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ABSTRACT

Chemical recycling of plastics is a promising technology to reduce carbon footprint and ease the
pressure of waste treatment. Specifically, highly efficient conversion technologies for polyolefins
will be the most effective solution to address the plastic waste crisis, given that polyolefins are
the primary contributors to global plastic production. Significant challenges encountered by plastic
waste valorization facilities include the uncertainty in the composition of the waste feedstock,
process yield, and product price. These variabilities can lead to compromised performance or even
render operations infeasible. To address these challenges, this work applied the robust optimiza-
tion-based framework to design an integrated polyolefin chemical recycling plant. Data-driven
surrogate model was built to capture the separation units’ behavior and reduce the computational
complexity of the optimization problem. It was found that when process yield and price uncertain-
ties were considered, wax products became more favorable, and pyrolysis became the preferred
reaction technology.
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INTRODUCTION

Global plastic waste has been on the rise, making
efficient plastic recycling process design imperative [1].
Chemical recycling and upcycling strategies not only re-
duces the mismanaged plastic waste, but also has the
potential to reduce the carbon footprint to meet sustain-
able goals [2].

One challenge in plastic recycling process design
arises from uncertain feedstock compositions. The type
and proportion of plastic waste can exhibit variations in-
fluenced by factors like geographic location, resulting in
substantial differences in both economic and energy val-
ues [3]. In addition, feedstock compositions affect the
strategies for plastic recycling. For instance, one ad-
vantage of the pyrolysis process is that it can easily han-
dle a mixed plastic waste feedstock with different ratio,
especially noncatalytic pyrolysis unit. However, most of
other chemical recycling technologies, including hydro-
genolysis, typically requires relatively pure feedstock af-
ter careful sorting or impurity removal to ensure good
catalyst performance [4,5].

Polyolefins (PO), including polypropylene (PP) and
polyethylene (PE), are main source of plastic waste. Their
inert carbon-carbon backbones make it challenging to
breakdown the long chains and produce valuable prod-
ucts [6]. Many reaction pathways have been developed
recently to effectively deconstruct PO, among which py-
rolysis and hydroconversion (i.e., hydrocracking and hy-
drogenolysis) have shown promising potentials. Thermal
pyrolysis reactions operate at elevated temperature and
shorter residence time, which generates products a
wider distribution and more gas that are most useful as
fuels [7]. Hydroconversion, on the other hand, operates
at milder conditions and produces liquid hydrocarbon
within the fuel or lubricant ranges [6,8].

Depending on the feedstock composition, different
technologies operate at different conditions to produce
different products [3,9]. As the product selectivity and
the use of catalyst depend on the plastic waste type [3],
feedstock variability could affect not only the process
performance but also its feasibility.

Existing studies in process design of plastic recy-
cling typically focus on a particular recycling strategy and
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its operating conditions [9]. For instance, Hernandez et
al. compared the costs and emissions for four waste
LDPE treatment processes — gasification, pyrolysis, hy-
drogenolysis [4]. Bora et al. performed life cycle assess-
ment and technoeconomic analysis on waste PP treat-
ment processes and demonstrated that chemical recy-
cling had low emissions but only profitable at large scales
[10]. Zhao and You utilized the superstructure framework
to optimize the net present value and greenhouse gas
emissions of monomers, aromatic mixtures, and fuels
production from waste HDPE [11].

An integrated plastic waste recycling technology
selection and product separation provide opportunities
for performance improvement. Moreover, it is important
to consider the feedstock variability when designing such
integrated chemical recycling facilities to ensure feasible
operations among each connecting subunit. Robust opti-
mization has been established as a computationally effi-
cient framework to incorporates uncertainties and im-
proves process performance [12]. Li et al. applied robust
optimization to refinery production planning problem
considering yield, cost, and price uncertainties [13].

This study proposes a methodology for the devel-
opment of a chemical recycling facility for plastic waste.
The design involves the selection of reaction technology
and product separation guided by an optimization model.
Since feedstock composition variability and product yield
distribution are unavoidable in waste plastic treatment
and affects the separation efficiencies, it is vital to guar-
antee feasible operation and good performance under
these uncertainties. Rigorous process flowsheet simula-
tions in Aspen Plus (Aspen Technology) [14] were carried
out to obtain surrogate models of separation processes.
Design decisions include chemical treatment technolo-
gies, distillation column design and unit connectivity. A
robust optimization model is formulated to maximize
profit under the worst case and ensure process feasibility
(e.g., normal process operation) for all scenarios [6]. This
robust optimization model will improve the chemical re-
cycling process feasibility and performance under the
worst uncertain case than the traditional deterministic
optimization model [2,13]. Applying robust optimization
instead of stochastic programming will also largely re-
duce the computational complexity, especially in the pro-
cess design problem with high dimensionality arising
from feedstock variability feedstock variability, yield un-
certainty, and price fluctuation [15,16].

MODEL FORMULATION

Deterministic Superstructure Optimization

The superstructure elements for the chemical recy-
cling facility includes plastic waste, other feedstocks,
products, reaction technologies, and separation

alternatives (Figure 1). In this study, decisions are made
on three levels. First, the combination of reaction or sep-
aration technologies is selected. Second, we determine
the connectivity among feed, technologies, and products.
Third, we decide the exact realization of a technology
(e.g., distillation column operation conditions) by choos-
ing an option. On this third level, incompatible connec-
tions, such as a liquid/solid stream entering a gas sepa-
rator or an inappropriate reactant used by a particular re-
actor, could occur. Consequently, the connectivity of the
superstructure elements is sorted a priori to eliminate
those unproductive links. This step reduces the overall
model size without cutting off potential candidate solu-
tions [17].

As illustrated in Figure 2, the superstructure is con-
nected with the inlet mixer and outlet splitters. The su-
perstructure mass balance is established with the equa-
tions (1-4) for flow rate of each process stream going
from i'to i for species k (F;;,). Equation (1) specifies the
mixer balance for F/, , the flow rate of an inlet stream into
a superstructure element i for species k. The splitter bal-
ance is enforced in equation (2) for the outlet stream of a
superstructure element F,-f’k. While a splitter with split ra-
tio to multiple outlet stream is possible, we choose to
maintain the linearity of the problem by allowing exactly
one destination i’ for each superstructure element i with
the binary variable n; ;7. To ensure the feasibility of each
unit, a capacity limit is imposed as shown in (5-7). The
total flow rate Ffis decide from (5), and the technology
capacity Ff4P is enforced with (6). A big M constraint (7)
is used to ensure if a technology is not selected (y; =0),
the capacity is 0.
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Figure 1. Elements of the chemical recycling plant su-
perstructure.
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Figure 2. Possible connectivity of chemical recycling
plant’s separation units

The reaction conversion and selectivity of the
chemical recycling technologies are taken from the liter-
ature to model stoichiometric reactor units in the super-
structure. A basis in the reaction feed stream F,"*’and a
conversion coefficient g;; is used to determine the com-
position of the product streams as shown in (8). For some
reactions, especially the hyroconversions [6,8], some un-
desired solid (e.g., coke) and gas formation are not well-
characterized, leading to inaccurate estimation product
yields thus violations of mass balance. To close the mass
balance gap, we make a conservative assumption by in-
cluding a waste stream that is not usable in the down-
stream operations (9). Admittedly, this assumption may
not reflect the actual reaction. Thus, the effects of wax
yield uncertainty are addressed in the robust optimiza-
tion.

Fl + e - FF = FF, vi € IRV vk € Products(i) (8)
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All separation units in this study are designed to
achieve sharp separation (/.e., separators always isolate
nearly all the light species to the light outlet stream FS;
and the heavy species to the heavy outlet stream Fif’kH).
The gas and fuel range products are separated in distil-
lation columns with a sequence based on the target boil-
ing points. To ensure that sharp separation is attainable
with our design, surrogate models (12) are built to esti-
mate the reflux ratio needed for 99% purity and the as-
sociated utilities from rigorous Aspen Plus process simu-
lation. In practice, the distillation columns cannot deviate
too much from the nominal reflux ratio once designed and
installed. To ensure the operating feasibility, different de-
sign options are provided for the same distillation tech-
nology but at most one will be active as shown in (13). A
30% flexibility around the reflux ratio at nominal condi-
tions is allowed for each design option p as presented in
(13)-(15). When an option is selected (w;, = 1), two bigM

constraints are used for to ensure the reflux ratio does
not deviate from the design value for more than 30%
(14 ,15).

Fl, = Ft vieISfP vk € light(i) (10)
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yi=2XpWi, VieIEP (13)
—M(1—w;;) + 0.7RRJ°™ < RR; Vi € ISEP (14)
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A supply constraint is imposed to the plastic waste
feedstock in (16).
Zi’eoutlets(i) Fi,i’,k < Fflgp Vie IPlaStiCVk € plastic (16)

For fuel range products, we impose a maximum for
the olefin content [17] as a product requirement (17). In
addition, we specify the limit of product quantities below
or above the typical boiling point ranges for fuel product
such as gasoline and diesel (18,19). Equations (18,19)
represent a linear simplification of the blending rule by
only considering boiling point and olefin content, alt-
hough more rigorous blending rule can be incorporated.
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The general deterministic formulation of this chem-
ical recycling process design is presented as a mixed-in-
teger linear programming (MILP) problem in equation (20):

max (RPROD + RELEC _ CCAPEX _ COPEX)
s.t. Superstructure Mass Balance
Technology Constraints
Product Rules
Plastic Waste Feed Constraints
Process Economics

(20)

Surrogate Model for Distillation Columns

The distillation column surrogate model is an essen-
tial part of the superstructure optimization to create a
mapping between the inlet flow rates for both the light
and heavy components and the actual reflux ratio, con-
denser duty, and reboiler duty. Artificial neural network
(ANN) is selected as surrogate models given its excellent
fitting performance and its ability to maintain the linearity
of the problem. We refer to our previous work and use
Rectified Linear Unit (ReLU) as the activation function
with a feed-forward ANN [18]. The predicted value a¥, of
layer k and node m is calculated using a linear combina-
tion of the values from the previous layer as shown in (21).



The activation function ReLU, zX = max(0,ak), is mod-
elled using the big M constraints as shown in (22a-22d)

am = Wiim'zn * + by ! (21)
-M-(1-8k) <adk (22a)
ak, <M -8k, (22b)
0<zk<M- &, (22¢)
ak, —(1-8)<zk <ak, +M-(1-8%) (22d)

Robust Optimization

The uncertainty in this study arises from three
sources. The first source is the dynamic supply of sorted
bale plastic waste, which leads to uncertain feedstock
flowrates. The second source arises from the product
yield. For instance, not all solid products of hydroconver-
sion of recycled plastic could be treated as waxes [6].
Instead, depending on the reaction condition, some solid
plastic waste could remain unreacted or form coke. To
reflect this, we incorporate a process yield uncertainty
for waxes in hydrocracking and hydrogenolysis. Further-
more, the product selling price uncertainty is also in-
cluded to reflect the price volatility of the petroleum re-
finery products. The fuel range product tends to be more
volatile than waxes [19]. Therefore, a larger deviation
should be considered.

To formulate the robust counterpart of the problem,
we refer to the work of Li. et a/. [13], in which the robust
counterpart formulations have been derived for linear
and mixed-integer linear programming with different un-
certainty set. In this study, we consider box uncertainty
set for all uncertain parameters. The robust counterpart
for an inequality constraint (23) when considering left-
hand-side (L.H.S.) uncertainty is presented in (24), and
right-hand-side (R.H.S.) uncertainty in (25).

Z] al-_]- x] < bi (23)
ZJ[ILJX]"I'ZJ(TL’\J'X” Sbl (24)

In this study, uncertainty parameters for process
yield and product sale price occurs in equations instead
of inequalities, which drastically restricts the feasible
space of mathematical model and often causes infeasi-
bility [16]. Therefore, we use the inequality constraints in-
stead for process yield and sale price as presented in
previous work in petroleum refinery by Leiras et a/. [15]
as shown in (26,27). Using this upper bound on wax pro-
duced and product sales, we now have L.H.S. uncertainty
instead. While we acknowledge this reformulation cre-
ates a relaxation of the original problem mathematically,
the profit objective typically encourages producing more
products when possible. Therefore, these reformulated
inequalities (26,27) are likely to be active at optimal solu-
tion. The robust formulation is obtained by applying the

properties of box uncertainty set as presented in (24,25).

R ,
FIFER + €wax - FFT = FEROR  vie IRXV (26)
RevenuePROP < Price - FPROD (27)

ILLUSTRATIVE EXAMPLE

In this example, we considered three categories of
reaction technologies (i.e., hydrocracking [6], hydrogen-
olysis [8], and pyrolysis [7]), three types of plastic waste
streams (i.e., PP, LDPE, and HDPE), one solid separation,
two distillation (each with five options), and a pressure-
swing absorption unit for hydrogen recovery. The details
for the technologies are summarized in Table 1-3. For re-
action technologies that allow mixture plastic waste, we
enforced the feed composition to be the same as re-
ported from experiments in the literature. Gasoline, die-
sel, and waxes are selected as the product. Additionally,
another stream for electricity generation is available for
mixture outlet streams that do not meet the product re-
quirement for fuels.

Tablel: Reactions considered

Code Reaction Type Feed
RT1A hydrocracking LDPE
R2A hydrocracking HDPE
R3A hydrocracking PP
R1B hydrogenolysis PP
R2B hydrogenolysis PP/PE(1:1)
R1C pyrolysis PE
R2C pyrolysis PE/PP(3:2)
R3C pyrolysis PE/PP(2:3)
R4C pyrolysis PP

Table 2: Separations considered

Code Separator Type Separation Task

FLTA solid/fluid fluid/wax

DT1A distillation C4/C5

DT2A distillation C12/C13

PSA1A pressure swing hydrogen/alkanes
absorption

Table 3: Reflux ratios at nominal operating conditions for
different options

Option 1 2 3 4 5
Reflux Ratio(molar) 1 1.83 3.43 6.37 11.83

The data for the surrogate model training for distil-
lation columns were obtained by running sampled simu-
lations in Aspen Plus [14] with Python interface. The
model was trained in PyTorch [20]. The ANN models for
both distillation columns had 4 layers with 15, 18, 12 neu-
rons in the hidden layers and 3 neurons at the output



layer. The R? of the ANN for DT1A was 0.9586 and for
DT2A, 0.9675.

The operational basis of this example was based on
the previous techno-economic analysis [4,11] with a sup-
ply of 12 tonne/hr PP, 10 tonne/hr HDPE, and 2.5 tonne/hr
LDPE. The cost for the plastic collection and sorting de-
pends on the population density and geographic variation
[9]. The plastic waste collection and sorting cost was es-
timated in the work of Hernandez et al. [4] to be in the
range of 250 to 700 $/tonne. In this example, we as-
sumed an overall cost for the sorted plastic to be
$500/tonne. The price for waxes was estimated to be
$1000/tonne [21]. Moreover, the fuel price at nominal
condition was estimated to be $960/tonne for gasoline
[19] and $920/tonne for diesel [19]. A wax yield of 0.5
was assumed for hydroconversions. The associated un-
certainty type and deviations from the nominal value con-
sidered in this example is shown in Table 4.

Table 4: Uncertain parameters for illustrative example

Uncertain Parameter Type Deviation (%)
Plastic supply RHS 10
Wax yield LHS 40
Fuel price LHS 30
Wax price LHS 10

All optimization models were implemented in Pyomo
[22] and solved with Cplex 22.1 solver [23] on a computer
with Intel Xeon E-2274G CPU @ 4.00GHz 32 GB RAM.
The deterministic model was solved under nominal con-
dition, and the robust formulation was applied to include
the uncertainty set in Table 4.

Robust

Deterministic

-150 -100 -50 0 50 100 150 200

Cost(million dollars/yr)

BRevenue ECapital @ Operating O Feed

Figure 3. Cost breakdown of the plastic chemical
recycling system.

As shown in Figure 3, under nominal condition, the
optimal integrated chemical recycling process has a
revenue of 139.58 million dollars/year and a total cost of
96.40 million dollars/year. The feedstock cost comprises
of 89% of the total cost, which accounts for all upstream

cost for plastic waste collection and sorting. The profit of
the process is 43.18 million dollars/year. However, when
the uncertainties are considered in the robust formulation,
the total revenue of the best design dropped to 117.45
million dollars/year with a total cost of 92.5 million
dollars/year. This leads to a profit of 25.95 million
dollars/year.

Under the nominal condition, the distillation column
DT1A operates at a 6.64 molar reflux ratio, and operating
condition option 4 is selected. For distillation column
DT2A, the actual molar reflux ratio is 2.24, and option 2
is selected. When robust optimization is performed, the
actual reflux ratio for DT1A becomes 0.07, and option 1is
selected. The technology DT2A is not selected at all as
no gasoline product is pursued as shown in Figure 5.

Reaction Technologies Separation Technologies

Figure 4. Superstructure under the nominal condition
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Figure 5. Superstructure under the robust formulation
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Figure 6. Reactor loads for process designs from both
deterministic and robust optimization
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Figure 7. Product quantities for process designs from
both deterministic and robust optimization.

As illustrated in Figure 4, the reaction of a combina-
tion of hydrocracking (R1A, R2A, R3A) and mixed olefin
pyrolysis(R3C) is selected in the nominal case, and the
reactor load is presented in Figure 6. When uncertainties
are considered, only mixed olefin pyrolysis is chosen
(R2C, R3C). The product produced changes from a com-
bination of gasoline and wax to only wax. This change
occurs primarily as a result of the price volatility of fuel
products, which makes the wax product relatively more
profitable than the nominal condition. In addition, the hy-
drocracking reactions are less economically favorable af-
ter the uncertainty in the wax yield of hydroconversions
is included.

CONCLUSIONS

In this work, we have proposed the robust optimiza-
tion framework for designing plastic waste valorization
system. We used an illustrative example to demonstrate
the how the feedstock supply availability, process yield,
and product price uncertainties affect the optimal pro-
cess design and operation. In the future, this model could
be extended to include more considerations including
more types of products, upgrading technologies, up-
stream sorting process, reaction technologies, and more
kinds of plastic waste.
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