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In this study, we tackle the problem of pharmaceutical supply chain optimization using a multi-objective model
that simultaneously considers cost minimization, environmental impact minimization, and maximizing of service
level equity (minimum ratio). This represents the three alms of sustainability which are key in manufacturing.
Furthermore, we developed a disruption model capable of effectively managing disruptions within the supply
chain and compared the capabilities with the baseline model.

The result shows how the supply chain network behaves under different objectives. Minimizing costs led to
maximizing capacity utilization, while environmental objectives result in reduced production levels to meet
coverage requirements, and maximizing the minimum ratio expands more facilities. Using an epsilon constraint,
the trade-off shows that the environmental budget limits the flexibility between the other total cost achievable
and the minimum ratio. Comparing the baseline model and the disruption model underscores the importance of
proactive disruption management in maintaining service levels and managing costs effectively. Ultimately, our
study offers practical insights for optimizing pharmaceutical supply chains, balancing economic efficiency with

social responsibility to navigate disruptions and challenges successfully.

1. Introduction and literature

The pharmaceutical industry occupies a crucial position in the global
economy, experiencing a remarkable sixfold increase in the trade value
of pharmaceutical goods from $113 billion in 2000 to $629 billion in
2019 (McKinsey, 2023; Gonzalez Pena et al., 2021; PwC, 2021). In
tandem with this growth, its supply chain—the Pharma SC—has become
an extensive, global network characterized by numerous stages and
participants (GEP Blogs, 2023; Moosivand et al., 2019). However,
globalization has ushered in additional complexities - including in-
flations, geopolitical tensions, emergence of novel medicinal modalities,
and evolving work practices- necessitating a proactive and adaptable
management strategy for sustained success. Effectively navigating the
complexities of managing the Pharma SC network is non-trivial, given
the consequences of inefficiencies, which can manifest in significant
delays, and compromised product quality, thereby posing pressing
challenges for industry leaders (Doshi, 2022). The Pharma SC plays a
critical role in ensuring drug availability and access, yet it remains
susceptible to various risks, such as dependence on single-source inputs
and inadequate awareness of supplier-related risks (GEP Blogs, 2023).
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Threats like natural calamities, cyber-attacks, trade disputes, and pan-
demics loom large, posing substantial hazards to the supply chain’s
integrity. To mitigate these risks, strategies such as digitalization,
bolstered supply chain visibility, rigorous risk management protocols,
and incorporation of cutting-edge technologies are imperative. Further,
optimizing production schedules, managing inventory more effectively,
and diversifying sourcing strategies are essential for enhancing resil-
ience (Badejo and lerapetritou, 2023a; Chopra and Sodhi, 2014; Ivanov,
2020). Pharmaceutical leaders must adopt a strategic, integrated
approach, from focusing on continuous improvement to addressing
broader, long-term challenges.

Given the pharmaceutical industry’s pivotal role, it is crucial to
adopt optimization techniques in its supply chain. Mathematical
modeling is an effective method to streamline operations, improving
economic and environmental efficiency and overall effectiveness (Shah,
2005, 2004). These models significantly enhance supply chain visibility,
aid strategic planning, and promote stakeholder collaboration. This
paper proposes developing mathematical model strategies to optimize
the pharmaceutical supply chain. The proposed model considers feasible
production schedules, inventory management, and interactions to
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optimize tactical decisions while focusing on long-term objectives.

Modeling the Pharma SC involves navigating challenges like service
level expectations, market uncertainties, and complex manufacturing
processes. Optimizing drug inventory amidst manufacturing constraints,
demand volatility, and production variability is critical (Hansen et al.,
2023; Sampat et al., 2021). Uthayakumar and Priyan (2013), Sampat
et al. (2021), and Sabouhi et al. (2018) have proposed models that
optimize inventory management, minimize backorders, and enhance
operational efficiency by integrating production with distribution,
addressing regulatory constraints, and preparing for disruptions through
strategies like fortification and diversified sourcing. These models aim to
improve supply chain efficiency by focusing on critical service levels,
reducing reactive scheduling, and accommodating various disruptions,
offering a comprehensive approach that considers multiple products,
lead times, and spatial constraints. Subsequent research by Hasani and
Khosrojerdi (2016), Goodarzian et al. (2021), Melancon et al. (2021),
and Azadehranjbar (2021) further emphasizes efficiency and adapt-
ability improvements in the pharmaceutical sector’s supply chain. The
strategic and tactical pharma SC design has placed efforts on balancing
competing objectives (Amaro and Barbosa-Povoa, 2008; Meijboom and
Obel, 2007; Mousazadeh et al., 2015), I Duarte et al. (2022b; I 2022a)
developed a tool for creating equitable and sustainable Pharma SC
through a multi-objective mixed integer linear programming model that
considers social, economic, and environmental sustainability. This tool,
applied to the meningococcal meningitis vaccine supply chain, reveals
tradeoffs and opportunities, highlighting the benefits of integrating
sustainability into supply chain design. Similarly, Mousazadeh et al.
(2015) and Rekabi et al. (2022) have explored decision-making under
uncertainty and developed models that address congestion, job sched-
uling, and environmental impacts, offering solutions that balance mul-
tiple objectives. Collectively, these models contribute to advancing
Pharma SC management by prioritizing efficiency, adaptability, and
sustainability.

Supply chain resilience is fundamental to sustaining operations
during disruptions or perturbations, focusing on both proactive and
reactive capabilities to manage and mitigate potential impacts. This
concept refers to a firm’s ability to maintain, execute, and adapt its
strategies to achieve planned performance outcomes despite challenges
(Ivanov, 2018). Strategic design principles such as low vulnerability and
high recoverability are critical, ensuring that supply chains can with-
stand and quickly recover from disruptive events at minimal cost. These
events can severely affect operations and overall performance. Without
adequate resilience, firms may experience financial losses, mismatches
between demand and supply, and destabilization of operational policies
in production, distribution, and inventory control, underscoring the
necessity of resilient practices (Gupta et al., 2021; Ivanov et al., 2016;
Pavlov et al., 2019; Yoon et al., 2020).

In addressing supply chain resilience, it is essential to balance design-
for-efficiency with design-for-resilience (Ivanov and Dolgui, 2021). The
former utilizes lean and agile principles to optimize the use of resour-
ces—material, time, capital, technology, and workforce—to reduce
waste and enhance profitability. Meanwhile, design-for-resilience pre-
pares supply chains to cope with severe disruptions, employing strate-
gies like maintaining strategic redundancies such as inventory levels,
capacity buffers, and backup suppliers. These measures help supply
chains absorb shocks without degrading performance and, if necessary,
reactive capabilities are employed to restore operations. The recovery
process, however, can be costly and time-consuming. Thus, building
resilience involves a continuous commitment to risk mitigation, pre-
paredness for disruptions, stabilization of operations post-disruption,
and effective recovery strategies to either return to or improve upon
previous performance levels. The diagram presented in Fig. 1 illustrates
the comprehensive framework of supply chain resilience, encompassing
both resistance and recovery strategies. Resistance strategies, employed
pre-disruption, focus on minimizing the initial impact of disruptions and
enhancing the supply chain’s robustness. These include inventory
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Fig. 1. Resiliency in Supply Chain Network.

optimization, capacity reservation, and node and arc fortification, which
collectively ensure a buffer against unexpected supply interruptions. On
the other hand, the recovery strategies, activated post-disruption, aim to
restore and potentially enhance supply chain operations. Key recovery
tactics involve process flexibility with multi-product facilities and ca-
pacity scalability, which allow for rapid adaptation and scaling of op-
erations to meet changing demands and conditions. By integrating both
resistance and recovery strategies, this paper provides a strategy to
enhance the resiliency of a pharmaceutical supply chain network. De-
tailing how organizations can effectively prepare for disruptions and
recover from them, ensuring operational continuity and competitive
advantage. The complexity and interconnectivity of pharmaceutical
supply chains significantly increase their vulnerability to disruptions, as
highlighted by the COVID-19 pandemic’s impact on global supply net-
works. This situation underscores the urgent need for resilience through
optimization strategies and mathematical models (Badejo and lerape-
tritou, 2023b; 2022a; 2022b; Montoya-Torres, 2021; Sawik, 2017; Xu
and Song, 2020). Research, including studies by Jlassi, Halouani, and
Mhamedi (2021)(Jlassi et al., 2021) and Ivanov et al.(Ivanov et al.,
2019, 2017; Ivanov and Dolgui, 2021), emphasizes the importance of
addressing regulatory, inventory, counterfeit, and financial risks, and
the necessity for adaptability in managing disruptions. The role of
flexibility, agility, and visibility in enhancing resilience is further sup-
ported by Shweta, Kumar, and Chandra(2022), aligning with initiatives
for green supply chain practices as Kumar et al. (2018) advocated to
promote sustainability. This body of work emphasizes resilience and
sustainability, using a combination of technological innovation, stra-
tegic planning and environmental considerations.

While existing literature has extensively explored supply chain
design and the management of product flow across various echelons in
the pharmaceutical sector, our work introduces a novel model that op-
timizes the tactical aspects of the pharmaceutical supply chain. The
proposed approach ensures feasible production schedules in multi-
product settings. We further developed an enhanced model which effi-
ciently addresses potential disruptions and demonstrates computational
efficiency. Crucially, our research elucidates the interplay among three
objectives within the pharmaceutical domain: economic viability,
environmental sustainability, and social responsibility. This approach
provides a holistic view of supply chain optimization that ensures
sustainability.
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2. Methodology
2.1. Model description

The Pharma SC under investigation is structured as a four-echelon
network, from raw material sourcing at the supplier echelon, through
transformation and inventory at the manufacturing sites and ware-
houses, to product delivery to the consumer echelon. The network ini-
tiates with the raw material suppliers (s € S), tasked with providing raw
materials (r € RC.% ). These suppliers are divided into two primary
categories: suppliers of active pharmaceutical ingredients (APIs) and
excipients (fillers), each critical for the production of pharmaceuticals.
These raw materials are transferred to manufacturing facilities. (f € F),
at the manufacturing facilities, the raw materials are subjected to pro-
cessing and formulation procedures to synthesize the intended phar-
maceutical products. Within these facilities, it is possible to produce
various products p € PC.%, which depends on the composition of active
ingredients. After the manufacturing phase, the finished products are
packaged and routed to warehouses w € WC 7. At the warehouse,
customer demands, and inventory are managed. Notably, the warehouse
echelon permits product sharing among warehouses, enhancing logis-
tical flexibility. From the warehouse, products are sent to consumers
regions ¢ € C, satisfy the demands, «, for products. Products and raw
materials can be shipped across nodes through m shipped by multiple
m € M model of transportation

The proposed framework is based on the following important
assumptions:

(1) Multi-period Demand Forecast: A demand forecast for all prod-
ucts over several periods facilitates strategic planning and
resource allocation to meet anticipated needs.

(2) Known Cost Structure: The model assumes detailed knowledge of
the cost structure, including:

o Transportation Costs: Expenses for moving goods across the
supply chain.

o Product Allocation Costs: Costs related to distributing products
to meet demand.

o Unmet Demand Costs: Financial implications of not meeting
demand.

o Inventory Handling Costs: Expenses for storage and manage-
ment of inventory.

o Raw Material Costs: Prices of inputs needed for product
manufacturing.

(3) Multi-Modal transportation options : This offers a range of m €
M modes of transportation to guarantee the efficient trans-
portation of raw materials and products. In the event of node
disruptions, the transportation modes can be interchanged to
ensure uninterrupted logistics. It should be noted that in this
paper, we have addressed disruptions in nodes alone thus the
multi-modal transportation modes are included to adapt to
changes in node capacity and ensure distribution of raw materials
and products.

(4) Fixed Facility Locations: The geographical positions of suppliers,
manufacturing sites, warehouses, and distribution centers are
predetermined.

(5) Environmental Impact: The environmental impact is available
and obtained from the work of Duarte et al. (2022a; 2022b) and
Mota et al. (2018). The ReCiPe LCIA methodology was used to
quantify and evaluate the potential environmental impact asso-
ciated with a product’s life cycle. The method considers a range of
impact categories (17 in this case) and using normalization fac-
tors, standardizes the different impact categories into a common
unit enabling comparability (RIVM, 2022). Readers are directed
to the supplementary information for further details of the
categories.
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2.2. Constraints

Supplier constraints: At the supplier echelon, Eq. (1a) ensures that raw
material supply by each s does not exceed supplier capacity, and Eq. (1b)
bounds the amount of raw material that flows through each trans-
portation mode at every time period. The integer variable sTrips is the
number of trips that are required to transport the required raw material
r

ZQ;.f.m,t < scap” V (r,s,t) (1a)
fim
> Qe < sTrips x teapy, ¥(m, 1) (1b)
rsf

Manufacturing facilities : At the manufacturing facilities, Eqs. (2a)-
(2e) compute product quantities and resource utilization associated with
event scheduling. Eqs. (2a)-(2c) ensure these events are properly
scheduled, using binary variables y;, and X;,,s,, where y;, =1 indicates
an operating facility and X; .5, = 1 denotes task i occurring at event n in
facility f at time t . In this context, events denote the initiation of a task.
Egs. (2d) limit the number of batches that can be processed in a facility
during an event, and Eq. (2e) is the mass balance that tracks the con-
centration of each ingredient.

Xin,f.t < yf.[ V(l TLf, t) (23)
ZXi.nf,t < 1 v(nwfﬁ t) (Zb)
D Kinge < 1Y(f,1) (20)
Binge <B™ X Xing: ¥ (i,n,f,t) d
D pCE % Binge = Qf, V(k.f,0) (2€)

During production, the total number of batches produced is limited
by the facility’s capacity; this is shown in Eq. (2f). To hedge against
sourcing uncertainty, raw materials are stored in the facility; the in-
ventory of the raw material is tracked by Eq. (2g). Furthermore, the
products are shipped to the warehouses, and the total amount of prod-
ucts shipped to the warehouse cannot exceed the number of products
manufactured at the facility; this is captured by Eq. (2h). Eq. (2f) ensures
that the products being shipped from facility to warehouse do not exceed
the available quantity of products.

@, < fCap} ¥(f,p, 1) )
Invfr”.t = Inv;.t—l - er”t + ZQ‘:\)‘,m‘[ V(T.,f, t) (2g)
QGi= Y Qo VO£ 1) (2h)
> Q@i < FWTripsy, x tCapy, ¥(m. t) 20
pfw

Warehouse constraints : At the warehouses, Eq. (3a) tracks product
inventory, while (3b) restricts the quantity of material stored to the
capacity of the warehouse. Finally, Eq. (3c) ensures that the product
flowing from warehouses to the consumer stays within the bounds of the
capacity of the transportation modes.

vWe, =IvWo, 4+ Y Qo+ D Qe — D Qo YW,1) (32)
fm fim ¢m

InvWP, < wCap?, ¥ (p,w, t) (3b)
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> Qe < WCTFipsy, x tCapy, V(m,t) (30

pw.C

Consumer Constraints: Eqs. (4a) shows the continuity equation for the
products and captures the backorder from all consumers;Eq. (4b) rep-
resents the social constraints which ensures that each consumer’s de-
mand is satisfied to a level determined by the minimum coverage rate for
each product %, and Eq. (4c) computes the aggregated service level
constraints at the given period t.

Zvacmt = ”/Ic),t - %)lc)t v(p.c,t) (4a)
X <Y Qe V(P,CD) (4b)
. Y wmn@eme
serviceLevel(t) = =22 v (¢t (40)
(® S, ®

2.3. Objective functions

Economic Objective: This focuses on minimizing the overall oper-
ational costs within the supply chain, which includes various compo-
nents such as raw material costs, production costs, inventory costs,
transportation costs, and backorder penalties.

max(TotalCost)

TotalCost = rm € ost + pr # ost + Inv # ost + tranport ¢ ost
-+ backorder ¢ ost (5a)

The raw material cost rm € ost is calculated based on the unit cost of
each material required for production. This is shown in Eq. (5b).

m¢ost=> Q% C (5b)
sfmt

The production cost (pr #ost) has two components, which are the
fixed and the variable cost. The fixed cost is constant regardless of the
product produced. The binary variable X;,; determines if the equipment
is used for a given task. The variable cost depends on the level of pro-
duction output. Eq. (5¢) shows the combination of these cost
components.

pr€ost = Zﬁxed Cr X X + Zvar 77 < Q, (5¢)
inft pft
The inventory cost is computed by Eq. (6d) and involves the cost for
raw materials and each product.

Inv @ ost = Zh '} x nvF;; + Zh &r x InvWe, (5d)

rfit pwit

The backorder cost is the penalty paid for unmet demand and
computed with Eq. (5e).

backorder ¢ ost = Zb e ox A, (5e)

pet

The transportation cost calculates the cost of moving commodities
across arcs. There are two components: the fixed cost for using a
particular transportation mode and the variable cost, which depends on
the distance traveled. The expression in Eq. (6f) shows the calculations.

STripsm: +
trport €ost = Zfixed Cm X | FWTrips,, + | + Z Var @ m X Sun
(m.t) WCTTips,, (ko mE)

X Qf.”’.m.t
(50

Environmental objective: This seeks to minimize the ecological
footprint of the entire supply chain network, focusing on minimizing
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emissions generated across all operations. The objectives are defined
using the Life Cycle Analysis (LCA) methodology. This is shown in Eq.
(6). Egs. (6a) and (6b) show the total impact of emissions from facility
operations and product transportation.

min(envimp) (6a)

envImp = facilitylmpact + transportImpacts (6b)

computes the emissions from facilities by multiplying the environ-
mental impact characterization factor for producing one unit of product
for each category (s.”m?") by the quantity of products manufactured
and the normalization factor for each category. It should be noted that
the factor ensures that various environmental impact categories are
comparable.

facilityImpact = ZK” xsSm x Q (6c)
nf
(6d)

transportimpact = Z KX o I X Sy X QF

wd ML
(1, Koot mt)

Similarly, the emission from the transportation is computed by
multiplying the environmental impact characterization factor of trans-
porting a unit of product through a distance ~.7m!, by the distance
traveled and the quantity of products that is transported. Eq. (6d) re-
flects this component of the environmental objective.

For both Egs. (6¢) and (6d), there are 17 environmental impact
categories with varying units, this is different for each product as well as
the transportation. The normalization term «” in these equations pro-
vides coefficients for each category (1), standardizing the assessment of
diverse impacts onto a common scale (Duarte et al., 2022b; RIVM,
2022).

Effectiveness Objective: This objective maximizes the minimum of
all service levels as detailed in Eq. (7).

max{min(ratioPharmD‘c’t)} (7a)

c pit

minRatio < ratioPharmD?, ¥ (p, c, t) (7b)
. [ Qen]

ratioPharmDF, = o Y (p,c,t) (70)

Eq. (7a) shows that the objective is a max-min objective, which is
reformulated by Egs. (7b) and (7c¢) (Floudas, 1995; Grossmann, 2012).
To reformulate the Eq. (7a) , we introduced a new variable minRatio and
ensures that the value of the minRatio is less than or equal to the values
of the calculated ratio that is shown in Eq. (7b). Eq. (7¢c) calculates the
delivery ratio for each of the products delivered to each consumer. By
maximizing the minRatio, the lowest ratio is driven up. This objective
strategically focuses on enhancing equity in product distribution within
the supply chain, explicitly targeting maximizing the least satisfied
consumer’s service level. Doing so addresses disparities in demand
fulfillment across different consumer segments. The essence of this
approach lies in ensuring that product delivery is efficient and inclu-
sively distributed among all consumers, regardless of the variability in
their demand patterns.

2.4. Extension to consider disruptions

The equations governing the production capacities of facilities and
warehouses have been revised to enhance the model’s resilience against
disruptions. Recognizing that disruptions may reduce or eliminate ca-
pacity, buffer mechanisms were introduced. These buffers enable ca-
pacity expansion at unaffected nodes within the network, effectively
managing fluctuations in demand. Additionally, to strengthen the sup-
ply chain’s robustness, the available transportation modes were
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diversified, thus contributing directly to the resilience of the network’s
arcs. It should be noted that in this paper, we have addressed disruptions
in nodes alone thus the multi-modal transportation modes are included
to adapt to changes in node capacity and ensure distribution of raw
materials and products. Furthermore, we categorize node disruptions
into two distinct modes: full disruption and partial disruption. Nodes
experiencing full disruption completely lose their operational capacity,
rendering them unavailable for use. Conversely, nodes subject to partial
disruption exhibit reduced operational capacity. Regardless of the
disruption level, expansion of disrupted nodes is not feasible. Further-
more, recovery from any form of disruption requires one week.

Mathematically, we introduced new integer variables yEs;,. To
modify Egs. (2d) and (2f) incorporating additional integer constraints to
address the adjustments in capacity level. In Eq. (8), the parameters
yDis; ;, indicates a facility’s status, where Omeans disrupted and 1 means
operational. Eq. (8a) states that capacities can only be expanded if the
facility is undisrupted, and Eq. (8b) ensures that the expansion levels for
facilities follow a predefined order. The predefined order comprises
three expansion levels, with expansion level I preceding expansion level
II, and expansion level II preceding level III. Facilities in this case in-
cludes both manufacturing sites and warehouses.

YEf1e <yDisg, ¥ (f,1,t) | ord(l) =1 (8a)

YErie <YEpu: ¥ (f, L1 t| ord(l) <ord(ll) ) (8b)

Following the determination of expansion decisions, Eq. (9) com-
putes the potential capacity expansions at manufacturing sites and
warehouses relative to their existing capacities. Eq. (9a) calculates the
expansion at the facilities as the sum of the capacity associated with the
expansion level selected. Similarly, Eq. (9b) calculates the expansion
needed at the warehouse. Finally Eq. (9¢) computes the increased batch
size using the expansion in the facility divided by the number of event
points.

fexpCap}‘,t = E yEf,z_[ x expCapyx ¥ (k7f7 t) (92)
1
wexpCap¥ , = E YEw1: X expCapyx V(k,w, t) (9b)
1
expCa
Bexpy, = % V(. t) (9¢)

The model incorporates expansions into the facility operating level
and maximum batch size equations, capturing the nodes’ enhanced ca-
pacity. Eq. (10a) and (10b) presents the updated capacity for
manufacturing facilities and warehouses, respectively, while Eq. (10c)
computes the new batch size so as to account for the extra capacity. In
Eq. (10), the new capacity is derived by multiplying the old capacity
with the disruption indicator, denoted as &, € [0,1]. These expressions
substitute Eqs. (2f) and (3b) limiting the capacity level for the facilities
and warehouses.

newFCap}‘yt = fCap}‘ X 8f¢ + fexpCap}‘Y[ Y (f,k,t) (10a)
newWCapj, = wCapj x 8, + wexpCapj, V(w,k,t) (10b)
B, = B™ + Bexpy, Y(f,t) (100)

Once the updated capacities are computed, the quantity of products
and inventory amount that can be stored are bounded by the new ca-
pacity. These are shown in Egs. (11a) and (11b)

Q}{.t < newFCap}‘_t Y(f,k,t) (11a)

InvWE | < newWCap*,, v(w, k, t) (11b)

It should be noted that the maximum batch size, By, also becomes
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variable computed in Eq. (10c). If directly employed, such as in the
equation (2d), a bilinear term - which is a product of continuous variable
Bs, and binary variable X;,s,- arises as shown in Eq. (12a). This makes

the model non-linear.
Bi,n,f,t < Bf,t X Xi,n.f.t v (i; nf, t) (12a)

To maintain linearity in the model, a linearization technique is
employed, as illustrated in the Eqs (12b) — (12d)

Binfe < BV™ X Xinge ¥ (i,n,f,t) (12b)
Bi‘n,f,t < Bf,t A4 (l.7 Tl7f7 t) (12¢)
Binge > Bre = BV x (1= Xinge) V (i,n,f,0) 12d)

The linearization is a bigM linearization for a Bilinear term (Floudas,
1995; Mohammadi and Harjunkoski, 2020), where By"®™ is the bigM
value, chosen so that the Eq. (12d) is satisfied. It should be noted that
this approach is crucial in enabling us to explore a larger feasible solu-
tion space efficiently and to find near-optimal solutions within a prac-
tical computation time (Floudas, 1995; Grossmann et al., 2016).

The extra capacity increases the operational cost by adding a new
term to Eq. (6a); this is the cost of expansion and recovery of the dis-
rupted facility. The new cost terms are shown in Eq. (14). Egs. (6b) and
(6¢) are modified to (13a) and (13b):

pr&ost = Eflﬁxed Ty X Xipe + zf:var 7? X Qf"_[ + (fgl f &% YEfi.
inft pfit Lt)

+ E ’f%f.t XyDl‘Sf,t
h

(13a)

Inv Zost = Zh C; x vF;, + Zh &r x InvWe, + Zh &8 x InvDh,

rfit pwit p.dt
+ Zw Cwi X YEu1e + ZW'%fI X yDis,, ¢
(wlt) 0

(13b)

As shown in the cost expression, the network’s resilience depends on
effectively managing consumer demands, achieved through the cost
tradeoff between handling backorders and investing in expanding fa-
cilities, at manufacturing sites and warehouses. This balance is essential
in assessing the network’s ability to adapt and respond to demand
volatility amid disruptions, ensuring its robustness, flexibility, and ca-
pacity to maintain operational efficiency in the face of demand vari-
ability. Such an approach positions the network for long-term
sustainability.

The modified model corresponds to a Mixed Integer Linear Pro-
gramming (MILP) problem with the continuous variables determining
the flows, binary variables determining the operational status (task to be
performed at the facilities and sequence), and the integer variables
determining the transportation selections modes and the number of trips
between arcs. In the following section, we elaborate on the solution
procedure and the strategies employed to mitigate the computational
complexity of the model.

2.5. Solution procedure

The section describes the approach taken towards handling integer
variables and delineates the solution procedures utilized for addressing
the multi-objective problem.

2.5.1. Dealing with the integer variables

Tightening constraints were used to enhance the model’s computa-
tional efficiency. The constraint was used to improve the estimation for
the integer variables(Floudas, 1995). Estimated upper bound is added as
a ceiling of the total products divided by the available capacity as shown
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in Egs. (14a) and (14b). This provides a good guess for the integer
variables(Brunaud, 2019). Mathematically, it signifies that the number
of trips between two nodes during a given time cannot exceed the
maximum number of trips needed if there is just one transportation
mode. For example, if a shipment of 10 pounds requires a truck with a
4-pound capacity, the constraint indicates a maximum of 3 trips to fulfill
the transport.

. z:knn'Qﬁn’mt
Tripsy,, > ————= VY(m,t 14
nTripsp. > r— (m,t) (14a)
ann’Qﬁn’mt
Tripsme < 1 ———— VY(m, 14b
nirps,: < 1+ tcapn V(m,t) (14b)

2.5.2. Dealing with the multiple objectives

The multi-objective problem is addressed using the Pareto approach,
which identifies the optimal tradeoff among the objectives. The pro-
cedure requires reformulating the problem as shown in Eq. (15a).

min{fy(x), f>(x), —f3(x)} (152)

In Eq. (15a), x represents both integer and continuous decisions.
Here, f; (x) represents the Total cost, f>(x) denotes the Environmental
Impact (envImp), f3(x) is MinRatio, and [ is the set of feasible boundaries
defined by the constraints.

To address the multi-objective optimization problem, we employ a
structured approach as outlined below(Badejo and Ierapetritou, 2022c):

e Step 1: Initially, we solve each objective independently to ascertain
the optimal solution for that objective. This process is formalized in
Eq. (15b) as follows:

n; =: ng{ﬁ(x)} vie{l,2,3} (15b)
this step establishes the baseline performance for each objective.
Step 2: Based on the outcomes of Step 1, we determine the range of
epsilon (¢) values, delineating the bounds for feasible solutions. This
range is derived from the upper and lower limits identified in the
solutions of (15b) forming a vector of e vectors.

Step 3: The problem is then reformulated into a single objective
framework by selecting one objective as the primary focus and
applying epsilon constraints to the others. This method, known as
epsilon constraint optimization, is depicted in the Eq. (15c).

A Vjes

0 =: min (15¢)

J x€F
fr<em v mefl, .., My

This step effectively transforms the multi-objective problem into a
series of single-objective problems, each with its constraints defined
by e. It is important to note that m represents the discretization level,
correlating to the desired number of Pareto points to be identified in
the solution set.
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e Step 4: Each epsilon-constrained optimization problem is solved,
yielding solutions that illustrate the various tradeoffs between the
primary and secondary objectives.

2.5.3. The rolling horizon framework

Rolling horizon framework are typically adopted to solve either
operation problems affected by the uncertainty of the input data fore-
casts or large-scale optimization problems (Bhosekar et al., 2021;
Kopanos and Pistikopoulos, 2014). In this case, we used the framework
with the model for the optimal decisions. As depicted in Fig. 2, at each
time step, the supply chain model is solved repeatedly, considered future
time slots, and the initialization is determined by the current states of
variables. Only the solutions for the current time step are implemented.
In this way, the decisions of the optimal operations are updated with the
current parameters and more accurate forecasts.

The subsequent section applies this framework to a case study, of-
fering a detailed examination of the results and discussion.

3. Results and discussion

This section provides a comprehensive discussion of three case
studies, each demonstrating different capabilities of the model. The first
case study showcases the model’s effectiveness in a more straightfor-
ward context involving two products and two raw materials. Subse-
quently, the second case study extends the complexity by introducing
multiple products and raw materials, incorporating the dynamics of
competing resources. These cases were approached with a focus on
single and multi-objective optimization. The third case study un-
derscores the importance of the extended model in addressing disruptive
events within the supply chain. By incorporating disruption scenarios
into the model, we showcase the model’s resilience and its capacity to
guide decision-making during unforeseen events. This case study shows
the significance of the extended model in enhancing supply chain
robustness and adaptability. In what follows, we describe the supply
chain network in detail, followed by each case study.

3.1. Description of supply chain network

The network, as shown in Fig. 3, comprises four distinct echelons:
suppliers represented by red nodes, manufacturing sites denoted by
green nodes, and warehouses indicated by blue nodes, all inter-
connected to fulfill the demands emanating from ten consumers, illus-
trated as orange nodes. Within this network, the suppliers provide the
essential raw materials for pharmaceutical production. The
manufacturing sites, operating on weekly production cycles, undertake
the conversion of these raw materials into final products. Each
manufacturing facility possesses the capacity to produce a specified
number of batches per week, with each batch adhering to a predefined
Bill of Materials (BOM) to ensure the accurate composition of products
during the manufacturing process. Notably, only one product can be
manufactured in each batch. Warehouses within the network serve as
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Fig. 2. Rolling Horizon Framework.
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Fig. 3. Supply Chain Architecture.

storage hubs where products are stored, and their quality is maintained
before being dispatched to consumer locations. Within each warehouse,
inventory levels of products are optimized to mitigate the impact of
production and demand volatility. Finally, at the consumer locations,
product demands are realized and transmitted to the warehouses at the
onset of each week.

The problem under consideration involves a multi-period optimiza-
tion scenario spanning 10 discrete time periods, each representing a
week. The primary objective is optimizing production processes to
address spatial and temporal product demand fluctuations effectively.
Demand from consumer nodes is observed at the beginning of each
week, while product deliveries to these consumer nodes are scheduled
for the end of the week. Within each week, supply chain operations must
strategize production levels and inventory management to align with
demand fluctuations and guarantee future demand fulfillment. This
optimization task is guided by three overarching objectives that must be
concurrently met.

3.2. Case study I: Multi-objective two products two raw materials

For the supply chain network described above, we examine a sce-
nario involving two products derived from two distinct raw materials.
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Fig. 4. Case I description; (a) Production recipe; (b) demands profile of prod-
ucts 1 and 2.
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The production recipe for these products and their periodic demand
from consumers is shown in Fig. 4a and Fig. 4b respectively. The pri-
mary goal of this supply chain network is to fulfill consumer demands
while balancing the economic, environmental, and social objectives. To
solve the problem, each objective is solved independently, and subse-
quently, we apply the multi-objective optimization approach to holis-
tically address the problem, balancing the competing objectives of the
network.

3.2.1. Individual objectives

Following the solution procedures outlined in Section 2.5, the model
was formulated and solved using GAMS/CPLEX (version 38.2.1) on a PC
equipped with an Intel Core i7-10,510 U processor, running at 2.30 GHz
and 16 GB of RAM. The complexity of the resulting model features a
total of 4911 variables, of which 560 are discrete, and 2450 constraints
bind it. The results are presented in Table 1.

Addressing each objective individually reveals a tradeoff, as outlined
in Table 1. When the total cost was minimized, the environmental
impact was 70,502.6, and the minRatio was 78.6 %. Minimizing the
environmental impact increases the total cost by 33 %, to 94,506.5,
while this minRatio decreased to 75 %. And maximizing the minRatio
increases the total cost to 91,001.2 (28 % increase) and the environ-
mental impact to 73,336.4, a 41 % shift from the optimal value. These
results highlight a tradeoff between the three objectives, as optimizing
one without affecting the other objectives is impossible.

Analyzing strategies across different objectives, Fig. 5 shows the
aggregated production profiles over all periods. For a detailed sched-
uling profile, we direct the reader to the supporting document. The
figure indicates that minimizing total cost and maximizing the MinRatio
increases the facility activity level compared to minimizing environ-
mental impact. This is because increased production level increases the
environmental impact; thus, for the environmental impact, the strategy
is to achieve a minimum delivery level of 75 %. Examining the strategies
for the other two objectives more closely, we see that cost minimization
schedules, Fig. 5a, which represents the cost objective, dedicated facil-
ities for a given products. This way, it can leverage the economy of scale
due to the fixed cost of producing a particular product. Conversely,
maximizing the minimum ratio, Fig. 5c uses facilities to produce enough
to satisfy demands.

3.2.2. Multi-Objective solution

following the procedure in section 2, the multi-objective problem
was solved. The results are depicted as the Pareto frontier in Fig. 6. In
Fig. 6(a), the vertical axis represents the total cost, serving as the pri-
mary objective, while the horizontal axis denotes environmental impact,
with color codes indicating the minimum ratio value. Fig. 6(b) employs
the same axes, with color codes representing aggregated service levels.

The result shows that the environmental impact value significantly
influences the interactions between the cost and minRatio objectives.
For instance, as illustrated in Fig. 6(a), when the environmental impact
value is lower (e.g., restricted to 51,000), the achievable minRatio is 75
% (minimum coverage level). However, relaxing the environmental
constraint increases the flexibility to explore combinations of total cost
and minimum ratios within the limits of the environmental bounds. This
flexibility emphasizes the opportunity cost between total cost and
minimum ratio: with a fixed environmental budget, increasing the
minimum ratio results in an increased total cost. However, while the
minRatio ensures that products are distributed to all consumers, it re-
duces the overall service level achievable, as shown in Fig. 6(b).

Observing the interactions between the minRatio and the total cost,
it is noticed that satisfying all consumers reduces the overall service
level and increases the total cost. This observation underscores that,
within the constraints of satisfying all consumers to a certain degree
(social constraint of ensuring equity), there is a higher penalty, such as
reducing satisfaction for other consumers who are more profitable. In
managerial terms, social constraints are crucial in ensuring fair
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Table 1
Tradeoff table for the best and worst solutions for each objective.
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Objectives Total cost ($) Environmental Impact minRatio
Min (Cost) 71201.1 70502.6 78.6%
Min (Envimp) 94506.5 51979.3 75.0%
Max(minRatio) 91001.2 73336.4 100%
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Fig. 5. Aggregated scheduling profile for objectives (a) Cost; (b) Env. Impact; (c) Max Ratio.

1.00

[ ]
90 A
4 0.95

™
¢ H °
851 5
x g 0.90
g & =

30) o]
L8 P} n.ﬂn.g
3] =
3 é =
= 754 (¢} 0.80

L]
Lo}
70 0.75

57.5

5.0 60.0 625 650 67.5 70.0
Environmental Impact x 1e-3

(a)

52.5

1.00

°
' 0.95
il g l]v“JLlT>J
3
é Y
i o) -2
Py 0.85 §
é
1 « 0.80
Q@
Q 0.7
52,5 55.0 57.5 60.0 625 650 67.5 70.0

Environmental Impact x le-3

(b)

Fig. 6. Pareto Frontier for Case I: (a) Total cost vs Environmental Impact with minimum ratio; (b) Total cost vs Environmental Impact with service level.

treatment for all consumers and guaranteeing an equitable distribution
of products, but they come at a higher cost. The environmental budget
determines the limit of achievable outcomes, prompting a strategic
tradeoff between cost and fairness.

3.3. Case study II: multi-objective, multiproduct interacting raw materials

In the second case study, we expand the scope of the problem to
capture the manufacturing of ten products utilizing four raw materials.
The recipe table for the product formulations is provided supporting
document for reference. These products are categorized into five distinct
types, each featuring two dosage variants. The broader product range
shows the formulated model’s capacity to handle problems of higher
dimensions (scalability). While retaining its fundamental structure, the
supply chain network is now tasked with managing the interactions
between the product portfolios. Product demand for all products is
available for 10 periods, and the minimum demand coverage is 40 %.
The goal is similar to that of the first case study: determining the solution
for each objective and analyzing the tradeoff from the multi-objective
problem.

3.3.1. Individual objectives
Following a goal similar to the small case study, we explore the so-
lutions obtained from the different objectives and the interplay between

these objectives when a multi-objective problem is solved. The model
was formulated and solved in GAMS/CPLEX (v 38.2.1) on a PC with intel
corei7-10,510 U, 2.30 GHz, and 16 GB of RAM. The model (MILP) in-
cludes 21,951 variables (2160 discrete) and 10,390 constraints,
considering a 5 % optimality gap and a maximum computation time of
1000 s., and the computational time required to solve for the minimum
cost, minimum environment impact, and maximum minRatio were 400,
320, and 800 s, respectively. The resulting tradeoff table is shown in the
Table 2:

The nature of the results obtained for the total cost and minimum
ratio columns is similar to that observed in Case I. Specifically, mini-
mizing cost, we noticed that the minRatio obtained in this case was 40
%, which means the environmental impact level was 128,415.0.
Furthermore, minimizing environmental impact increases the cost by
about 100 % while the minRatio stays the same at 40 %. Finally, when
the minRatio is minimized, the cost increases to 141,894 and the envi-
ronmental impact to 105,093. It is important to highlight that although
the minimum ratio for total cost was 40 %, the overall service level was
97.5 %. This suggests periods when only 40 % of a product’s demand
was met. However, increasing the minRatio to 79.4 % reduces the ser-
vice level to 81.2 % while increasing cost and environmental impact.

3.3.2. Multi-objective solution
The multi-objective problem was solved following the solution steps
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Table 2
Tradeoff table for the best and worst solutions for each objective’s case II.
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Objectives Total cost ($) Environmental Impact MinRatio
Min (Cost) 83739.5 128415.0 40%
Min (Envimp) 190578 51567.4 40%
Max(minRatio) 141894 105093.0 79.4%

outlined in Section 2.5. The computational time required to solve the
problem was 4516 s. The resulting Pareto Frontier is presented in Fig. 7.
The solution reveals that the environmental budget determines the
flexibility between the achievable total cost and minimum ratio. Unlike
the first case study, in this case, it is established that if we minimize the
cost, the minimum coverage value we can achieve is 40 %.

Thus, at lower environmental limits, there is a higher cost penalty to
pay to achieve a higher minimum coverage. For instance, in Fig. 7, two
achievable minimum ratios are observed when the environmental
impact is confined to 70,000. In Fig. 7a, point one attains a 40 % min-
imum ratio with a cost of 147,000, and the corresponding point in
Fig. 7b has a service level of 60.85 %. Conversely, point two achieves a
50 % minimum ratio with a higher cost of 153,000 and a lower service
level of 57.4 %. Increasing the minimum environmental budget from
70,000 to 90,000 increases the number of feasible points along the
isoenvironmental impact line, and points with a higher minimum ratio
have a lower service level. Also, the marginal penalty for increasing the
minimum cost is lower. This case study establishes that a higher number
of products increases the complexity of the problem since they compete
for resources (raw materials and production times); it is more chal-
lenging to balance the three objectives, particularly ensuring that the
products are equitably distributed.

3.4. Case study III: model study under disruption

This case study compares the performance of the nominal model with
the disruption model for situations under disruption. Case study I of two
products and two raw materials examples were used for comparison.
Furthermore, to ascertain the computational efficiency of the disruption
model, we solved the large case study problem using the rolling horizon
approach and see how well the model adapts to the demands and
disruption variation. In what follows, we show the results for the model
comparison case and the rolling horizon case.

3.4.1. Comparison with base model

For this problem, we investigated a scenario involving disruptions in
manufacturing facility and warehouse nodes. The disruption scenario
here is temporal; any facilities (manufacturing facility and warehouse)
can shut down or partially produce. Fig. 8 shows the disruption profile of
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the facility and the warehouse in terms of capacity. As indicated, there
are periods when the available capacity plus expansion cannot meet the
actual facility level due to the level of disruption (weeks 5 and 6). If a
facility is disrupted, it can operate at a partial level (partial disruption),
or it cannot operate for the week (total disruption), and a disrupted
facility cannot be expanded.

Fig. 8 presents the expansion profiles of manufacturing facilities and
warehouses comparing the optimal expansion levels attained across all
models (illustrated in Fig. 8c and d). The results reveal the supply chain
network’s adaptive capacity in response to disruptions. For the baseline
model, there is no room for expansion at both the facility and the
warehouse, which limits the production level, reducing the raw material
consumed as well as the product demands satisfied. Conversely, when
the disruption model is solved, the economic objective is constrained by
the MinRatio of 75 %, this will make the expansion more evenly
distributed between facilities available for expansion, increasing the
total cost. The dynamics of the result here is such that there was an
anticipatory capacity increase in weeks 3 and 4, where the capacity
increased in preparation for the expected disruptions of weeks 5 and 6.
This is a proactive strategy. Finally, when the disruption model is
relaxed, a similar trend of result is noticed with that of the disruption
model, the approach transitions to an economically driven strategy,
which is less conservative with capacity usage. This shift is demon-
strated by a slight increase in utilized capacity, suggesting a lean to-
wards centralization and larger facility operations to attain economies of
scale. The presence of unused capacity under both models points to a
complex balancing act between maintaining operational readiness for
disruptions and avoiding the inefficiencies of underutilized resources.

Further results for this case study are presented in Table 3 and Fig. 8
where four models are solved. The baseline model is the developed
model, the baseline-relaxed model is the developed model relaxing the
social constraint or setting the minimum coverage to zero. The disrup-
tion model is the one developed for disruption with active social
constraint while the disruption-relaxed model is the disruption model
with relaxed social constraints. Since we solve the same problem, the
complexity of the baseline model is similar to case one (MILP with 4911
variables with 560 being discrete variables and 2450 constraints), while
for the disruption model, the number of variables was 5431 (800 are
discrete variables, and 4631 continuous variables) and there are 3550
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Fig. 7. Pareto Frontier for Case II: (a) Total cost vs Environmental Impact with minimum ratio; (b) Total cost vs Environmental Impact with service level.
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Fig. 8. Capacity profile for manufacturing facility and warehouses. (a)available capacity and the expansion levels at manufacturing facility; (b)available capacity and
the expansion levels at warehouses; (c) comparison of capacity levels used by the models for manufacturing sites; (d) comparison of capacity levels used by the

models for warehouses.

Table 3

Comparing results for nominal and disruption model.
Models Total cost Env. Min. Service Solution

(€3] Impact Ratio Level time
Baseline Infeasible model NA
Baseline-social 90,369.3 67,511.9 0% 76 % 5s
Relaxed

Disruption 87,963.3 73,652.1 75 % 86 % 12s
Disruption- 81,426.2 77,041.3 31% 93 % 8s

social Relaxed

constraints.

The economic objective was solved for each of the models, and Fig. 9
shows the distributions of the economic and environmental budgets. For
the baseline model, there was no feasible solution. This is because of the
social constraints on the minimum coverage. Relaxing the social con-
straints and solving the baseline model (baseline-social relaxed) results in
a solution with 0 % minRatio and 76 % aggregated service level.
Invariably, there is at least one period where the service level for a
particular product for a particular consumer was 0 %. The increased in
total cost because of the penalty incurred by backorder (24 % of the total
demands are not met) as shown in Fig. 9. Table 3. When the disruption
model was solved with active social constraint, the optimal solution
ensures that a minRatio of 75 %. Solution guarantees all consumers at
least 75 % of every product requested. However, the service level is 86
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%. There were expansions as indicated by the increased level of raw
material consumption Fig. 9a as well as environmental footprint due to
production level in Fig. 9b. Finally, when the disruption-social relaxed
model was solved the service level increases (indicated by the lower
backorder in Fig. 9a), and solution guarantees 31 % delivery of all
products to all consumers. Also, relative to the disruption without
relaxation model there was a higher production level as more raw ma-
terials were consumed, which lowers the backorder.

There are two insights from these results: (i) The supply chain
network exhibits a dynamic response to anticipated disruptions, which
is a proactive resource allocation strategy, (ii) relaxing the disrupted
model reflects a tradeoff between maintaining economic efficiency in
operations and achieving social constraint during disruptions. When
facility capacity is expanded, the transportation arcs are adjusted to
accommodate the increased flow of products. This expansion involves
scaling up the capacity of transportation modes to handle the additional
volume. However, this adjustment comes with an extra cost due to the
fixed cost associated with deploying additional trucks of the same mode.

3.4.2. Rolling horizon approach for large scale problem

This case study demonstrates the computational tractability of
disruption model applied to the big case study. First, we conducted a
sensitivity analysis by perturbing the minRatio from 0 % until the model
becomes infeasible followed by a temporal analysis using the rolling
horizon framework to assess the model’s adaptability to the topological
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Fig. 9. Objective distribution for all models; (a) Cost Distribution; (b) Environmental Distribution.
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disruption for a selected minimum ratio. The model (MILP) includes
23,351 variables (2480 discrete) and 16,350 constraints, considering a 5
% optimality gap and a maximum computation time of 1500 s.

The sensitivity analysis reveals that the problem becomes infeasible
at minRatio of 0.6. This outcome suggests that even with the existing
flexibility level, it may be impossible to meet the minRatio requirements
if products are competing for the same resources. To mitigate such
challenges, two approaches can be considered: outsourcing or grouping
similar products together. For instance, if product 1 and product 2 are
similar— for example different dosage forms—they can be grouped to
aggregate their minRatio rather than calculating it individually. For
cases within this feasible minRatio threshold, the model required a
computational time of 1000 s. The computational time increases with
the minRatio level. Fig. 10 shows the result of the sensitivity analysis,
showing the relationship between the total cost (y-axis), minRatio (x-
axis), environmental impact (indicated by the size of the markers) and
the service level (indicated by the color gradients of the marker). The
plot reveals a direct relationship between the minRatio and the total
cost, as the minRatio increases, there is also an increase in the total costs.
The environmental impact also increases with the minRatio and as the
color gradation suggests that higher service level is associated with
lower minRatio.

The slope of the curve in Fig. 10 illustrates the rate of change in total
costs relative to changes in the minimum ratio (minRatio). A steeper
slope indicates a more significant cost change, primarily driven by fa-
cility expansion. Notably, the steepest slopes between minRatio values
of 0.2-0.3 and 0.4-0.5 suggest substantial cost increases, potentially
pointing to significant facility expansions during these intervals.
Conversely, less steep slopes observed in other segments imply that the
focus shifts towards optimizing production levels and managing in-
ventory rather than expanding facilities.

The observed general trend is that Increasing the minRatio results in
higher total costs and environmental impacts, alongside a decline in
service level, illustrating the trade-offs between social constraints,
environmental impact, and cost implications. The observation that
higher service levels are associated with lower minRatio suggests
improved service efficiency at reduced ratios. This trend highlights the
significant operational benefits of maintaining lower minRatio. Relaxing
these constraints allows the supply chain greater flexibility and effi-
ciency, enabling better resource allocation and cost-effective distribu-
tion. Consequently, the system can prioritize more profitable consumer
segments, enhancing overall profitability. A reduced minRatio alleviates
the burden of uniformly high service levels, which may not be
economically viable across all segments.Fig. 11 represents the outcomes
of solving the supply chain problem across different minimum ratios
(minRatio) of 0 %, 30 %, and 50 %. This analysis was conducted over
five iterations, each spanning 10 horizons and two time periods were
implemented at each iteration, effectively covering a 10-week time
horizon. The solution times recorded for these minRatio were 4200 s,
5050 s, and 6000 s, respectively, indicating that higher minRatio
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requires longer solution times. In the graph, the horizontal axis labels
the horizon from 1 to 5, representing each set of two time periods over
the 10-week span. The left y-axis quantifies the total cost, depicted by
the bars, which are color-coded and patterned to correspond with
different minRatio—solid red for 0 %, striped, green for 30 %, and blue
hatch for 50 %. This visual differentiation allows for an immediate grasp
of cost variations across different minRatio settings and horizons. The
right y-axis measures the service level, shown through line plots with
different symbols indicating the respective minRatio values—circles for
0 %, triangles for 30 %, and stars for 50 %. These lines show a trend of
decreasing service level as the minRatio increases, which is typical in
scenarios where higher minimum thresholds may limit flexibility in
response to demand fluctuations.

Focusing on the 0 % minRatio in Fig. 11, we observe specific dy-
namics that illustrate how supply chain costs and service levels are
influenced under minimal constraints. At zero minRatio, the cost in-
creases result from capacity expansions undertaken to hedge against
potential disruptions. Interestingly, horizons that show lower costs
correlate with periods of reduced disruption levels, which are also
associated with higher service levels. This pattern indicates that when
disruptions are minimal, less capacity expansion is necessary, leading to
reduced operational costs and improved service delivery.

Furthermore, the general trend in Fig. 11shows that increasing the
minRatio leads to higher total costs and reduced service levels. This
relationship stems from two main factors: the need to expand production
capacity and the costs from backorders due to unmet demands.
Expanding capacity requires significant investment, especially at higher
minRatio, where more facilities must operate at higher utilization levels.
Managing backorders involves addressing demand shortfalls, which are
more pronounced under higher disruption levels.

In low disruption scenarios (horizon 2 and 3), it is feasible to expand
production capacity, but the extent and allocation depend on the min-
Ratio. A higher minRatio necessitates capacity increases across more
facilities, leading to widespread but shallow enhancements. Conversely,
at a lower minRatio capacity expansion happens at fewer facilities,
allowing for more significant upgrades at each site. This strategic deci-
sion balances cost and operational flexibility. Under high disruption
levels (horizon 1, 4, and 5), even increased capacity might not meet
demand, resulting in substantial backorder costs. This highlights the
complex balance between maintaining sufficient production capacity
and managing service levels effectively.

4. Conclusion and recommendations

In this study, we explore the complexities of optimizing pharma-
ceutical supply chains, focusing on tactical network strategies. Our
approach integrates a multi-objective model formulation, considering
cost, environmental impact, and the minimum ratio objective.
Furthermore, we developed an enhanced model capable of effectively
managing disruptions within the supply chain.

Our analysis reveals insights into the behavior of the supply chain
network under different optimization objectives. When minimizing
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costs, the network tends to maximize capacity utilization, leveraging
economies of scale. Prioritizing environmental objectives leads to
reduced production levels to comply with lower minimum coverage
requirements. Maximizing the minimum ratio prompts a decentralized
operational approach, enhancing distributed demand satisfaction. Using
the e-constraint approach, we examine the trade-offs between mini-
mizing environmental considerations, maximizing minimum ratio, and
minimizing total cost. Minimizing total cost yields higher service levels
but often results in lower minimum coverage, potentially limiting de-
mand fulfillment in less profitable regions. Maximizing the minimum
ratio sacrifices overall service levels but increases minimum coverage,
ensuring broader consumer reach and the environmental budget limits
the flexibility between the other two objectives.

Comparing the baseline and enhanced disruption models highlights
the importance of disruption management and mitigation strategies.
During disruptions, the baseline model struggles to meet minimum
coverage targets, leading to reduced service levels and increased total
costs. In contrast, the enhanced disruption model demonstrates
improved resilience, effectively responding to disruptions by optimizing
capacity utilization. Furthermore, examining cases with and without
relaxed social constraints shows the significance of social considerations
in supply chain management. The social constraint acts as a lower bound
for minimum coverage, guiding facility expansions strategies to meet
demand requirements while maintaining social objectives. Overall, our
study provides insights into the dynamic response of supply chain net-
works to disruptions. Balancing economic efficiency with social con-
siderations offers valuable guidance for optimizing pharmaceutical
supply chains.

One limitation of our study lies in its primary focus on the tactical
level of supply chain management, potentially overlooking broader
strategic or operational intricacies. Future research should explore the
interplay between regions with varying standards of living to better
capture equity considerations, particularly regarding minimum
coverage requirements. Additionally, while our analysis considers the
expansion of all facilities during disruptions, further investigation is
needed, after supply chain design, to identify facilities that should be
prioritized for fortification against disruptions, enhancing the resilience
of the supply chain network.
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