

Modulating CO₂ electrocatalytic conversion to organics pathway by the catalytic site dimension

Haiping Xu^{ab†}, Jianxin Wang^{ab†}, Haiying He^{c*}, Inhui Hwang^d, Yuzi Liu^e, Chengjun Sun^d, Haozhe Zhang^{af}, Tao Li^{bd}, John V. Muntean^a, Tao Xu^{b*}, Di-Jia Liu^{af*}

^aChemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA

^bDepartment of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA

^cDepartment of Physics and Astronomy, Valparaiso University, Valparaiso, IN 46383, USA

^dX-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA

^eCenter for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA

^fPritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA

*Email: haiying.he@valpo.edu; Email: txu@niu.edu; djliu@anl.gov

†H.X and J.W. contribute equally to this paper

ABSTRACT: Electrochemical reduction of carbon dioxide to organic chemicals provides a value-added route in mitigating greenhouse gas emission. We report a family of carbon-supported Sn electrocatalysts with the tin size varying from single atom, ultra-small clusters to nano-crystallite. High single-product Faradaic efficiency (*FE*) and low onset potential of CO₂ conversion to acetate (*FE* = 90 % @ -0.6 V), ethanol (*FE* = 92% @ -0.4 V), and formate (*FE* = 91% @ -0.6 V) were achieved over the catalysts of different active site dimensions. The CO₂ conversion mechanism behind these highly selective, size-modulated *p*-block element catalysts were elucidated by structural characterization and computational modeling, together with kinetic isotope effect investigation.

INTRODUCTION

Electrochemical CO₂ reduction reaction (CO₂RR) to form organic liquids such as ethanol, acetate, or formate offers an economic path to mitigate the greenhouse gas emission at scale when coupled with renewable but intermittent electricity generated from solar or wind.¹⁻¹⁴ To achieve CO₂RR to various organics with high single-product selectivity at low overpotential is essential in reducing separa-

tion cost and energy consumption. However, these conversion reactions often involve escalating numbers of proton coupled electron transfers (PCET) and carbon-carbon coupling, rendering them more technically challenging compared to more robust two-electron conversion to single-carbon products such as CO.¹⁵⁻²⁵ In this study, we report the design and synthesis of a family of carbon-supported tin electrocatalysts with the metal active size systematically varying from the atomically dispersed, ultra-small

clusters to nano-crystallites. We observed nearly unit single-product selectivity of CO₂RR to acetate, ethanol, or formate at the record low overpotentials in the kinetic region modulated simply by the tin active site dimension. As an abundant *p*-block element, this study shows that tin (Sn) could serve as another low-cost alternative in the electrocatalyst materials library for CO₂ conversion to multi-carbon liquid organics. Tin as a main group element augments the current transition metal-based materials with new prospect in promoting atomic orbital-molecular interaction during the catalytic reaction. Structural characterization and computational modeling revealed that carbon-carbon coupling and PCET can be modulated by the size and the electronic structures of tin, which ultimately altered the electrocatalytic CO₂RR pathways. A kinetic isotope effect (KIE) study by exchanging H₂O with D₂O of the electrolyte found major shift in the conversion product make-up as the function of electrochemical potentials during CO₂RR.

Sn metal crystallite has been found effective in converting CO₂ to formate and CO²⁶⁻³¹, both are 2-electron processes without the C-C bond formation. Converting CO₂ to multi-carbon (C₂₊) organics, however, requires significantly higher numbers of PCET (for example, 12 electrons for ethanol and 8 electrons for acetate) and C-C coupling between the reaction intermediates. In this study, we found that Sn could mechanistically achieve high *FEs* to C₂ chemicals such as acetate (*FE* = 90 % at -0.6 V), or ethanol

(*FE* = 92% at -0.4 V), in addition to formate (*FE* = 91% at -0.6 V) by simply tuning the metal site dimension through controlling the tin loading in the catalyst. All the electrochemical potentials described in this study refer to the reversible hydrogen electrode (RHE) unless otherwise indicated.

RESULTS AND DISCUSSION

We adopted our previously reported amalgamated lithium metal (ALM) synthesis method³² and prepared a series of carbon (Vulcan XC-72) supported catalysts of different Sn dispersion and cluster size. The active center size control was achieved by applying different amounts of metallic Sn into the molten lithium (Li) during the amalgamation step (Fig. 1a, 1b, 1c). Sn was found to be uniformly dissolved and atomically dispersed at all loadings after quenching the molten lithium to solid at room temperature, determined by X-ray absorption spectroscopy (Fig. S1). After converting Li to LiOH under humidified air, the Sn/LiOH mixtures were blended with XC-72, followed by leaching away LiOH by water, transferring Sn over the carbon surface. During the transfer process, formation of additional hydroxyl and carboxyl groups occurred as the result of reactions between strong alkaline solution with carbon (Fig. S2), which helped to anchor highly dispersed Sn over carbon. All steps after quenching were performed at the ambient temperature without agglomeration. This distinctive feature is in stark contrast to

the conventional catalyst preparation method using chemical precursors followed by high temperature reduction, which often causes random metal size distribution through agglomeration.

Seven supported catalysts, Sn/C-x with nominal tin loading of x wt.% where x from 0.12 to 12, were prepared. At the lowest loading of 0.12 wt.%, Sn in Sn/C-0.12 is in a highly dispersed atomic form, as is shown by high-angle annular dark-field aberration-corrected scanning transmission electron microscopy (HAADF-STEM) (Fig. 1d). As the loading increased by ten folds to 1.2 wt.%, Sn atoms in Sn/C-1.2 start to assemble to ultrasmall clusters, while the surface of atoms remains exposed (Fig. 1e). Further increase of Sn loading by another ten folds to 12 wt.% leads to the formation of 3 to 5 nm metal crystallites in Sn/C-12, as is shown by the bright field transmission electron microscopy (TEM) ²⁶ (Fig. 1f and Fig. S3). Powder X-ray diffraction (PXRD) detected no scattering peak from Sn related species in Sn/C-0.12 and Sn/C-1.2, consistent with the highly dispersed ultrasmall metal active sites in the absence of long-range pattern in these catalysts. In contrast, Sn metal and Sn oxides were observed in Sn/C-12, indicating the formation of large crystallites as the Sn loading increased (Fig. S4).

The coordination structures surrounding Sn in Sn/C-0.12, Sn/C-1.2 and Sn/C-12 were analyzed by the radial distribution function (RDF) extracted from the extended x-ray absorption fine structure (EXAFS) and the electronic

structure of Sn in these catalysts were investigated by x-ray absorption near edge structure (XANES). The RDF of the first coordination shell of Sn in Sn/C-0.12 is predominantly Sn-O with a coordination number (CN) of 3.7 (± 0.3), similar to that of Sn(II) acetylacetone, or Sn(AcAc)₂, in which tin is ligated by four oxygen (Fig. 1g, Fig. S5a, Table S1). The electronic structure of Sn in Sn/C-0.12 in XANES mimics that of Sn(AcAc)₂ with tin being in +2 oxidation state (Fig. S6a). Combined coordination and electronic structures lead to a DFT simulated μ -oxo Sn-O-Sn active site which will be discussed below. As the Sn loading increased, the Sn-Sn peak appears in the RDF of Sn/C-1.2 while Sn-O peak decreased (Fig. 1h, Fig. S5b). The EXAFS analysis showed CNs of 2.1 (± 0.7) for Sn-O and 2.3 (± 0.4) for Sn-Sn shells (Table S1), respectively, and XANES showed a mixture of Sn(0) and Sn(II) oxidation states (Fig. S6b), suggesting the presence of ultrasmall Sn-Sn cluster (3 ~ 4 atoms) ligated by O at the exterior. Further increase of Sn loading rendered more metallic tin in the catalyst. This was reflected by the trace amount Sn-O and dominant Sn-Sn peak intensity in Sn/C-12 (Fig. 1i, Fig. S5c) with the CN of 3.2 (± 1.1) for Sn-Sn (Table S1). In addition, the XANES of Sn/C-12 resembled more closely to that of Sn foil (Fig. S6c). The gradual transition from fully oxidized to nearly all reduced Sn observed by EXAFS and XANES agreed well with the HAADF-STEM results. The existence of oxygenated Sn(II) in these

catalysts is also evidenced by x-ray photoelectron spectroscopy (XPS) (Fig. S7) and Raman study (Fig. S8), respectively.

The change in Sn dispersion resulted in different active site structures which, in turn, completely altered the CO₂RR pathways. The electrocatalytic performances were evaluated by linear sweep voltammetry (LSV), cyclic voltammetry (CV) and chronoamperometry test in 0.1 M KHCO₃ electrolyte solution on a catalyst-coated rotating disc electrode (RDE) in a single cell and on a catalyst coated carbon paper in the cathodic chamber of a H-cell, respectively^{32,33}. In comparison, RDE is more beneficial in improving mass transport and reducing unintended side reactions by uncovered carbon. LSVs over Sn/C catalysts from 0 to -1.3 V showed enhanced current densities in the CO₂ purged electrolyte over that of purged by Ar, indicating the direct CO₂RR through solvated CO₂³⁴ (Fig. 2a, 2b and 2c). Similar observations were also found in the CVs between CO₂ and Ar saturated electrolytes (Fig. S9). As a baseline comparison, the electrode containing XC-72 treated by the same ALM process except without adding Sn yielded much lower current density with H₂ being the dominant product. No C₂ compounds was observed (Fig. S10 and Fig. S11). Fig. 2d showed the *FEs* of the direct CO₂RR product distributions and total current densities at applied potentials from -0.4 V to -1.2 V over Sn/C-0.12. The NMR identified acetate as the predominant chemical in the electrolyte (Fig. S12a) with its *FE* reaching 90.0% at a low

potential of -0.6 V, representing a record of direct electrocatalytic conversion of CO₂-to-acetate. The partial current density for acetate formation at -0.6 V is listed in Table S2. The catalyst maintained stable current at different cell potentials from -0.3 to -1.2 V (Fig. S13a) during the chronoamperometric measurements and the *FE* for acetate was found nearly constant over an extended period of 26 hours (Fig. S13d).

As Sn loading in the catalyst increased to 1.2 %, the makeup of the CO₂ conversion products altered significantly. Fig. 2e shows the *FEs* for CO₂RR product distributions as the function of cell potentials from -0.3 V to -1.2 V over Sn/C-1.2 and ethanol was found to be the major product detected by NMR (Fig. S12b). The onset potential for ethanol formation as low as -0.3 V was observed with a decent *FE* of ~ 32%. The *FE* for ethanol reached 92% at -0.4 V, representing the highest value for direct CO₂-to-ethanol conversion at the lowest overpotential reported by the literature. Very good catalyst stability measured at different current densities was also demonstrated at various potentials from -0.3 to -1.2 V (Fig. S13b) and *FE* of conversion to ethanol was found nearly constant over an extended period of 26 hours (Fig. S13e). To validate the long-term catalyst stability at high potential therefore high current density, we also measured the CO₂RR on Sn/C-1.2 at -1.0 V for 20 hours. The result still shows the stable *FEs* although the dominant product was formate at this potential (Fig. S14).

Further increase of Sn loading by another factor of

10 pivots CO₂RR catalysis yet to another path. Fig. 2f shows the *FEs* and product distributions at the applied potentials from -0.3 V to -1.2 V over Sn/C-12. Formate now represents the main product from the NMR analysis (Fig. S12c). The onset potential for formate formation as low as -0.3 V was detected with a *FE* of ~ 26%, and the *FE* increased to 91% at -0.6 V. Chronoamperometry study found the excellent catalyst stability at various potentials from -0.3 to -1.2 V (Fig. S13c) and *FE* maintained nearly constant over a 22-hour span at -0.6 V (Fig. S13f). Our observation of the effective conversion of CO₂ over large crystallite Sn is consistent with previous studies.^{26,29}

We should point out an important observation that, under more negative cell potential, formate becomes the dominate product during CO₂RR over all these catalysts. As we will discuss below, this could be attributed to the impact of conversion path under higher reaction rate.

ALM synthesis offered a versatile control and continuous tunability of the metal dispersion in the catalyst. To understand the transition between different CO₂RR mechanisms as the metal dispersion changes, the catalysts with nominal Sn loadings of 0.54 wt.% (Sn/C-0.54), 0.71 wt.% (Sn/C-0.71), 2.6 wt.% (Sn/C-2.6) and 4.3 wt.% (Sn/C-4.3) were also studied (Supporting Materials and Methods). For each catalyst, LSVs and CVs in CO₂ and Ar purged electrolyte (Fig. S15), *FEs*, electrochemical surface area (ECSA, Table S3) and the product distribution, as well as chronoamperometry at different electrode potentials were

measured (Figs. S16, S17, S18, S19). LSVs over these catalysts showed the rise of CO₂RR current density with the incremental increase of the Sn loading, as one would have expected. The *FEs* and CO₂RR product distribution at different potentials, however, revealed changing trends as the Sn loading thereby the metal dispersion varied. To this end, we produced three 3-dimensional contour plots between *FE*, cell potential and the Sn loading for CO₂RR to acetate, ethanol and formate, respectively (Fig. 3a, 3b, 3c).

The *FE* for acetate formation shows a sharp, "spire-shaped" peak at ca. 90% with a narrow potential window centered at -0.6 V at the lowest Sn loading (0.12 wt.%). The *FE* response for the conversion to ethanol becomes broader with a "hill-shaped" contour. While the highest *FE* of 92% already occurs at the onset potential of -0.4 V and declines relatively slowly with the decrease of the cell voltage, the Sn loading centers at 1.2 wt.% with broader width compared to that in acetate. Finally, the *FE* response to the formate formation has a "slope-shaped" contour of a broad cell voltage window. The preferred Sn loading is at the high end of 12 wt.%, opposite to that of acetate and ethanol formations. Note that this size-modulated conversion selectivity in Sn-based catalysts is very different from that observed for Cu-based catalysts. High CO₂RR to ethanol was achieved under low Cu loading with atomically dispersion. However, the increase of the Cu active site dimension at higher metal loading caused the formation of a mixture

of multiple compounds without a dominant single product *FE*.³²

We also drew the Tafel plots for the formation of acetate, ethanol and formate over the catalysts with different Sn loadings (Fig. 3d, 3e, 3f) and obtained the reaction rates from the Tafel slopes through linear extrapolation over the “kinetic region” (Table S4 and Table S5). For CO₂RR to acetate, the Tafel plot of Sn/C-0.12 separates from the others. It shows the lowest Tafel slope (168 mV/dec), therefore the highest kinetic rate at lower overpotential (η) compared to others. For CO₂RR to ethanol, the Tafel plot of Sn/C-1.2 has the lowest slope (175 mV/dec) and it groups closely with those of Sn/C-2.6 and Sn/C-4.3. For CO₂RR to formate, Sn/C-12 shows the lowest overpotential and the highest current density despite that the Tafel slope is similar to others. The increase of overpotential is seen as the loading of Sn decreases in the catalyst. The Tafel plot study suggests that kinetics of CO₂RR to all three organics is also sensitive to Sn size. Among these Tafel plots, Sn/C-0.12 that has the highest *FE* for CO₂-to-acetate conversion, exhibits the lowest slope thus fastest rate (Fig.3d), while Sn/C-1.2 that has the highest *FE* for CO₂-to-ethanol conversion, shows the lowest slope thus the fastest rate (Fig. 3e).

The electrocatalyst activities measured by RDE for various catalysts were also repeated in the H-cell study. Since the anodic and cathodic chambers are separated by an anionic exchange membrane (Slemion AMV), H-cell

measurement excludes the concern that the organics produced at the working electrode may undergo a secondary oxidation at the counter electrode, as that could possibly occur in RDE. In our experiment, one side of the carbon paper was coated by CO₂RR catalyst whereas the other side was sealed by watertight epoxy to minimize the hydrogen formation over the uncovered portion of the paper at high-reductive potential. We repeated the measurements of the conversion product distributions and *FEs* and found them in general agreement with the RDE results except at high-negative potentials (Fig. S20). We attribute this difference to two possible causes: one is from limited CO₂ concentration in the electrolyte therefore insufficient mass transfer to catalyst layer at higher overall reaction rates; the other one is from the residual gas production promoted by carbon alone at the edge of the carbon paper that cannot be fully sealed by the epoxy.

To decipher the nature of the active sites, *in situ* X-ray absorption spectroscopy (XAS) (EXAFS and XANES) at Sn K-edge were carried out to probe the electronic and coordination structures of the Sn catalyst under CO₂RR potentials in an *operando* electrochemical cell containing 0.1 M KHCO₃ solution purged by flowing CO₂.³² Data for Sn/C-1.2 and Sn/C-12 were acquired and analyzed whereas Sn/C-0.12 was not due to its metal loading too low to generate suitable data quality. XANES and EXAFS analyses of Sn/C-1.2 under the open circuit voltage (OCV) in the presence of CO₂ purging indicates that Sn is in +2 oxidation

state coordinated by 3.3 (± 0.3) oxygen. (Fig. S21a and b, Table S6), which is higher than 2.1 in the “as-synthesized” catalyst (Table S1). We ascribe this to the additional oxidation and water ligation during the ink preparation by ultrasonication at ambience, which insert O into Sn-Sn bond, leading to increased Sn-O coordination. Upon initiating CO₂RR to ethanol at -0.4 V and to further lowering the potential to -0.9 V, Sn(II) gradually reduces to Sn(o) reflected by decreasing “white-line” intensity and formation of Sn-Sn shell with CN to 2.4 (Table. S7), almost restored to 2.3 in the “as synthesized” catalyst (Table S1). Similar effect was also found on Sn/C-12 sample after ink processing, which led to the oxidation at the Sn metal cluster surface. XANES and EXAFS show that a significant fraction of Sn was already in the metallic form at OCV (Fig. S21c, Fig. S21d). By applying cell potential to -0.6 V and subsequently to -1.0 V, more Sn(II) are reduced to Sn(o) and CN of Sn-Sn increased to 4.8, indicating that metallic Sn as the active center for the conversion to formate (Table. S7). Structural characterizations of XAS of the electrocatalysts through 20-hour CO₂RR were also evaluated after the samples were taken out of the H-cell (Fig. S22). As an example, we also conducted a post-mortem HAADF STEM study on Sn/C-1.2 (Figure S23) and found a similar morphology to that of “as synthesized” catalyst shown in Fig. 1e.

To understand the electrocatalytic mechanism behind the size modulated CO₂RR selectivity, we studied the catalytic pathways over the corresponding active sites

of these three representative catalysts using density function theory (DFT). Representative Sn structural models (Fig. S24) were built on hydroxylated graphene surface based on the XAS studies. Under the ultralow loading (Sn/C-0.12), only Sn-O but no Sn-Sn bond was applied to construct a Sn₂O₂ cluster model with a μ -oxo Sn-O-Sn structure, based on the ex-situ XAS study (Fig. 1g, Fig. S6a, Table S1). The calculated equilibrium distance between two Sn atoms in this μ -oxo complex is 3.29 Å with tin being in +2 oxidation state. Higher CN observed for Sn-O shell than that described by the model in the “as synthesized” Sn/C-0.12 can be ascribed to adsorption by H₂O to the unsaturated Sn in the complex. These H₂O could be replaced by the adsorbate species during CO₂ reduction (See Fig. S25), and vice versa, therefore were not included in the model.

For Sn/C-1.2 of higher metal loading, a model consisting of triatomic Sn cluster bonded by two O from the hydroxylated graphene, Sn₃O₂, was proposed. The active site contains both metallic Sn(o) and oxidized Sn (II) with highly under-coordinated Sn-Sn bonds, consistent with both EXAFS and XANES analyses (Fig. 1h and Fig. S6). These modelled structures are fully relaxed and found to be stable energetically, in comparison with other structural variations (Fig. S26, Table S8).

Under very high tin loading (Sn/C-12), Sn takes the form of metallic nanoparticles with size ranging from 3 ~ 5 nm. We expect it behaves similarly to Sn metal, where

we choose Sn (001) surface to simulate its catalytic activity. Since CO₂RR to formate over metallic Sn has been well studied ³², our calculation has focused on conversion mechanism for C-C coupling over the ultralow and medium Sn loading catalysts.

Gibbs free energies for the most thermodynamically favorable reaction pathways of forming acetate and ethanol under different cell potentials were calculated for Sn/C-0.12 and Sn/C-1.2, respectively (Fig. 4). Competitive pathways together with all the corresponding structures of intermediate states are also presented (Fig. S27, Fig. S28, Fig. S29, Fig. S30, Fig. S31 and Table S9). For Sn/C-0.12, the limiting potential UL of forming CH₃COOH over Sn₂O₂@G is calculated to be -0.82 V (Fig. 4a), which is by far more favored than the formation of CH₃CH₂OH over Sn₂O₂@G (UL = -1.61 V, Fig. S32, Fig. S33). The formation of these C₂ products is featured by sequential reduction of two CO₂. The first CO₂ is reduced as HCOO* forming a bidentate binding configuration with the two Sn atoms (Fig. 4d) in the Sn₂O₂ cluster, whose energy is significantly lower than that of COOH* (Fig. 4c). After three more (H⁺ + e⁻) pair transfer, HCOO* is reduced to H₂CO* with only one oxygen binding to one Sn atom (Step 5). This computation-postulated intermediate is experimentally validated by using H₂CO as the feeding reactant in electrocatalytic reduction reaction (see Supporting Materials and Methods, and Fig. S34). The second CO₂ is now reduced and adsorbed as COOH* with its C atom binding to an O atom

bridging the two Sn atoms in the cluster. The C-C coupling occurs as H₂CO* + COOH* → OCH₂COOH* (Step 6), leading to the formation of CH₃COOH with an activation barrier Ea of 0.54 eV (between Step 6 and 7). The intermediate, COOH*, is critical for acetate formation. Note that the second CO₂ cannot bind in a stable HCOO* form.

To form CH₃CH₂OH, COOH* needs to be further reduced. The elementary step COOH* + H⁺ + e⁻ → CO* + H₂O turns out to be the rate limiting step with an endothermic free energy change of 1.61 eV (Fig. S32, Fig. S33. Fig. S27 shows the comparison of the HCOO* and COOH* pathways for Sn₂O₂@G catalyzed CO₂ reduction, indicating HCOO* is the slightly more favorable based on thermodynamics. In contrast, the supported Sn₃O₂ cluster does not show any feasible pathway to CH₃COOH. Despite that the free energy of the adsorbate HCOO* is much lower than that of COOH* (Fig. 4c), the overall rate limiting potential favors the COOH* pathway (Fig. S29 and Fig. S30) of the sequential reduction of two CO₂ (Fig. 4b). The rate limiting step is the removal of the OH* group: OH* + H⁺ + e⁻ → H₂O with UL = -0.73 V, which is more favorable than that of the HCOO* pathway (UL = -0.95 V for the step H₃CO* + HCOO* + H⁺ + e⁻ → H₃CO* + HCOOH*). The C-C coupling occurs as HCO* + CO* → HCOCO* with an activation barrier Ea of 0.35 eV (from Step 6 to 7). Although the rate limiting (maximum energy uptake) steps are identified to be later steps on the reaction pathways presented in Fig. 4, i.e. step 7→8 (0.82 eV) for the reactions on

$\text{Sn}_2\text{O}_2@\text{G}$ and step $14 \rightarrow 15$ (0.73 eV) on $\text{Sn}_3\text{O}_2@\text{G}$. There are energy demanding steps equally important occur at much earlier steps, step $4 \rightarrow 5$ (0.77 eV, $\text{H}_2\text{COOH}^* \rightarrow \text{H}_2\text{CO}^*$) for the reactions on $\text{Sn}_2\text{O}_2@\text{G}$ and step $5 \rightarrow 6$ (0.72 eV, $\text{HCO}^* + \text{COOH}^* + \text{H}^+ + \text{e}^- \rightarrow \text{HCO}^* + \text{CO}^* + \text{H}_2\text{O}$) for the reactions on $\text{Sn}_3\text{O}_2@\text{G}$. For high loading such as $\text{Sn}/\text{C-12}$, formate is the primary product as demonstrated by our Sn (001) surface model (Fig. S35), as previously reported for Sn metals³². The free energy change of forming bidentate HCOO^* on Sn (001) is relatively low (-0.21 eV, Fig. 4c), which leads to a low limiting potential of -0.51 V to form HCOO^+ (aq). On the other hand, the weak binding also inhibits the formation of multi-carbon products, because strong binding between the unsaturated metal sites and reaction intermediate at proximity is essential to complete multiple ($\text{H}^+ + \text{e}^-$) transfers and C-C coupling^{35,36}. Under the low Sn loadings (modelled by $\text{Sn}_2\text{O}_2@\text{G}$ and $\text{Sn}_3\text{O}_2@\text{G}$), our study identified that the strong binding through unsaturated Sn and/or O centers leads to the energetically more favorable reduction beyond HCOOH under relatively low potentials (0.7~0.8 V), and the competing among C-C coupling and surface HCOOH desorption may dictate the selectivity towards C_2 products (Figs. S36, S37). These calculated mechanisms agree well with our experimental observation on the general trend in product selectivity.

The DFT calculation also provides an important insight on our experimental discovery. In analyzing acetate

versus ethanol formation, the model shows a strong dependence of the catalytic pathway on the size of Sn active site. In CO_2RR to acetate, the active site is two bidentate Sn atoms ligated by one bridging O and one anchoring O . Such unique site can only form at very low Sn concentration and will transform quickly to Sn cluster as the loading increases, therefore should have a narrow range of catalytic selectivity and sharp *FE* response profile as the function of the catalyst loading, as is seen by the “spire-shaped” peak in Fig. 3a. In CO_2RR to ethanol, a triatomic Sn cluster model was proposed in our simulation. In fact, a similar result may also likely be obtained when the cluster is replaced by a tetratomic Sn moiety (the calculation not shown) etc., when the cluster contains highly exposed Sn atom with unsaturated ligation site. The concentration of Sn in the catalyst therefore could have slightly broader range, as is reflected by the “hill-shaped” contour in Fig. 3b. As Sn loading grows higher, the ratio of uncoordinated edge atoms over those at the crystallite surface decreases rapidly and becomes insignificant as the metal loading further increases. The catalytic activity will be dominated by the atoms on the lattice surface at a wide range of Sn concentration at higher loading, shown by the “slope” in Fig. 3c.

Another important insight derived from the DFT calculation is the product distribution at high-negative potentials. A rapid increase of the formate formation after potential lowered to -0.8 V and beyond was found over both

Sn/C-0.12 (Fig. 2d) and Sn/C-1.2 (Fig. 2e) catalysts, respectively. This observation is in fact consistent with our DFT calculations, which shows the formate formation is competing with both acetate and ethanol (Table S10) and the branching reaction to formic acid occurs at step 4 along the reaction coordinate (Fig. S36 and Fig. S37).

Although the formate formation is less energetically preferred compared to forward reactions to form acetate or ethanol, it does have nearly zero energy barrier and can complete the catalytic process after the desorption of formic acid. At low-negative potential, the conversion number at each active site per unit time, or turnover frequency (TOF), is low, and the catalysis can follow more energetically preferred paths along the reaction coordinate to complete C-C coupling and acetate or ethanol formation. At high negative potential, however, TOF accelerates, and the resident time required for the multiple PCET steps needed for C₂ chemical formation becomes too long compared to the more robust two proton/electron path for the formic acid formation, which can also terminate the reaction by desorption to the end-product. Although the partial current densities for both acetate and ethanol formation continuously increase as the cell potential becomes more negative (Fig. 2d and 2e), the branching reaction to formic acid accelerates even faster, which releases the reaction intermediate bottleneck by shortchanging to a two-electron process and subsequently alters to the overall conversion product mix. The more negative the potential is,

the faster TOF is, and the more branching to formate occurs. To quantify the branching rate, or reaction path for that matter, requires more detailed kinetic study, which is beyond the scope of this work.

As an initial experiment to probe the PCET in CO₂RR kinetics, we conducted a kinetic isotope effect (KIE) study by replacing H₂O with D₂O in the electrolyte and re-measured *FEs* over Sn/C-0.12 and Sn/C-1.2 around the voltages for optimal acetate and ethanol formations. Interestingly, we found that, by simply switching from H₂O to D₂O while keeping other experimental conditions unchanged, led to complete alterations of the CO₂RR product makeups. In the case of Sn/C-0.12, the dominant conversion product gradually shifted from acetate (8 H⁺/e⁻ pair transfer) to formate (2 D⁺/e⁻ pair transfer) as potential became more negative (Fig. S38a), whereas for Sn/C-1.2, the main product switched from ethanol (12 H⁺/e⁻ pair transfer) to acetate (8 D⁺/e⁻ pair transfer) (Fig. S38b), respectively. In both cases, conversions to the products using less protons and electrons take over, signifying a major influence on the PCET electrocatalytic trajectory.

This observation shed a very interesting light behind the CO₂RR kinetics. Although in-depth theoretical and experimental interrogations are beyond the scope of the current work, we postulated a simple kinetic argument based on the recent development in PCET transition state theory.^{38,39} KIE originates from the difference between proton and deuteron in tunneling probabilities due to the

overlap of reactant and product proton/deuteron wavefunctions. Deuterium bond in the transition state complex (D-Complex) has a reduced mass nearly twice as large of that of hydrogen bond (H-Complex), leading to narrow quantum level spacing and higher population of excited vibrational states. The vibrational frequency of H-Complex (ν_{H-C}) should be $\sim 2^{1/2}$ faster than that in D-Complex (ν_{D-C}). In a classical sense, this could be interpreted that the forward reaction of capturing another proton-electron pair at the transition state is faster in H₂O compared to D₂O electrolyte, when other chemical environments remain the same. Such a rate difference should occur at every PCET step along the reaction coordinate, leading to the preferential formation of molecule requiring higher number of H⁺/e⁻ pair transfers (ethanol) in H₂O compared to that of requiring lower number (acetate) in D₂O when the difference in kinetic barriers between the competing paths are low. A table of KIEs for the formation of ethanol, acetate and formate as the function of cell potential over Sn/C-1.2 is provided (Table S11)

These observations on altering CO₂RR pathways by slightly changing cell potential or by using deuterated water are highly intriguing. They suggest the existence of multifaceted reaction trajectories at energy levels very close to each other, as are shown by the examples of our DFT calculations (Fig. S36 and S37). Such observations are very new, only found in the CO₂ electrocatalytic conversion with multiple PCETs. We anticipate this study will trigger

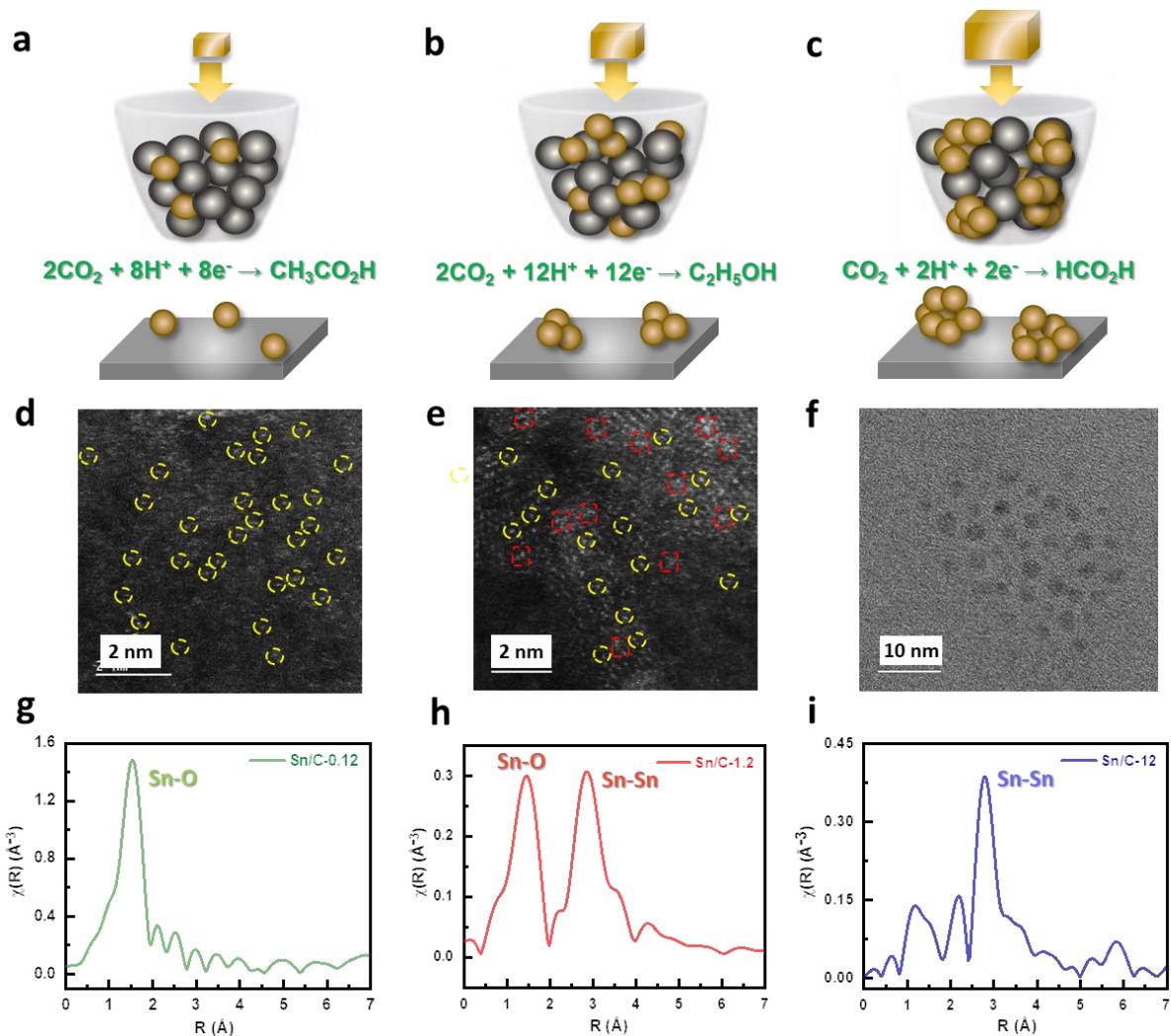
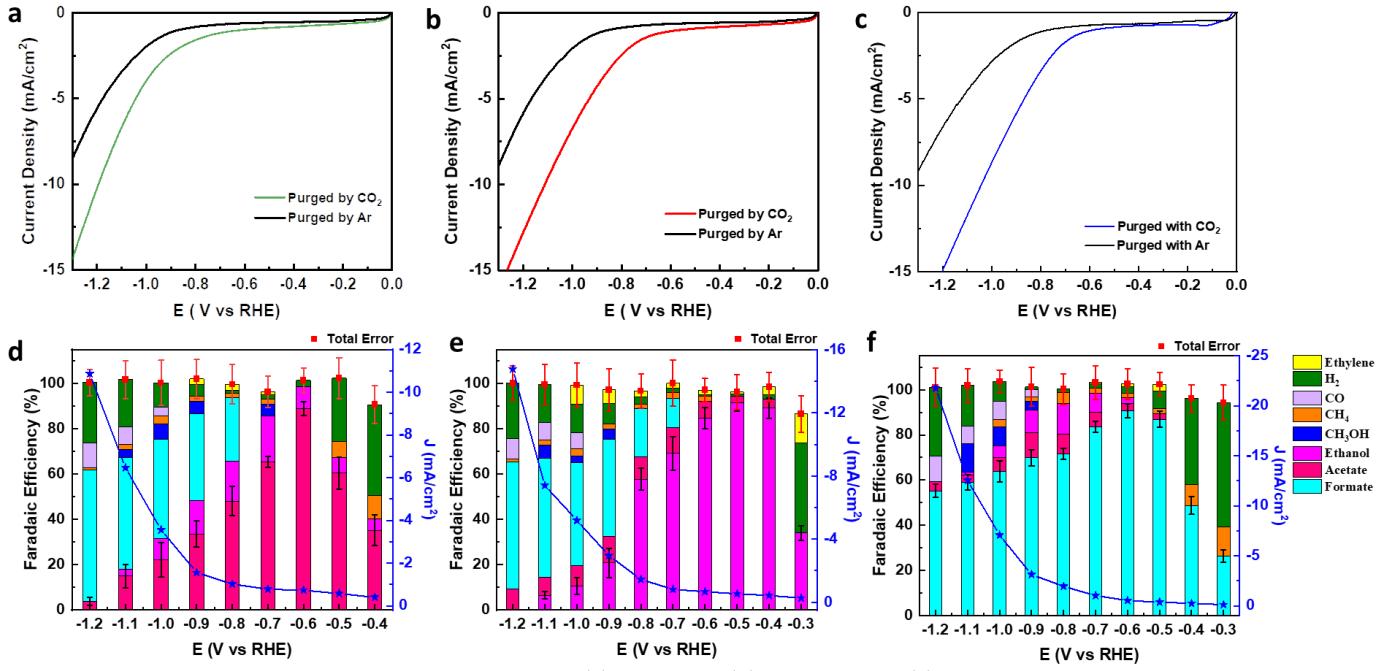
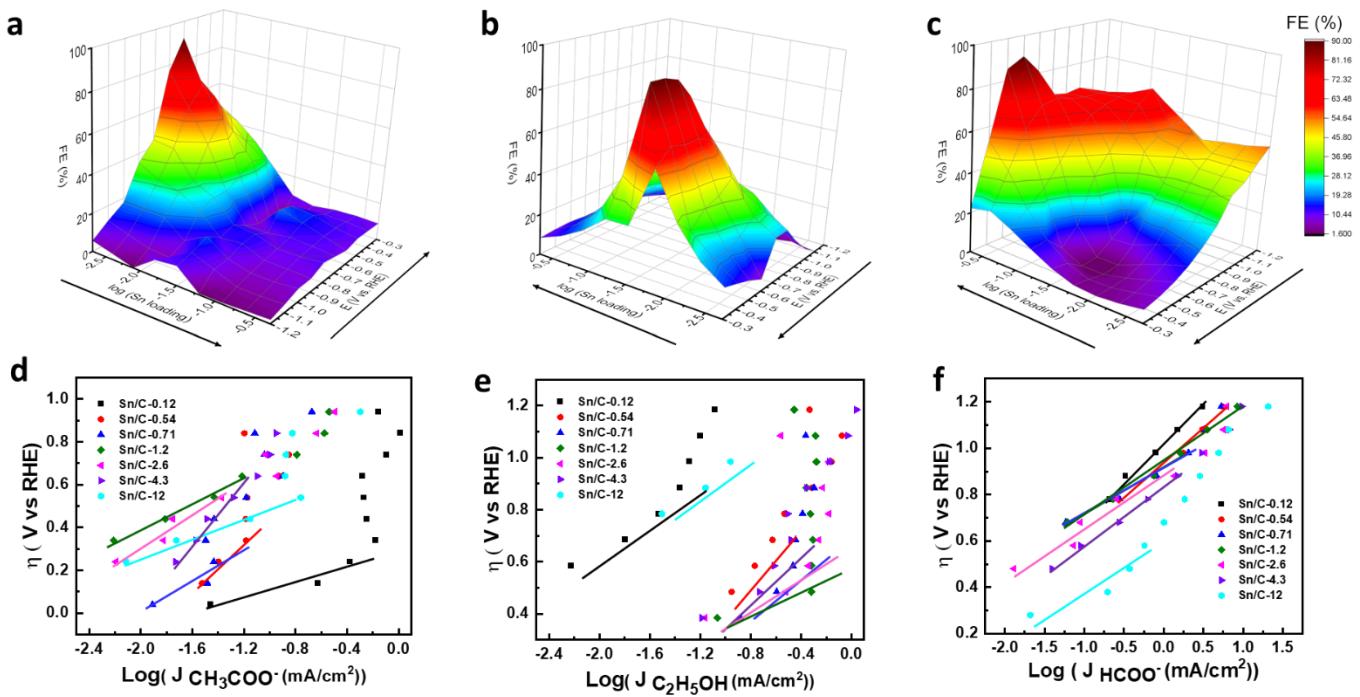
more follow-up theoretical and experimental studies in understanding the complexity of the CO₂RR reaction pathways.

CONCLUSIONS

We demonstrated in this study that the paths of the electrochemical conversion of CO₂ to organics, including C₂ chemicals such as acetate and ethanol, can be modulated by the dimension of Sn active sites with very high selectivity (FE > 90%) and low onset potentials. The new ALM synthesis offered a unique low temperature method of preparing the Sn catalysts with continually tunable active center size, leading to multiple 3-D response contours between FE, catalyst loading and operating potential; and their transitions from one to another. Advanced structural characterization, combined with computational modeling, revealed the nature of the catalyst site, reaction intermediates and energetics as the catalytic mechanism. Furthermore, the free energy diagram, conversion pathways under different cell potentials, as well as KIE suggest that they could impact the electrocatalysis trajectory in the complicated reaction networks during CO₂RR toward C₂ chemicals. Direct conversion to C₂₊ organics with high FE and low overpotential represents an important direction of integrating CO₂ as the future feedstock in the chemical production while reducing its environmental impact to the global climate change. Our study provided several insights on the catalytic mechanism which could stimulate future

exploration on new CO₂RR catalyst design and synthesis,

as well as the conditions for kinetics enhancement.

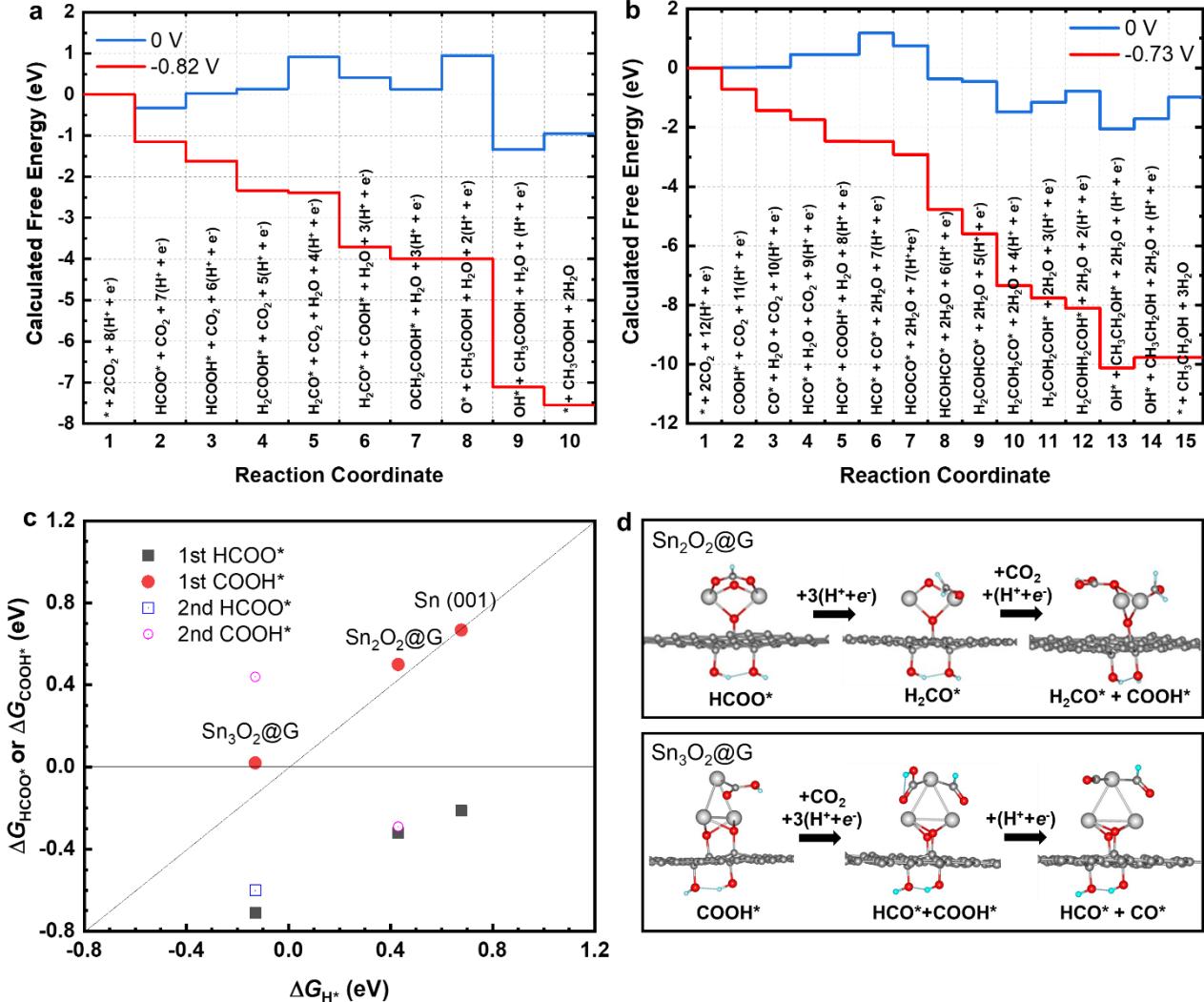

Figure 1. Syntheses of Sn/C catalyst with different metal dispersion using ALM method leading to the catalysts with high selectivity of CO₂ conversion to (a) acetate, (b) ethanol and (c) formate: HAADF-STEM images (d) Sn/C-0.12, (e) Sn/C-1.2 and bright field TEM image of (f) Sn/C-12, showing the migration from the isolated Sn atoms (in yellow circles) to the ultrasmall Sn clusters (in red circles), and to Sn nano-crystallites; Radial distribution functions from EXAFS analysis of Sn/C-0.12 (g), Sn/C-1.2 (h) and Sn/C-12 (i).

Figure 2. Electrocatalytic CO₂RR measurement. LSVs of (a) Sn/C-0.12, (b) Sn/C-1.2, and (c) Sn/C-12 in Ar and CO₂ saturated 0.1 M KHCO₃ from 0 to -1.3 V (scan rate: 2 mV/s); FEs and the product distributions under different polarization potentials over (d) Sn/C-0.12, (e) Sn/C-1.2, and (f) Sn/C-12 (stacked bar chart) and the geometric partial current densities, J , toward (d) acetate, (e) ethanol, and (f) formate formation (blue line-stars). Red bars represent the combined standard errors from all the product measurements while the black bars indicate the standard errors for acetate, ethanol and formate measurements, respectively. All FEs are calculated from chronoamperometry measurements.

Figure 3. Dependence of CO₂RR selectivity and kinetics on the operating potential and Sn loading. 3-dimensional plots of FE as the functions of Sn loading and operating potential for the formation of (a) acetate over Sn/C-0.12, (b) ethanol over Sn/C-1.2 and (c) formate over Sn/C-12. Tafel plots of the formation of (d) acetate, (e) ethanol and (f) formate over the catalysts of different Sn loadings.

Figure 4. DFT calculations. (a) Calculated reaction pathway of electrochemical reduction of CO_2 to acetic acid on $\text{Sn}_2\text{O}_2@\text{G}$ at 0 V and -0.82 V applied voltage. (b) Calculated reaction pathway of electrochemical reduction of CO_2 to ethanol on $\text{Sn}_3\text{O}_2@\text{G}$ at 0 V and -0.73 V applied voltage. “*” denotes the catalytic site. All the electrochemical reaction steps involve transfer of a $(\text{H}^+ + \text{e}^-)$ pair to the reaction site. (c) Calculated free energies of first hydrogenation of CO_2 to form HCOO^* (ΔGHCOO^*) or COOH^* (ΔGCOOH^*) vs. ΔGH^* . Results are presented for both the first and the second CO_2 molecule. (d) Calculated structures of important intermediates for forming acetic acid on $\text{Sn}_2\text{O}_2@\text{G}$ and ethanol on $\text{Sn}_3\text{O}_2@\text{G}$. Symbols: C in gray (small), Sn in gray (large), O in red, H in blue.

ASSOCIATED CONTENT

Supporting Information. Materials and Methods, Supporting Figures S1 to S37, Supporting Tables S1 to S10. This material is available free of charge via the Internet at <http://pubs.acs.org>.

Notes

The authors declare no competing interests.

ACKNOWLEDGMENT

This material is based on work supported by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Advanced Manufacturing Office (AMO) Award Number DE-EE0009418 and Laboratory Directed Research and Development funding from Argonne National Laboratory, provided by the Director, Office of Science, of the US Department of Energy (DOE) under contract no. DE-AC02-06CH11357. The works performed at Argonne National Laboratory's Center for Nanoscale Materials and Advanced Photon Source, US DOE Office of Science User Facilities, were supported by the U.S. DOE, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The views expressed herein do not necessarily represent the views of the U.S. Department of Energy or the United States Government. Purchase of the NMR spectrometer used to obtain partial results included in this publication was supported by the National Science Foundation under the MRI award CHE-2117776.

REFERENCES

1. Hepburn, C., Alden, E., Beddington, J., Carter, E. A., Fuss, S., Dowell, N. M., Minx, J. C., Smith, P., Williams, C. K. The technological and economic prospects for CO₂ utilization and removal, *Nature* 2019, **575**, 87-97.
2. Badiani, V. M., Casadevall, C., Miller, M., Cobb, S. J., Manuel, R. R., Pereira, Ines A. C., Reisner, E. Engineering Electro- and Photocatalytic Carbon Materials for CO₂ Reduction by Formate Dehydrogenase, *J. Am. Chem. Soc.* 2022, **144**, 14207-14216.
3. Trickett, C. A., Helal, Aasif, Al-Maythalony, B. A., Yamani, Z. H., Cordova, K. E., Yaghi, O. M. The chemistry of metal-organic frameworks for CO₂ capture, regeneration and conversion. *Nat. Rev. Mater.* 2017, **2**, 17045-17060.
4. Wang, X., Wang, Z. Y., García de Arquer, F. P., Dinh, C.-T., Ozden, A., Li, Y. C., Nam, D. H., Li, J., Liu, Y. S., Wicks, J., Chen, Z. T., Chi, M. F., Chen, B., Wang, Y., Tam, J., Howe, J. Y., Proppe, A., Todorović, P., Li, F. W., Zhuang, T. T., Gabardo, C. M., Kirmani, A. R., McCallum, C., Hung, S. F., Lum, Y. W., Luo, M. C., Min, Y. M., Xu, A., O'Brien, C. P., Stephen, B., Sun, B., Ip, A. H., Richter, L. J., Kelley, S. O., Sinton D., Sargent, E. H. Efficient electrically powered CO₂-to-ethanol via suppression of deoxygenation, *Nat. Energy* 2020, **5**, 478-486.
5. Tollefson, J. Sucking carbon dioxide from air is cheaper than scientists thought, *Nature* 2018, **558**, 173.
6. Nielsen, D. U., Hu, X. M., Daasbjerg, K., Skrydstrup, T. Chemically and electrochemically catalyzed conversion of CO₂ to CO with follow-up utilization to value-added chemicals. *Nat. Catal.* 2018, **1**, 244-254.
7. Nitopi, S., Bertheussen, E., Scott, S. B., Liu, X., Engstfeld, A. K., Horch, S., Seger, B., Stephens, I. E. L., Chan, K., Hahn, C., Nørskov, J. K., Jaramillo, T. F., Chorkendorff, I. Progress and Perspectives of Electrochemical CO₂ Reduction on Copper in Aqueous Electrolyte, *Chemical Reviews* 2019, **119**, 7610-7672.
8. Bondue, C. J., Graf, M., Goyal, A., Koper, M. T. M. Suppression of Hydrogen Evolution in Acidic Electrolytes by Electrochemical CO₂ Reduction, *J. Am. Chem. Soc.* 2021, **143**, 279-285.
9. Gao, D. F., Aran-ais, R. M., Jeon, H. S., Cuenya, B. R. Rational catalyst and electrolyte design for CO₂ electroreduction towards multicarbon products, *Nat. Catal.* 2019, **2**, 198-210.
10. Huang, J. E., Li, F. W., Rasouli, A. S., Garcia de Arquer, F. P., Liu, S. J., Zhang, S. Z., Luo, M. C., Wang, X., Lum, Y. W., Xu, Y., Bertens, K., Miao, R. K., Dinh, C. T., Sinton, D., Sargent, E. H. CO₂ electrolysis to multicarbon products in strong acid, *Science* 2021, **372**, 1074-1078.
11. Chen, X. Y., Chen, J. F., Alghorailbi, N. M., Henckel, D. A., Zhang, R. X., Nwabara, U. O., Madsen, K. E., Kenis, P. J. A., Zimmerman, S. C., Gewirth, A. A. Electrochemical CO₂-to-ethylene conversion on polyamine-incorporated Cu electrodes, *Nature Catal.* 2021, **4**, 20-27.
12. Li, Y. F., Kim, D., Louisia, S., Xie, C. L., Kong, Q., Yu, S. M., Lin, T., Aloni, S., Fakra, S. C., Yang, P. D. Electrochemically scrambled nanocrystals are catalytically active for CO₂-to-multicarbons, *Proc. Natl. Acad. Sci. U.S.A.*, 2020, **117**, 9194-9201.
13. Ma, W. C., Xie, S. J., Liu, T. T., Fan, Q. Y., Ye, J. Y., Sun, F. F., Jiang, Z., Zhang, Q. H., Cheng, J., Wang, Y. Electrocatalytic reduction of CO₂ to ethylene and ethanol through hydrogen-assisted C-C coupling over fluorine-modified copper, *Nature Catal.* 2020, **3**, 478-487.
14. Hu, X. M., Daasbjerg, K. Molecular catalyst converts carbon dioxide to methanol, *Nature* 2019, **575**, 598-599.
15. Guo, W. W., Tan, X. X., Bi, J. H., Xu, L., Yang, D. X., Chen, C. J., Zhu, Q. G., Ma, J., Tayal, A., Ma, J. Y., Huang, Y. Y., Sun, X. F., Liu, S. J., Han, B. X. Atomic Indium Catalysts for Switching CO₂ Electroreduction Products from Formate to CO, *J. Am. Chem. Soc.* 2021, **143**, 18, 6877-6885.
16. Xia, C., Zhu, P., Jiang, Q., Pan, Y., Liang, W. T., Stavitsk, E., Alshareef, H. N., Wang, H. T. Continuous production of pure liquid fuel solutions via electrocatalytic CO₂ reduction using solid-electrolyte devices, *Nat. Energy* 2019, **4**, 776-785.
17. Ren, S. X., Joulie, D., Salvatore, D., Torbensen, K., Wang, M., Robert, M., Berlinguette, C. P. Molecular electrocatalysts can mediate fast, selective CO₂ reduction in a flow cell, *Science* 2019, **365**, 367-369.
18. Gu, J., Hsu, C. S., Bai, L. C., Chen, H. M., Hu, X. L. Atomically dispersed Fe³⁺ sites catalyze efficient CO₂ electroreduction to CO, *Science* 2019, **364**, 1091-1094.
19. Fan, L., Xia, C., Yang, F. Q., Wang, J., Wang, H. T., Lu, Y. Y. Strategies in catalysts and electrolyzer design for electrochemical CO₂ reduction toward C₂₊ products, *Science adv.* 2020, **6** (8), 311.
20. Li, F. W., Thevenon, A., Rosas-Hernandez, A., Wang, Z. Y., Li, Y. L., Gabardo, C. M., Ozden, A., Dinh, C. T., Li, J., Wang, Y. H., Edwards, J. P., Xu, Y., MaCallum, C., Tao, L. Z., Liang, Z. Q., Luo, M. C., Wang, X., Li, H. H., Obrien, C. P., Tan, C. S., Nam, D. H., Quintero-Bermudez, R., Zhuang, T. T., Li, Y. G. C., Han, Z. J., David Britt, R., Sinton, D., Agapie, T., Peters, J. C., Sargent, E. H., Molecular tuning of CO₂-to-ethylene conversion, *Nature* 2020, **577**, 509-514.
21. Wu, Y. S., Jian, Z., Lu, X., Liang, Y. Y., Wang, H. L. Domino electroreduction of CO₂ to methanol on a molecular catalyst, *Nature* 2019, **575**, 639-642.

22. Masel, R. I., Liu, Z. C., Yang, H. Z., Kaczur, J. J., Carrillo, D., Ren, S. X., Salvatore, D., Berlinguette, C. P. An industrial perspective on catalysts for low-temperature CO₂ electrolysis, *Nature Nanotechnology* 2021, **16**, 118–128.

23. Solla-Gullon, J., Merino-Garcia, I., Albo, J., Leguey, V., Irabien, A. Cu oxide/ZnO-based surfaces for a selective ethylene production from gas-phase CO₂ electroconversion, *J. CO₂ Util.* 2019, **31**, 135–142.

24. Merino-Garcia, I., Albo, J., Irabien, A. Tailoring gas-phase CO₂ electroreduction selectivity to hydrocarbons at Cu nanoparticles, *Nanotechnology* 2017, **29**, 014001.

25. Roh, I., Yu, S., Lin, C. K., Louisia, S., Cestellos-Blanco, S., Yang, P. D., Photoelectrochemical CO₂ Reduction toward Multi-carbon Products with Silicon Nanowire Photocathodes Interfaced with Copper Nanoparticles, *J. Am. Chem. Soc.* 2022, **144**, 18, 8002–8006.

26. Li, L., Ozden, A., Guo, S. Y., García de Arquer, F. P., Wang, C. H., Zhang, M. Z., Zhang, J., Jiang, H. Y., Wang, W., Dong, H., Sinton, D., Sargent, E. H., Zhong, M. Stable, active CO₂ reduction to formate via redox-modulated stabilization of active sites, *Nature Commun.* 2021, **12**, 5233.

27. Zhao, Y., Liang, J. J., Wang, C. Y., Ma, J. M., Wallace, G. G. Tunable and efficient tin modified nitrogen-doped carbon nanofibers for electrochemical reduction of aqueous carbon dioxide, *Adv. Energy Mater.* 2018, **8**, 1702524.

28. Li, Q., Fu, J. J., Zhu, W. L., Chen, Z. Z., Shen, B., Wu, L. H., Xi, Z., Wang, T. Y., Lu, G., Zhu, J. J., Sun, S. H. Tuning Sn-Catalysis for electrochemical reduction of CO₂ to CO via the core/shell Cu/SnO₂ structure, *J. Am. Chem. Soc.* 2017, **139**, 12, 4290–4293.

29. Yang, Z. N., Olopeza, F. E., Zhang, K. H. P-block metals-based (Sn, In, Bi, Pb) electrocatalysts for selective reduction of CO₂ to formate, *APL Materials* 2020, **8**, 060901.

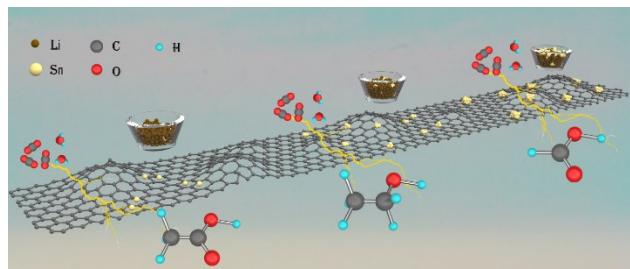
30. Guo, J. Y., Zhang, W. L., Zhang, L. H., Chen, D. T., Zhan, J. Y., Wang, X. L., Shiju, N. R., Yuet, F. S. Control over Electrochemical CO₂ Reduction Selectivity by Coordination Engineering of Tin Single-Atom Catalysts, *Adv. Sci.* 2021, **8**, 2102884.

31. Wang, J. G., Ning, S. L., Luo, M., Xiang, D., Chen, W., Kang, X. W., Jiang, Z., Chen, S. W. In-Sn alloy core-shell nanoparticles: In-doped SnO_x shell enables high stability and activity towards selective formate production from electrochemical reduction of CO₂, *Applied Catalysis B: Environmental* 2021, **288**, 119979.

32. Xu, H. P., Rebollar, D., He, H. Y., Chong, L., Liu, Y. Z., Liu, C., Sun, C. J., Li, T., Muntean, J. V., Winans, R. E., Liu, D. J., Xu, T. Highly selective electrocatalytic CO₂ reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper, *Nat Energy* 2020, **5**, 623–632.

33. Zheng, T. T., Jiang, K., Ta, N., Hu, Y. F., Zeng, J., Liu, J. Y., Wang, H. T. Large-Scale and Highly Selective CO₂ Electrocatalytic Reduction on Nickel Single-Atom Catalyst, *Joule* 2019, **3**, 265–278.

34. Feaster, J. T., Shi, C., Cave, E. R., Hatsukade, T., Abram, D. N., Kuhl, K. P., Hahn, C., Nørskov, J. K., Jaramillo, T. F. Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes, *ACS Catal.* 2017, **7**, 4822–4827.


35. Mariano, R. G., Mckelvey, K., White, H. S., Kanan, M. W. Selective increase in CO₂ electroreduction activity at grain-boundary surface terminations, *Science* 2017, **358**, 1187–1192.

36. Liu, X. Y., Schlexer, P., Xiao, J. P., Wang, L., Sandberg, R. B., Tang, M., Brown, K. S., Peng, H. J., Ringe, S., Hahn, C., Jaramillo, T. F., Nørskov, J. K., Chan, K. pH effects on the electrochemical reduction of CO(2) towards C₂ products on stepped copper, *Nat. Commun.* 2019, **10**, 32.

37. Montoya, J. H., Tsai, C., Vojvodic, A., Nørskov, J. K. The Challenge of Electrochemical Ammonia Synthesis: A New perspective on the role of nitrogen scaling relations, *Chemsuschem.* 2015, **8**, 2180–2186.

38. Tyburski, R., Liu, T. F., Glover, S., Hammarström, L. Proton-Coupled Electron Transfer Guidelines, Fair and Square, *J. Am. Chem. Soc.* 2021, **143**, 2, 560–576.

39. Weinberg, D. R., Gagliardi, C. J., Hull, J. F., Murphy, C. F., Kent, C. A., Westlake, B. C., Paul, A., Ess, D. H., McCafferty, D. G., Meyer, T. J. Proton-coupled electron transfer, *Chem. Rev.* 2012, **112**, 7, 4016–4093.

