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Abstract

Most watersheds have human impacts that modify hydrological responses differently over a
range of timescales. However, these impacts are not accounted for in most hydrological models.
Human impacts in watersheds are diverse and case specific, unlike natural hydrologic processes.
Incorporating all plausible human impacts comes at a high data acquisition and modeling cost.
This raises the question, which human impacts do we need to incorporate to represent observed
streamflow patterns at different timescales? To answer this question, we develop a diagnostic
approach to modeling watersheds with human interference. This mixed methods approach is
informed by the case history and builds on the top-down hydrological modeling approach where
process complexity is incrementally added with changing timescales to identify and respond to
changing dominant hydrological processes in a given watershed. Here we implement this
modeling approach in the East Fork watershed in California, USA for which data on changes in
water imports, withdrawals, irrigation and agriculture land cover is available from the early
1940’s, making it an ideal demonstration case. In the East Fork watershed, we find that
incorporation of water imports and rights are sufficient to replicate annual patterns of runoff
variability, and that adding crop water demand and irrigation enables replication of monthly and
daily patterns, while incorporation of groundwater pumping results in negligible improvements.
To demonstrate the capabilities of the diagnostic approach in and beyond this case we conducted
two computational experiments: checking for needed model structural change and exploring a
counterfactual scenario of intensified agriculture.

1.0 Introduction

Human activity has shaped the hydrological cycle for generations. As far back as 1864, G.P.
Marsh observed that human actions can both spark and halt hydrological change. Marsh
observed that clearing forests for agriculture changes the patterns of soil drainage and affects
local humidity levels. Similarly, he found that clearing fallen trees and other debris from
waterways stops the formation of bogs and the lateral movement of streams (Marsh, 1965). Over
time our understanding of the extent of human impacts on the hydrological cycle has increased.
Land cover change alone impacts infiltration, groundwater recharge, surface water flow regimes,
water quality, biodiversity, and water and energy budgets (Sehot & Wal, 1992; Sivapalan, 1996;
Tong & Chen, 2002; Vahmani & Hogue, 2014; Vorosmarty et al., 2010; Wissmar et al., 2004).
Further, these impacts span the sub-meter, watershed, and global scales (Bhaduri et al., 2000;
Reyes et al., 2015; Vordsmarty et al., 2010). In recent decades, human impacts on Earth systems,
including hydrological systems, have accelerated (Steffen et al., 2015) and most watersheds now
have some degree of human impacts on hydrological responses (Bosmans et al., 2017;
Haddeland et al., 2014).

This increased human influence on hydrological responses intensifies the challenge of
building process understanding and predicting hydrological variables of interest as human
influence can amplify or dampen hydrological processes, introduce new processes, and
restructure the system (Wagener et al., 2010). There is growing recognition of the need to
account for human impacts in hydrological modeling. Researchers have integrated human
impacts into watershed hydrological models to a range of degrees. For example, Zhang et al.



54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

(2020) investigated the impact of a single human impact, the construction of check dams. In
contrast, Zhou et al. (2018) coupled the WEP-L distributed hydrological model (Jia et al., 2006)
with a social water cycle model to simulate human impacted hydrology in the Haihe River Basin,
an intensively developed watershed in China. Their social water cycle model included water
withdrawals and use, wastewater discharge, irrigation, leakage, and drainage. A wide range of
data sets were required to build and test this model including reservoir characteristics, reservoir
storage time series, agricultural land area and crop types, irrigation patterns and water use data
for agriculture, industry and domestic use, in addition to hydroclimatic data sets typically
required for hydrological modeling. Wendt et al. (2021) developed a stylized model which
reduced data demands. They modified the lumped HBV model (Van Lanen et al., 2013) structure
to incorporate regional water management activities during drought, using drought management
plans to parameterize the model to a series of representative systems in the UK. In recent years,
several large-scale hydrological models have been developed that incorporate water use,
reservoir regulation and land cover change (Veldkamp et al., 2018; Wada et al., 2017). However,
data availability remains a major hurdle to incorporating these interferences and to adding
processes such as groundwater pumping and interbasin transfers in large scale hydrological
models (Wada et al., 2017). Regardless of scale, the genre of models currently used to study
human influence have tended to be bottom-up models within which the human impacts are
prescribed with appropriate parameterizations, and then the observed flow records are used to
calibrate and validate these models.

The data challenges of integrating human impacts into hydrological models raise the
question, which human impacts do we need to incorporate to represent observed streamflow
patterns at different timescales? A particular challenge in the development of watershed models
to study hydrologic change is the paucity of precise historical records of the nature and extent of
human-induced land cover changes and other human interferences in the hydrologic cycle. In the
absence of such records hydrologists are then forced to infer or reconstruct these changes,
including human interferences, from available historical records of precipitation, streamflow and
proxy variables such as population. To address this challenge, in this paper we present what we
call a diagnostic approach to modeling watersheds with human interferences. The purpose of
taking this approach is to build understanding of the relative impact of various human impacted
processes on streamflow patterns across time scales. Our approach builds upon the top-down
modeling method which incrementally develops a hydrological model of appropriate complexity
while generating process understanding (Sivapalan et al., 2003). The top-down approach starts
with an observed temporal pattern in the variable of interest at a chosen (time) scale, and then
hypothesizes and investigates the steps or processes at a lower level that could have generated
that pattern. This approach stands in contrast to the bottom-up approach which integrates small
scale processes at a lower level to discover what patterns might emerge at the higher system level
(Klemes, 1983). The way that Sivapalan et al. (2003) implemented it, the top-down approach
involves incrementally adding complexity to hydrological models to generate understanding of
which hydrological processes are required to generate specific streamflow patterns at different
timescales. There have been several applications of the top-down approach to hydrologic
modeling (Farmer et al., 2003a; C Jothityangkoon et al., 2001), which have helped to not only
generate parsimonious models of watershed water balances but have also generated novel
insights into process controls on observed hydrologic responses in different climate settings

3
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(Atkinson et al., 2002; Chatchai Jothityangkoon & Sivapalan, 2009; Massmann, 2020). More
complex modeling approaches have advantages in explaining a higher percentage of streamflow
variation or achieving better predictive performance. However, the complexity introduced
challenges to the attribution of model performance to specific processes or features. Therefore,
we apply the top-down approach as our goal is to diagnose what human influenced hydrological
processes are important across time scales in the context of a specific case study.

In this paper, for the first time, we extend the top-down, diagnostic approach to modeling as
a vehicle to interrogate observed historical precipitation-streamflow records in human impacted
watersheds to make inferences about the historical, human-induced changes to the water balance
and along the way also develop a parsimonious model of the changing hydrology. The goal is not
to develop a universal model of human impacted catchments but introduce and test a transferable
methodology to develop site-specific models based on data inference. By incrementally adding
complexity in the way we model human impacts we test which processes are important in a
particular catchment across timescales of interest to hydrologists: daily, monthly and annual. We
demonstrate this approach in the watershed of the East Fork of the Upper Russian River in
California, USA. Human activity has shaped the hydrology in the Upper Russian River for
decades through well-documented water imports, allocation of rights to withdrawal surface
water, irrigation and land cover change, making it an ideal test case for this modeling study. The
availability of over seven decades of data presents a unique opportunity to examine the
hydrological signatures of human development. The lessons learned from this modeling case
study are however applicable to other human-impacted watersheds, both in terms of
methodology and in terms of fundamental insights about the effects of human interferences in the
hydrologic cycle. Further, the rich case history and long period of available data make this case
ideal for developing an approach and setting the groundwork for future comparative studies.

2.0 Materials and Methods

Our primary goal in this study is to develop a minimalist model of the water balance response of
the Upper Russian River watershed over the 1942-2013 period, a period over which there has
been significant human interference in the watershed hydrologic cycle. Critically, we propose a
mixed-methods approach to developing this model, synthesizing qualitative data from the case
history with time series data to craft hypotheses of the model structure. The top-down modeling
methodology in “pristine” catchments begins with descriptions of the hydroclimatic setting and
assembling multi-year time series of hydroclimate data (e.g., precipitation, potential evaporation,
and streamflow), as seen in the work of Jothityangkoon et al. (2001) and Farmer et al. (2003).
Modeling of the water balance of human-impacted catchments requires, in addition to the
hydroclimatic data, information on the history of human interferences that may have contributed
to the changes in hydrology. Some of this information may be in the form of time series, while
other information may only be qualitative, in the form of case narratives, which may have to be
converted to quantitative information for modeling purposes. The putting together of a case
narrative thus becomes part of the methodology of model development, which is what makes it a
mixed-methods approach. The case study description, including the hydroclimatic setting and the
case narrative is presented in section 2.1.
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Then, given the availability of a “naturalized streamflow” record over the corresponding
period, we carried out the model development in two phases. In the first phase, we use the top-
down methodology to develop a model of “natural” hydrology prior to human interventions. In
the second phase, we then extend the baseline model developed during the first phase to add
features to account for the human interventions, again using the top-down methodology. It
should be noted in passing that the “naturalized” streamflow record is a product of another
hydrologic model. Therefore, the modeling of naturalized streamflow is simply an intermediate
methodological step, a building block, on the way to a model of observed streamflow that
reflects a combination of natural and human-influenced hydrological processes. This step was
forced on us because historical data under pristine conditions was not available in this catchment,
or in neighboring catchments. We further test all feasible combinations of hydrological and
human impacts models to ensure that the use of naturalized streamflow has not biased the final
model selection. Lastly, we demonstrate the use of the diagnostic approach in two applications:
testing for structural change and selecting a model under a counterfactual scenario.

2.1 Case Study Description: Hydroclimate and Human Impact History

The East Fork of the Upper Russian River is in the Northern California Coast Range in
Mendocino County, CA with the headwaters located in Potter Valley (Fig. 1). The Northern
California Coastal Range has a Mediterranean climate (Koppen-Geiger climate type Csb (Peel et
al., 2007)) characterized by warm dry summers and cool wet winters with approximately 80% of
the precipitation occurring between November and March (Flint et al., 2018). The region
experiences Pacific storm systems, due to its proximity to the northeast Pacific (Sumargo et al.,
2020). Precipitation and average annual temperature also vary between years as seen in Fig. 2A-
B. Streamflow patterns in the East Fork also show both the intra- and interannual variability seen
in precipitation. The average annual streamflow in the East Fork is approximately 8.83 m?/s
(1167 mm/yr normalized by watershed area), with a peak annual inflow of 17.32 m?/s (2287
mm/yr) in 1983 and a minimum annual inflow of 1.75 m>/s (231 mm/yr) in 1977 (Fig. 2C). Note
that we use calendar years and not water years in this study as some data sets are only available
on an annual basis by calendar year. This choice is justified because snow processes are not
dominant in this watershed as the precipitation record shows only 19 total days of snow in the
study period, resulting in no more than 2.4% of precipitation in any water year. This is to be
expected as prior studies have found that the snow line during winter storms is between 1000 m
and 2000 m elevation and the highest elevation in the East Fork watershed is 1195 m, making the
watershed below the snow line for most storms (Kim et al., 1998).

Historic vegetation cover in the East Fork watershed included a mixture of hardwood,
conifer, oak, and chaparral (Moidu et al., 2021). Currently predominant land covers include
mixed forest, chaparral, orchards, hay fields, and vineyards (Potter Valley Irrigation District,
2022; USGS, 2016). This change in vegetation is hypothesized to alter monthly patterns in
streamflow. Further a shift from natural to agricultural land cover is often accompanied by the
construction of drainage systems which influence runoff timing. Ditch drainage systems with fast
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response times are dominant in Mendocino County. As our finest time scale is daily, we did not
further consider the effects of drainage.

The basin is underlain by the Franciscan Complex, which is dominated by sandstones, shales
and conglomerates (Berkland & Ray, 1972). Alluvium deposits are also present, and these are
characterized by a high silt and clay content, with pockets of sand and gravel (Cardwell, 1965).
Throughout the Russian River basin, headwaters remain wetted throughout the year through
baseflow contributions (Grantham, 2013), and in the East Fork a water transfer from the adjacent
Eel River keeps flows elevated during the summer dry season. Groundwater levels at many wells
show seasonal declines in the summer, although other locations show a seasonal increase due to
irrigation in excess of crop water demands (Cardwell, 1965). Potter Valley annual groundwater
withdrawal in 1954 was estimated to be on the order of 2.38 mm/yr (500 ac-feet/yr) (Cardwell,
1965). No more recent estimates are available at the watershed level, but the 2010 USGS
estimate of Mendocino County groundwater withdrawals yields an estimate of 5.23 mm/yr
normalized over the county area (Maupin et al., 2014). This leads us to hypothesize that
groundwater pumping may influence the daily distribution of streamflow through its impact on
baseflow and runoff generation.
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Figure 1: Location of the East Fork Watershed and the Calpella stream gauge.
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The East Fork watershed above the Calpella gauge is approximately 238.7 km? (92.2 mi?)
and ranges from 246 m to 1195 m above mean sea level. Lake Mendocino, formed by the Coyote
Valley Dam, is located just downstream of the gauge. Lake Mendocino regulates streamflow
from our study catchment including flow generated in the East Fork watershed and water
diversions on the Eel River conveyed via the Potter Valley Project as a byproduct of hydropower
generation. The Sonoma County Water Agency operates Lake Mendocino by collecting water
for storage in the reservoir’s water-supply pools when water is available for collection, and by
releasing stored water to supplement natural flows as necessary (Sonoma County Water Agency,
2015). Understanding streamflow patterns in the East Fork is critical to inform long term
operation of this reservoir.

The Potter Valley Project was initiated by the Eel River Power and Irrigation Company in
1900 and first generated power in 1908 (Potter Valley Irrigation District, 2022). Without
upstream storage, however, the project could only generate hydropower at capacity during fall
and spring; Scott Dam was constructed to store water and facilitate year-round power generation.
Eel Valley residents protested the construction of Scott Dam due to concerns about damages to
fish habitat and lost natural resource development opportunities locally (Langridge, 2002). In
1922, Pacific Gas & Electric Company (PG&E) acquired the system, Scott Dam was completed,
and Lake Pillsbury Reservoir began to fill (Potter Valley Irrigation District, 2022). In addition to
stabilizing hydropower production, Scott Dam also changed the seasonal pattern of streamflow
in the East Fork, significantly increasing summer streamflow. Prior to the Potter Valley Project,
the Potter Valley was dry farmed as there was little streamflow during summer months of peak
crop water demand. Large scale irrigation began in 1922 and expanded in 1924 with the
formation of the Potter Valley Irrigation District (Cardwell, 1965). In 1950, PG&E expanded the
capacity of the Potter Valley Project transmission tunnel and entered into a contract with the
Potter Valley Irrigation District to provide 1.4 m*/s (50 ft¥/s) (State Water Resources Control
Board Division of Water Rights, 1997). The water transferred into and withdrawn from the river
is hypothesized to alter the annual water balance and therefore streamflow patterns across
timescales.

The original hydroelectric power plant license issued in 1922 expired in 1972; the renewal
process triggered an Environmental Impact Statement (EIS) which brought the decades old
concerns about fish habitat back to the forefront (Langridge, 2002). Ultimately, the Federal
Energy Regulatory Commission recommended a reduction of the water transferred from the Eel
River to the East Fork. This reduction can be seen in Fig. 2D.

Fig. 2C illustrates the annual variation in streamflow observed at the Calpella gauge,
normalized by watershed area (USGS, 2022). Fig. 2C also illustrates the annual variation in
naturalized or unimpaired streamflow, a model product developed by the USGS that
approximates streamflow in absence of human activity (Flint et al., 2015). Flint and colleagues
(2013) developed the Basin Characterization Model, a gridded (270-m grid cell resolution)
regional water-balance model developed for the state of California that partitions precipitation
into evapotranspiration, infiltration, runoff and percolation. Applying the model Basin
Characterization Model at a daily time step, Flint et a/l. (2015) used undisturbed upland
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tributaries to calibrate the model for unimpaired flows in the Russian River. For model testing,
they then used regression to estimate streamflow losses due to irrigation diversions and applied a
conditioning method to reduce error in high and low flows and refine the calibration. Comparing
the two streamflow time series gives us a window into the magnitude and patterns of human
influence. From Fig. 2C we see that the magnitude of observed streamflow is higher than
naturalized flow and that a decreasing trend is present only for observed streamflow. The
availability of well vetted naturalized streamflow makes this case ideal for modeling the impacts
of human activity on hydrological processes. In this study, we examine the trajectory of the East
Fork of the Upper Russian River from 1942 (the first full year when observed streamflow is
available) through to 2013 (the latest when year naturalized streamflow is available).

Variability in precipitation and temperature (Fig. 2A and B, respectively) shape both
observed and naturalized streamflow. Human actions such as water imports (Fig. 2D, normalized
by watershed area), expansion of agricultural and irrigated lands (Fig. 2E), and water
withdrawals affect only observed streamflow. Historical data on water withdrawals is not
available for this case; alternatively, we use the record of surface water rights within the
watershed to approximate the upper limit of water withdrawals (California State Water
Resources Control Board, 2022). Note that Fig. 2F shows water rights normalized by watershed
area to facilitate comparison across variables. The State Water Resources Control Board notes
that while Riparian and pre-1914 water rights holders are required to file diversion and use
statements, not all water users have, leading to data gaps (State Water Resources Control Board
Division of Water Rights, 1997). In addition, Grantham and Viers (2014) found that face-value
water rights across California are approximately five times greater than surface water
withdrawals. Therefore, we use the water rights record to approximate the maximum allowable
withdrawal (irrespective of demand or physical availability of water). Water rights do not specify
how water use can be distributed throughout the year. Here we assume that the usage of water
rights follows the intra-annual distribution of losses (primarily due to agricultural water use)
between the Capella gauge and Lake Mendocino (Sonoma County Water Agency, 2015). A full
summary of data sources can be found in Table 1.
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Figure 2: Annual time series of: A) precipitation, B) temperature, C) observed and naturalized
streamflow, D) water Imports, E) irrigated area as a percent of total watershed area, F) water

rights,

Table I: Data sets and sources

Data Type Source
Precipitation Climate Data Online (NOAA, 2022a)
Temperature Climate Data Online (NOAA, 2022b)
National Water Information System
Streamflow (USGS, 2022)
Irrigated Agricultural Census of Agriculture from 1940 to 2012
Area (USDA, 2017)
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Electronic Water Rights Information
Management System (eWRIMS)
(California State Water Resources Control

Water Rights Board, 2022)

Observed Imported Water

from the Potter Valley

Project Sonoma County Water Agency (2020)

Soil Types & Properties | Web Soil Survey (USDA, 2019)

Wieslander Vegetation Type Mapping
Presettlement Land Cover | (Kelly et al. 2022)

National Land Cover Database (USGS,
Current Land Cover 2016)

2.2 Modeling “Natural” Hydrology

We first model the natural hydrology of the Upper Russian River using the top-down
approach to identify the level of hydrological process detail that must be included to reproduce
annual, monthly and daily streamflow patterns. Unfortunately, we do not have streamflow and
meteorological records before intensive human activity in the watershed, nor do we have an
appropriate adjacent catchment for a paired catchment analysis. Therefore, we use the
naturalized streamflow described above as an approximation of streamflow patterns without
human influence. While naturalized streamflow is a model product not observational data, it is
well vetted and used by Federal agencies (Johnson et al., 2016) and the Sonoma County Water
Authority (Sonoma Water, 2021).

We use four versions of the hydrological model, developed in a series of papers by
Jothityangkoon et al. (2001), Atkinson et al. (2002) and Farmer et al. (2003), starting with the
simple Manabe bucket model (Manabe, 1969). More recently, these models have also been
applied with minor changes by Bai et al. (2009) and Massmann (2020). Here, we apply the
version of the models presented by Bai et al. (2009). All four models apply continuous moisture
accounting to the chosen bucket configuration, and estimate actual evapotranspiration and forms
of runoff generation, as parameterized functions of soil moisture storage. Note that potential
evapotranspiration is computed using the Hamon equation and adjusted to the watershed
vegetation through the selection of ky (Dingman, 2015). The models proceed from S1, the
simplest, to S4, the most complex (Figure 3). Model S1 tracks moisture in a single soil volume
and employs just the saturation excess runoff mechanism and accounts for evaporation and
transpiration separately. Model S2 adds subsurface flow as an additional runoff mechanism,
which is controlled by soil moisture in excess of a field capacity threshold. Model S3 divides the
soil profile into saturated and unsaturated zones and adapts the evaporation and transpiration to
separately determine fluxes from both saturated and unsaturated soil components. Lastly, model
S4 adds a groundwater storage recharged via percolation and runoff generated in the form of
baseflow (Bai et al., 2009). Infiltration excess, triggered by rainfall intensities greater than the
infiltration capacity, is episodic. Comparing precipitation frequency estimates (NOAA, 2017)
with average surface saturated hydrologic conductivity across the watershed (USDA, 2019), the
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occurrence of infiltration excess with a duration of 10 minutes (26 mm/hr) would be a one-year
return period event. Given the daily rainfall-runoff data, the rarity of infiltration excess in the
catchment, and the challenge of diagnosing in daily data, we will only test the addition of this
mechanism if model performance warrants further revisions. Snow processes are also not
included in the model because of the limited snow fall as explained in Section 2.1. The full set of
equations for models S1 through S4 can be found in Bai et al. (2009) and all variables and
parameters are defined in the Appendix (Table Al). All models are implemented with a daily
timestep and consider the East Fork watershed as a single control volume.

Q. I>q,, L—>q
Q
s1 S2 S3 S4

Figure 3: Schematic diagram of hydrological bucket models of increasing complexity (S1
simplest to S4 most complex) adapted from Farmer et al. (2003)

Most model parameters are specified directly from the data. For example, soil depth (D) and
texture were extracted from 30m resolution Web Soil Survey data (USDA, 2019) and texture is
used along with the relationship between texture and soil properties from Clapp and Hornberger
(1978) to specify the porosity (o), field capacity (61) and wilting point (6wp). Reconstructed pre-
settlement land cover data (Kelly et al., 2005; Kelly et al., 2008) with a minimum mapping unit
of 0.16 km? is used to specify the fraction of vegetation coverage (M). Spatial averages of soil
and land cover parameters were used for the lumped model. For model S1 we have one
calibration parameter, the interception coefficient (0;). We add the recession coefficients for
subsurface flow from saturated zone (ass) for S2. S3 has the same two calibration parameters as
S2. In model S4 we add a groundwater storage volume. We further add the recession coefficient
for baseflow from deep storage (owr) and the deep recharge coefficient (kq) for S4. The four
models are fitted to the naturalized flow data in sequence. Model fit is compared using three
hydrological signature plots, inter-annual streamflow variability, the monthly regime curve, and
the flow duration curve, and two metrics, percent bias (Eqn. 1) and Nash Sutcliff Efficiency
(NSE, Eqn. 2), computed for both real and log space streamflow (Moriasi et al., 2007). Log
space metrics are used to reduce the influence of high flows on the metrics and assess model
performance on average and low flows. The four metrics are used collectively to avoid a focus
on matching one aspect of the hydrograph at the expense of other features (Boyle et al., 2000).
Where metrics disagree, we select the model that balances performance across the metrics.
Manual alternate year calibration is used to ensure that calibration and validation data sets both
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contain periods with minimal and present-day levels of human activity in the watershed (Garcia
& Islam, 2019; Gowda et al., 2012).

.o _ 1 (1N sim _ 1yN obs) _ 1

Z?’:1(lebs_Qi5im)2

2
i (ef-emem)

NSE =1- [ Eqn. 2
In Eqn. 1 and Eqn. 2 above, Qobs is the observed streamflow, Qsim is the modeled streamflow and
N is the number of total observations.

2.3 Modeling Human-Impacted Hydrology

We begin our development of the human-impacted hydrological model using the best fit
natural hydrological model as the foundation. However, we update the vegetation fraction (M)
based on the 2016 National Land Cover Database (USGS, 2016). Then, once again, following
the top-down modeling philosophy articulated by Jothityangkoon et al. (2001), we begin by
adding fluxes and processes that are hypothesized to affect the annual water balance. Then we
sequentially proceed to processes hypothesized to streamflow patterns at the monthly and finally
daily time scales. This approach is also guided by our research question and interest in
identifying the requisite complexity for each timescale of interest. We begin with the natural
hydrology model (S4) as a zero-order model of the human-impacted hydrology which we term
HO. (Subsequent models are named from H1 to HN in order of increasing complexity.) While not
expected to perform well in a watershed with intensive human impacts, it serves as baseline for
performance comparison.

We start the model development for human-impacted hydrology with processes hypothesized
to influence annual streamflow pattern (our longest time scale) and proceed to add processes
hypothesized to influence monthly and then daily streamflow patterns. From the case
background and time series data (Figure 2) presented in Section 2.1, we know that there is a
water transfer from the Eel River via the Potter Valley Project and a long history of water
withdrawals, primarily for agricultural use. Both the transfer into the Russian River and direct
withdrawals from the Russian River are likely to impact the annual water balance. However, as
we have no record of withdrawals, we use water rights, a legal maximum of withdrawals, as an
approximation. Therefore, our first version of the human-impacted hydrology, model H1, adds
these two fluxes (Eqn. 3):

Q=Qse+st+Qbf+T_W Eqn. 3

where T is the water transfer into the East Fork and W is water rights extraction. As these are
fluxes to and from the river, there is no change to the soil moisture accounting or actual
evapotranspiration, and all other equations remain the same.

After accounting for fluxes directly in and out of the river, we move to incorporate human
activities affecting soil moisture dynamics, which are hypothesized to influence streamflow
patterns on a monthly timescale for model H2. We first compute the irrigation demand (I) as a
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function of potential evapotranspiration (E;), precipitation (P), the percent of the watershed that
is irrigated agriculture (A;) and the irrigation efficiency (Ai) in Eqn. 4. A; was estimated as 0.6 up
until 1990 and 0.8 from 1990 on based on local irrigation practices and irrigation technology
efficiency (Evans, n.d.; Lewis et al., 2008). The water for irrigation is limited to W.

(Ep—P)A;

I = min( ,W) Eqn. 4

i
Then we modify the equations to update the unsaturated zone soil moisture (Eqn. 5) and the total
soil moisture (Eqn. 6) to incorporate the addition of irrigation water with changes bolded:

dSus/dt =P—E +1 Egn. 5
dS/dtzP—E+I Eqn. 6

where Sys the unsaturated zone soil moisture, E; is the interception evaporation, and S is the total
soil moisture. We also modify Eqn. 3 to set the actual withdrawal from the river to the minimum
of W and L.

Lastly, we account for changes in groundwater and baseflow which may affect daily streamflow,
particularly during low flow periods. Here we assume that irrigation demand, unmet by surface
water rights, is pumped from groundwater (Qp) if there is sufficient groundwater in the deep
groundwater store (Sdeep) and sufficient well capacity (Qp,cap):

0, = {min(min(l — W, Saeep), Qpcap) 1>W Eqn. 7
P 0 I<w '

Irrigation water applied is updated to the limit of water available if insufficient water is available
to meet irrigation demand.

I W+Q,=1
1={ % Eqn. 8

W+0Q, W+0Q,<I

Lastly, the deep groundwater store is updated to account for recharge (), baseflow (Qvr), and
pumping.

ds,
deep/dt =1, — Qs — Qp Eqn. 9
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Figure 4: Schematic diagram of hydrological bucket models of increasing complexity with
human directed or modified processes highlighted in red, adapted from Farmer et al. (2003)

The sequence of model development steps is presented in Figure 4, building on model S4
developed during the first phase of model development. We employ the same hydrologic
signatures and metrics (percent bias and NSE) to evaluate the performance of the human-
impacted hydrological model(s) and add no additional calibration parameters. Equations of
model S4H3 can be found in the Appendix along with variable and parameter definitions. All
other model equations can be found in the Supplemental Material (S1-S4).

2.4 Investigating Structural Change

A challenge of hydrological modeling in human impacted watersheds is that over time,
human actions may add new processes or amplify or diminish the influence of existing processes
such that model structure needs to undergo changes. The iterative diagnostic method introduced
above can be applied to portions of a time series to test for model structure change. Here we
identify a sharp increase in water rights in 1980 (Figure 2E). This increase is presumably in
response to a general increase in irrigated agriculture and follows shortly after the record lows in
annual observed flow and water imports in 1977 (Figure 2A&D). We hypothesize that this could
represent a significant change in the hydrologic system, which needs to be accommodated with a
change in appropriate model structure between the pre and post 1980 periods. Specifically, we
hypothesize that this change could alter the relative importance of groundwater pumping (if
surface water use replaced groundwater use) or change the percent of time that all irrigation
demands are met, both of which have the potential to impact the model structure. To assess this,
we apply the diagnostic process described in Section 2.3 separately for each period and compare
the selected conceptual models.

2.5 Counterfactual Experiment

Counterfactuals are hypothetical scenarios of what would have occurred under conditions
that differ from the historical reality (D. Lewis, 1973; Miiller & Levy, 2019). Counterfactual
experiments with the model can illustrate how the system would have responded if different
decisions were made but exogenous factors remain as observed in the historical record. This
strategy was effectively used by Srinivasan (2015) to generate key insights into human responses
to droughts in the city of Chennai, India and by Penny et al. (2020) to assess the effects of the
Ganges water treaty on salinity levels in the Ganges Delta. Here we examine the case of
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agricultural and irrigation intensification by scaling the historical record of expansion of irrigated
land such that it covers 80% of the catchment by 2013 (the last year in the study period). This
choice preserves but magnifies the existing trend and allows us to explore the hydrological
impacts of an alternate development trajectory and the impact of model structure on streamflow
simulation in that alternate past. Thus, the counterfactual experiment enables us to test the
diagnostic approach under alternate conditions within a single case.

3.0 Results

The results are described in four parts below: modeling natural hydrology, modeling human-
impacted hydrology, investigating structural change and applying the diagnostic approach to a
counterfactual scenario.

3.1 Natural Hydrological Model Results

Figure 5 shows the hydrological signatures for naturalized streamflow and the four versions
of simulated streamflow. Figure SA illustrates the annual pattern in streamflow and shows that
all four versions of the model capture most of the year-to-year variation in streamflow. Moving
to monthly and seasonal patterns, we examine the regime curve in Figure 5B, which shows that
model S1 tends to underestimate flows during the winter (high flow) months (December to
February), while models S2 and S3 show a slight tendency to over-estimate flows during these
same months. Model S4 shows the least bias during the winter months. In the spring (March
through May) models S1 to S3 underestimate flows while model S4 is unbiased for March and
April and biased high in May. The differences in the models are most stark at the daily timescale,
as shown in the flow duration curve (Figure 5C). All models can replicate high flow days (flow
exceeded on 10% of days or less) but only model S4 captures the distribution of medium to low
flows. The advantages of model S4 are also clear in the model performance metrics for both the
calibration and validation periods shown in Table 2. Note that the associated best fit parameters
are shown in Table 3. Specifically, only model S4 shows good performance during low flows, as
evidenced by the log space NSE and log space percent bias. This finding shows that surface
groundwater connectivity and baseflow contributions are key to replicating the distribution of
streamflow at the daily timescale. Note in passing that in previous applications of the top-down
approach (e.g., Farmer et al., 2003, Atkinson et al., 2003), there was an opportunity to add
further complexity to the model structure to more accurately reproduce daily streamflow in
(especially) arid regions. However, we did not choose to do this here because of the good fits we
already obtained with model S4. Previous work by Massman (2020) across the United States has
shown that required model complexity is minimal for watersheds experiencing the
Mediterranean climate, as in California.
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Figure 5: Hydrological signatures for naturalized streamflow and models S1-S4: A) Mean

Annual Streamflow, B) Mean Monthly Streamflow, C) Flow Duration Curve

Table 2: Metrics of Model Fit for Naturalized Streamflow & Models S1-S4

Calibration
Metric S1 S2 S3 S4
NSE 0.68 0.77 0.77 0.73
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Log NSE -4.29 -1.34 -0.52 0.56
% Bias -8.91 -1.57 -1.07 -0.42
Log % Bias 79.3 76.1 72.1 -3.71

Validation

Metric S1 S2 S3 S4
NSE 0.70 0.77 0.76 0.72
Log NSE -4.64 -1.45 -0.63 0.51
% Bias -6.24 1.64 2.18 3.33
Log % Bias 79.2 76.1 72.2 3.95

3.2 Human Modified Hydrological Model Results

Based on the results of modeling natural hydrology (Section 3.1), we use model S4 as a
hydrological basis for adding human impacts on hydrological processes. Figure 6 illustrates the
hydrological signatures for observed streamflow and the four versions of simulated streamflow.
Model S4HO (equivalent to model S4) is biased low and cannot account for interannual
variability as seen in Figure 6A. The addition of water transfer and water withdrawal fluxes in
S4H1 improves the model as seen in the annual timeseries (Figure 6A) and addressed the
negative bias in the previous model (Table 4). However, model S4H1 cannot replicate the
summer and fall (June through October) observed low flow patterns (Figure 6B). Note that
streamflow simulated with S4S1 remains higher than streamflow simulated with S4HO even as
rights and irrigation increase and the transfer declines. This is because not all rights can be met
due to the temporal mismatch of crop water demand and available water. The addition of
irrigation driven by crop water demand in S4H2 improves the model fit at the monthly and daily
timescales (Figure 6B&C). The calibration log space NSE and percent bias improve to 0.82 (0.77
for validation) and 8.00 (6.94 for validation) respectively, clearly demonstrating that model
S4H2 has an improved representation of low flow processes. Lastly, model S4H3 adds
groundwater pumping when surface water rights cannot meet irrigation demand. There are
negligible differences between models S4H2 and S4H3 in terms of hydrological signatures
(Figure 6) and metrics (Table 4). This indicates that representing groundwater pumping is not
critical to matching streamflow patterns across timescales in the East Fork watershed. Note that
each model version was calibrated manually and that the best fit parameters for each model
versions can be found in Table 3.
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Table 3: Best Fit Parameters

Model Version Olei Olss Ot ka
3 S1 0.23 NA NA NA
= 2 0.33 0.45 NA NA
% S3 034 | 045 NA NA
i 4 0.34 045 | 0025 | 0.15
Lg | S4HO | 0.0 | 045 | 0025 | 0.5
S5 | SaHL | 018 | 045 0.05 0.15
E E- s4aH2 | 038 0.5 0.01 0.05

S4H3 | 038 0.5 0.01 0.05

Table 4: Metrics of model fit for Observed Streamflow & Models S4H0-S4H3

Calibration
Metric S4H0 S4H1 S4H2 S4H3
NSE 0.69 0.77 0.73 0.73
Log NSE -0.49 -0.12 0.82 0.82
% Bias -55.6 2.18 0.64 0.51
Log % Bias 160.2 135.7 8.00 7.65
Validation
Metric S4H0 S4H1 S4H?2 S4H3
NSE 0.68 0.77 0.77 0.77
Log NSE -0.43 -0.13 0.77 0.74
% Bias -57.9 0.85 1.38 1.23
Log % Bias 150 128.4 6.94 5.75

As a model product, naturalized streamflow has embedded assumptions that could impact our
understanding of hydrological processes presented in Section 4.1, and subsequently bias the
selected model of human impacted hydrology in the East Fork watershed. To reduce the risk of
such bias, we compared all feasible combinations of hydrological modules (S1-S4) and human
impacts modules (HO-H3; Figure 7). Note that groundwater pumping can only be represented if
groundwater storage is included in the hydrological model, therefore, only hydrological module
S4 is compatible with H3. This comparison shows that while any of the selected hydrological
models performs well with average to high flows as evidenced by NSE and percent bias
computed in real space (Figure 7A-B), only hydrological model S4 with human impact modules
H2 or H3 can adequately represent low flows as evidenced by NSE and percent bias computed in
log space (Figure 7C-D). The comparison confirms that model S4H2 remains the model choice
that maximizes performance across all three timescales while minimizing model complexity.
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Figure 7: Comparison of all feasible combinations of hydrological models and human impacts
models for: A) NSE, B) Percent Bias, C) Log space NSE, D) Log space Percent Bias.

3.3 Investigating Structural Change Results

While model S4H2 is a good fit for the full period, changes in water rights and irrigated area
warrant investigation of structural changes over time. We apply the models for human-impacted
hydrology developed above and, in this comparison, we applied the best fit parameters found in
Section 4.2 and did not perform further calibration. Table 4 compares the model metrics for the
period from 1942 through the end of 1979 (pre-1980) and the period from 1980 through 2013
(post-1980). Figures S5 and S6 in the Supplemental Material show the hydrological signatures
for both periods. Consistent with the analysis of the full study period, models S4HO and S4H1 do
not replicate the patterns in the observed data for either pre-1980 or post-1980 periods as
evidenced by low log space NSE and high log space NSE percent bias. Further, we find that in
both pre- and post-1980 periods model S4H2 has improved model performance on all metrics
and that introducing groundwater pumping in model S4H3 does not improve model performance.
These results support the null hypothesis of no structural change in the catchment, indicating that
we can proceed to apply a single model for the full period.
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Table 5: Comparison of best fit models between pre- and post-1980 periods

Period | Metric S4H0 S4H1 S4H?2 S4H3
NSE 0.68 0.79 0.76 0.76
o Log -0.61 0.14 0.77 0.77
§ NSE
o % Bias -71.8 3.83 0.18 0.17
& Log % 161.2 337.1 2.97 2.96
Bias
NSE 0.67 0.73 0.69 0.69
2 Log -0.29 -0.45 0.82 0.82
S NSE
Z % Bias -40.4 -2.98 1.95 1.95
A~ Log % 146.9 114.0 13.47 13.47
Bias

3.4 Counterfactual Experiment

The counterfactual experiment tested the diagnostic approach’s ability to detect the
appropriate model structure under alternate conditions, specifically the case of agricultural and
irrigation intensification. As no additional surface water is available, increased irrigation results
in higher groundwater pumping. Figure 9, illustrates the differences in simulated streamflow
between model structures S4H2 (irrigation but no pumping) and S4H3 (adds pumping).
Compared to the historical case, there are visible differences in the simulated streamflow across
annual, monthly and flow duration curve plots. Figure 9A shows that the differences between
simulated streamflow from S4H2 and S4H3 grows over time which is consistent with the
increase in groundwater pumping over the counterfactual period, which we attribute to reduced
baseflow caused by groundwater drawdown. Figure 9C supports this interpretation as the flow
duration curve shows that high and average simulated streamflow is similar across the two
models while low flows are notably lower for S4H3 when groundwater pumping is incorporated.
An additional computational experiment attributing streamflow change can be found in the
Supplemental Material (S7).
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Figure 8: Hydrological signatures for observed streamflow and models S4H2 and S4H3 for the
counterfactual scenario: A) Mean Annual Streamflow, B) Mean Monthly Streamflow, C) Flow
Duration Curve

4.0 Discussion
4.1 Timescales and model complexity

The diagnostic approach to modeling human-impacted hydrology in the Upper Russian River
has both generated case specific insights and demonstrated the potential to build generalizable
knowledge of human-impacted watersheds. In the case of the East Fork of the Upper Russian
River, applying the diagnostic approach to modeling natural hydrology showed that a single
bucket soil moisture module with surface runoff paired with an actual evapotranspiration module
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was able to capture year to year variability but not monthly or daily patterns. The addition of
sub-surface runoff improved the model’s ability to represent monthly patterns but only with the
addition of deep groundwater storage and baseflow can the model replicate the daily streamflow
distribution. This is consistent with findings in other watersheds with similar climatic aridity
(Atkinson et al., 2002). Applying this diagnostic approach to the observed human-impacted
streamflow demonstrated that accounting for water imports and water rights is sufficient to
replicate annual streamflow patterns. However, at monthly and daily timescales, modeling
irrigation based on crop water demand and irrigation efficiency is critical to replicating observed
streamflow patterns. Adding groundwater pumping provides marginal improvements to the
model, indicating that pumping has not impacted baseflow significantly during the study period.
This is likely due to the fact that pumping has had a minimal effect on aquifer levels in this case
(California Department of Water Resources, 2021), as surface-groundwater connectivity is high
in the Upper Russian River (Marquez et al., 2017). The counterfactual experiment reinforces this
interpretation as it illustrates that higher levels of groundwater pumping in the same catchment
would result in baseflow impacts.

Collectively these findings tell us that in the East Fork watershed: 1) the annual water
balance is dominated by precipitation, potential evapotranspiration, water imports and water
withdrawals; 2) the monthly water balance is influenced by sub-surface runoff, crop water
demand and irrigation efficiency; and 3) the daily water balance can only be explained by
accounting for baseflow contributions. This is significant because different management
applications emphasize different timescales. For example, water supply management typically
requires an understanding of and an ability to predict monthly streamflow (U.S. Bureau of
Reclamation, 2012; Wurbs, 2005). In contrast, riverine flood control operations require process
understanding and predictions at the daily timescale (or shorter). Paired with this diagnostic
approach, the water management application and its timescale can inform the information
required to represent human impacted hydrology. Identifying the required complexity helps to
decrease the data challenges of modeling human-impacts on watershed hydrology.

More broadly, the diagnostic approach presented above provides the foundation for further
research to identify patterns in both human and hydrological characteristics that influence the
required model complexity and best fit model structure. In comparing nine pristine catchments
Atkinson et al. (2002) found that the aridity index of the catchment along with the timescale of
interest determined the hydrological model complexity needed to replicate streamflow patterns.
More recent work by Bai (2009) and Massmann (2020) confirmed these findings. Analogously,
future comparative modeling studies focused on human-impacted catchments may shed light on
the characteristics that influence the dominant human-impacted hydrological processes and
therefore the required model structure. While further comparative work is needed to develop and
test robust hypotheses, from this single case we identify relationships between catchment
characteristics and direct-human impacts that may influence the model structure and complexity
needed. First, we hypothesize that the strength of the surface-groundwater connection in
combination with the intensity of pumping impacts model complexity. Second, we hypothesize
that a larger phase shift between PET and P increases the importance of irrigation in explaining
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streamflow seasonality. Future comparative work can refine and test these hypotheses as well as
inform other hypotheses.

Note that while naturalized streamflow is not frequently available, the top-down approach
can be applied directly to observed streamflow as demonstrated in Figure 7. However, a key
obstacle to applying this approach to many catchments is that many of the required data sets are
not available in a consistent form across the U.S. (or other countries) or are only available
aggregated by county, which does not correspond with watershed boundaries (Maupin et al.,
2018). Initiatives to assemble spatially explicit databases such as the current effort to assemble a
national database of water transfers within the U.S. (Dickson et al., 2020), would greatly
facilitate such comparative analyses.

4.2 Diagnosing changes over time

Watersheds, as with any natural system, change over time. However, human activity has
accelerated the pace and expanded the scope of change, creating an additional challenge for
hydrological modeling (Wagener et al., 2010). To address this challenge, in this paper we applied
this diagnostic modeling approach to check for changes in the required model complexity over
time. Based on a significant expansion in water rights in 1980, we separated the time series data
into two periods, before and after this expansion. The diagnostic modeling approach identified
the same best fit model, S4H2, for both time periods, consistent with the analysis of the full
study period. This indicates that there were only quantitative and not qualitative process changes
between these two periods. In contrast, the counter-factual experiment demonstrates a situation
in which a model change would be needed. The experiment showed that if irrigated agriculture
intensified in this watershed the magnitude of groundwater pumping could reach a level where
accounting for the pumping in a hydrological model would be needed to accurately simulate
streamflow. Beyond the case of the Upper Russian River, the approach can be applied to assess
the need to adapt the model structure over time to account for human induced hydrological
change.

4.3 Limitations and Next Steps

The diagnostic approach and model developed in this study is intended to aid in diagnosis of
the natural and human influenced hydrological processes that explain streamflow variability
from the annual to the daily scale. Following this objective, the simplicity of the model and its
iterative development is both intentional and supported by prior research (Bai et al., 2009;
Farmer et al., 2003c; Chatchai Jothityangkoon & Sivapalan, 2009; Massmann, 2020). In focusing
on the objective of diagnosis, the model has not been designed for prediction or decision support.
However, the knowledge gained through the diagnostic analysis presented here could inform the
development of improved prediction and decision support models for the East Fork watershed by
targeting data collection and model refinement efforts to the most impactful variables and
processes.

The diagnostic capabilities of this model could also be improved through further data
collection and model refinement. The model developed in this paper is lumped and a next step is
to develop a semi-distributed version of the model that breaks the East Fork watershed into sub-
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catchments to better represent spatial heterogeneity in catchment properties, including land
cover. Additional research could also target refinement of the representation of surface-
groundwater connectivity in specific areas of the watershed and collecting additional data to
assess the relationship.

5.0 Conclusions

Human activity impacts hydrological responses in most watersheds globally. Hydrologists
are increasingly called upon to isolate hydrologic impacts of past human actions and make
predictions of future impacts under projected scenarios of human-induced changes. These human
interferences and their hydrologic impacts are highly site specific, and continually evolve over
time. Because of this, these impacts cannot be accounted for in most hydrological models in a
generic manner. Indeed, incorporating all plausible human impacts in one model comes at a high
data acquisition and modeling cost, raising the questions such as: in what way do the various
human interferences impact hydrologic variability?, and, in which way should we incorporate
these human impacts in hydrologic models, and at what level of detail? Given the diverse nature
of human interferences, there is considerable merit to exploring this question using a data-based,
top-down modeling approach. This paper represents an important first step in this direction.

This paper is aimed at developing a parsimonious hydrologic model capable of representing
observed streamflow variability at multiple timescales in a highly human-impacted catchment in
California. To achieve this, we developed a diagnostic approach to modeling watersheds with
human interference. This approach builds on the top-down hydrological modeling approach in
which process complexity is incrementally added to identify which hydrological processes are
important to replicate observed streamflow patterns in a particular location and at a specific
timescale. Here we incrementally added processes through which humans modify hydrology in
the sub-watershed of the East Fork of the Upper Russian River in California, USA, a watershed
influenced by over a century of human activity. Applying this method, we found, for example,
that incorporation of just water imports and water rights can replicate annual patterns sufficiently
well. However, adding crop water demand and irrigation is required to replicate monthly and
daily patterns. The incorporation of groundwater pumping does not change model performance
and is not needed in this case. However, in a counterfactual experiment we find that if irrigation
and groundwater pumping intensified the model would require pumping to replicate patterns.
Further, we apply the model to test for structural changes in the best fit model over time and to
test hypotheses of the drivers of a recent decline in streamflow. We find that no changes in
model structure are warranted for the 1942 to 2013 study period and that decreased water
imports best explains the decline in observed streamflow.

These insights into the human-impacted hydrological responses of the Upper Russian River
serve to demonstrate the potential to build process understanding of human-impacted watersheds
generally, and to identify both hydrological and human systems characteristics that can indicate
the level of complexity and structure of model required. What this case demonstrates is that the
diagnostic approach can be used to identify the minimum level of model complexity needed for
the time scale of interest. This avoids unnecessary model complexity and parameterization,
focusing data collection and parameterization efforts on highly influential human activities. Over
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682  time, this approach to modeling can be replicated in many human-impacted catchments in the
683  region, and eventually in other more diverse regions globally. The insights so gained can then be
684  used to develop generalized understanding of human impacts on hydrology, and more generic
685  models for the prediction of the effects of human impacts on hydrologic variability.

686  Appendix
687  Model S4H3, changes from S4 in bold

688 S, = Do
(ch wlt)
589 Je ="l —Bun)

690  Sp. = f.Sp
691 Ei = aeiP
692 Sus,t =81~ sat,t—1

693 usfc fc(sb — Ysat,t— 1)

(Ep _P)Ai

694 I = Py

695 Qp _ {min (min(] - W, Sdeep), Qp,Cap) I1>Ww

0 I<w
[ 1 W+Q,=1I __ Labili
696 = {W +Q, W+Q,<I recompute constraining for water availability
697
698 S'us=Suyst tP—E; +1 update based on P and E;
699 r, = {Slus - Susfc: Sius = Susfc
0, S us < Susfc

700 St = min(Sb, S’us + Ssat,t—l)

701 Ssat,t = min(Sb,Ssat't_l + Tp)

702 Syse =St — Ssatt update based on recharge to the saturated zone
703 Syspe = fe (S b — sat’t) update based on current Sgy
Sus,t
;S MEp: Sus,t > Susfc
t
704  E,u;s=13 0 Sust =0

Sus,t Sus,t

, Susr < S
St Susfc P us,t usfc
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S S
705 Epsue =g (1= M) 2 E,
t t
S
706 Epgsqr = S;“ ME,
t

S
707 Eygqr = SS“” (1 - M)E,
t

708  Eps = Epsus + Epssat

709 E, =Epus + Epsar

710  E =E;+Epey + Eps

711 S, =S, ,+P—-E+1I

712 Qps = ApfSaeep,t—1

713 15 = kqSsat

714 Sgeept = Saeept-1 t 173 — Qpr — @p

715 Qe = {0 S > S,

716 Qss = assssat,t

717 Q=0se +Qss + Qo +T—-W

718  Ssat = Ssat — Qss — 1y update based on losses
719 S5:=5;—0Qse —Qse — 1y update based on losses
720

721 Table Al: Model variables and parameters. Note that new parameters and variables introduced
722 to model human-impacts are shown in bold.

Notation Definition Unit

D soil depth mm

Ot field capacity dimensionless
Owit permanent wilting point dimensionless
[0) porosity dimensionless
fe threshold storage parameter dimensionless
Sb maximum storage of the bucket model mm

Ste threshold storage mm

P precipitation mm d!

E, potential evapotranspiration mm d’!

E actual evapotranspiration mm d’!
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Ei interception mm d!
E. vegetation transpiration mm d!
Ebs bare soil evaporation mm d’!
Evus transpiration from unsaturated zone mm d’!
Ev sat transpiration from saturated zone mm d!
Ebs,us evaporation from unsaturated zone mm d!
Ebs sat evaporation from saturated zone mm d!
Ssat soil water storage in saturated zone mm
Sus soil water storage in unsaturated zone mm
Suste field capacity of current unsaturated zone mm
Sdeep soil water storage in deep store mm
S total soil water storage at current time t mm
St soil water storage of saturated zone at last time step t-1 mm
recharge to saturated zone from unsaturated zone in which
Ip water storage exceeds field capacity mm d’!
Iy recharge from upper saturated zone to deeper store mm d!
Q total runoff mm d!
Qse surface runoff generated by saturation excess mm d’!
Qss subsurface flow originating from saturated zone mm d!
Qor base flow originating from deep store mm d’!
fraction of catchment area covered by deep rooted
M vegetation dimensionless
K+ vegetation transpiration efficiency dimensionless
recession coefficient for subsurface flow from saturated
Olss zone store in the linear storage-outflow model d-1
recession coefficient for subsurface flow from deep store
Olbf in the linear storage-outflow model d-1
deep recharge coefficient from the upper saturated zone to
kq the deep store d-1
T water transfer into the river mm d!
W maximum water withdrawal from the river mm d!
| irrigation applied to irrigated agricultural land mm d’!
Aj percent of the catchment with irrigation dimensionless
Ai irrigation efficiency dimensionless
Qp pumped water from the deep store mm d’!
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