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Abstract

We analyze whether object detectors trained on
vision-language data learn effective visual rep-
resentations for synonyms. Since many current
vision-language models accept user-provided
textual input, we highlight the need for such
models to learn feature representations that are
robust to changes in how such input is provided.
Specifically, we analyze changes in synonyms
used to refer to objects. Here, we study object
detectors trained on vision-language data and
investigate how to make their performance less
dependent on whether synonyms are used to re-
fer to an object. We propose two approaches to
achieve this goal: data augmentation by back-
translation and class embedding enrichment.
We show the promise of such approaches, re-
porting improved performance on synonyms
from mAP@0.5=33.87% to 37.93%.

1 Introduction

In recent years, we have witnessed increased in-
terest in vision-language models (Radford et al.,
2021; Yuan et al., 2021) that learn joint image and
text representations in a self-supervised way, and
that can later be used as building blocks for models
fine-tuned on downstream tasks (Wu et al., 2023;
Kuo et al., 2022; Kim et al., 2023). In addition,
recent models such as GPT-4 (OpenAl, 2023) and
DALL-E 3 (Betker et al., 2023) are built to accept
image and text input provided by end users, with no
set constraints on such inputs. Thus, models must
be robust to variations in how input is provided.

We analyze how vision-language models handle
the variability in textual inputs. Specifically, we
investigate variations in synonyms used to refer to
objects. We show how such variability negatively
affects performance for open-vocabulary object de-
tection, and we propose two ways to help vision-
language detectors learn better representations for
synonyms: data augmentation by back-translation
and class embedding enrichment.
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Figure 1: Top: input to an open-vocabulary object de-
tector: images, class embeddings, and captions; and its
output: bounding boxes with associated labels. Bot-
tom: our approaches. 1) Data augmentation by back-
translation: add captions back-translated from a foreign
language; 2) Class embedding enrichment: consider
synonyms and related terms when computing class em-
beddings.

Figure 1 illustrates our proposed approaches.
With back-translation, we use a machine transla-
tion model to translate captions from English to
another language, and then we translate them back
to English. Because the back-translation is not per-
fect, the original caption and the back-translated
one are not the same: they show changes, for in-
stance, in which nouns are used to refer to objects
(e.g., synonyms). We hypothesize that adding more
synonyms and related terms to the captions used
for training will help a model learn better repre-
sentations for them. With class embedding enrich-
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ment, we modify the class embeddings that open-
vocabulary object detectors (Wu et al., 2023; Gu
et al., 2021; Minderer et al., 2022) use to match
visual embeddings learned for image regions. Fur-
thermore, when training with enriched class embed-
dings, we experiment with enriching them through-
out the whole training process, or using a curricu-
lum learning approach: start training with the origi-
nal embeddings, and finish with the enriched ones.

In both our approaches, we modify inputs to
the training process (i.e., captions and class em-
beddings), making them generalizable to different
model architectures and training strategies. We
show promising results with improved performance
on synonyms from mAP@0.5=33.87% to 37.93%.

In summary, our contribution is twofold: (1)
we identify an issue with current state-of-the-art
(SOTA) vision-language object detector models
(namely, difficulty in detecting objects referred to
by synonyms or closely related terms), and (2) we
propose two generalizable strategies to train vision-
language object detectors to learn better represen-
tations for such related terms.

2 Related Work

Vision-language (VL) models for open-
vocabulary detection. Open-vocabulary object
detection refers to training a detector model on
a set of classes and testing it also on a separate
set of classes unseen during training (Gu et al.,
2021; Gao et al., 2022; Minderer et al., 2022; Kim
et al., 2023; Wu et al., 2023). Many methods take
advantage of large pre-trained VL models (Radford
et al., 2021; Jia et al., 2021; Lu et al., 2019)
that are generally trained to recognize which
image-caption pairs match and which do not. In
this work, we use BARON (Wu et al., 2023): a
state-of-the-art (SOTA) open-vocabulary object
detector making use of the CLIP (Radford et al.,
2021) pre-trained VL model.

Concept relationships. Text embeddings have
been shown to encode relationships between con-
cepts such as synonyms and antonyms (Lu et al.,
2018; Gokhale et al., 2022). At the same time,
studies on adversarial attacks have highlighted how
performance of language models varies when the
input is changed, even when preserving the seman-
tic meaning of the input text (Jia et al., 2019; Zhu
et al., 2019; Ribeiro et al., 2018). Unsurprisingly,
when such language models are combined with
vision models, similar problems arise, with perfor-

mance on VL tasks varying under perturbations of
text input (Tascon-Morales et al., 2023; Gokhale
et al., 2022; Sheng et al., 2021; Gokhale et al.,
2020). Our work is related to such studies since
we aim to make VL models more robust to text
input variations, although we differ from previous
work in target task (object detection vs. visual
reasoning). Further, we do not require changes in
how a model is trained, for instance, by defining
a new loss function (Gokhale et al., 2022; Tascon-
Morales et al., 2023); we simply modify inputs to
the model, making our approach more general.

Curriculum learning.  Curriculum learn-
ing (Bengio et al., 2009) (CL) refers to training
a deep learning model by ordering the training
samples; a model can learn better if the training
samples are chosen following a schedule (i.e., a
curriculum) rather than randomly selected. Previ-
ous work has shown the promise of CL for tasks
such as machine translation (Liu et al., 2023; Qian
et al., 2021), automated text scoring (Zeng et al.,
2023), and common sense reasoning (Maharana
and Bansal, 2022). We apply the idea of chang-
ing the input a model is trained on, but, instead
of changing the training images, we change what
class embeddings the model is trained on.

3 Methods

3.1 Object detection: BARON

We choose BARON (Wu et al., 2023) as our
vision-language open-vocabulary detector since
it achieves SOTA results on the task of open-
vocabulary detection. BAg of RegiONs (BARON)
is based on Faster R-CNN (Ren et al., 2015), where
the classification layer is replaced by a linear layer
so that its output is an embedding (or pseudo-
words), rather than a class label. The key novelty of
this method is the introduction of bags of regions:
embeddings are extracted for a set of bounding
boxes around each region proposal, not for a single
proposal only. This is to model the co-occurrence
of bags of visual concepts. BARON is trained from
images and captions, and it requires a list of class
embeddings (extracted from object names) to clas-
sify each region proposal. At test time, an image
is fed to the model and bounding boxes are classi-
fied by comparing the extracted visual embeddings
with the provided class embeddings. If we change
such class embeddings by extracting them with syn-
onyms, detection performance significantly drops
(Table 2), motivating our work.
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Original \ German

Russian

A skate board rider does
a trick in front of a building.

A skateboarder does
a trick in front of a building.

A skater does a trick
in front of the building.

Three adults help a youngster
follow a sheet of instructions.

Three adults help a teenager
follow a sheet of instructions.

Three adults help the
teenager follow instructions.

Table 1: Examples of (left) original COCO captions, (middle) captions back-translated from German, and (right)

captions back-translated from Russian.

3.2 Evaluating using synonyms

To evaluate the ability of a model to detect objects
when using synonyms, we change the class em-
beddings during inference by replacing each class
name with one of its synonyms or related terms and
computing the class embeddings using such syn-
onym. Since we have multiple synonyms per class,
we repeat this process 5 times (with 5 different sets
of synonyms), and we compute the mean and stan-
dard deviation of the detection performance across
these five runs. The mean measures how well the
downstream task is performed when varying input
synonyms, the standard deviation measures how
variable performance is: if a model learned all syn-
onyms as well as class names, the standard devia-
tion would be O (i.e., performance does not depend
on the input synonym).

3.3 Augmentation by back-translation

In our first approach, we apply a machine trans-
lation model from English to another language to
the input captions, and then translate the translated
caption back to English. This approach has been
successfully used as a data augmentation strategy
on NLP tasks (Edunov et al., 2018; Xie et al., 2020;
Sennrich et al., 2016) but it is less explored for
VL models. Back-translation (BT) is a form of
data augmentation because the BT process does
not return a verbatim copy of the original caption:
the back-translated caption will not be the same
as the original one. There can be changes in, for
instance, words used to refer to objects (i.e., syn-
onyms), which is our motivation for proposing this
method: we hypothesize that the increased variabil-
ity in the vocabulary used to describe objects is
beneficial to learn robust feature representations.

3.4 Class embedding enrichment

In our second approach, we enrich the class embed-
dings BARON is trained with by incorporating syn-
onyms. Class embeddings are matched to region
proposals to assign a class to each region proposal:

the class whose embedding is most similar to that
predicted for the region proposal. We compute
class embeddings off-line using a CLIP Text En-
coder (TE): for each class (e.g., person), we process
a list of prompts through the TE (e.g., “A picture
of a person”, “A photo of a person”), returning one
embedding per prompt; their average is taken as
the overall class embedding. When enriching the
class embeddings, we do not only add the class
name (e.g., “person”) in the prompts, but also each
synonym or related term (e.g., “man”, “woman’).
The enriched class embedding is the average of
the resulting text embeddings for prompts with the
class name and its synonyms. While “man” and
“woman” are not pure synonyms to “person’”’, we
argue they are still a type of “person” and should
be detected as such, which our strategy allows.

3.5 Curriculum learning

A potential issue with our embeddings enrichment
approach is that, when training on enriched em-
beddings and testing on object names, the shift in
training vs. test embeddings may cause a decrease
in performance. We propose curriculum learning to
train with both the original class embeddings and
our enriched version: we start training on the for-
mer, and finish training on the latter. By seeing both
sets of embeddings during training, we hypothesize
a model will perform competitively when evaluated
both on object names and synonyms. To further
show the benefit of the proposed curriculum, we
also report experiments with the anti-curriculum
approach (i.e., enriched embeddings first, origi-
nal class embeddings last). In addition, we show
class-wise results for those classes where curricu-
lum learning provides the largest performance in-
crease (and decrease), when compared to the base-
line. Finally, we re-run our baseline and curriculum
learning experiments two more times (for a total of
three runs) to show that our reported performance
improvement is not due to chance.
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4 Results

4.1 Implementation

We train models on COCO Captions (Chen et al.,
2015) and evaluate them on COCO Objects (Lin
et al., 2014), and we use the list made available
by (Lu et al., 2018) for synonym evaluation (e.g.,
“ship, motorboat” for “boat”, “plane, aircraft” for
“airplane”). This list includes terms that are, tech-
nically speaking, hyponyms (e.g., “macbook” is a
hyponym for “laptop™). In this work, we are inter-
ested in detecting the pre-defined COCO classes, so
we want a detector to identify all types of laptops.
For this reason, we consider all the terms provided
by (Lu et al., 2018) as “synonyms”. In this list,
only 44 of the 80 COCO class have at least one
synonym, so we limit evaluation to these classes.

For machine translation, we use the Facebook
FAIR WMT2019 models (Ng et al., 2019). Two
models are available: English-German and English-
Russian. These two are high-resource languages
for which machine translation model achieve re-
markable results. A thorough analysis on what
foreign language is best suited for back-translation
is beyond the scope of our work.

To train and evaluate BARON!, we leave all
hyperparameters unchanged, except for batch size,
which we reduce from 16 to 12 due to hardware
constraints. For curriculum learning experiments,
we train with one set of class embeddings for half
of the training process and finish with the other set.

We run all experiments with the same images: if
an image is excluded because its original captions
do not mention any COCO object, as implemented
in (Wu et al., 2023), that image is not used in any
experiment, even if back-translation adds a mention
to one of the COCO objects.

4.2 [Evaluating using synonyms’ embeddings

We now evaluate models on synonyms used as test
class embeddings. As a baseline, we train a model
on the original COCO captions and COCO class
name embeddings, and we compare it with models
trained using back-translation or class embedding
enrichment. In Table 2, we see performance greatly
drops when using synonyms as opposed to COCO
names (MAP@0.5=44.45% vs. 33.87% when train-
ing with original captions). This corroborates the
need to better learn synonyms during training.

1https://github.com/wusize/ovdet/’cree/main, last
accessed October 10th, 2023

. COCO | Synonyms
Captions names | mean (std) Ave.
Original | 44.45 [ 33.87(5.94) | 35.63
Back-translation

German | 44.23 34.25 (5.32) || 3591
Russian | 43.89 33.67 (5.99) || 35.37
Both | 42.92 32.89 (5.97) || 34.56

Table 2: Back-translation: mAP@0.5 (as %) evalu-
ated on COCO class embeddings (“COCO names”)
and on synonyms embeddings (“Synonyms”). “Avg.”:
mean performance across the 5 sets of synonyms and
the COCO name. Bold: highest performance, italics:
second-best.

4.3 Augmentation by back-translation

We qualitatively verify that back-translation in-
creases the use of synonyms by showing exam-
ples of original COCO captions and their back-
translated versions with two languages: German
and Russian. From Table 1, we see that back-
translation is successful at introducing synonyms:
“skateboarder” or “skater” in the first caption and
“teenager” in the second. In addition, we compute
the ratio between the number of mentions of an
object using a synonym divided by the total num-
ber of mentions (synonyms and verbatim mentions
of the COCO object name). We compare such ra-
tio computed from the original captions and from
the back-translated (BT) ones, obtaining 0.317 for
original captions, 0.326 for BT: German, 0.344 for
BT: Russian, and 0.343 for BT: Both. These results
corroborate our assumption that back-translation
increases variability in synonyms usage.

From Table 2, adding back-translated captions
from German improves mean performance on syn-
onyms (with a slight decrease in performance on
class names), as well as decreases variability in
performance (from 5.94% to 5.32%), showing im-
proved robustness to variations in input synonym.

4.4 Class embedding enrichment

Table 3 shows increased mean performance
on synonyms when enriching class embeddings
(mAP@0.5=37.25% vs. 33.87%, and std=4.56%
vs. 5.94%, respectively), as well as increased over-
all average performance (38.31% vs. 35.63%).
These results show the promise of enriching
class embeddings, although we notice a small
decrease in performance when evaluating on
COCO names when training with original captions
(larger when comparing BT with/without enrich-
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. COCO | Synonyms
Captions names | mean (std) Ave.
Class embeddings: COCO names
Original 44.45 33.87 (5.94) || 35.63
BT: German | 44.23 34.25(5.32) || 35.91
Class embeddings: enriched
Original 43.58 37.25 (4.56) || 38.31
BT: German | 37.48 36.75 (4.56) || 36.87
CL 43.49 37.93 (3.22) || 38.85
Anti-CL 44.13 34.67 (5.87) || 36.25

Table 3: Class embedding enrichment: mAP@0.5 (as
%) evaluated on COCO class embeddings (“COCO
names”) and on synonyms embeddings (‘“Synonyms”).
CL: Curriculum Learning, where a model is trained
on embeddings for COCO classes first, and then on en-
riched embeddings. Anti-CL: anti-Curriculum Learning,
where a model is trained on enriched embeddings first,
and COCO class embeddings last.

ment). When evaluated on synonyms, combin-
ing back-translation and embedding enrichment
yields an improvement over using back-translation
(mAP@0.5=34.25% to 36.75%).

4.5 Curriculum learning

In Table 3 (bottom), we notice how curriculum
learning improves performance on synonym evalu-
ation compared to COCO embeddings and enriched
embeddings, while performance on COCO names
decreases only slightly. Average performance im-
proves (mAP@0.5=38.31% to 38.85%). To our
knowledge, this is one of the first results demon-
strating curriculum learning for object detection
using VL data for training.

In addition, starting training with COCO em-
beddings and ending training with enriched em-
beddings boosts performance on synonyms more
than the opposite curriculum (i.e., anti-curriculum),
confirming the benefit of our proposed curriculum
strategy.

Table 4 reports the class-wise mAP@0.5 for
classes where our curriculum learning strategy
achieves the largest gains and suffers the largest de-
creases in performance when compared to the base-
line. We notice that, with the exception of “bus”,
decreases in performance are less pronounced than
increases, which is reflected in the higher overall
average across all classes.

Finally, to further show the significance of the
performance increase achieved using our curricu-
lum learning approach, Table 5 reports average

Class H Baseline \ Curriculum
Bowl 1.79 30.87
Sandwich || 22.83 46.92
Bench 3.35 27.33
Person 51.28 71.59
Surfboard || 28.69 45.68
Bus 39.63 3.18
Cat 56.57 46.94
Cake 21.72 16.46
Dog 61.03 57.62
Remote 33.15 30.36

Table 4: Class-wise mAP@0.5 (as %): classes where
our curriculum learning approach achieves the largest
increase and decrease in performance compared to the
baseline.

mAP@0Q.5 across three runs of the baseline and
curriculum learning approaches, with standard de-
viation in parentheses. We show the increased per-
formance when evaluating on synonyms is main-
tained across different runs, as is the comparable
performance when evaluating on COCO names.

. CcoCo
Captions names Synonyms
Original 44.45 (0.2) | 33.73(0.1)
Curriculum | 44.00 (0.4) | 37.05 (0.7)

Table 5: Experiments re-runs: average mAP@0.5 (as %)
across three independent repeats of the training process
for our curriculum learning approach and the baseline.
Standard deviation in parentheses.

5 Conclusions

We considered variations in nouns used to refer
to objects (i.e., synonyms and related terms), and
how they affect performance of object detectors
trained with vision-text data. We highlighted how
detecting objects when synonyms are used as input
is challenging, and we introduced two approaches
to ameliorate this issue, which proved successful
at boosting detection performance on synonyms.
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6 Limitations

In this work, we show the promise of altering the
training process of vision-language object detec-
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tors to help learn more robust representations that
better adapt to variations in textual input in terms
of synonyms used to refer to objects. Despite such
promise, our study has some limitations. First, we
only evaluate on object detection; further studies on
other vision and language tasks (e.g., visual ques-
tion answering) are needed to fully characterize
the problem and evaluate the proposed solutions.
Second, we evaluate only on synonyms provided
by (Lu et al., 2018). Although the used synonyms
allow us to show our main points, more compre-
hensive synonyms’ lists can be tested. Third, we
show the impact of our approaches on one model
(i.e., BARON (Wu et al., 2023)); while this is
a SOTA open-vocabulary object detection model
whose overall design is similar to that of other de-
tectors (Minderer et al., 2022; Gu et al., 2021), re-
peating our experiments with other models would
better show the generalizability of our proposed
strategies. Finally, our approaches to better learn
synonyms focus on changing the input to the model
(whether it being the captions or the class embed-
dings it is trained with). While such a choice makes
our approach independent of the model’s inner ar-
chitecture (e.g., how features are extracted and com-
bined) or the training process (e.g., how a batch is
constructed), more individualized approaches are
worth investigating to solve the observed trade-off
between performance on synonyms and on object
names.

Ethical considerations. In our work, we use a ma-
chine translation model to augment captions with
synonyms. Such models may have learned gender-
related biases (e.g., doctor/man, nurse/woman) that,
in turn, could be passed on to the object detector
(making it easier for the model to detect people in
a certain profession if they are of a specific gen-
der). The fact that we keep the original captions
and add the back-translated one should offer some
safeguards against this issue.
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