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Abstract

We analyze whether object detectors trained on

vision-language data learn effective visual rep-

resentations for synonyms. Since many current

vision-language models accept user-provided

textual input, we highlight the need for such

models to learn feature representations that are

robust to changes in how such input is provided.

Specifically, we analyze changes in synonyms

used to refer to objects. Here, we study object

detectors trained on vision-language data and

investigate how to make their performance less

dependent on whether synonyms are used to re-

fer to an object. We propose two approaches to

achieve this goal: data augmentation by back-

translation and class embedding enrichment.

We show the promise of such approaches, re-

porting improved performance on synonyms

from mAP@0.5=33.87% to 37.93%.

1 Introduction

In recent years, we have witnessed increased in-

terest in vision-language models (Radford et al.,

2021; Yuan et al., 2021) that learn joint image and

text representations in a self-supervised way, and

that can later be used as building blocks for models

fine-tuned on downstream tasks (Wu et al., 2023;

Kuo et al., 2022; Kim et al., 2023). In addition,

recent models such as GPT-4 (OpenAI, 2023) and

DALL-E 3 (Betker et al., 2023) are built to accept

image and text input provided by end users, with no

set constraints on such inputs. Thus, models must

be robust to variations in how input is provided.

We analyze how vision-language models handle

the variability in textual inputs. Specifically, we

investigate variations in synonyms used to refer to

objects. We show how such variability negatively

affects performance for open-vocabulary object de-

tection, and we propose two ways to help vision-

language detectors learn better representations for

synonyms: data augmentation by back-translation

and class embedding enrichment.

Figure 1: Top: input to an open-vocabulary object de-

tector: images, class embeddings, and captions; and its

output: bounding boxes with associated labels. Bot-

tom: our approaches. 1) Data augmentation by back-

translation: add captions back-translated from a foreign

language; 2) Class embedding enrichment: consider

synonyms and related terms when computing class em-

beddings.

Figure 1 illustrates our proposed approaches.

With back-translation, we use a machine transla-

tion model to translate captions from English to

another language, and then we translate them back

to English. Because the back-translation is not per-

fect, the original caption and the back-translated

one are not the same: they show changes, for in-

stance, in which nouns are used to refer to objects

(e.g., synonyms). We hypothesize that adding more

synonyms and related terms to the captions used

for training will help a model learn better repre-

sentations for them. With class embedding enrich-
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ment, we modify the class embeddings that open-

vocabulary object detectors (Wu et al., 2023; Gu

et al., 2021; Minderer et al., 2022) use to match

visual embeddings learned for image regions. Fur-

thermore, when training with enriched class embed-

dings, we experiment with enriching them through-

out the whole training process, or using a curricu-

lum learning approach: start training with the origi-

nal embeddings, and finish with the enriched ones.

In both our approaches, we modify inputs to

the training process (i.e., captions and class em-

beddings), making them generalizable to different

model architectures and training strategies. We

show promising results with improved performance

on synonyms from mAP@0.5=33.87% to 37.93%.

In summary, our contribution is twofold: (1)

we identify an issue with current state-of-the-art

(SOTA) vision-language object detector models

(namely, difficulty in detecting objects referred to

by synonyms or closely related terms), and (2) we

propose two generalizable strategies to train vision-

language object detectors to learn better represen-

tations for such related terms.

2 Related Work

Vision-language (VL) models for open-

vocabulary detection. Open-vocabulary object

detection refers to training a detector model on

a set of classes and testing it also on a separate

set of classes unseen during training (Gu et al.,

2021; Gao et al., 2022; Minderer et al., 2022; Kim

et al., 2023; Wu et al., 2023). Many methods take

advantage of large pre-trained VL models (Radford

et al., 2021; Jia et al., 2021; Lu et al., 2019)

that are generally trained to recognize which

image-caption pairs match and which do not. In

this work, we use BARON (Wu et al., 2023): a

state-of-the-art (SOTA) open-vocabulary object

detector making use of the CLIP (Radford et al.,

2021) pre-trained VL model.

Concept relationships. Text embeddings have

been shown to encode relationships between con-

cepts such as synonyms and antonyms (Lu et al.,

2018; Gokhale et al., 2022). At the same time,

studies on adversarial attacks have highlighted how

performance of language models varies when the

input is changed, even when preserving the seman-

tic meaning of the input text (Jia et al., 2019; Zhu

et al., 2019; Ribeiro et al., 2018). Unsurprisingly,

when such language models are combined with

vision models, similar problems arise, with perfor-

mance on VL tasks varying under perturbations of

text input (Tascon-Morales et al., 2023; Gokhale

et al., 2022; Sheng et al., 2021; Gokhale et al.,

2020). Our work is related to such studies since

we aim to make VL models more robust to text

input variations, although we differ from previous

work in target task (object detection vs. visual

reasoning). Further, we do not require changes in

how a model is trained, for instance, by defining

a new loss function (Gokhale et al., 2022; Tascon-

Morales et al., 2023); we simply modify inputs to

the model, making our approach more general.

Curriculum learning. Curriculum learn-

ing (Bengio et al., 2009) (CL) refers to training

a deep learning model by ordering the training

samples; a model can learn better if the training

samples are chosen following a schedule (i.e., a

curriculum) rather than randomly selected. Previ-

ous work has shown the promise of CL for tasks

such as machine translation (Liu et al., 2023; Qian

et al., 2021), automated text scoring (Zeng et al.,

2023), and common sense reasoning (Maharana

and Bansal, 2022). We apply the idea of chang-

ing the input a model is trained on, but, instead

of changing the training images, we change what

class embeddings the model is trained on.

3 Methods

3.1 Object detection: BARON

We choose BARON (Wu et al., 2023) as our

vision-language open-vocabulary detector since

it achieves SOTA results on the task of open-

vocabulary detection. BAg of RegiONs (BARON)

is based on Faster R-CNN (Ren et al., 2015), where

the classification layer is replaced by a linear layer

so that its output is an embedding (or pseudo-

words), rather than a class label. The key novelty of

this method is the introduction of bags of regions:

embeddings are extracted for a set of bounding

boxes around each region proposal, not for a single

proposal only. This is to model the co-occurrence

of bags of visual concepts. BARON is trained from

images and captions, and it requires a list of class

embeddings (extracted from object names) to clas-

sify each region proposal. At test time, an image

is fed to the model and bounding boxes are classi-

fied by comparing the extracted visual embeddings

with the provided class embeddings. If we change

such class embeddings by extracting them with syn-

onyms, detection performance significantly drops

(Table 2), motivating our work.
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Original German Russian

A skate board rider does

a trick in front of a building.

A skateboarder does

a trick in front of a building.

A skater does a trick

in front of the building.

Three adults help a youngster

follow a sheet of instructions.

Three adults help a teenager

follow a sheet of instructions.

Three adults help the

teenager follow instructions.

Table 1: Examples of (left) original COCO captions, (middle) captions back-translated from German, and (right)

captions back-translated from Russian.

3.2 Evaluating using synonyms

To evaluate the ability of a model to detect objects

when using synonyms, we change the class em-

beddings during inference by replacing each class

name with one of its synonyms or related terms and

computing the class embeddings using such syn-

onym. Since we have multiple synonyms per class,

we repeat this process 5 times (with 5 different sets

of synonyms), and we compute the mean and stan-

dard deviation of the detection performance across

these five runs. The mean measures how well the

downstream task is performed when varying input

synonyms, the standard deviation measures how

variable performance is: if a model learned all syn-

onyms as well as class names, the standard devia-

tion would be 0 (i.e., performance does not depend

on the input synonym).

3.3 Augmentation by back-translation

In our first approach, we apply a machine trans-

lation model from English to another language to

the input captions, and then translate the translated

caption back to English. This approach has been

successfully used as a data augmentation strategy

on NLP tasks (Edunov et al., 2018; Xie et al., 2020;

Sennrich et al., 2016) but it is less explored for

VL models. Back-translation (BT) is a form of

data augmentation because the BT process does

not return a verbatim copy of the original caption:

the back-translated caption will not be the same

as the original one. There can be changes in, for

instance, words used to refer to objects (i.e., syn-

onyms), which is our motivation for proposing this

method: we hypothesize that the increased variabil-

ity in the vocabulary used to describe objects is

beneficial to learn robust feature representations.

3.4 Class embedding enrichment

In our second approach, we enrich the class embed-

dings BARON is trained with by incorporating syn-

onyms. Class embeddings are matched to region

proposals to assign a class to each region proposal:

the class whose embedding is most similar to that

predicted for the region proposal. We compute

class embeddings off-line using a CLIP Text En-

coder (TE): for each class (e.g., person), we process

a list of prompts through the TE (e.g., ªA picture

of a personº, ªA photo of a personº), returning one

embedding per prompt; their average is taken as

the overall class embedding. When enriching the

class embeddings, we do not only add the class

name (e.g., ªpersonº) in the prompts, but also each

synonym or related term (e.g., ªmanº, ªwomanº).

The enriched class embedding is the average of

the resulting text embeddings for prompts with the

class name and its synonyms. While ªmanº and

ªwomanº are not pure synonyms to ªpersonº, we

argue they are still a type of ªpersonº and should

be detected as such, which our strategy allows.

3.5 Curriculum learning

A potential issue with our embeddings enrichment

approach is that, when training on enriched em-

beddings and testing on object names, the shift in

training vs. test embeddings may cause a decrease

in performance. We propose curriculum learning to

train with both the original class embeddings and

our enriched version: we start training on the for-

mer, and finish training on the latter. By seeing both

sets of embeddings during training, we hypothesize

a model will perform competitively when evaluated

both on object names and synonyms. To further

show the benefit of the proposed curriculum, we

also report experiments with the anti-curriculum

approach (i.e., enriched embeddings first, origi-

nal class embeddings last). In addition, we show

class-wise results for those classes where curricu-

lum learning provides the largest performance in-

crease (and decrease), when compared to the base-

line. Finally, we re-run our baseline and curriculum

learning experiments two more times (for a total of

three runs) to show that our reported performance

improvement is not due to chance.
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4 Results

4.1 Implementation

We train models on COCO Captions (Chen et al.,

2015) and evaluate them on COCO Objects (Lin

et al., 2014), and we use the list made available

by (Lu et al., 2018) for synonym evaluation (e.g.,

ªship, motorboatº for ªboatº, ªplane, aircraftº for

ªairplaneº). This list includes terms that are, tech-

nically speaking, hyponyms (e.g., ªmacbookº is a

hyponym for ªlaptopº). In this work, we are inter-

ested in detecting the pre-defined COCO classes, so

we want a detector to identify all types of laptops.

For this reason, we consider all the terms provided

by (Lu et al., 2018) as ªsynonymsº. In this list,

only 44 of the 80 COCO class have at least one

synonym, so we limit evaluation to these classes.

For machine translation, we use the Facebook

FAIR WMT2019 models (Ng et al., 2019). Two

models are available: English-German and English-

Russian. These two are high-resource languages

for which machine translation model achieve re-

markable results. A thorough analysis on what

foreign language is best suited for back-translation

is beyond the scope of our work.

To train and evaluate BARON1, we leave all

hyperparameters unchanged, except for batch size,

which we reduce from 16 to 12 due to hardware

constraints. For curriculum learning experiments,

we train with one set of class embeddings for half

of the training process and finish with the other set.

We run all experiments with the same images: if

an image is excluded because its original captions

do not mention any COCO object, as implemented

in (Wu et al., 2023), that image is not used in any

experiment, even if back-translation adds a mention

to one of the COCO objects.

4.2 Evaluating using synonyms’ embeddings

We now evaluate models on synonyms used as test

class embeddings. As a baseline, we train a model

on the original COCO captions and COCO class

name embeddings, and we compare it with models

trained using back-translation or class embedding

enrichment. In Table 2, we see performance greatly

drops when using synonyms as opposed to COCO

names (mAP@0.5=44.45% vs. 33.87% when train-

ing with original captions). This corroborates the

need to better learn synonyms during training.

1
https://github.com/wusize/ovdet/tree/main, last

accessed October 10th, 2023

Captions
COCO

names

Synonyms

mean (std)
Avg.

Original 44.45 33.87 (5.94) 35.63

Back-translation

German 44.23 34.25 (5.32) 35.91

Russian 43.89 33.67 (5.99) 35.37

Both 42.92 32.89 (5.97) 34.56

Table 2: Back-translation: mAP@0.5 (as %) evalu-

ated on COCO class embeddings (ªCOCO namesº)

and on synonyms embeddings (ªSynonymsº). ªAvg.º:

mean performance across the 5 sets of synonyms and

the COCO name. Bold: highest performance, italics:

second-best.

4.3 Augmentation by back-translation

We qualitatively verify that back-translation in-

creases the use of synonyms by showing exam-

ples of original COCO captions and their back-

translated versions with two languages: German

and Russian. From Table 1, we see that back-

translation is successful at introducing synonyms:

ªskateboarderº or ªskaterº in the first caption and

ªteenagerº in the second. In addition, we compute

the ratio between the number of mentions of an

object using a synonym divided by the total num-

ber of mentions (synonyms and verbatim mentions

of the COCO object name). We compare such ra-

tio computed from the original captions and from

the back-translated (BT) ones, obtaining 0.317 for

original captions, 0.326 for BT: German, 0.344 for

BT: Russian, and 0.343 for BT: Both. These results

corroborate our assumption that back-translation

increases variability in synonyms usage.

From Table 2, adding back-translated captions

from German improves mean performance on syn-

onyms (with a slight decrease in performance on

class names), as well as decreases variability in

performance (from 5.94% to 5.32%), showing im-

proved robustness to variations in input synonym.

4.4 Class embedding enrichment

Table 3 shows increased mean performance

on synonyms when enriching class embeddings

(mAP@0.5=37.25% vs. 33.87%, and std=4.56%

vs. 5.94%, respectively), as well as increased over-

all average performance (38.31% vs. 35.63%).

These results show the promise of enriching

class embeddings, although we notice a small

decrease in performance when evaluating on

COCO names when training with original captions

(larger when comparing BT with/without enrich-
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Captions
COCO

names

Synonyms

mean (std)
Avg.

Class embeddings: COCO names

Original 44.45 33.87 (5.94) 35.63

BT: German 44.23 34.25 (5.32) 35.91

Class embeddings: enriched

Original 43.58 37.25 (4.56) 38.31

BT: German 37.48 36.75 (4.56) 36.87

CL 43.49 37.93 (3.22) 38.85

Anti-CL 44.13 34.67 (5.87) 36.25

Table 3: Class embedding enrichment: mAP@0.5 (as

%) evaluated on COCO class embeddings (ªCOCO

namesº) and on synonyms embeddings (ªSynonymsº).

CL: Curriculum Learning, where a model is trained

on embeddings for COCO classes first, and then on en-

riched embeddings. Anti-CL: anti-Curriculum Learning,

where a model is trained on enriched embeddings first,

and COCO class embeddings last.

ment). When evaluated on synonyms, combin-

ing back-translation and embedding enrichment

yields an improvement over using back-translation

(mAP@0.5=34.25% to 36.75%).

4.5 Curriculum learning

In Table 3 (bottom), we notice how curriculum

learning improves performance on synonym evalu-

ation compared to COCO embeddings and enriched

embeddings, while performance on COCO names

decreases only slightly. Average performance im-

proves (mAP@0.5=38.31% to 38.85%). To our

knowledge, this is one of the first results demon-

strating curriculum learning for object detection

using VL data for training.

In addition, starting training with COCO em-

beddings and ending training with enriched em-

beddings boosts performance on synonyms more

than the opposite curriculum (i.e., anti-curriculum),

confirming the benefit of our proposed curriculum

strategy.

Table 4 reports the class-wise mAP@0.5 for

classes where our curriculum learning strategy

achieves the largest gains and suffers the largest de-

creases in performance when compared to the base-

line. We notice that, with the exception of ªbusº,

decreases in performance are less pronounced than

increases, which is reflected in the higher overall

average across all classes.

Finally, to further show the significance of the

performance increase achieved using our curricu-

lum learning approach, Table 5 reports average

Class Baseline Curriculum

Bowl 1.79 30.87

Sandwich 22.83 46.92

Bench 3.35 27.33

Person 51.28 71.59

Surfboard 28.69 45.68

Bus 39.63 3.18

Cat 56.57 46.94

Cake 21.72 16.46

Dog 61.03 57.62

Remote 33.15 30.36

Table 4: Class-wise mAP@0.5 (as %): classes where

our curriculum learning approach achieves the largest

increase and decrease in performance compared to the

baseline.

mAP@0.5 across three runs of the baseline and

curriculum learning approaches, with standard de-

viation in parentheses. We show the increased per-

formance when evaluating on synonyms is main-

tained across different runs, as is the comparable

performance when evaluating on COCO names.

Captions
COCO

names
Synonyms

Original 44.45 (0.2) 33.73 (0.1)

Curriculum 44.00 (0.4) 37.05 (0.7)

Table 5: Experiments re-runs: average mAP@0.5 (as %)

across three independent repeats of the training process

for our curriculum learning approach and the baseline.

Standard deviation in parentheses.

5 Conclusions

We considered variations in nouns used to refer

to objects (i.e., synonyms and related terms), and

how they affect performance of object detectors

trained with vision-text data. We highlighted how

detecting objects when synonyms are used as input

is challenging, and we introduced two approaches

to ameliorate this issue, which proved successful

at boosting detection performance on synonyms.
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6 Limitations

In this work, we show the promise of altering the

training process of vision-language object detec-
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tors to help learn more robust representations that

better adapt to variations in textual input in terms

of synonyms used to refer to objects. Despite such

promise, our study has some limitations. First, we

only evaluate on object detection; further studies on

other vision and language tasks (e.g., visual ques-

tion answering) are needed to fully characterize

the problem and evaluate the proposed solutions.

Second, we evaluate only on synonyms provided

by (Lu et al., 2018). Although the used synonyms

allow us to show our main points, more compre-

hensive synonyms’ lists can be tested. Third, we

show the impact of our approaches on one model

(i.e., BARON (Wu et al., 2023)); while this is

a SOTA open-vocabulary object detection model

whose overall design is similar to that of other de-

tectors (Minderer et al., 2022; Gu et al., 2021), re-

peating our experiments with other models would

better show the generalizability of our proposed

strategies. Finally, our approaches to better learn

synonyms focus on changing the input to the model

(whether it being the captions or the class embed-

dings it is trained with). While such a choice makes

our approach independent of the model’s inner ar-

chitecture (e.g., how features are extracted and com-

bined) or the training process (e.g., how a batch is

constructed), more individualized approaches are

worth investigating to solve the observed trade-off

between performance on synonyms and on object

names.

Ethical considerations. In our work, we use a ma-

chine translation model to augment captions with

synonyms. Such models may have learned gender-

related biases (e.g., doctor/man, nurse/woman) that,

in turn, could be passed on to the object detector

(making it easier for the model to detect people in

a certain profession if they are of a specific gen-

der). The fact that we keep the original captions

and add the back-translated one should offer some

safeguards against this issue.
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