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A B S T R A C T   

In this study, we tackle the problem of pharmaceutical supply chain optimization using a multi-objective model 
that simultaneously considers cost minimization, environmental impact minimization, and maximizing of service 
level equity (minimum ratio). This represents the three alms of sustainability which are key in manufacturing. 
Furthermore, we developed a disruption model capable of effectively managing disruptions within the supply 
chain and compared the capabilities with the baseline model. 

The result shows how the supply chain network behaves under different objectives. Minimizing costs led to 
maximizing capacity utilization, while environmental objectives result in reduced production levels to meet 
coverage requirements, and maximizing the minimum ratio expands more facilities. Using an epsilon constraint, 
the trade-off shows that the environmental budget limits the flexibility between the other total cost achievable 
and the minimum ratio. Comparing the baseline model and the disruption model underscores the importance of 
proactive disruption management in maintaining service levels and managing costs effectively. Ultimately, our 
study offers practical insights for optimizing pharmaceutical supply chains, balancing economic efficiency with 
social responsibility to navigate disruptions and challenges successfully.   

1. Introduction and literature 

The pharmaceutical industry occupies a crucial position in the global 
economy, experiencing a remarkable sixfold increase in the trade value 
of pharmaceutical goods from $113 billion in 2000 to $629 billion in 
2019 (McKinsey, 2023; González Peña et al., 2021; PwC, 2021). In 
tandem with this growth, its supply chain—the Pharma SC—has become 
an extensive, global network characterized by numerous stages and 
participants (GEP Blogs, 2023; Moosivand et al., 2019). However, 
globalization has ushered in additional complexities - including in
flations, geopolitical tensions, emergence of novel medicinal modalities, 
and evolving work practices- necessitating a proactive and adaptable 
management strategy for sustained success. Effectively navigating the 
complexities of managing the Pharma SC network is non-trivial, given 
the consequences of inefficiencies, which can manifest in significant 
delays, and compromised product quality, thereby posing pressing 
challenges for industry leaders (Doshi, 2022). The Pharma SC plays a 
critical role in ensuring drug availability and access, yet it remains 
susceptible to various risks, such as dependence on single-source inputs 
and inadequate awareness of supplier-related risks (GEP Blogs, 2023). 

Threats like natural calamities, cyber-attacks, trade disputes, and pan
demics loom large, posing substantial hazards to the supply chain’s 
integrity. To mitigate these risks, strategies such as digitalization, 
bolstered supply chain visibility, rigorous risk management protocols, 
and incorporation of cutting-edge technologies are imperative. Further, 
optimizing production schedules, managing inventory more effectively, 
and diversifying sourcing strategies are essential for enhancing resil
ience (Badejo and Ierapetritou, 2023a; Chopra and Sodhi, 2014; Ivanov, 
2020). Pharmaceutical leaders must adopt a strategic, integrated 
approach, from focusing on continuous improvement to addressing 
broader, long-term challenges. 

Given the pharmaceutical industry’s pivotal role, it is crucial to 
adopt optimization techniques in its supply chain. Mathematical 
modeling is an effective method to streamline operations, improving 
economic and environmental efficiency and overall effectiveness (Shah, 
2005, 2004). These models significantly enhance supply chain visibility, 
aid strategic planning, and promote stakeholder collaboration. This 
paper proposes developing mathematical model strategies to optimize 
the pharmaceutical supply chain. The proposed model considers feasible 
production schedules, inventory management, and interactions to 
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optimize tactical decisions while focusing on long-term objectives. 
Modeling the Pharma SC involves navigating challenges like service 

level expectations, market uncertainties, and complex manufacturing 
processes. Optimizing drug inventory amidst manufacturing constraints, 
demand volatility, and production variability is critical (Hansen et al., 
2023; Sampat et al., 2021). Uthayakumar and Priyan (2013), Sampat 
et al. (2021), and Sabouhi et al. (2018) have proposed models that 
optimize inventory management, minimize backorders, and enhance 
operational efficiency by integrating production with distribution, 
addressing regulatory constraints, and preparing for disruptions through 
strategies like fortification and diversified sourcing. These models aim to 
improve supply chain efficiency by focusing on critical service levels, 
reducing reactive scheduling, and accommodating various disruptions, 
offering a comprehensive approach that considers multiple products, 
lead times, and spatial constraints. Subsequent research by Hasani and 
Khosrojerdi (2016), Goodarzian et al. (2021), Melançon et al. (2021), 
and Azadehranjbar (2021) further emphasizes efficiency and adapt
ability improvements in the pharmaceutical sector’s supply chain. The 
strategic and tactical pharma SC design has placed efforts on balancing 
competing objectives (Amaro and Barbosa-Póvoa, 2008; Meijboom and 
Obel, 2007; Mousazadeh et al., 2015), I Duarte et al. (2022b; I 2022a) 
developed a tool for creating equitable and sustainable Pharma SC 
through a multi-objective mixed integer linear programming model that 
considers social, economic, and environmental sustainability. This tool, 
applied to the meningococcal meningitis vaccine supply chain, reveals 
tradeoffs and opportunities, highlighting the benefits of integrating 
sustainability into supply chain design. Similarly, Mousazadeh et al. 
(2015) and Rekabi et al. (2022) have explored decision-making under 
uncertainty and developed models that address congestion, job sched
uling, and environmental impacts, offering solutions that balance mul
tiple objectives. Collectively, these models contribute to advancing 
Pharma SC management by prioritizing efficiency, adaptability, and 
sustainability. 

Supply chain resilience is fundamental to sustaining operations 
during disruptions or perturbations, focusing on both proactive and 
reactive capabilities to manage and mitigate potential impacts. This 
concept refers to a firm’s ability to maintain, execute, and adapt its 
strategies to achieve planned performance outcomes despite challenges 
(Ivanov, 2018). Strategic design principles such as low vulnerability and 
high recoverability are critical, ensuring that supply chains can with
stand and quickly recover from disruptive events at minimal cost. These 
events can severely affect operations and overall performance. Without 
adequate resilience, firms may experience financial losses, mismatches 
between demand and supply, and destabilization of operational policies 
in production, distribution, and inventory control, underscoring the 
necessity of resilient practices (Gupta et al., 2021; Ivanov et al., 2016; 
Pavlov et al., 2019; Yoon et al., 2020). 

In addressing supply chain resilience, it is essential to balance design- 
for-efficiency with design-for-resilience (Ivanov and Dolgui, 2021). The 
former utilizes lean and agile principles to optimize the use of resour
ces—material, time, capital, technology, and workforce—to reduce 
waste and enhance profitability. Meanwhile, design-for-resilience pre
pares supply chains to cope with severe disruptions, employing strate
gies like maintaining strategic redundancies such as inventory levels, 
capacity buffers, and backup suppliers. These measures help supply 
chains absorb shocks without degrading performance and, if necessary, 
reactive capabilities are employed to restore operations. The recovery 
process, however, can be costly and time-consuming. Thus, building 
resilience involves a continuous commitment to risk mitigation, pre
paredness for disruptions, stabilization of operations post-disruption, 
and effective recovery strategies to either return to or improve upon 
previous performance levels. The diagram presented in Fig. 1 illustrates 
the comprehensive framework of supply chain resilience, encompassing 
both resistance and recovery strategies. Resistance strategies, employed 
pre-disruption, focus on minimizing the initial impact of disruptions and 
enhancing the supply chain’s robustness. These include inventory 

optimization, capacity reservation, and node and arc fortification, which 
collectively ensure a buffer against unexpected supply interruptions. On 
the other hand, the recovery strategies, activated post-disruption, aim to 
restore and potentially enhance supply chain operations. Key recovery 
tactics involve process flexibility with multi-product facilities and ca
pacity scalability, which allow for rapid adaptation and scaling of op
erations to meet changing demands and conditions. By integrating both 
resistance and recovery strategies, this paper provides a strategy to 
enhance the resiliency of a pharmaceutical supply chain network. De
tailing how organizations can effectively prepare for disruptions and 
recover from them, ensuring operational continuity and competitive 
advantage. The complexity and interconnectivity of pharmaceutical 
supply chains significantly increase their vulnerability to disruptions, as 
highlighted by the COVID-19 pandemic’s impact on global supply net
works. This situation underscores the urgent need for resilience through 
optimization strategies and mathematical models (Badejo and Ierape
tritou, 2023b; 2022a; 2022b; Montoya-Torres, 2021; Sawik, 2017; Xu 
and Song, 2020). Research, including studies by Jlassi, Halouani, and 
Mhamedi (2021)(Jlassi et al., 2021) and Ivanov et al.(Ivanov et al., 
2019, 2017; Ivanov and Dolgui, 2021), emphasizes the importance of 
addressing regulatory, inventory, counterfeit, and financial risks, and 
the necessity for adaptability in managing disruptions. The role of 
flexibility, agility, and visibility in enhancing resilience is further sup
ported by Shweta, Kumar, and Chandra(2022), aligning with initiatives 
for green supply chain practices as Kumar et al. (2018) advocated to 
promote sustainability. This body of work emphasizes resilience and 
sustainability, using a combination of technological innovation, stra
tegic planning and environmental considerations. 

While existing literature has extensively explored supply chain 
design and the management of product flow across various echelons in 
the pharmaceutical sector, our work introduces a novel model that op
timizes the tactical aspects of the pharmaceutical supply chain. The 
proposed approach ensures feasible production schedules in multi
product settings. We further developed an enhanced model which effi
ciently addresses potential disruptions and demonstrates computational 
efficiency. Crucially, our research elucidates the interplay among three 
objectives within the pharmaceutical domain: economic viability, 
environmental sustainability, and social responsibility. This approach 
provides a holistic view of supply chain optimization that ensures 
sustainability. 

Fig. 1. Resiliency in Supply Chain Network.  
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2. Methodology 

2.1. Model description 

The Pharma SC under investigation is structured as a four-echelon 
network, from raw material sourcing at the supplier echelon, through 
transformation and inventory at the manufacturing sites and ware
houses, to product delivery to the consumer echelon. The network ini
tiates with the raw material suppliers (s ∈ S), tasked with providing raw 
materials (r ∈ R⊂K ). These suppliers are divided into two primary 
categories: suppliers of active pharmaceutical ingredients (APIs) and 
excipients (fillers), each critical for the production of pharmaceuticals. 
These raw materials are transferred to manufacturing facilities. (f ∈ F), 
at the manufacturing facilities, the raw materials are subjected to pro
cessing and formulation procedures to synthesize the intended phar
maceutical products. Within these facilities, it is possible to produce 
various products p ∈ P⊂K , which depends on the composition of active 
ingredients. After the manufacturing phase, the finished products are 
packaged and routed to warehouses w ∈ W⊂W . At the warehouse, 
customer demands, and inventory are managed. Notably, the warehouse 
echelon permits product sharing among warehouses, enhancing logis
tical flexibility. From the warehouse, products are sent to consumers 
regions c ∈ C, satisfy the demands, d c for products. Products and raw 
materials can be shipped across nodes through m shipped by multiple 
m ∈ M model of transportation 

The proposed framework is based on the following important 
assumptions: 

(1) Multi-period Demand Forecast: A demand forecast for all prod
ucts over several periods facilitates strategic planning and 
resource allocation to meet anticipated needs.  

(2) Known Cost Structure: The model assumes detailed knowledge of 
the cost structure, including:  
○ Transportation Costs: Expenses for moving goods across the 

supply chain.  
○ Product Allocation Costs: Costs related to distributing products 

to meet demand.  
○ Unmet Demand Costs: Financial implications of not meeting 

demand. 
○ Inventory Handling Costs: Expenses for storage and manage

ment of inventory.  
○ Raw Material Costs: Prices of inputs needed for product 

manufacturing.  
(3) Multi-Modal transportation options : This offers a range of m ∈

M modes of transportation to guarantee the efficient trans
portation of raw materials and products. In the event of node 
disruptions, the transportation modes can be interchanged to 
ensure uninterrupted logistics. It should be noted that in this 
paper, we have addressed disruptions in nodes alone thus the 
multi-modal transportation modes are included to adapt to 
changes in node capacity and ensure distribution of raw materials 
and products.  

(4) Fixed Facility Locations: The geographical positions of suppliers, 
manufacturing sites, warehouses, and distribution centers are 
predetermined.  

(5) Environmental Impact: The environmental impact is available 
and obtained from the work of Duarte et al. (2022a; 2022b) and 
Mota et al. (2018). The ReCiPe LCIA methodology was used to 
quantify and evaluate the potential environmental impact asso
ciated with a product’s life cycle. The method considers a range of 
impact categories (17 in this case) and using normalization fac
tors, standardizes the different impact categories into a common 
unit enabling comparability (RIVM, 2022). Readers are directed 
to the supplementary information for further details of the 
categories. 

2.2. Constraints 

Supplier constraints: At the supplier echelon, Eq. (1a) ensures that raw 
material supply by each s does not exceed supplier capacity, and Eq. (1b) 
bounds the amount of raw material that flows through each trans
portation mode at every time period. The integer variable sTrips is the 
number of trips that are required to transport the required raw material 
r. 
∑

f ,m

Qr
s,f ,m,t ≤ scapr ∀ (r, s, t) (1a)  

∑

r,s,f

Qr
s,f ,m,t ≤ sTrips × tcapm ∀(m, t) (1b) 

Manufacturing facilities : At the manufacturing facilities, Eqs. (2a)- 
(2e) compute product quantities and resource utilization associated with 
event scheduling. Eqs. (2a)-(2c) ensure these events are properly 
scheduled, using binary variables yf ,t and Xi,n,f ,t , where yf ,t = 1 indicates 
an operating facility and Xi,n,f ,t = 1 denotes task i occurring at event n in 
facility f at time t . In this context, events denote the initiation of a task. 
Eqs. (2d) limit the number of batches that can be processed in a facility 
during an event, and Eq. (2e) is the mass balance that tracks the con
centration of each ingredient. 

Xi,n,f ,t ≤ yf ,t ∀(i, n, f , t) (2a)  

∑

i
Xi,n,f ,t ≤ 1 ∀(n, f , t) (2b)  

∑

i,n
Xi,n,f ,t ≤ 1 ∀(f , t) (2c)  

Bi,n,f ,t ≤ Bmax × Xi,n,f ,t ∀ (i, n, f , t) (2d)  

∑

i,n
ρCk

i × Bi,n,f ,t = Qk
f ,t ∀(k, f , t) (2e) 

During production, the total number of batches produced is limited 
by the facility’s capacity; this is shown in Eq. (2f). To hedge against 
sourcing uncertainty, raw materials are stored in the facility; the in
ventory of the raw material is tracked by Eq. (2g). Furthermore, the 
products are shipped to the warehouses, and the total amount of prod
ucts shipped to the warehouse cannot exceed the number of products 
manufactured at the facility; this is captured by Eq. (2h). Eq. (2f) ensures 
that the products being shipped from facility to warehouse do not exceed 
the available quantity of products. 

Qp
f ,t ≤ fCapp

f ∀(f , p, t) (2f)  

Invr
f ,t = Invr

f ,t− 1 − Qr
f ,t +

∑

s,m
Qr

s,f ,m,t ∀(r, f , t) (2g)  

Qp
f ,t =

∑

w,m
Qp

f ,w,m,t ∀(p, f , t) (2h)  

∑

p,f ,w

Qp
f ,w,m,t ≤ FWTripsmt × tCapm ∀(m, t) (2i) 

Warehouse constraints : At the warehouses, Eq. (3a) tracks product 
inventory, while (3b) restricts the quantity of material stored to the 
capacity of the warehouse. Finally, Eq. (3c) ensures that the product 
flowing from warehouses to the consumer stays within the bounds of the 
capacity of the transportation modes. 

InvWp
wt = InvWp

w,t− 1 +
∑

f ,m

Qp
fwmt +

∑

f ,m

Qp
wwʹmt −

∑

c,m
Qp

wcmt ∀(w, t) (3a)  

InvWp
wt ≤ wCapp

w ∀ (p, w, t) (3b)  
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∑

p,w,c
Qp

wcmt ≤ WCTripsmt × tCapm ∀(m, t) (3c) 

Consumer Constraints: Eqs. (4a) shows the continuity equation for the 
products and captures the backorder from all consumers;Eq. (4b) rep
resents the social constraints which ensures that each consumer’s de
mand is satisfied to a level determined by the minimum coverage rate for 
each product θp, and Eq. (4c) computes the aggregated service level 
constraints at the given period t. 
∑

w,m
Qp

wcmt = d p
c,t − B

p
c,t ∀(p, c, t) (4a)  

d p
c,t × θp ≤

∑

w,m
Qp

wcmt ∀(p, c, t) (4b)  

serviceLevel(t) =

∑
w,mQp

wcmt
∑

p,td
p
c,t

∀ (t) (4c)  

2.3. Objective functions 

Economic Objective: This focuses on minimizing the overall oper
ational costs within the supply chain, which includes various compo
nents such as raw material costs, production costs, inventory costs, 
transportation costs, and backorder penalties. 

max(TotalCost)

TotalCost = rmC ost + prC ost + InvC ost + tranportC ost

+ backorderC ost (5a) 

The raw material cost rmC ost is calculated based on the unit cost of 
each material required for production. This is shown in Eq. (5b). 

rmC ost =
∑

sfmt

Qr
sfmt × Cr (5b) 

The production cost (prC ost) has two components, which are the 
fixed and the variable cost. The fixed cost is constant regardless of the 
product produced. The binary variable Xinft determines if the equipment 
is used for a given task. The variable cost depends on the level of pro
duction output. Eq. (5c) shows the combination of these cost 
components. 

prC ost =
∑

i,n,f ,t
fixedC f × Xinft +

∑

pft
varC

p
f × Qp

f ,t (5c) 

The inventory cost is computed by Eq. (6d) and involves the cost for 
raw materials and each product. 

InvC ost =
∑

r,f ,t
hC

r
f × InvFr

ft +
∑

p,w,t
hC

p
w × InvWp

wt (5d) 

The backorder cost is the penalty paid for unmet demand and 
computed with Eq. (5e). 

backorderC ost =
∑

p,c,t
bC

p
ct × B

p
c,t (5e) 

The transportation cost calculates the cost of moving commodities 
across arcs. There are two components: the fixed cost for using a 
particular transportation mode and the variable cost, which depends on 
the distance traveled. The expression in Eq. (6f) shows the calculations. 

trportC ost =
∑

(m,t)

fixedC m ×

⎡

⎣
sTripsmt +

FWTripsmt +

WCTripsmt

⎤

⎦ +
∑

(k,n,nʹ,m,t)

varC m × δnnʹ

× Qk
n,nʹ,m,t

(5f) 

Environmental objective: This seeks to minimize the ecological 
footprint of the entire supply chain network, focusing on minimizing 

emissions generated across all operations. The objectives are defined 
using the Life Cycle Analysis (LCA) methodology. This is shown in Eq. 
(6). Eqs. (6a) and (6b) show the total impact of emissions from facility 
operations and product transportation. 

min(envImp) (6a)  

envImp = facilityImpact + transportImpacts (6b) 

computes the emissions from facilities by multiplying the environ
mental impact characterization factor for producing one unit of product 
for each category (sI mp,η) by the quantity of products manufactured 
and the normalization factor for each category. It should be noted that 
the factor ensures that various environmental impact categories are 
comparable. 

facilityImpact =
∑

η,f
κη × sI mp,η × Qp

ft (6c)  

transportImpact =
∑

(η, k,n,nʹ,m,t)

κη × d I mη
m × δnnʹ × Qk

n,nʹ,m,t (6d) 

Similarly, the emission from the transportation is computed by 
multiplying the environmental impact characterization factor of trans
porting a unit of product through a distance d I mη

m by the distance 
traveled and the quantity of products that is transported. Eq. (6d) re
flects this component of the environmental objective. 

For both Eqs. (6c) and (6d), there are 17 environmental impact 
categories with varying units, this is different for each product as well as 
the transportation. The normalization term κη in these equations pro
vides coefficients for each category (η), standardizing the assessment of 
diverse impacts onto a common scale (Duarte et al., 2022b; RIVM, 
2022). 

Effectiveness Objective: This objective maximizes the minimum of 
all service levels as detailed in Eq. (7).

max
c

{

min
p,t

(
ratioPharmDp

ct

)
}

(7a)  

minRatio ≤ ratioPharmDp
ct ∀ (p, c, t) (7b)  

ratioPharmDp
ct =

[∑
w,mQp

wcmt

]

D
p
ct

∀ (p, c, t) (7c) 

Eq. (7a) shows that the objective is a max-min objective, which is 
reformulated by Eqs. (7b) and (7c) (Floudas, 1995; Grossmann, 2012). 
To reformulate the Eq. (7a) , we introduced a new variable minRatio and 
ensures that the value of the minRatio is less than or equal to the values 
of the calculated ratio that is shown in Eq. (7b). Eq. (7c) calculates the 
delivery ratio for each of the products delivered to each consumer. By 
maximizing the minRatio, the lowest ratio is driven up. This objective 
strategically focuses on enhancing equity in product distribution within 
the supply chain, explicitly targeting maximizing the least satisfied 
consumer’s service level. Doing so addresses disparities in demand 
fulfillment across different consumer segments. The essence of this 
approach lies in ensuring that product delivery is efficient and inclu
sively distributed among all consumers, regardless of the variability in 
their demand patterns. 

2.4. Extension to consider disruptions 

The equations governing the production capacities of facilities and 
warehouses have been revised to enhance the model’s resilience against 
disruptions. Recognizing that disruptions may reduce or eliminate ca
pacity, buffer mechanisms were introduced. These buffers enable ca
pacity expansion at unaffected nodes within the network, effectively 
managing fluctuations in demand. Additionally, to strengthen the sup
ply chain’s robustness, the available transportation modes were 
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diversified, thus contributing directly to the resilience of the network’s 
arcs. It should be noted that in this paper, we have addressed disruptions 
in nodes alone thus the multi-modal transportation modes are included 
to adapt to changes in node capacity and ensure distribution of raw 
materials and products. Furthermore, we categorize node disruptions 
into two distinct modes: full disruption and partial disruption. Nodes 
experiencing full disruption completely lose their operational capacity, 
rendering them unavailable for use. Conversely, nodes subject to partial 
disruption exhibit reduced operational capacity. Regardless of the 
disruption level, expansion of disrupted nodes is not feasible. Further
more, recovery from any form of disruption requires one week. 

Mathematically, we introduced new integer variables yEf ,l,t. To 
modify Eqs. (2d) and (2f) incorporating additional integer constraints to 
address the adjustments in capacity level. In Eq. (8), the parameters 
yDisf ,t , indicates a facility’s status, where 0means disrupted and 1 means 
operational. Eq. (8a) states that capacities can only be expanded if the 
facility is undisrupted, and Eq. (8b) ensures that the expansion levels for 
facilities follow a predefined order. The predefined order comprises 
three expansion levels, with expansion level I preceding expansion level 
II, and expansion level II preceding level III. Facilities in this case in
cludes both manufacturing sites and warehouses. 

yEf ,l,t ≤ yDisf ,t ∀ (f , l, t) | ord(l) = 1 (8a)  

yEf ,l,t ≤ yEf ,ll,t ∀ ( f , l, ll, t| ord(l) < ord(ll) ) (8b) 

Following the determination of expansion decisions, Eq. (9) com
putes the potential capacity expansions at manufacturing sites and 
warehouses relative to their existing capacities. Eq. (9a) calculates the 
expansion at the facilities as the sum of the capacity associated with the 
expansion level selected. Similarly, Eq. (9b) calculates the expansion 
needed at the warehouse. Finally Eq. (9c) computes the increased batch 
size using the expansion in the facility divided by the number of event 
points. 

fexpCapk
f ,t =

∑

l
yEf ,l,t × expCapl,k ∀ (k, f , t) (9a)  

wexpCapk
w,t =

∑

l
yEw,l,t × expCapl,k ∀(k, w, t) (9b)  

Bexpf ,t =

∑
kfexpCapf ,k,t

|k| × |N|
∀(f , t) (9c) 

The model incorporates expansions into the facility operating level 
and maximum batch size equations, capturing the nodes’ enhanced ca
pacity. Eq. (10a) and (10b) presents the updated capacity for 
manufacturing facilities and warehouses, respectively, while Eq. (10c) 
computes the new batch size so as to account for the extra capacity. In 
Eq. (10), the new capacity is derived by multiplying the old capacity 
with the disruption indicator, denoted as δf ,t ∈ [0, 1]. These expressions 
substitute Eqs. (2f) and (3b) limiting the capacity level for the facilities 
and warehouses. 

newFCapk
f ,t = fCapk

f × δf ,t + fexpCapk
f ,t ∀ (f , k, t) (10a)  

newWCapk
f ,t = wCapk

f × δw,t + wexpCapk
f ,t ∀(w, k, t) (10b)  

Bf ,t = Bmax + Bexpf ,t ∀(f , t) (10c) 

Once the updated capacities are computed, the quantity of products 
and inventory amount that can be stored are bounded by the new ca
pacity. These are shown in Eqs. (11a) and (11b) 

Qk
f ,t ≤ newFCapk

f ,t ∀(f , k, t) (11a)  

InvWk
w,t ≤ newWCapk

w,t ∀(w, k, t) (11b) 

It should be noted that the maximum batch size, Bf ,t , also becomes 

variable computed in Eq. (10c). If directly employed, such as in the 
equation (2d), a bilinear term - which is a product of continuous variable 
Bf ,t and binary variable Xi,n,f ,t- arises as shown in Eq. (12a). This makes 
the model non-linear. 

Bi,n,f ,t ≤ Bf ,t × Xi,n,f ,t ∀ (i, n, f , t) (12a) 

To maintain linearity in the model, a linearization technique is 
employed, as illustrated in the Eqs (12b) − (12d)

Bi,n,f ,t ≤ Bvmax × Xi,n,f ,t ∀ (i, n, f , t) (12b)  

Bi,n,f ,t ≤ Bf ,t ∀ (i, n, f , t) (12c)  

Bi,n,f ,t ≥ Bf ,t − Bvmax ×
(
1 − Xi,n,f ,t

)
∀ (i, n, f , t) (12d) 

The linearization is a bigM linearization for a Bilinear term (Floudas, 
1995; Mohammadi and Harjunkoski, 2020), where Bvmax is the bigM 
value, chosen so that the Eq. (12d) is satisfied. It should be noted that 
this approach is crucial in enabling us to explore a larger feasible solu
tion space efficiently and to find near-optimal solutions within a prac
tical computation time (Floudas, 1995; Grossmann et al., 2016). 

The extra capacity increases the operational cost by adding a new 
term to Eq. (6a); this is the cost of expansion and recovery of the dis
rupted facility. The new cost terms are shown in Eq. (14). Eqs. (6b) and 
(6c) are modified to (13a) and (13b): 

prC ost =
∑

i,n,f ,t
fixedC f × Xinft +

∑

p,f ,t
varC

p
f × Qp

f ,t +
∑

(f ,l,t)

fC f ,l × yEf ,l,t

+
∑

h

fR f ,t × yDisf ,t

(13a)  

InvC ost =
∑

r,f ,t

hC
r
f × InvFr

ft +
∑

p,w,t
hC

p
w × InvWp

wt +
∑

p,d,t

hC
p
d × InvDp

dt

+
∑

(w,l,t)

wC w,l × yEw,l,t +
∑

(f ,t)

wR f ,t × yDisw,t

(13b) 

As shown in the cost expression, the network’s resilience depends on 
effectively managing consumer demands, achieved through the cost 
tradeoff between handling backorders and investing in expanding fa
cilities, at manufacturing sites and warehouses. This balance is essential 
in assessing the network’s ability to adapt and respond to demand 
volatility amid disruptions, ensuring its robustness, flexibility, and ca
pacity to maintain operational efficiency in the face of demand vari
ability. Such an approach positions the network for long-term 
sustainability. 

The modified model corresponds to a Mixed Integer Linear Pro
gramming (MILP) problem with the continuous variables determining 
the flows, binary variables determining the operational status (task to be 
performed at the facilities and sequence), and the integer variables 
determining the transportation selections modes and the number of trips 
between arcs. In the following section, we elaborate on the solution 
procedure and the strategies employed to mitigate the computational 
complexity of the model. 

2.5. Solution procedure 

The section describes the approach taken towards handling integer 
variables and delineates the solution procedures utilized for addressing 
the multi-objective problem. 

2.5.1. Dealing with the integer variables 
Tightening constraints were used to enhance the model’s computa

tional efficiency. The constraint was used to improve the estimation for 
the integer variables(Floudas, 1995). Estimated upper bound is added as 
a ceiling of the total products divided by the available capacity as shown 
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in Eqs. (14a) and (14b). This provides a good guess for the integer 
variables(Brunaud, 2019). Mathematically, it signifies that the number 
of trips between two nodes during a given time cannot exceed the 
maximum number of trips needed if there is just one transportation 
mode. For example, if a shipment of 10 pounds requires a truck with a 
4-pound capacity, the constraint indicates a maximum of 3 trips to fulfill 
the transport. 

nTripsm,t ≥

∑
k,n,nʹQk

n,nʹ,m,t

tcapm
∀(m, t) (14a)  

nTripsm,t ≤ 1 +

∑
k,n,nʹQk

n,nʹ,m,t

tcapm
∀(m, t) (14b)  

2.5.2. Dealing with the multiple objectives 
The multi-objective problem is addressed using the Pareto approach, 

which identifies the optimal tradeoff among the objectives. The pro
cedure requires reformulating the problem as shown in Eq. (15a). 

min
x∈F

{
f1(x), f2(x), − f3(x)

}
(15a) 

In Eq. (15a), x represents both integer and continuous decisions. 
Here, f1 (x) represents the Total cost, f2(x) denotes the Environmental 
Impact (envImp), f3(x) is MinRatio, and F is the set of feasible boundaries 
defined by the constraints. 

To address the multi-objective optimization problem, we employ a 
structured approach as outlined below(Badejo and Ierapetritou, 2022c):  

• Step 1: Initially, we solve each objective independently to ascertain 
the optimal solution for that objective. This process is formalized in 
Eq. (15b) as follows: 

ηi =: min
x∈F

{fi(x)} ∀ i ∈ {1, 2, 3 } (15b)  

this step establishes the baseline performance for each objective.  
• Step 2: Based on the outcomes of Step 1, we determine the range of 

epsilon (ϵ) values, delineating the bounds for feasible solutions. This 
range is derived from the upper and lower limits identified in the 
solutions of (15b) forming a vector of ϵ vectors.  

• Step 3: The problem is then reformulated into a single objective 
framework by selecting one objective as the primary focus and 
applying epsilon constraints to the others. This method, known as 
epsilon constraint optimization, is depicted in the Eq. (15c). 

θ∗
j =: min

x∈F
fm
i ≤ϵm

j ∀ m∈{1, …, M}

f1(x) ∀ j ∈ J (15c)  

This step effectively transforms the multi-objective problem into a 
series of single-objective problems, each with its constraints defined 
by ϵ. It is important to note that m represents the discretization level, 
correlating to the desired number of Pareto points to be identified in 
the solution set.  

• Step 4: Each epsilon-constrained optimization problem is solved, 
yielding solutions that illustrate the various tradeoffs between the 
primary and secondary objectives. 

2.5.3. The rolling horizon framework 
Rolling horizon framework are typically adopted to solve either 

operation problems affected by the uncertainty of the input data fore
casts or large-scale optimization problems (Bhosekar et al., 2021; 
Kopanos and Pistikopoulos, 2014). In this case, we used the framework 
with the model for the optimal decisions. As depicted in Fig. 2, at each 
time step, the supply chain model is solved repeatedly, considered future 
time slots, and the initialization is determined by the current states of 
variables. Only the solutions for the current time step are implemented. 
In this way, the decisions of the optimal operations are updated with the 
current parameters and more accurate forecasts. 

The subsequent section applies this framework to a case study, of
fering a detailed examination of the results and discussion. 

3. Results and discussion 

This section provides a comprehensive discussion of three case 
studies, each demonstrating different capabilities of the model. The first 
case study showcases the model’s effectiveness in a more straightfor
ward context involving two products and two raw materials. Subse
quently, the second case study extends the complexity by introducing 
multiple products and raw materials, incorporating the dynamics of 
competing resources. These cases were approached with a focus on 
single and multi-objective optimization. The third case study un
derscores the importance of the extended model in addressing disruptive 
events within the supply chain. By incorporating disruption scenarios 
into the model, we showcase the model’s resilience and its capacity to 
guide decision-making during unforeseen events. This case study shows 
the significance of the extended model in enhancing supply chain 
robustness and adaptability. In what follows, we describe the supply 
chain network in detail, followed by each case study. 

3.1. Description of supply chain network 

The network, as shown in Fig. 3, comprises four distinct echelons: 
suppliers represented by red nodes, manufacturing sites denoted by 
green nodes, and warehouses indicated by blue nodes, all inter
connected to fulfill the demands emanating from ten consumers, illus
trated as orange nodes. Within this network, the suppliers provide the 
essential raw materials for pharmaceutical production. The 
manufacturing sites, operating on weekly production cycles, undertake 
the conversion of these raw materials into final products. Each 
manufacturing facility possesses the capacity to produce a specified 
number of batches per week, with each batch adhering to a predefined 
Bill of Materials (BOM) to ensure the accurate composition of products 
during the manufacturing process. Notably, only one product can be 
manufactured in each batch. Warehouses within the network serve as 

Fig. 2. Rolling Horizon Framework.  
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storage hubs where products are stored, and their quality is maintained 
before being dispatched to consumer locations. Within each warehouse, 
inventory levels of products are optimized to mitigate the impact of 
production and demand volatility. Finally, at the consumer locations, 
product demands are realized and transmitted to the warehouses at the 
onset of each week. 

The problem under consideration involves a multi-period optimiza
tion scenario spanning 10 discrete time periods, each representing a 
week. The primary objective is optimizing production processes to 
address spatial and temporal product demand fluctuations effectively. 
Demand from consumer nodes is observed at the beginning of each 
week, while product deliveries to these consumer nodes are scheduled 
for the end of the week. Within each week, supply chain operations must 
strategize production levels and inventory management to align with 
demand fluctuations and guarantee future demand fulfillment. This 
optimization task is guided by three overarching objectives that must be 
concurrently met. 

3.2. Case study I: Multi-objective two products two raw materials 

For the supply chain network described above, we examine a sce
nario involving two products derived from two distinct raw materials. 

The production recipe for these products and their periodic demand 
from consumers is shown in Fig. 4a and Fig. 4b respectively. The pri
mary goal of this supply chain network is to fulfill consumer demands 
while balancing the economic, environmental, and social objectives. To 
solve the problem, each objective is solved independently, and subse
quently, we apply the multi-objective optimization approach to holis
tically address the problem, balancing the competing objectives of the 
network. 

3.2.1. Individual objectives 
Following the solution procedures outlined in Section 2.5, the model 

was formulated and solved using GAMS/CPLEX (version 38.2.1) on a PC 
equipped with an Intel Core i7–10,510 U processor, running at 2.30 GHz 
and 16 GB of RAM. The complexity of the resulting model features a 
total of 4911 variables, of which 560 are discrete, and 2450 constraints 
bind it. The results are presented in Table 1. 

Addressing each objective individually reveals a tradeoff, as outlined 
in Table 1. When the total cost was minimized, the environmental 
impact was 70,502.6, and the minRatio was 78.6 %. Minimizing the 
environmental impact increases the total cost by 33 %, to 94,506.5, 
while this minRatio decreased to 75 %. And maximizing the minRatio 
increases the total cost to 91,001.2 (28 % increase) and the environ
mental impact to 73,336.4, a 41 % shift from the optimal value. These 
results highlight a tradeoff between the three objectives, as optimizing 
one without affecting the other objectives is impossible. 

Analyzing strategies across different objectives, Fig. 5 shows the 
aggregated production profiles over all periods. For a detailed sched
uling profile, we direct the reader to the supporting document. The 
figure indicates that minimizing total cost and maximizing the MinRatio 
increases the facility activity level compared to minimizing environ
mental impact. This is because increased production level increases the 
environmental impact; thus, for the environmental impact, the strategy 
is to achieve a minimum delivery level of 75 %. Examining the strategies 
for the other two objectives more closely, we see that cost minimization 
schedules, Fig. 5a, which represents the cost objective, dedicated facil
ities for a given products. This way, it can leverage the economy of scale 
due to the fixed cost of producing a particular product. Conversely, 
maximizing the minimum ratio, Fig. 5c uses facilities to produce enough 
to satisfy demands. 

3.2.2. Multi-Objective solution 
following the procedure in section 2, the multi-objective problem 

was solved. The results are depicted as the Pareto frontier in Fig. 6. In 
Fig. 6(a), the vertical axis represents the total cost, serving as the pri
mary objective, while the horizontal axis denotes environmental impact, 
with color codes indicating the minimum ratio value. Fig. 6(b) employs 
the same axes, with color codes representing aggregated service levels. 

The result shows that the environmental impact value significantly 
influences the interactions between the cost and minRatio objectives. 
For instance, as illustrated in Fig. 6(a), when the environmental impact 
value is lower (e.g., restricted to 51,000), the achievable minRatio is 75 
% (minimum coverage level). However, relaxing the environmental 
constraint increases the flexibility to explore combinations of total cost 
and minimum ratios within the limits of the environmental bounds. This 
flexibility emphasizes the opportunity cost between total cost and 
minimum ratio: with a fixed environmental budget, increasing the 
minimum ratio results in an increased total cost. However, while the 
minRatio ensures that products are distributed to all consumers, it re
duces the overall service level achievable, as shown in Fig. 6(b). 

Observing the interactions between the minRatio and the total cost, 
it is noticed that satisfying all consumers reduces the overall service 
level and increases the total cost. This observation underscores that, 
within the constraints of satisfying all consumers to a certain degree 
(social constraint of ensuring equity), there is a higher penalty, such as 
reducing satisfaction for other consumers who are more profitable. In 
managerial terms, social constraints are crucial in ensuring fair 

Fig. 3. Supply Chain Architecture.  

Fig. 4. Case I description; (a) Production recipe; (b) demands profile of prod
ucts 1 and 2. 
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treatment for all consumers and guaranteeing an equitable distribution 
of products, but they come at a higher cost. The environmental budget 
determines the limit of achievable outcomes, prompting a strategic 
tradeoff between cost and fairness. 

3.3. Case study II: multi-objective, multiproduct interacting raw materials 

In the second case study, we expand the scope of the problem to 
capture the manufacturing of ten products utilizing four raw materials. 
The recipe table for the product formulations is provided supporting 
document for reference. These products are categorized into five distinct 
types, each featuring two dosage variants. The broader product range 
shows the formulated model’s capacity to handle problems of higher 
dimensions (scalability). While retaining its fundamental structure, the 
supply chain network is now tasked with managing the interactions 
between the product portfolios. Product demand for all products is 
available for 10 periods, and the minimum demand coverage is 40 %. 
The goal is similar to that of the first case study: determining the solution 
for each objective and analyzing the tradeoff from the multi-objective 
problem. 

3.3.1. Individual objectives 
Following a goal similar to the small case study, we explore the so

lutions obtained from the different objectives and the interplay between 

these objectives when a multi-objective problem is solved. The model 
was formulated and solved in GAMS/CPLEX (v 38.2.1) on a PC with intel 
corei7–10,510 U, 2.30 GHz, and 16 GB of RAM. The model (MILP) in
cludes 21,951 variables (2160 discrete) and 10,390 constraints, 
considering a 5 % optimality gap and a maximum computation time of 
1000 s., and the computational time required to solve for the minimum 
cost, minimum environment impact, and maximum minRatio were 400, 
320, and 800 s, respectively. The resulting tradeoff table is shown in the 
Table 2: 

The nature of the results obtained for the total cost and minimum 
ratio columns is similar to that observed in Case I. Specifically, mini
mizing cost, we noticed that the minRatio obtained in this case was 40 
%, which means the environmental impact level was 128,415.0. 
Furthermore, minimizing environmental impact increases the cost by 
about 100 % while the minRatio stays the same at 40 %. Finally, when 
the minRatio is minimized, the cost increases to 141,894 and the envi
ronmental impact to 105,093. It is important to highlight that although 
the minimum ratio for total cost was 40 %, the overall service level was 
97.5 %. This suggests periods when only 40 % of a product’s demand 
was met. However, increasing the minRatio to 79.4 % reduces the ser
vice level to 81.2 % while increasing cost and environmental impact. 

3.3.2. Multi-objective solution 
The multi-objective problem was solved following the solution steps 

Table 1 
Tradeoff table for the best and worst solutions for each objective.  

Fig. 5. Aggregated scheduling profile for objectives (a) Cost; (b) Env. Impact; (c) Max Ratio.  

Fig. 6. Pareto Frontier for Case I: (a) Total cost vs Environmental Impact with minimum ratio; (b) Total cost vs Environmental Impact with service level.  
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outlined in Section 2.5. The computational time required to solve the 
problem was 4516 s. The resulting Pareto Frontier is presented in Fig. 7. 
The solution reveals that the environmental budget determines the 
flexibility between the achievable total cost and minimum ratio. Unlike 
the first case study, in this case, it is established that if we minimize the 
cost, the minimum coverage value we can achieve is 40 %. 

Thus, at lower environmental limits, there is a higher cost penalty to 
pay to achieve a higher minimum coverage. For instance, in Fig. 7, two 
achievable minimum ratios are observed when the environmental 
impact is confined to 70,000. In Fig. 7a, point one attains a 40 % min
imum ratio with a cost of 147,000, and the corresponding point in 
Fig. 7b has a service level of 60.85 %. Conversely, point two achieves a 
50 % minimum ratio with a higher cost of 153,000 and a lower service 
level of 57.4 %. Increasing the minimum environmental budget from 
70,000 to 90,000 increases the number of feasible points along the 
isoenvironmental impact line, and points with a higher minimum ratio 
have a lower service level. Also, the marginal penalty for increasing the 
minimum cost is lower. This case study establishes that a higher number 
of products increases the complexity of the problem since they compete 
for resources (raw materials and production times); it is more chal
lenging to balance the three objectives, particularly ensuring that the 
products are equitably distributed. 

3.4. Case study III: model study under disruption 

This case study compares the performance of the nominal model with 
the disruption model for situations under disruption. Case study I of two 
products and two raw materials examples were used for comparison. 
Furthermore, to ascertain the computational efficiency of the disruption 
model, we solved the large case study problem using the rolling horizon 
approach and see how well the model adapts to the demands and 
disruption variation. In what follows, we show the results for the model 
comparison case and the rolling horizon case. 

3.4.1. Comparison with base model 
For this problem, we investigated a scenario involving disruptions in 

manufacturing facility and warehouse nodes. The disruption scenario 
here is temporal; any facilities (manufacturing facility and warehouse) 
can shut down or partially produce. Fig. 8 shows the disruption profile of 

the facility and the warehouse in terms of capacity. As indicated, there 
are periods when the available capacity plus expansion cannot meet the 
actual facility level due to the level of disruption (weeks 5 and 6). If a 
facility is disrupted, it can operate at a partial level (partial disruption), 
or it cannot operate for the week (total disruption), and a disrupted 
facility cannot be expanded. 

Fig. 8 presents the expansion profiles of manufacturing facilities and 
warehouses comparing the optimal expansion levels attained across all 
models (illustrated in Fig. 8c and d). The results reveal the supply chain 
network’s adaptive capacity in response to disruptions. For the baseline 
model, there is no room for expansion at both the facility and the 
warehouse, which limits the production level, reducing the raw material 
consumed as well as the product demands satisfied. Conversely, when 
the disruption model is solved, the economic objective is constrained by 
the MinRatio of 75 %, this will make the expansion more evenly 
distributed between facilities available for expansion, increasing the 
total cost. The dynamics of the result here is such that there was an 
anticipatory capacity increase in weeks 3 and 4, where the capacity 
increased in preparation for the expected disruptions of weeks 5 and 6. 
This is a proactive strategy. Finally, when the disruption model is 
relaxed, a similar trend of result is noticed with that of the disruption 
model, the approach transitions to an economically driven strategy, 
which is less conservative with capacity usage. This shift is demon
strated by a slight increase in utilized capacity, suggesting a lean to
wards centralization and larger facility operations to attain economies of 
scale. The presence of unused capacity under both models points to a 
complex balancing act between maintaining operational readiness for 
disruptions and avoiding the inefficiencies of underutilized resources. 

Further results for this case study are presented in Table 3 and Fig. 8 
where four models are solved. The baseline model is the developed 
model, the baseline-relaxed model is the developed model relaxing the 
social constraint or setting the minimum coverage to zero. The disrup
tion model is the one developed for disruption with active social 
constraint while the disruption-relaxed model is the disruption model 
with relaxed social constraints. Since we solve the same problem, the 
complexity of the baseline model is similar to case one (MILP with 4911 
variables with 560 being discrete variables and 2450 constraints), while 
for the disruption model, the number of variables was 5431 (800 are 
discrete variables, and 4631 continuous variables) and there are 3550 

Table 2 
Tradeoff table for the best and worst solutions for each objective’s case II.  

Fig. 7. Pareto Frontier for Case II: (a) Total cost vs Environmental Impact with minimum ratio; (b) Total cost vs Environmental Impact with service level.  
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constraints. 
The economic objective was solved for each of the models, and Fig. 9 

shows the distributions of the economic and environmental budgets. For 
the baseline model, there was no feasible solution. This is because of the 
social constraints on the minimum coverage. Relaxing the social con
straints and solving the baseline model (baseline-social relaxed) results in 
a solution with 0 % minRatio and 76 % aggregated service level. 
Invariably, there is at least one period where the service level for a 
particular product for a particular consumer was 0 %. The increased in 
total cost because of the penalty incurred by backorder (24 % of the total 
demands are not met) as shown in Fig. 9. Table 3. When the disruption 
model was solved with active social constraint, the optimal solution 
ensures that a minRatio of 75 %. Solution guarantees all consumers at 
least 75 % of every product requested. However, the service level is 86 

%. There were expansions as indicated by the increased level of raw 
material consumption Fig. 9a as well as environmental footprint due to 
production level in Fig. 9b. Finally, when the disruption-social relaxed 
model was solved the service level increases (indicated by the lower 
backorder in Fig. 9a), and solution guarantees 31 % delivery of all 
products to all consumers. Also, relative to the disruption without 
relaxation model there was a higher production level as more raw ma
terials were consumed, which lowers the backorder. 

There are two insights from these results: (i) The supply chain 
network exhibits a dynamic response to anticipated disruptions, which 
is a proactive resource allocation strategy, (ii) relaxing the disrupted 
model reflects a tradeoff between maintaining economic efficiency in 
operations and achieving social constraint during disruptions. When 
facility capacity is expanded, the transportation arcs are adjusted to 
accommodate the increased flow of products. This expansion involves 
scaling up the capacity of transportation modes to handle the additional 
volume. However, this adjustment comes with an extra cost due to the 
fixed cost associated with deploying additional trucks of the same mode. 

3.4.2. Rolling horizon approach for large scale problem 
This case study demonstrates the computational tractability of 

disruption model applied to the big case study. First, we conducted a 
sensitivity analysis by perturbing the minRatio from 0 % until the model 
becomes infeasible followed by a temporal analysis using the rolling 
horizon framework to assess the model’s adaptability to the topological 

Fig. 8. Capacity profile for manufacturing facility and warehouses. (a)available capacity and the expansion levels at manufacturing facility; (b)available capacity and 
the expansion levels at warehouses; (c) comparison of capacity levels used by the models for manufacturing sites; (d) comparison of capacity levels used by the 
models for warehouses. 

Table 3 
Comparing results for nominal and disruption model.  

Models Total cost 
($) 

Env. 
Impact 

Min. 
Ratio 

Service 
Level 

Solution 
time 

Baseline Infeasible model NA 
Baseline-social 

Relaxed 
90,369.3 67,511.9 0 % 76 % 5 s 

Disruption 87,963.3 73,652.1 75 % 86 % 12 s 
Disruption- 

social Relaxed 
81,426.2 77,041.3 31 % 93 % 8 s  

Fig. 9. Objective distribution for all models; (a) Cost Distribution; (b) Environmental Distribution.  
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disruption for a selected minimum ratio. The model (MILP) includes 
23,351 variables (2480 discrete) and 16,350 constraints, considering a 5 
% optimality gap and a maximum computation time of 1500 s. 

The sensitivity analysis reveals that the problem becomes infeasible 
at minRatio of 0.6. This outcome suggests that even with the existing 
flexibility level, it may be impossible to meet the minRatio requirements 
if products are competing for the same resources. To mitigate such 
challenges, two approaches can be considered: outsourcing or grouping 
similar products together. For instance, if product 1 and product 2 are 
similar— for example different dosage forms—they can be grouped to 
aggregate their minRatio rather than calculating it individually. For 
cases within this feasible minRatio threshold, the model required a 
computational time of 1000 s. The computational time increases with 
the minRatio level. Fig. 10 shows the result of the sensitivity analysis, 
showing the relationship between the total cost (y-axis), minRatio (x- 
axis), environmental impact (indicated by the size of the markers) and 
the service level (indicated by the color gradients of the marker). The 
plot reveals a direct relationship between the minRatio and the total 
cost, as the minRatio increases, there is also an increase in the total costs. 
The environmental impact also increases with the minRatio and as the 
color gradation suggests that higher service level is associated with 
lower minRatio. 

The slope of the curve in Fig. 10 illustrates the rate of change in total 
costs relative to changes in the minimum ratio (minRatio). A steeper 
slope indicates a more significant cost change, primarily driven by fa
cility expansion. Notably, the steepest slopes between minRatio values 
of 0.2–0.3 and 0.4–0.5 suggest substantial cost increases, potentially 
pointing to significant facility expansions during these intervals. 
Conversely, less steep slopes observed in other segments imply that the 
focus shifts towards optimizing production levels and managing in
ventory rather than expanding facilities. 

The observed general trend is that Increasing the minRatio results in 
higher total costs and environmental impacts, alongside a decline in 
service level, illustrating the trade-offs between social constraints, 
environmental impact, and cost implications. The observation that 
higher service levels are associated with lower minRatio suggests 
improved service efficiency at reduced ratios. This trend highlights the 
significant operational benefits of maintaining lower minRatio. Relaxing 
these constraints allows the supply chain greater flexibility and effi
ciency, enabling better resource allocation and cost-effective distribu
tion. Consequently, the system can prioritize more profitable consumer 
segments, enhancing overall profitability. A reduced minRatio alleviates 
the burden of uniformly high service levels, which may not be 
economically viable across all segments.Fig. 11 represents the outcomes 
of solving the supply chain problem across different minimum ratios 
(minRatio) of 0 %, 30 %, and 50 %. This analysis was conducted over 
five iterations, each spanning 10 horizons and two time periods were 
implemented at each iteration, effectively covering a 10-week time 
horizon. The solution times recorded for these minRatio were 4200 s, 
5050 s, and 6000 s, respectively, indicating that higher minRatio 

requires longer solution times. In the graph, the horizontal axis labels 
the horizon from 1 to 5, representing each set of two time periods over 
the 10-week span. The left y-axis quantifies the total cost, depicted by 
the bars, which are color-coded and patterned to correspond with 
different minRatio—solid red for 0 %, striped, green for 30 %, and blue 
hatch for 50 %. This visual differentiation allows for an immediate grasp 
of cost variations across different minRatio settings and horizons. The 
right y-axis measures the service level, shown through line plots with 
different symbols indicating the respective minRatio values—circles for 
0 %, triangles for 30 %, and stars for 50 %. These lines show a trend of 
decreasing service level as the minRatio increases, which is typical in 
scenarios where higher minimum thresholds may limit flexibility in 
response to demand fluctuations. 

Focusing on the 0 % minRatio in Fig. 11, we observe specific dy
namics that illustrate how supply chain costs and service levels are 
influenced under minimal constraints. At zero minRatio, the cost in
creases result from capacity expansions undertaken to hedge against 
potential disruptions. Interestingly, horizons that show lower costs 
correlate with periods of reduced disruption levels, which are also 
associated with higher service levels. This pattern indicates that when 
disruptions are minimal, less capacity expansion is necessary, leading to 
reduced operational costs and improved service delivery. 

Furthermore, the general trend in Fig. 11shows that increasing the 
minRatio leads to higher total costs and reduced service levels. This 
relationship stems from two main factors: the need to expand production 
capacity and the costs from backorders due to unmet demands. 
Expanding capacity requires significant investment, especially at higher 
minRatio, where more facilities must operate at higher utilization levels. 
Managing backorders involves addressing demand shortfalls, which are 
more pronounced under higher disruption levels. 

In low disruption scenarios (horizon 2 and 3), it is feasible to expand 
production capacity, but the extent and allocation depend on the min
Ratio. A higher minRatio necessitates capacity increases across more 
facilities, leading to widespread but shallow enhancements. Conversely, 
at a lower minRatio capacity expansion happens at fewer facilities, 
allowing for more significant upgrades at each site. This strategic deci
sion balances cost and operational flexibility. Under high disruption 
levels (horizon 1, 4, and 5), even increased capacity might not meet 
demand, resulting in substantial backorder costs. This highlights the 
complex balance between maintaining sufficient production capacity 
and managing service levels effectively. 

4. Conclusion and recommendations 

In this study, we explore the complexities of optimizing pharma
ceutical supply chains, focusing on tactical network strategies. Our 
approach integrates a multi-objective model formulation, considering 
cost, environmental impact, and the minimum ratio objective. 
Furthermore, we developed an enhanced model capable of effectively 
managing disruptions within the supply chain. 

Our analysis reveals insights into the behavior of the supply chain 
network under different optimization objectives. When minimizing Fig. 10. Cost against minimum ratio.  

Fig. 11. Rolling horizon results for comparing minimum ratio values.  
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costs, the network tends to maximize capacity utilization, leveraging 
economies of scale. Prioritizing environmental objectives leads to 
reduced production levels to comply with lower minimum coverage 
requirements. Maximizing the minimum ratio prompts a decentralized 
operational approach, enhancing distributed demand satisfaction. Using 
the ϵ-constraint approach, we examine the trade-offs between mini
mizing environmental considerations, maximizing minimum ratio, and 
minimizing total cost. Minimizing total cost yields higher service levels 
but often results in lower minimum coverage, potentially limiting de
mand fulfillment in less profitable regions. Maximizing the minimum 
ratio sacrifices overall service levels but increases minimum coverage, 
ensuring broader consumer reach and the environmental budget limits 
the flexibility between the other two objectives. 

Comparing the baseline and enhanced disruption models highlights 
the importance of disruption management and mitigation strategies. 
During disruptions, the baseline model struggles to meet minimum 
coverage targets, leading to reduced service levels and increased total 
costs. In contrast, the enhanced disruption model demonstrates 
improved resilience, effectively responding to disruptions by optimizing 
capacity utilization. Furthermore, examining cases with and without 
relaxed social constraints shows the significance of social considerations 
in supply chain management. The social constraint acts as a lower bound 
for minimum coverage, guiding facility expansions strategies to meet 
demand requirements while maintaining social objectives. Overall, our 
study provides insights into the dynamic response of supply chain net
works to disruptions. Balancing economic efficiency with social con
siderations offers valuable guidance for optimizing pharmaceutical 
supply chains. 

One limitation of our study lies in its primary focus on the tactical 
level of supply chain management, potentially overlooking broader 
strategic or operational intricacies. Future research should explore the 
interplay between regions with varying standards of living to better 
capture equity considerations, particularly regarding minimum 
coverage requirements. Additionally, while our analysis considers the 
expansion of all facilities during disruptions, further investigation is 
needed, after supply chain design, to identify facilities that should be 
prioritized for fortification against disruptions, enhancing the resilience 
of the supply chain network. 
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