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ABSTRACT 

Chemical recycling of plastics is a promising technology to reduce carbon footprint and ease the 
pressure of waste treatment. Specifically, highly efficient conversion technologies for polyolefins 
will be the most effective solution to address the plastic waste crisis, given that polyolefins are 
the primary contributors to global plastic production. Significant challenges encountered by plastic 
waste valorization facilities include the uncertainty in the composition of the waste feedstock, 
process yield, and product price. These variabilities can lead to compromised performance or even 
render operations infeasible. To address these challenges, this work applied the robust optimiza-
tion-based framework to design an integrated polyolefin chemical recycling plant. Data-driven 
surrogate model was built to capture the separation units’ behavior and reduce the computational 
complexity of the optimization problem. It was found that when process yield and price uncertain-
ties were considered, wax products became more favorable, and pyrolysis became the preferred 
reaction technology.   

Keywords: Process Design, Design Under Uncertainty, Optimization, Polymers, Technoeconomic Analysis, 
Plastic Waste 

INTRODUCTION 

Global plastic waste has been on the rise, making 
efficient plastic recycling process design imperative [1]. 
Chemical recycling and upcycling strategies not only re-
duces the mismanaged plastic waste, but also has the 
potential to reduce the carbon footprint to meet sustain-
able goals [2]. 

One challenge in plastic recycling process design 
arises from uncertain feedstock compositions. The type 
and proportion of plastic waste can exhibit variations in-
fluenced by factors like geographic location, resulting in 
substantial differences in both economic and energy val-
ues [3]. In addition, feedstock compositions affect the 
strategies for plastic recycling. For instance, one ad-
vantage of the pyrolysis process is that it can easily han-
dle a mixed plastic waste feedstock with different ratio, 
especially noncatalytic pyrolysis unit. However, most of 
other chemical recycling technologies, including hydro-
genolysis, typically requires relatively pure feedstock af-
ter careful sorting or impurity removal to ensure good 
catalyst performance [4,5].  

Polyolefins (PO), including polypropylene (PP) and 
polyethylene (PE), are main source of plastic waste. Their 
inert carbon-carbon backbones make it challenging to 
breakdown the long chains and produce valuable prod-
ucts [6]. Many reaction pathways have been developed 
recently to effectively deconstruct PO, among which py-
rolysis and hydroconversion (i.e., hydrocracking and hy-
drogenolysis) have shown promising potentials.  Thermal 
pyrolysis reactions operate at elevated temperature and 
shorter residence time, which generates products a 
wider distribution and more gas that are most useful as 
fuels [7]. Hydroconversion, on the other hand, operates 
at milder conditions and produces liquid hydrocarbon 
within the fuel or lubricant ranges [6,8].   

Depending on the feedstock composition, different 
technologies operate at different conditions to produce 
different products [3,9]. As the product selectivity and 
the use of catalyst depend on the plastic waste type [3], 
feedstock variability could affect not only the process 
performance but also its feasibility. 

Existing studies in process design of plastic recy-
cling typically focus on a particular recycling strategy and 
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its operating conditions [9]. For instance, Hernandez et 
al. compared the costs and emissions for four waste 
LDPE treatment processes – gasification, pyrolysis, hy-
drogenolysis [4]. Bora et al. performed life cycle assess-
ment and technoeconomic analysis on waste PP treat-
ment processes and demonstrated that chemical recy-
cling had low emissions but only profitable at large scales 
[10]. Zhao and You utilized the superstructure framework 
to optimize the net present value and greenhouse gas 
emissions of monomers, aromatic mixtures, and fuels 
production from waste HDPE [11].  

An integrated plastic waste recycling technology 
selection and product separation provide opportunities 
for performance improvement. Moreover, it is important 
to consider the feedstock variability when designing such 
integrated chemical recycling facilities to ensure feasible 
operations among each connecting subunit. Robust opti-
mization has been established as a computationally effi-
cient framework to incorporates uncertainties and im-
proves process performance [12]. Li et al. applied robust 
optimization to refinery production planning problem 
considering yield, cost, and price uncertainties [13].  

This study proposes a methodology for the devel-
opment of a chemical recycling facility for plastic waste. 
The design involves the selection of reaction technology 
and product separation guided by an optimization model. 
Since feedstock composition variability and product yield 
distribution are unavoidable in waste plastic treatment 
and affects the separation efficiencies, it is vital to guar-
antee feasible operation and good performance under 
these uncertainties. Rigorous process flowsheet simula-
tions in Aspen Plus (Aspen Technology) [14] were carried 
out to obtain surrogate models of separation processes. 
Design decisions include chemical treatment technolo-
gies, distillation column design and unit connectivity. A 
robust optimization model is formulated to maximize 
profit under the worst case and ensure process feasibility 
(e.g., normal process operation) for all scenarios [6]. This 
robust optimization model will improve the chemical re-
cycling process feasibility and performance under the 
worst uncertain case than the traditional deterministic 
optimization model [2,13]. Applying robust optimization 
instead of stochastic programming will also largely re-
duce the computational complexity, especially in the pro-
cess design problem with high dimensionality arising 
from feedstock variability feedstock variability, yield un-
certainty, and price fluctuation [15,16]. 
 

MODEL FORMULATION 

Deterministic Superstructure Optimization   

 The superstructure elements for the chemical recy-
cling facility includes plastic waste, other feedstocks, 
products, reaction technologies, and separation 

alternatives (Figure 1). In this study, decisions are made 
on three levels. First, the combination of reaction or sep-
aration technologies is selected. Second, we determine 
the connectivity among feed, technologies, and products. 
Third, we decide the exact realization of a technology 
(e.g., distillation column operation conditions) by choos-
ing an option. On this third level, incompatible connec-
tions, such as a liquid/solid stream entering a gas sepa-
rator or an inappropriate reactant used by a particular re-
actor, could occur. Consequently, the connectivity of the 
superstructure elements is sorted a priori to eliminate 
those unproductive links. This step reduces the overall 
model size without cutting off potential candidate solu-
tions [17]. 
 As illustrated in Figure 2, the superstructure is con-
nected with the inlet mixer and outlet splitters. The su-
perstructure mass balance is established with the equa-
tions (1-4) for flow rate of each process stream going 
from 𝑖′to 𝑖 for species 𝑘 (𝐹𝑖′,𝑖,𝑘). Equation (1) specifies the 
mixer balance for 𝐹𝑖,𝑘

𝐼  , the flow rate of an inlet stream into 
a superstructure element 𝑖 for species 𝑘. The splitter bal-
ance is enforced in equation (2) for the outlet stream of a 
superstructure element 𝐹𝑖,𝑘

𝑂 . While a splitter with split ra-
tio to multiple outlet stream is possible, we choose to 
maintain the linearity of the problem by allowing exactly 
one destination 𝑖′ for each superstructure element  𝑖 with 
the binary variable η𝑖,𝑖′. To ensure the feasibility of each 
unit, a capacity limit is imposed as shown in (5-7). The 
total flow rate 𝐹𝑖

𝑇is decide from (5), and the technology 
capacity 𝐹𝑖

𝐶𝐴𝑃 is enforced with (6). A big M constraint (7) 
is used to ensure if a technology is not selected (𝑦𝑖 = 0 ), 
the capacity is 0.  

𝐹𝑖,𝑘
𝐼 = ∑ 𝐹𝑖′,𝑖,𝑘𝑖′∈𝑖𝑛𝑙𝑒𝑡𝑠(𝑖)  ∀𝑖 ∈ 𝐼𝑇𝐸𝐶𝐻∀𝑘             (1) 

𝐹𝑖,𝑘
𝑂 = ∑ 𝐹𝑖,𝑖′,𝑘𝑖′∈𝑜𝑢𝑡𝑙𝑒𝑡𝑠(𝑖)   ∀𝑖 ∈ 𝐼𝑇𝐸𝐶𝐻  ∀𝑘                  (2)

        ∑ 𝐹𝑖,𝑖′,𝑘𝑘 ≤ 𝑀 ⋅ η𝑖,𝑖′   ∀𝑖 ∈ 𝐼𝑇𝐸𝐶𝐻  ∀𝑖′ ∈ 𝑜𝑢𝑡𝑙𝑒𝑡𝑠(𝑖)         (3) 

        ∑ η𝑖,𝑖′𝑖′∈𝑜𝑢𝑡𝑙𝑒𝑡𝑠(𝑖) = 1  ∀𝑖 ∈ 𝐼𝑇𝐸𝐶𝐻      (4) 

𝐹𝑖
𝑇 = ∑ 𝐹𝑖,𝑘

𝐼
𝑘∈𝐾  ∀𝑖 ∈ 𝐼𝑇𝐸𝐶𝐻      (5) 

𝐹𝑖
𝑇 ≤ 𝐹𝑖

𝐶𝐴𝑃  ∀𝑖 ∈ 𝐼𝑇𝐸𝐶𝐻       (6) 
 𝐹𝑖

𝐶𝐴𝑃 ≤ 𝑀 ⋅ 𝑦𝑖    ∀𝑖 ∈ 𝐼𝑇𝐸𝐶𝐻           (7) 
 

 
Figure 1. Elements of the chemical recycling plant su-

perstructure. 



 

  

 

Figure 2. Possible connectivity of chemical recycling 
plant’s separation units 

The reaction conversion and selectivity of the 
chemical recycling technologies are taken from the liter-
ature to model stoichiometric reactor units in the super-

structure. A basis in the reaction feed stream 𝐹𝑖
𝑅𝑒𝑓and a 

conversion coefficient ϵ𝑖,𝑘 is used to determine the com-
position of the product streams as shown in (8). For some 
reactions, especially the hyroconversions [6,8], some un-
desired solid (e.g., coke) and gas formation are not well-
characterized, leading to inaccurate estimation product 
yields thus violations of mass balance. To close the mass 
balance gap, we make a conservative assumption by in-
cluding a waste stream that is not usable in the down-
stream operations (9). Admittedly, this assumption may 
not reflect the actual reaction. Thus, the effects of wax 
yield uncertainty are addressed in the robust optimiza-
tion. 

𝐹𝑖,𝑘
𝐼 + ϵ𝑖,𝑘 ⋅ 𝐹𝑖

𝑅𝑒𝑓
= 𝐹𝑖,𝑘

𝑃   ∀𝑖 ∈ 𝐼𝑅𝑋𝑁  ∀𝑘 ∈ 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠(𝑖)    (8) 

∑ 𝐹𝑖,𝑘
𝐼

𝑘 − ∑ 𝐹𝑖,𝑘
𝑃

𝑘≠𝑊𝐴𝑆𝑇𝐸 = 𝐹𝑖,𝑊𝐴𝑆𝑇𝐸
𝑃 , ∀𝑖 ∈ 𝐼𝑅𝑋𝑁      (9) 

 
All separation units in this study are designed to 

achieve sharp separation (i.e., separators always isolate 
nearly all the light species to the light outlet stream 𝐹𝑖,𝑘

𝑂𝐿 
and the heavy species to the heavy outlet stream 𝐹𝑖,𝑘

𝑂𝐻). 
The gas and fuel range products are separated in distil-
lation columns with a sequence based on the target boil-
ing points. To ensure that sharp separation is attainable 
with our design, surrogate models (12) are built to esti-
mate the reflux ratio needed for 99% purity and the as-
sociated utilities from rigorous Aspen Plus process simu-
lation. In practice, the distillation columns cannot deviate 
too much from the nominal reflux ratio once designed and 
installed. To ensure the operating feasibility, different de-
sign options are provided for the same distillation tech-
nology but at most one will be active as shown in (13). A 
30% flexibility around the reflux ratio at nominal condi-
tions is allowed for each design option 𝑝 as presented in 
(13)-(15). When an option is selected (𝑤𝑖,𝑝 = 1), two big M 

constraints are used for to ensure the reflux ratio does 
not deviate from the design value for more than 30% 
(14,15).  

 
𝐹𝑖,𝑘

𝐼 = 𝐹𝑖,𝑘
𝑂𝐿 ∀𝑖 ∈ 𝐼𝑆𝐸𝑃  ∀𝑘 ∈ 𝑙𝑖𝑔ℎ𝑡(𝑖)     (10) 

𝐹𝑖,𝑘
𝐼 = 𝐹𝑖,𝑘

𝑂𝐻 ∀𝑖 ∈ 𝐼𝑆𝐸𝑃  ∀𝑘 ∈ ℎ𝑒𝑎𝑣𝑦(𝑖)     (11) 

𝑓𝑖(𝐿𝑖𝑔ℎ𝑡, 𝐻𝑒𝑎𝑣𝑦) = (𝑅𝑅𝑖 , 𝑄𝑖
𝑐𝑜𝑜𝑙 , 𝑄𝑖

ℎ𝑒𝑎𝑡)∀𝑖 ∈ 𝐼𝑆𝐸𝑃    (12) 

𝑦𝑖 = ∑ 𝑤𝑖,𝑝𝑝  ∀𝑖 ∈ 𝐼𝑆𝐸𝑃      (13) 

−𝑀(1 − 𝑤𝑖,𝑝) + 0.7𝑅𝑅𝑝
𝑛𝑜𝑚 ≤ 𝑅𝑅𝑖  ∀𝑖 ∈ 𝐼𝑆𝐸𝑃     (14) 

𝑅𝑅𝑖 ≤ 𝑀(1 − 𝑤𝑖,𝑝) + 1.3𝑅𝑅𝑝
𝑛𝑜𝑚 ∀𝑖 ∈ 𝐼𝑆𝐸𝑃                (15) 

 
 A supply constraint is imposed to the plastic waste   
feedstock in (16). 
 ∑ 𝐹𝑖,𝑖′,𝑘𝑖′∈𝑜𝑢𝑡𝑙𝑒𝑡𝑠(𝑖) ≤ 𝐹𝑗,𝑘

𝑆𝑈𝑃 ∀𝑖 ∈ 𝐼𝑃𝑙𝑎𝑠𝑡𝑖𝑐∀𝑘 ∈ plastic (16) 
 
 For fuel range products, we impose a maximum for 
the olefin content [17] as a product requirement (17). In 
addition, we specify the limit of product quantities below 
or above the typical boiling point ranges for fuel product 
such as gasoline and diesel (18,19). Equations (18,19) 
represent a linear simplification of the blending rule by 
only considering boiling point and olefin content, alt-
hough more rigorous blending rule can be incorporated.  
 
 ∑ 𝐹𝑖,𝑘

𝑝𝑟𝑜𝑑
𝑘∈𝐾𝑜𝑙𝑒𝑓𝑖𝑛 ≤ ϕ𝑜𝑙𝑒𝑓𝑖𝑛 ∑ 𝐹

𝑖,𝑘′
𝑝𝑟𝑜𝑑

𝑘′∈𝐾  ∀𝑖 ∈ 𝐼𝐹𝑢𝑒𝑙   (17) 

 

∑ 𝐹𝑖,𝑘
𝑝𝑟𝑜𝑑

𝑘∈𝐾𝐵𝑃𝐿𝑂 ≤ ϕ𝑘
𝑘𝑙𝑜 𝑖 ∈ 𝐼𝐹𝑢𝑒𝑙    (18) 

∑ 𝐹𝑖,𝑘
𝑝𝑟𝑜𝑑

𝑘∈𝐾𝐵𝑃𝑈𝑃 ≥ ϕ𝑘
𝑘𝑢𝑝

 𝑖 ∈ 𝐼𝐹𝑢𝑒𝑙                 (19) 
 
The general deterministic formulation of this chem-

ical recycling process design is presented as a mixed-in-
teger linear programming (MILP) problem in equation (20):  
  
 𝐦𝐚𝐱    (𝑅𝑃𝑅𝑂𝐷 + 𝑅𝐸𝐿𝐸𝐶 − 𝐶𝐶𝐴𝑃𝐸𝑋 − 𝐶𝑂𝑃𝐸𝑋)       (20) 

 s. t.         Superstructure Mass Balance                 
   Technology Constraints 

   Product Rules 

   Plastic Waste Feed Constraints 
Process Economics                           

 

Surrogate Model for Distillation Columns 

 The distillation column surrogate model is an essen-
tial part of the superstructure optimization to create a 
mapping between the inlet flow rates for both the light 
and heavy components and the actual reflux ratio, con-
denser duty, and reboiler duty. Artificial neural network 
(ANN) is selected as surrogate models given its excellent 
fitting performance and its ability to maintain the linearity 
of the problem. We refer to our previous work and use 
Rectified Linear Unit (ReLU) as the activation function 
with a feed-forward ANN [18]. The predicted value 𝑎𝑚

𝑘  of 
layer k and node m is calculated using a linear combina-
tion of the values from the previous layer as shown in (21). 



 

  

The activation function ReLU, 𝑧𝑛
𝑘  =  𝑚𝑎𝑥(0, 𝑎𝑛

𝑘) , is mod-
elled using the big M constraints as shown in (22a-22d)    

 
𝑎𝑚

𝑘 = 𝑊𝑛,𝑚
𝑘−1𝑧𝑛

𝑘−1 + 𝑏𝑚
𝑘−1      (21) 

−𝑀 ⋅ (1 − δ𝑚
𝑘 ) ≤ 𝑎𝑚

𝑘      (22a) 
𝑎𝑚

𝑘 ≤ 𝑀 ⋅ δ𝑚
𝑘      (22b) 

0 ≤ 𝑧𝑚
𝑘 ≤ 𝑀 ⋅ δ𝑚

𝑘     (22c) 
𝑎𝑚

𝑘 −⋅ (1 − δ𝑚
𝑘 ) ≤ 𝑧𝑚

𝑘 ≤ 𝑎𝑚
𝑘 + 𝑀 ⋅ (1 − δ𝑚

𝑘 )            (22d) 

 

Robust Optimization 

The uncertainty in this study arises from three 
sources. The first source is the dynamic supply of sorted 
bale plastic waste, which leads to uncertain feedstock 
flowrates. The second source arises from the product 
yield. For instance, not all solid products of hydroconver-
sion of recycled plastic could be treated as waxes [6]. 
Instead, depending on the reaction condition, some solid 
plastic waste could remain unreacted or form coke. To 
reflect this, we incorporate a process yield uncertainty 
for waxes in hydrocracking and hydrogenolysis. Further-
more, the product selling price uncertainty is also in-
cluded to reflect the price volatility of the petroleum re-
finery products. The fuel range product tends to be more 
volatile than waxes [19]. Therefore, a larger deviation 
should be considered.  

To formulate the robust counterpart of the problem, 
we refer to the work of Li. et al. [13], in which the robust 
counterpart formulations have been derived for linear 
and mixed-integer linear programming with different un-
certainty set. In this study, we consider box uncertainty 
set for all uncertain parameters. The robust counterpart 
for an inequality constraint (23) when considering left-
hand-side (L.H.S.) uncertainty is presented in (24), and 
right-hand-side (R.H.S.) uncertainty in (25).   

 
∑ 𝑎𝑖,𝑗𝑗 𝑥𝑗  ≤ 𝑏𝑖          (23) 

 ∑ 𝑎𝑖,𝑗𝑗 𝑥𝑗 + ∑ 𝑎𝑖,𝑗̂𝑗 |𝑥𝑗|  ≤ 𝑏𝑖         (24) 
 ∑ 𝑎𝑖,𝑗𝑗 𝑥𝑗 + 𝑏𝑖̂ ≤ 𝑏𝑖          (25) 
 

In this study, uncertainty parameters for process 
yield and product sale price occurs in equations instead 
of inequalities, which drastically restricts the feasible 
space of mathematical model and often causes infeasi-
bility [16]. Therefore, we use the inequality constraints in-
stead for process yield and sale price as presented in 
previous work in petroleum refinery by Leiras et al. [15] 
as shown in (26,27). Using this upper bound on wax pro-
duced and product sales, we now have L.H.S. uncertainty 
instead. While we acknowledge this reformulation cre-
ates a relaxation of the original problem mathematically, 
the profit objective typically encourages producing more 
products when possible. Therefore, these reformulated 
inequalities (26,27) are likely to be active at optimal solu-
tion. The robust formulation is obtained by applying the 

properties of box uncertainty set as presented in (24,25). 
 

𝐹𝑖,𝑊𝐴𝑋
𝐹𝐸𝐸𝐷 + 𝜖𝑖,𝑊𝐴𝑋 ⋅ 𝐹𝑖

𝑅𝑒𝑓
≥ 𝐹𝑖,𝑊𝐴𝑋

𝑃𝑅𝑂𝐷 ∀𝑖 ∈ 𝐼𝑅𝑋𝑁    (26) 
𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑃𝑅𝑂𝐷 ≤ 𝑃𝑟𝑖𝑐𝑒 ⋅ 𝐹𝑃𝑅𝑂𝐷       (27) 

ILLUSTRATIVE EXAMPLE 

In this example, we considered three categories of 
reaction technologies (i.e., hydrocracking [6], hydrogen-
olysis [8], and pyrolysis [7]), three types of plastic waste 
streams (i.e., PP, LDPE, and HDPE), one solid separation, 
two distillation (each with five options), and a pressure-
swing absorption unit for hydrogen recovery. The details 
for the technologies are summarized in Table 1-3. For re-
action technologies that allow mixture plastic waste, we 
enforced the feed composition to be the same as re-
ported from experiments in the literature.  Gasoline, die-
sel, and waxes are selected as the product. Additionally, 
another stream for electricity generation is available for 
mixture outlet streams that do not meet the product re-
quirement for fuels.    

Table1: Reactions considered 

Code Reaction Type Feed 
R1A hydrocracking LDPE 
R2A hydrocracking HDPE 
R3A hydrocracking PP 
R1B hydrogenolysis PP 
R2B hydrogenolysis PP/PE(1:1) 
R1C pyrolysis PE 
R2C pyrolysis PE/PP(3:2) 
R3C pyrolysis PE/PP(2:3) 
R4C pyrolysis PP 

Table 2: Separations considered 

Code Separator Type Separation Task 
FL1A solid/fluid fluid/wax 
DT1A distillation C4/C5 
DT2A distillation C12/C13 

PSA1A pressure swing 
absorption 

hydrogen/alkanes 

Table 3: Reflux ratios at nominal operating conditions for 
different options   

Option 1 2 3 4 5 
Reflux Ratio(molar) 1 1.83 3.43 6.37 11.83 

 
 The data for the surrogate model training for distil-
lation columns were obtained by running sampled simu-
lations in Aspen Plus [14] with Python interface. The 
model was trained in PyTorch [20]. The ANN models for 
both distillation columns had 4 layers with 15, 18, 12 neu-
rons in the hidden layers and 3 neurons at the output 



 

  

layer. The R2 of the ANN for DT1A was 0.9586 and for 
DT2A, 0.9675. 
 The operational basis of this example was based on 
the previous techno-economic analysis [4,11] with a sup-
ply of 12 tonne/hr PP, 10 tonne/hr HDPE, and 2.5 tonne/hr 
LDPE. The cost for the plastic collection and sorting de-
pends on the population density and geographic variation 
[9]. The plastic waste collection and sorting cost was es-
timated in the work of Hernandez et al. [4] to be in the 
range of 250 to 700 $/tonne. In this example, we as-
sumed an overall cost for the sorted plastic to be 
$500/tonne. The price for waxes was estimated to be 
$1000/tonne [21]. Moreover, the fuel price at nominal 
condition was estimated to be $960/tonne for gasoline 
[19] and $920/tonne for diesel [19]. A wax yield of 0.5 
was assumed for hydroconversions. The associated un-
certainty type and deviations from the nominal value con-
sidered in this example is shown in Table 4. 

Table 4: Uncertain parameters for illustrative example 

Uncertain Parameter Type Deviation (%) 
Plastic supply RHS 10 

Wax yield LHS 40 
Fuel price LHS 30 
Wax price LHS 10 

 
All optimization models were implemented in Pyomo 

[22] and solved with Cplex 22.1 solver [23] on a computer 
with Intel Xeon E-2274G CPU @ 4.00GHz 32 GB RAM. 
The deterministic model was solved under nominal con-
dition, and the robust formulation was applied to include 
the uncertainty set in Table 4. 

 
 

Figure 3. Cost breakdown of the plastic chemical 
recycling system. 

 
 As shown in Figure 3, under nominal condition,  the 
optimal integrated chemical recycling process has a 
revenue of 139.58 million  dollars/year and a total cost of 
96.40 million dollars/year. The feedstock cost comprises 
of 89% of the total cost, which accounts for all upstream 

cost for plastic waste collection and sorting. The profit of 
the process is 43.18 million dollars/year. However, when 
the uncertainties are considered in the robust formulation, 
the total revenue of the best design dropped to 117.45 
million dollars/year with a total cost of 92.5 million 
dollars/year. This leads to a profit of 25.95 million 
dollars/year. 
 Under the nominal condition, the distillation column 
DT1A operates at a 6.64 molar reflux ratio, and operating 
condition option 4 is selected. For distillation column 
DT2A, the actual molar reflux ratio is 2.24, and option 2 
is selected. When robust optimization is performed, the 
actual reflux ratio for DT1A becomes 0.07, and option 1 is 
selected. The technology DT2A is not selected at all as 
no gasoline product is pursued as shown in Figure 5. 

Figure 4. Superstructure under the nominal condition  
 

 
Figure 5. Superstructure under the robust formulation 
 

 
Figure 6. Reactor loads for process designs from both 
deterministic and robust optimization 



 

  

 
 Figure 7. Product quantities for process designs from 
both deterministic and robust optimization. 
 

As illustrated in Figure 4, the reaction of a combina-
tion of hydrocracking (R1A, R2A, R3A) and mixed olefin 
pyrolysis(R3C) is selected in the nominal case, and the 
reactor load is presented in Figure 6. When uncertainties 
are considered, only mixed olefin pyrolysis is chosen 
(R2C, R3C). The product produced changes from a com-
bination of gasoline and wax to only wax. This change 
occurs primarily as a result of the price volatility of fuel 
products, which makes the wax product relatively more 
profitable than the nominal condition. In addition, the hy-
drocracking reactions are less economically favorable af-
ter the uncertainty in the wax yield of hydroconversions 
is included.  

 

CONCLUSIONS 

In this work, we have proposed the robust optimiza-
tion framework for designing plastic waste valorization 
system. We used an illustrative example to demonstrate 
the how the feedstock supply availability, process yield, 
and product price uncertainties affect the optimal pro-
cess design and operation. In the future, this model could 
be extended to include more considerations including 
more types of products, upgrading technologies, up-
stream sorting process, reaction technologies, and more 
kinds of plastic waste. 
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