this, these impacts cannot be accounted for in most hydrological models in a 650 
generic manner. Indeed, incorporating all plausible human impacts in one model comes at a high 651 
data acquisition and modeling cost, raising the questions such as: in what way do the various 652 
human interferences impact hydrologic variability?, and, in which way should we incorporate 653 
these human impacts in hydrologic models, and at what level of detail? Given the diverse nature 654 
of human interferences, there is considerable merit to exploring this question using a data-based, 655 
top-down modeling approach. This paper represents an important first step in this direction.  656 

This paper is aimed at developing a parsimonious hydrologic model capable of representing 657 
observed streamflow variability at multiple timescales in a highly human-impacted catchment in 658 
California. To achieve this, we developed a diagnostic approach to modeling watersheds with 659 
human interference. This approach builds on the top-down hydrological modeling approach in 660 
which process complexity is incrementally added to identify which hydrological processes are 661 
important to replicate observed streamflow patterns in a particular location and at a specific 662 
timescale. Here we incrementally added processes through which humans modify hydrology in 663 
the sub-watershed of the East Fork of the Upper Russian River in California, USA, a watershed 664 
influenced by over a century of human activity. Applying this method, we found, for example, 665 
that incorporation of just water imports and water rights can replicate annual patterns sufficiently 666 
well. However, adding crop water demand and irrigation is required to replicate monthly and 667 
daily patterns. The incorporation of groundwater pumping does not change model performance 668 
and is not needed in this case. However, in a counterfactual experiment we find that if irrigation 669 
and groundwater pumping intensified the model would require pumping to replicate patterns.  670 
Further, we apply the model to test for structural changes in the best fit model over time and to 671 
test hypotheses of the drivers of a recent decline in streamflow. We find that no changes in 672 
model structure are warranted for the 1942 to 2013 study period and that decreased water 673 
imports best explains the decline in observed streamflow.  674 

These insights into the human-impacted hydrological responses of the Upper Russian River 675 
serve to demonstrate the potential to build process understanding of human-impacted watersheds 676 
generally, and to identify both hydrological and human systems characteristics that can indicate 677 
the level of complexity and structure of model required. What this case demonstrates is that the 678 
diagnostic approach can be used to identify the minimum level of model complexity needed for 679 
the time scale of interest. This avoids unnecessary model complexity and parameterization, 680 
focusing data collection and parameterization efforts on highly influential human activities. Over 681 
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time, this approach to modeling can be replicated in many human-impacted catchments in the 682 
region, and eventually in other more diverse regions globally. The insights so gained can then be 683 
used to develop generalized understanding of human impacts on hydrology, and more generic 684 
models for the prediction of the effects of human impacts on hydrologic variability.  685 

Appendix 686 

Model S4H3, changes from S4 in bold 687 

𝑆𝑆𝑏𝑏 = 𝐷𝐷𝐷𝐷 688 

𝑓𝑓𝑐𝑐 =
�𝜃𝜃𝑓𝑓𝑓𝑓 − 𝜃𝜃𝑤𝑤𝑤𝑤𝑤𝑤�
(𝜙𝜙 − 𝜃𝜃𝑤𝑤𝑤𝑤𝑤𝑤)

 689 

𝑆𝑆𝑓𝑓𝑓𝑓 = 𝑓𝑓𝑐𝑐𝑆𝑆𝑏𝑏 690 

𝐸𝐸𝑖𝑖 = 𝛼𝛼𝑒𝑒𝑒𝑒𝑃𝑃 691 

𝑆𝑆𝑢𝑢𝑢𝑢,𝑡𝑡 = 𝑆𝑆𝑡𝑡−1 − 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠,𝑡𝑡−1 692 

𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑓𝑓𝑐𝑐�𝑆𝑆𝑏𝑏 − 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠,𝑡𝑡−1� 693 

𝑰𝑰 = (𝑬𝑬𝒑𝒑−𝑷𝑷)𝑨𝑨𝒊𝒊
𝝀𝝀𝒊𝒊

  694 

𝑸𝑸𝒑𝒑 = �𝒎𝒎𝒎𝒎𝒎𝒎�𝒎𝒎𝒎𝒎𝒎𝒎�𝑰𝑰 − 𝑾𝑾, 𝑺𝑺𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅�,𝑸𝑸𝒑𝒑,𝑪𝑪𝑪𝑪𝑪𝑪�       𝑰𝑰 > 𝑾𝑾
𝟎𝟎                                       𝑰𝑰 ≤ 𝑾𝑾

  695 

𝑰𝑰 = �
𝑰𝑰                    𝑾𝑾 + 𝑸𝑸𝒑𝒑 ≥ 𝑰𝑰
𝑾𝑾 + 𝑸𝑸𝒑𝒑,       𝑾𝑾 + 𝑸𝑸𝒑𝒑 <  𝑰𝑰 recompute constraining for water availability 696 

 697 

𝑆𝑆′𝑢𝑢𝑢𝑢 = 𝑆𝑆𝑢𝑢𝑢𝑢,𝑡𝑡 + 𝑃𝑃 − 𝐸𝐸𝑖𝑖 + 𝑰𝑰  update based on P and Ei 698 

𝑟𝑟𝑝𝑝 = �
𝑆𝑆′𝑢𝑢𝑢𝑢 − 𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ,     𝑆𝑆′𝑢𝑢𝑢𝑢 ≥ 𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
0,                          𝑆𝑆′𝑢𝑢𝑢𝑢 < 𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

 699 

𝑆𝑆𝑡𝑡 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑆𝑆𝑏𝑏 ,𝑆𝑆′𝑢𝑢𝑢𝑢 + 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠,𝑡𝑡−1� 700 

𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠,𝑡𝑡 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑆𝑆𝑏𝑏 ,𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠,𝑡𝑡−1 + 𝑟𝑟𝑝𝑝� 701 

𝑆𝑆𝑢𝑢𝑢𝑢,𝑡𝑡 = 𝑆𝑆𝑡𝑡 − 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠,𝑡𝑡  update based on recharge to the saturated zone 702 

𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑓𝑓𝑐𝑐�𝑆𝑆𝑏𝑏 − 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠,𝑡𝑡�   update based on current Ssat 703 

𝐸𝐸𝑣𝑣,𝑢𝑢𝑢𝑢 =

⎩
⎪
⎨

⎪
⎧
𝑆𝑆𝑢𝑢𝑢𝑢,𝑡𝑡

𝑆𝑆𝑡𝑡
𝑀𝑀𝐸𝐸𝑝𝑝,                 𝑆𝑆𝑢𝑢𝑢𝑢,𝑡𝑡 > 𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

0,                                𝑆𝑆𝑢𝑢𝑢𝑢,𝑡𝑡 = 0
𝑆𝑆𝑢𝑢𝑢𝑢,𝑡𝑡

𝑆𝑆𝑡𝑡
𝑀𝑀
𝑆𝑆𝑢𝑢𝑢𝑢,𝑡𝑡

𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
𝐸𝐸𝑝𝑝,       𝑆𝑆𝑢𝑢𝑢𝑢,𝑡𝑡 < 𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

 704 
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𝐸𝐸𝑏𝑏𝑏𝑏,𝑢𝑢𝑢𝑢 =
𝑆𝑆𝑢𝑢𝑢𝑢,𝑡𝑡

𝑆𝑆𝑡𝑡
(1 −𝑀𝑀)

𝑆𝑆𝑢𝑢𝑢𝑢,𝑡𝑡

𝑆𝑆𝑏𝑏 − 𝑆𝑆𝑡𝑡
𝐸𝐸𝑝𝑝 705 

𝐸𝐸𝑏𝑏𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠,𝑡𝑡

𝑆𝑆𝑡𝑡
𝑀𝑀𝐸𝐸𝑝𝑝 706 

𝐸𝐸𝑣𝑣,𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠,𝑡𝑡

𝑆𝑆𝑡𝑡
(1 −𝑀𝑀)𝐸𝐸𝑝𝑝 707 

𝐸𝐸𝑏𝑏𝑏𝑏 = 𝐸𝐸𝑏𝑏𝑏𝑏,𝑢𝑢𝑢𝑢 + 𝐸𝐸𝑏𝑏𝑏𝑏,𝑠𝑠𝑠𝑠𝑠𝑠 708 

𝐸𝐸𝑣𝑣 = 𝐸𝐸𝑣𝑣,𝑢𝑢𝑢𝑢 + 𝐸𝐸𝑣𝑣,𝑠𝑠𝑠𝑠𝑠𝑠 709 

𝐸𝐸 = 𝐸𝐸𝑖𝑖 + 𝐸𝐸𝑣𝑣𝑣𝑣𝑣𝑣 + 𝐸𝐸𝑏𝑏𝑏𝑏 710 

𝑆𝑆𝑡𝑡 = 𝑆𝑆𝑡𝑡−1 + 𝑃𝑃 − 𝐸𝐸 + 𝑰𝑰 711 

𝑄𝑄𝑏𝑏𝑏𝑏 = 𝛼𝛼𝑏𝑏𝑏𝑏𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑡𝑡−1 712 

𝑟𝑟𝑔𝑔 = 𝑘𝑘𝑑𝑑𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 713 

𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑡𝑡 = 𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑡𝑡−1 + 𝑟𝑟𝑔𝑔 − 𝑄𝑄𝑏𝑏𝑏𝑏 − 𝑸𝑸𝒑𝒑 714 

𝑄𝑄𝑠𝑠𝑠𝑠 = � 𝑆𝑆𝑡𝑡 − 𝑆𝑆𝑏𝑏      𝑆𝑆𝑡𝑡 > 𝑆𝑆𝑏𝑏
0                  𝑆𝑆𝑡𝑡 > 𝑆𝑆𝑏𝑏  715 

𝑄𝑄𝑠𝑠𝑠𝑠 = 𝛼𝛼𝑠𝑠𝑠𝑠𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠,𝑡𝑡 716 

𝑄𝑄 = 𝑄𝑄𝑠𝑠𝑠𝑠 + 𝑄𝑄𝑠𝑠𝑠𝑠 + 𝑄𝑄𝑏𝑏𝑏𝑏 + 𝑻𝑻 −𝑾𝑾 717 

𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑄𝑄𝑠𝑠𝑠𝑠 − 𝑟𝑟𝑔𝑔   update based on losses 718 

𝑆𝑆𝑡𝑡 = 𝑆𝑆𝑡𝑡 − 𝑄𝑄𝑠𝑠𝑠𝑠 − 𝑄𝑄𝑠𝑠𝑠𝑠 − 𝑟𝑟𝑔𝑔  update based on losses 719 

 720 

Table A1: Model variables and parameters. Note that new parameters and variables introduced 721 
to model human-impacts are shown in bold. 722 

Notation Definition Unit 
D soil depth mm 
θfc field capacity dimensionless 
θwlt permanent wilting point dimensionless 
φ porosity dimensionless 
fc threshold storage parameter  dimensionless 
Sb maximum storage of the bucket model mm 
Sfc threshold storage mm 

P precipitation mm d-1 

Ep potential evapotranspiration mm d-1 

E actual evapotranspiration mm d-1 
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Ei interception mm d-1 

Ev vegetation transpiration mm d-1 

Ebs bare soil evaporation mm d-1 

Ev,us transpiration from unsaturated zone mm d-1 

Ev,sat transpiration from saturated zone mm d-1 

Ebs,us evaporation from unsaturated zone mm d-1 

Ebs,sat evaporation from saturated zone mm d-1 
Ssat soil water storage in saturated zone mm 
Sus soil water storage in unsaturated zone mm 
Susfc field capacity of current unsaturated zone mm 
Sdeep soil water storage in deep store mm 
St total soil water storage at current time t mm 
St-1 soil water storage of saturated zone at last time step t-1 mm 

rp 
recharge to saturated zone from unsaturated zone in which 
water storage exceeds field capacity mm d-1 

rg recharge from upper saturated zone to deeper store mm d-1 

Q total runoff mm d-1 

Qse surface runoff generated by saturation excess mm d-1 

Qss subsurface flow originating from saturated zone mm d-1 

Qbf base flow originating from deep store mm d-1 

M 
fraction of catchment area covered by deep rooted 
vegetation  dimensionless 

Kv vegetation transpiration efficiency dimensionless 

αss 
recession coefficient for subsurface flow from saturated 
zone store in the linear storage-outflow model d-1 

αbf 
recession coefficient for subsurface flow from deep store 
in the linear storage-outflow model d-1 

kd 
deep recharge coefficient from the upper saturated zone to 
the deep store d-1 

T water transfer into the river mm d-1 

W maximum water withdrawal from the river mm d-1 

I irrigation applied to irrigated agricultural land mm d-1 
Ai percent of the catchment with irrigation dimensionless 
λi irrigation efficiency dimensionless 

Qp pumped water from the deep store mm d-1 
 723 
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