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A LOCALIZATION-DELOCALIZATION TRANSITION FOR
NONHOMOGENEOUS RANDOM MATRICES

LAURA SHOU AND RAMON VAN HANDEL

ABSTRACT. We consider N x N self-adjoint Gaussian random matrices de-
fined by an arbitrary deterministic sparsity pattern with d nonzero entries per
row. We show that such random matrices exhibit a canonical localization-
delocalization transition near the edge of the spectrum: when d > log N
the random matrix possesses a delocalized approximate top eigenvector, while
when d < log N any approximate top eigenvector is localized. The key feature
of this phenomenon is that it is universal with respect to the sparsity pattern,
in contrast to the delocalization properties of exact eigenvectors which are
sensitive to the specific sparsity pattern of the random matrix.

1. INTRODUCTION

Understanding the eigenvectors of large random matrices, particularly whether
they are delocalized or localized, is of interest in many areas including mathematical
physics, computer science, and combinatorics. A delocalized vector is one with
roughly equal mass spread throughout its coordinates, while a localized vector has
much of its mass concentrated on relatively few coordinates. The guiding example
of delocalization arises in rotationally invariant ensembles such as the classical
Gaussian orthogonal ensemble (GOE): their eigenvectors are uniformly distributed
on the unit sphere, and are therefore always delocalized. Properties of uniform
random vectors on the sphere can therefore be used as a benchmark for measuring
delocalization. Much work in this direction has been done for general Wigner-type
matrices [10, 13], for a variety of indicators of delocalization.

On the other hand, the most localized vectors are simply the coordinate direc-
tions, with all mass concentrated on a single coordinate. These arise as eigenvectors
of diagonal matrices, such as a diagonal matrix with i.i.d. diagonal Gaussian en-
tries. To interpolate between the two extremes of a diagonal matrix and a Gaussian
Wigner matrix, one can consider models of varying degrees of sparseness. One such
model of interest in mathematical physics is random band matrices, which are zero
outside of a band around the diagonal, and whose eigenvectors are conjectured to
undergo a phase transition from localization to delocalization depending on the
band width. See, e.g., [6] for a survey of this topic.

In this paper we will consider Gaussian random matrices with an arbitrary spar-
sity pattern, which is only assumed to be d-regular in the sense that there are d
nonzero entries in each row and column. This model includes the above mentioned
Gaussian models (GOE, diagonal, and band matrices), as well as many other matri-
ces that may be highly nonhomogeneous. As will be illustrated below using simple
examples, the delocalization of eigenvectors is sensitive to the choice of sparsity
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FicUre 1. Band matrix, block matrix, and their direct sum

pattern; an understanding of such questions for arbitrary sparsity patterns is far
beyond current technology. In contrast, we will show that a much simpler phenom-
enon arises in this general setting near the edge of the spectrum: the approzimate
top eigenvectors (by which we will mean unit vectors v with || Xwv||2 close to || X||)
exhibit a canonical localization-delocalization transition at d ~ log N. This shows
in particular that while the behavior of the exact eigenvectors may be sensitive to
the structure of the model, a weaker notion of (de)localization can nonetheless arise
universally with respect to the sparsity pattern.

1.1. Sparse Gaussian matrices. The following general model will be considered
throughout this paper. Fix an arbitrary d-regular undirected graph G = ([N], E)
with N vertices, which may contain self-loops but no multiple edges between the
same pair of vertices. We now define an N x N self-adjoint random matrix Xy
by setting (Xn)ey = lu~ygay, Where gy, are independent standard (real) Gauss-
ian variables modulo symmetry gy, = g2y, and x ~ y denotes that x and y are
connected by an edge in G. From now on, we fix a sequence of such matrices Xy
indexed by N; it is implicit in the notation that d and G depend on N.

The graph G is used here merely as a convenient way to encode an arbitrary spar-
sity pattern of the entries of X. For example, the complete graph with N vertices
yields a Wigner matrix with i.i.d. standard Gaussian entries (modulo symmetry),
while the graph consisting of IV isolated points with self-loops corresponds to the
diagonal matrix with i.i.d. standard Gaussians on the diagonal. Two intermediate
examples are periodic band matrices with band width d, which are generated by
the graph on Z/NZ with edges between nodes within distance % of each other,
and block Wigner matrices with block size d, which are generated by the disjoint
union of & complete graphs with d vertices (cf. Figure 1). Let us emphasize that
while these simple examples possess many special symmetries that could potentially
facilitate their analysis, a general d-regular graph can be highly nonhomogeneous
and need not possess any tractable structure.

Before we turn to the delocalization phenomenon that will be studied in this
paper, let us emphasize that delocalization of eigenvectors in the the classical sense
cannot be universal with respect to the sparsity pattern.

Example 1.1. Consider the three examples illustrated in Figure 1: an N x N band
matrix or block matrix with d nonzero entries per row, or their direct sum.

The situation for band matrices is subject to deep conjectures arising from
mathematical physics. In particular, it is believed (cf. [15, 6] and the references
therein) that this model should exhibit a localization-delocalization phase transition
at d ~ N°/6 for eigenvectors near the edge of the spectrum: these eigenvectors are
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expected to be delocalized when d > N5/¢, and to be localized when d < N5/61
These conjectures remain largely open to date.

On the other hand, it is clear that every eigenvector of a random block matrix
must be supported in one of the blocks. Thus the block matrix model has localized
eigenvectors whenever d = o(NN). In fact, [3, Theorem 2.9] shows that the eigenvec-
tors in this model are nearly maximally localized (the latter result states that for
any model of the kind considered in this paper, the mass of eigenvectors near the
edge must be spread over at least ~ ﬁ coordinates).

Finally, the set eigenvectors of the direct sum of a block matrix and a band
matrix of width d is the union of the eigenvectors of a block and a band matrix.
In this example, it may be the case that half the eigenvectors are localized and
half are delocalized. While contrived, such very simple examples already show that
when we admit arbitrary sparsity patterns, it is not even clear whether classical
eigenvector delocalization questions may be meaningfully formulated.

As general d-regular graphs can exhibit arbitrarily complicated nonhomogeneities,
the above examples suggest that the study of classical delocalization questions at
this level of generlity is likely to be a hopeless task. Instead, the aim of this paper is
to exhibit a new type of (de)localization phenomenon that is universal with respect
to sparsity pattern. This phenomenon is necessary of a fundamentally different
nature than classical eigenvector delocalization questions. In order to explain the
nature of our main results, let us first recall that the macroscopic behavior of the
etgenvalues is in fact universal with respect to sparsity pattern.

Theorem 1.2 (Eigenvalues). The following hold whenever d, N — co.

a. The empirical eigenvalue distribution pyn of XT% converges weakly in probability
to the standard semicircle distribution:

1
UN = psc(z) dz = 2—\/4 — 221 |5<odx in probability.
- <

b. For every € > 0, we have

max {(2 — 0(1))Vd, C'\/log N} < E|Xn|| < (2+2)Vd+ K.\/log N,

where C' is a universal constant and K. depends on € only.

Proof. Part a. and the upper bound of part b. are given in [3, Theorem 2.3] and [2,
Theorem 1.1], respectively. The (2 —o0(1))v/d lower bound of part b. follows directly
from part a., while the C'y/logd lower bound is given in [2, Corollary 3.15]. O

Theorem 1.2 shows that the extreme eigenvalues of Xy exhibit the following
phase transition. When d > log N, we have

E[|Xy| = 2+ o(1))Vd,

that is, the extreme eigenvalues of X converge to the edge of the bulk (semicircle)
eigenvalue distribution. This behavior is analogous to that of Wigner matrices. In
contrast, when d < log N, we have

cy/1og N < E|Xn| < Cy/log N,

IWe use the notation A < B to mean A/B — 0, and A > B to mean A/B — co, as N — oc.
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that is, the extreme eigenvalues are of the same order as the size of the largest entry
of Xy (as the maximum of n independent standard Gaussian variables is of order
Vlogn) and are separated from the bulk.

The above interpretation of the eigenvalue phase transition hints at an associ-
ated (de)localization phenomenon. When d > log N, the behavior of the extreme
eigenvalues is “Wigner-like”, and one may expect to inherit some delocalization
properties of Wigner matrices. In contrast, when d < log N the magnitude of
the extreme eigenvalues is explained by the presence of exceptionally large matrix
entries, which suggests that the extreme eigenvectors should be localized on the
coordinates associated to these entries. Our main result will show that this phe-
nomenon is captured not by (de)localization of the ezact top eigenvectors, which is
ruled out by Example 1.1, but by that of approzimate top eigenvectors.

Remark 1.3. Physics heuristics suggest that the transition between localization
and delocalization of the exact eigenvectors coincides with a transition between
Poissonian and random matrix statistics of the associated eigenvalues [15, 6]. In
contrast, the localization-delocalization transition of this paper coincides with the
transition where outlier eigenvalues detach from the bulk of the spectrum. As
these outliers appear at the macroscopic scale, this phenomenon is much simpler
and more robust than the fluctuations of the eigenvalues at the local scale.

1.2. Main result. Localization and delocalization of vectors can be described by
various non-equivalent notions, such as the £ norm or other ¥ norms [9, 8], joint
distribution of coordinates [16], and no-gaps delocalization [14]; the survey [13]
includes results on several different notions of delocalization. Here we will use the
notion of (L, k)-delocalization used in [9, §7]. A vector delocalized in this sense is
one that has no “peaks” of mass > 2 in any subset of < L coordinates.

Definition 1.4 (Delocalization). A real vector v € SV~ is (L, k)-delocalized if
for every set A C [N] of size |A| < L, we have ;4 v? < K. The set of (L, k)-
delocalized vectors will be denoted by

Dy, = {v esVt. Z lvj|? < k? for all A C [N],|A| < L}.
JEA

The (L, k)-delocalization condition becomes stricter for smaller £ and larger L.
We are primarily interested in the situation where L is proportional to N. We will
colloquially refer to a vector, or more precisely a sequence of vectors of increasing
dimension N — oo, as delocalized if it is (vN, k)-delocalized for some 0 < v,k < 1
independent of N, and otherwise we will refer to it as localized. In other words,
a delocalized vector is one that is not concentrated in a vanishing fraction of the
coordinates, while a localized vector is one that has a constant fraction of the mass
concentrated in just a vanishing fraction of the coordinates.

Next, recall that any ezact top eigenvector v (i.e., an eigenvector whose eigen-
value has the largest magnitude) of a self-adjoint matrix X satisfies

|Xol = sup [ Xwll = |X].

weS

Thus we define an approzimate top eigenvector as follows.

Definition 1.5 (Approximate top eigenvector). v € S¥~!is an (1—¢)-approzimate
top eigenvector of a self-adjoint matrix X if || Xv|l2 > (1 —¢)|| X
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We can now formulate our main result.

Theorem 1.6 (Localization-delocalization transition). Let N — oo, and fix pa-
rameters €, k, v that are independent of N. Then the following hold:

(i) Localized regime d < log N: for any0<e <1l and0<rk<l-—c¢

P[every (1—)-approzimate top eigenvector of Xy is in S¥"\D,q)n ] = 1—o(1).
(i) Delocalized regime d > log N: for any 0 <k <1 and 0 < v < %

Pthere exists a (1—o(1))-approzimate top eigenvector of Xy in D,y ] = 1—o(1).

Qualitatively, Theorem 1.6 yields a strong dichotomy between the localized and
delocalized regimes. In the delocalized regime, there exists a (1—o0(1))-approximate,
that is, a “nearly exact,” top eigenvector that is delocalized. On the other hand,
in the localized regime, every approximate top eigenvector that is even within a
constant fraction of the edge of the spectrum must be localized.

A more careful interpretation of the quantitative aspect of Theorem 1.6 further
strenghtens this dichotomy. Recall that the benchmark example of a delocalized
vector is a uniform random vector in SV ~!; such random vectors arise as eigenvec-
tors of GOE matrices, and therefore possess the strongest form of delocalization
one could hope for. In Appendix A, we will show that a uniform random vector in
SN=1is (vN, k)-delocalized with high probability if and only if v < ~* _ Thus the

~ log ¢

delocalized regime of Theorem 1.6 yields an (1 — o(1))-approximate top eigenvector
that exhibits nearly the same degree of delocalization as a uniform random vector
in the sphere, up to the value of the universal constant c.

It should be emphasized that Theorem 1.6 sheds little light on classical ques-
tions in random matrix theory surrounding exact eigenvectors: as is illustrated by
Example 1.1, such questions are not even meaningful at the level of generality of
this paper. While part (i) of Theorem 1.6 yields localization of exact as well as
approximate eigenvectors, it captures only a small subset of the regime in which
some classical random matrix models (such as band matrices) exhibit eigenvector
localization. On the other hand, part (ii) does not provide any information at all
on individual eigenvectors, while Example 1.1 illustrates that delocalization of ap-
proximate eigenvectors can arise even when all the exact eigenvectors are localized.
The aim of Theorem 1.6 is not to address such classical random matrix questions,
but rather to exhibit a fundamentally different delocalization phenomenon that
captures a nontrivial feature of a much larger class of random matrix models.

1.3. Outline. This paper is organized as follows. In section 2, we prove the local-
ized regime of Theorem 1.6. The basis of the proof is to show, using subgaussian
estimates, that the existence of a delocalized approximate top eigenvector implies
| Xn| = O(v/d); consequently, no delocalized approximate top eigenvector can exist
in the regime where || Xy|| ~ vIog N > V/d.

The remainder of the paper is devoted to the delocalized regime. The basic idea
of the proof is to construct an approximate top eigenvector by taking a random
superposition of many exact eigenvectors near the edge of the spectrum. In order
to show such a vector is delocalized, we must establish that even though each exact
eigenvector may be localized, the subspace spanned by sufficiently many of these
eigenvectors is delocalized in an appropriate sense (in particular, this rules out
that the exact eigenvectors are all simultaneously localized in a small subset of the
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coordinates). In section 3, we first explain what property of a linear subspace is
needed to ensure that it contains delocalized vectors. We then show in section 4
that this property is indeed satisfied for an appropriate eigenspace of X; this is
accomplished by approximating the projection matrix of the eigenspace in terms of
the resolvent, whose behavior is goverened by a mesoscopic form of the semicircle
law. Combining all the above ingredients concludes the proof of Theorem 1.6.
Finally, Appendix A shows that the delocalization provided by Theorem 1.6(ii)
agrees quantitatively with that of a uniform random vector in S —!. This result is
included to clarify the meaning of our main result, and is not used elsewhere.

2. PROOF OF LOCALIZATION FOR d < log N

The proof of localization Theorem 1.6(i) is based on Gaussian concentration. Let
us recall the general principle for future reference, cf. [4, §5.4].

Theorem 2.1 (Gaussian concentration). Let Z be a standard Gaussian vector in
R™, and let f : R™ — R be L-Lipschitz with respect to the Fuclidean norm. Then

P(|f(2)—E[f(2)]] >t <2 "/*"  forallt > 0.
We need the following corollary.
Corollary 2.2. For every w € RN such that |[w||s < 1, we have
P[|Xywllz > VAN +t] < 2¢ /44,

Proof. By Cauchy-Schwarz, |(z,w)| < V/d| 2|2 for any z with d nonzero entries.
Thus any self-adjoint matrices X,Y with d nonzero entries in each row satisfy

1/2
[ Xw]lz2 = [[Yw]lo| < [(X = Y)wlls < V2d (Z(Xz" - Yz‘j>2> :

i2]

We can therefore view || Xyw||2 as a v2d-Lipschitz function of the i.i.d. standard
Gaussian variables (ggy)2>y,2~y that appear in its definition. The conclusion follows

from Theorem 2.1 and E|| X w2 < (E||Xywl|3)'/? = Vd||w|]2 < VdN. O
The key idea behind the localized regime is the following.
Lemma 2.3. Let0<e<1,0<kr<]1—¢g, % < v < 1. Define the event

Qy wen = {there exists a (1 — ¢)-approzimate top eigenvector of Xn in Dyn x}-

Then

P[QU,K,E,N N {”XN” > 8 (%)1/2}} S 2673N.

l—e—kr
Proof. Let L = |vN |, and define for any v € SV~ the vectors v, v~ € RY as
’U;r = Ui]l|vi\>L*1/27 ’U; = Ui]1|vi|§L*1/2-
As |{i: |v;| > L7'/?}| < L for every v € S¥~1, we can estimate

3= > P < ol < LTV
i:"ui‘>L71/2
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forall v € Dp .. = D,n,.. We readily obtain

sup [ Xnvlls < sup [|XyoT[l2+ sup [ XnvT s
vED 1« vEDL vEDL «
< LTV2 sup [ Xyvwlls + k) Xl
l[wlloo <1

In particular, as sup,cp, , [[Xnvll2 > (1 —¢)|| Xn|| on Q, x.c v, we can estimate

L—1/2
P[Qu,n,e,N n {HXN” > t}} <P |: sup HXN’LU”Q >t].

L ==K juje<t

Now note that as w — || Xywl|2 is convex, the supremum over w is attained at one
of the extreme points {—1,+1}" of the unit cube. Thus a union bound yields

PlQren M {IXn| >8] < Y PllXywlz> (1-c—r)LY2,
we{—1,+1}NV

2

and the conclusion follows from Corollary 2.2 and |[vN| > % for v >
We can now complete the proof of the localized regime.

Proof of Theorem 1.6(i). Assume that d < log N, and fix 8 > 0 independent of N.
Let v =v(N) == W = o(1), and note that + < v < 1 for N sufficiently large
as d > 1. We can therefore apply Lemma 2.3 to estimate

P[there exists a (1 — ¢)-approximate top eigenvector of X in Dy,(n)n,x]

<2e N 4+ P[| Xy < 2—B/log N].

The proof is therefore complete once we show that the probability on the right-
hand side is o(1) for a sufficiently small choice of 8. To this end, note that as
X =Yl < V2(X,5,(Xi; —Yi5)?)"/? for any self-adjoint matrices X, Y, the random
variable || X || may be viewed as a v/2-Lipschitz function of the underlying i.i.d.
standard Gaussian variables (gzy)z>y. Thus Theorem 2.1 yields

P Xn| — E|Xn|l| >t < 2e7/* forall t > 0. (2.1)
As E||Xy|| > Cv/log N by Theorem 1.2, it follows that

P[|Xn| < $CVIog N] < 2N~C°/16 = o(1),
concluding the proof. O

3. DELOCALIZATION OF UNIFORM RANDOM VECTORS IN A SUBSPACE

We now turn to the delocalized regime of Theorem 1.6(ii), whose proof will
occupy the remainder of this paper. In the regime d > log N, Theorem 1.2 ensures
that the largest eigenvalue of Xy sticks to the bulk of the spectrum. Consequently,
any superposition of the top o(N) exact eigenvectors of X will yield a (1 —o(1))-
approximate top eigenvector. The basic idea behind the proof is to show that
even though each exact eigenvector may itself be localized, we can always find a
superposition of o(IN) exact eigenvectors that is delocalized.

In order for such a strategy to succeed, the exact eigenvectors must exhibit at
least the following two qualitative features:
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1. Each exact eigenvector must be at least somewhat delocalized: if each exact
eigenvector were concentrated on O(1) coordinates, then any superposition of
o(N) such eigenvectors would always be localized.

2. While individual exact eigenvectors may be localized, the top o(N) exact eigen-
vectors cannot be simultaneously localized in the same subset of coordinates. In
other words, the locations where different exact eigenvectors are localized must
be spread out across all the coordinates.

Property 1. was previously established in [3, Theorem 2.9], which states that the
exact eigenvectors near the edge of the spectrum must be spread over at least
~ mgLN coordinates (this result will not be used in our proofs). However, this does
not suffice to ensure Property 2., which requires us to understand delocalization of
the entire space spanned by the top o(N) eigenvectors.

In this section, we begin our analysis by explaining what property of a linear
subspace E C RY is needed to ensure that E contains a delocalized unit vector.
The main result of this section is the following.

Proposition 3.1 (Delocalized subspace). Let E C RN be a linear subspace of
dimension m, and denote by Pg the orthogonal projection onto E. Suppose that

Cm
P xrr S
max (Pr) N

for some constant C > 0. Then there exists a constant ¢ > 0 that depends only on
2
C such that ENDyN . # @ for every 0 <k <1 and 0 <v < {5F

2
log &

Proposition 3.1 shows that the relevant delocalization property of a linear sub-
space is control of the diagonal entries of its projection matrix. The remainder of
the proof of Theorem 1.6 will then aim to show that this property holds when FE is
taken to be the linear span of the top o(IN) exact eigenvectors of Xy .

Let us first turn to the proof of Proposition 3.1. Rather than establish delocal-
ization in the sense of Definition 1.4 directly, it will be more convenient to establish
¢9-bounds. A simple lemma shows that the former is implied by the latter.

Lemma 3.2. Forallve SN~Y, L <N, and q > 2, we have v € Dy 11/2-1/4

llvllg -
Proof. Tt suffices to note that for any A C [N] with |A| < L, we have
2/q
S fuyf? < L1 ( Slult) < L
jeA JjEA
by Holder’s inequality. O

To prove Proposition 3.1, we will bound the ¢?9-norm of a uniformly chosen ran-
dom vector in ENSY~1; the conclusion then follows from Lemma 3.2 by optimizing
over q. Proposition 3.1 may therefore be viewed as a complement to the delocaliza-
tion established in Appendix A for a uniformly chosen random vector in the entire
sphere S¥~1: here we show that a uniformly chosen unit vector in a subspace E
is still delocalized when E satisfies the requisite assumption. (We do not develop
high probablity results as in Appendix A, as these are not needed in the sequel.)

Proof of Proposition 3.1. To estimate the ¢9-norm of a uniformly chosen random
vector in EN SN~ let Z ~ N(0, Pg) be a Gaussian random vector in RY with
zero mean and covariance matrix Pg, i.e., a standard Gaussian vector in . Then
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V= ﬁ is uniformly distributed on £ENSY~! and || Z]|> and V are independent
(as the law of Z is rotationally invariant in E). Therefore
N
E||Z|3 - E|V|I§ = E|Z|l = > E|Z.|"
=1

Now note that Z, ~ N(0,(Pg)s.) for every z, so that E|Z,[|? < 2q‘1/2(PE)q/2 for
all ¢ > 2 [4, Theorem 2.1]. On the other hand, we have by Jensen’s inequality

(E[Z]5)* = E| 2|3 = Tx(Pg) =
Combining the above estimates with the assumption on Pg yields
E[|V]I < 2(Cq)VAN*=4/% for all ¢ > 2.

In particular, there exists v € ENSV~! so that [[v]|2 < 2(Cq)9/2N1=a/2,
Now fix 0 < v <1 and let ¢ = 2log £. Then there exists v € E'N S¥=1 50 that

(VN)I/Qfl/qu”q < 21/q(cq)1/21/1/271/q < (460)1/2W'
1%

Applying Lemma 3.2 shows that whenever 0 < v < 1 satisfies 4eCvlog 7 < K
there exists a vector v € E N D, . The conclusion follows readily.

2

0.

4. PROOF OF DELOCALIZATION FOR d > log N

To complete the proof of Theorem 1.6(ii), it remains to show that the condition
of Proposition 3.1 holds for the space F spanned by the top o(N) eigenvectors
of Xn. To this end, we first approximate the projection matrix Pg in terms of
the resolvent of X . We can then apply resolvent estimates for nonhomogeneous
random matrices to deduce the requisite delocalization property.

Let us begin by formalizing the projection matrix approximation.

Lemma 4.1 (Projection matrix approximation). Let X be a self-adjoint matriz,
and let Ej,p) be the space spanned by the eigenvectors of X with eigenvalues in
[a,b]. Then for any a < b and v > § > 0, we can estimate

25 b+
PE[ayb]§<1+ ) I/ (X —A—i6)""dA

v -
and

b—v 5
flm/ (X =A—id)"'d\ < P, +—1
Ty

X—X*)

in the positive semidefinite order (here Im X := =252

Proof. We begin by estimating

b+ 1 b+ K}
Im—ou0 S
/a Ry —25d>\ /7 (x — )2 +52d/\

—y a

=tan" <b+7 x) —tan~ (a—z—x) > 2tan” " (g) Lia,p)(2)
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for all x € R, where we used that b+~v—x >~vandz+v—a > vy fora <z <D
Now note that as g(s) := tan™*(1) is convex for s > 0 and satisfies g(07) = 3

2
g'(07) = —1, we can estimate tan~'(t) > Z — 1 for all ¢ > 0. Thus

20\ 1 bty 1
< i - -
La,p] (x) (1 + ) Im/a P dA

-
for all z € R, where we used 1 — 2u > A for [u] < 1.
In the opposite direction, an analogous computation yields

b—ry o~ _
/ m— g — an! (m) el (aﬂx)
atry T—A—1id ) )

é
< gy () + (;T — tan~" (g)) Ligpje(®) < mlpgp)(x) + 5

for all z € R, where we used tan'(t) < Z and tan~'(¢) > 5 — 1, respectively.

Applying these inequalities to X yields the conclusion by functional calculus. O

The reason Lemma 4.1 is useful for our purposes is that we can compute the
resolvent of Xy by means of a mesoscopic semicircle law. The proof of the following
result is an elementary application of the “intrinsic freeness” theory of [1]. (In the
special case of interest here such a bound could alternatively be obtained, albeit
with considerably more effort, by adapting the methods of [7, §3].)

Lemma 4.2 (Mesoscopic semicircle law). Denote by

(2) == Z + ﬂ
Mse(2) = —3 5
the Stieltjes transform of the standard semicircle law. Then
2
E[(d™Y2Xy — 2)7Y = mee(2)In| € =
Bl Xy = )] = ey | € s

for every z € C with Im z > 0.

Proof. The theory of [1] enables us to compare the spectral statistics of a random
matrix Xy with those of a certain deterministic operator Xy free that arises from
free probability theory.? In particular, [I, Theorem 2.8 and Lemma 3.1] yield

2 1
E[(d'/?Xy — 2)7] - (id A7V XN free — 2) | € S -
IE(( N —z) = (den)[( N free = 2) ]”_d(lmz)5
It remains to compute G(z) := (id ® 7)[(d" 2 Xy free — 2) 7]
To this end, note that by [11, eq. (1.5)], G(z) satisfies the matrix Dyson equation

é Z Ei;G(2)E; +G(2) '+ 21 =0,
{i,g}ring
where E;; = eie; + 1,4e5e;. Moreover, [12, Theorem 2.1] states that for any
z € C with Imz > 0, the matrix Dyson equation has a unique solution with
positive imaginary part. As mg.(2) satisfies the equation mg.(2) +msc(2) 1 +2 =10
and Immgc(z) > 0 whenever Im z > 0, it is readily verified that G(z) = ms.(2)1n
is the unique solution of the equation in the present setting. O

2More precisely, X n free may be defined as a matrix whose entries are (X free)zy = lz~ySzy,
where sgy are freely independent semicircular variables modulo symmetry syz = Szy.
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At this point we can clearly see the origin of the delocalization phenomenon:
Lemma 4.2 shows that the resolvent behaves to leading order as a multiple of the
identity matrix; by Lemma 4.1, this will ensure that all diagonal entries of the
projection matrix of a suitable eigenspace of X are roughly of the same order,
which is precisely what is needed to apply Proposition 3.1.

Before we proceed to implementing this program, we must establish concentra-
tion of the diagonal entries of the resolvent. This will be needed in order to upgrade
the expected resolvent bound of Lemma 4.2 to a high probability bound.

Lemma 4.3 (Resolvent concentration). Define Gn(z) := (d~Y/?Xy —2)~1. Then
for any a < b and t,6 > 0, we have

7|

Proof. Using the resolvent identity, we have

b b
. . t b—a 42
Im/a GN()\+Z5)$ICZ/\ —Im/a EGN()\—F’Lé)gwd/\’ > 52 \/a ] < 2e t°/4

00— 27 = (=9 = 1 -7 = 0 - 97 < =l

Thus
b
f(X):= Im/ [(d7Y2X — X —i0) Y pp dX

is (b — a)d_1/25_2—LipschitZ with respect to the operator norm. In particular, as
121l < (X |Zi;1%)1/2 < \/i(ij |Zi;12)1/? for any self-adjoint matrix Z, we may
view f(Xn) as a (b—a)v/2 d~'/26~2-Lipschitz function of the i.i.d. standard Gausian
variables (ggy)e>y that define Xn. The conclusion follows by Theorem 2.1. O

We can now combine the above results.

Corollary 4.4 (Projection matrix estimate). Let0 <a <b<3and0<§ <~ <1.
Denote by P the projection matriz of the space spanned by the eigenvectors of
d='?2X N with eigenvalues in [a,b]. Then we have

b+y Moo N
P[mameZ (1+25)1{Im/ (A + i)\ + —2 4 20 logNH <2

z€[N] v ) —y 05d 52+/d - N3
and
1 b=y 12/
P[min PM<{Im/ mSC(A+i5)dA—5—S—WH glg.
z€[N] ™ atry v 6d 52v/d N

Proof. Note first that Lemmas 4.1 and 4.2 yield

20\ 1 bty

P, < (1 + ) —Im GN(\+i6)2zd),
Y T a—7y

b+ b+vy 10

Im EGN(A+1i0)zdA\ < Im Mge(A +i0)dN + —

a—vy a—vy 65d’
where we used that b —a + 2y < 5. Thus Lemma 4.3 yields
20\ 1 bty ) 10 5t e
P|:Pxx2<1+,y>ﬂ_{1m/a’y msc(>\+l(5)d>\+65d+62\/g}:|g2€ /
for all x € [N] and ¢t > 0. The first inequality now follows by taking a union bound
and choosing t = 4+/log N. The second inequality is derived analogously. [
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The final ingredient that will be needed in the proof of Theorem 1.6(ii) is an
estimate on the integrals that appear in Corollary 4.4.

Lemma 4.5 (Semicircle law estimate). For any 0 <d<e<landc>2+¢

20 3 1 ¢ 1

(1 — ) igw < —Im/ Mge(A + i0)d\ < 26%/2 4 =
e 3T ™ 2_9¢ €

Proof. As mg(2) = [(x — 2) ! psc(x) dz is the Stieltjes transform of the standard

semicircle law (as defined in Theorem 1.2), we can apply precisely the same esti-

mates as in Lemma 4.1 to estimate for any a < b

1 b—e 6 b
Jm/ Mge(A+i8)dA — = g/
0 ate €

a

25\ 1 b+e
pse()dz < <1+€>Im Mge(A+10)dA.
™

a—eg
Choosing a =2—3¢,b=c+¢c and a =2 — ¢, b = ¢ — ¢, respectively, yields
20\ [2 1 ¢ , 2 B
1— = pse(T)dr < =Im Msc (A +1id)dA < psc(x)dx + —,
€ 2—¢ 0 2—-2¢ 2-3¢ €

where we used that pg. is supported on [—2,2] and that 1 —u < H%u for u > 0. It
remains to note that we can estimate

2¢/1—u/4 2 I 2 .
7u/u3/2 < pse(T)dr = — V@2 =2)2+x)de < —u?/?

3T 9w 27 Jo_u 37
for u < 4, and the proof is readily completed. O

We are now ready to complete the proof of Theorem 1.6(ii).

Proof of Theorem 1.6(ii). We will assume throughout the proof that d > log N.
Let En be the space spanned by the eigenvectors of d~'/2X y with eigenvalues in
the interval [2 — ¢, 3], and denote by Py its projection matrix. Here e = ey = o(1)
will depend on NV in a manner that will be chosen below. As

log N

Pld V2| Xn| > (24 s) + K, +t] < 2 /4

for any s,¢t > 0 by (2.1) and Theorem 1.2, we have
Pld 2| Xn| <2+ 0(1)] =1 - o(1).

Thus every unit vector in Fy is a (1 — o(1))-approximate top eigenvector of X
with probability 1 —o(1). It remains to show that Ey contains delocalized vectors.

To this end, we begin by applying Corollary 4.4 and Lemma 4.5 with a = 2 — ¢,
b=3,v=%, and § = &3, This yields

c ¢ [logN] _ 2
>0y 4 = < =
P [;Iel%fl(](PN)m 2 O™ + 154 * g6 d ] — N3

and

. C C [logN 2
P p 3/2
|:w€[l}\}]( N)zm <ce / 2154 26 d :| < N3

for sufficiently large N, where ¢,C' > 0 are universal constants. In particular, if
we choose € = (#)1/ 17 the last two terms inside each of the above probabilities
become negligible, and we can conclude that

P Pr)uw < C' min (Px)es| =1 — o1
[fé%( Nz < 52[113]( N):| o(1)
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for a universal constant C".
Now let my = dim Ex (note that this is a random variable). Then

) 1 Tr(Py) my
< — E = = —.
a:rg[lj{rl](PN)m - N e[N](PN)M N N

Thus we have shown that the assumption of Proposition 3.1 holds with probability
1 — o(1), completing the proof of the theorem. O

APPENDIX A. DELOCALIZATION OF UNIFORM RANDOM VECTORS IN SV—!

The aim of this section is to elucidate the delocalization properties of uniform
random vectors in SV ~!. The main result of this section is the following.

Proposition A.1 (Unit sphere delocalization). Let Viy be a random vector that is
uniformly distributed on SN, and fir 0 < k < 1 that is independent of N. Then
there exist universal constants c1,co > 0 such that the following hold as N — oo.

a. If v < lf)lg’i , then P[VN € Dyn ] =1—0(1).
b. Ifv > 25, then P[Vy € Dy ] = o(1).

In particular, this result shows that the approximate top eigenvector provided
by Theorem 1.6 in the delocalized regime is essentially as delocalized as a uniform
random vector, up to to the value of the universal constant.

We begin by introducing some notation. For any vector z € RV, we denote by
2(1) = 2(2) = '+ 2 z(n) = 0 the decreasing rearrangement of z, that is, the absolute
values of the entries of z sorted in decreasing order. We define the norm

1/2 L] 1/2
2 2
z = Sup z = z .
121l (L) e |<L<§ |21 ) (1?—1: (k))

JEA

Thus z € Dy, if and only if ||z||(z) < . The proof of Proposition A.1 requires us
to estimate ||V |y Let us first investigate its expectation.

Lemma A.2. There exist universal constants C1,Cs > 0 so that
Civlog & < B[V |3,y < Covlog 3
v

Proof. As § < ||z||%N/2) < ||z|| oy S lforallv > 5 Land z € SV1 it suffices to
1

consider v < 5- Let Z be a standard Gaussian Vector in RY. Then well-known

estimates on order statistics (see, e.g., [5, Theorem 2.5]) yield
N eN
cloge <EZ <Clog—
k k
forall 1 <k < %, where ¢, C' > 0 are universal constants. Stirling’s formula yields

dvNlog < < E||Z|I},n < C'vNlog <
v v

for universal constants ¢/, C’ > 0. It remains to note that Z 4 IZ||2VN where Viy
is independent of Z, so that E||ZH(2VN) = NE||VN||%VN). O

We can now complete the proof of Proposition A.1.
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Proof of Proposition A.1. Tt is shown in [13, Theorem 2.10] that
2

P[l[IVillon) = EllVallwn| > t] < CemeM,

where ¢, C' > 0 are universal constants. This implies that Var(||Vi | wn)) = O(5

N):
so that E[[Viv[|wn) = (BI[VNlIE,n))"? +0(1) as N = co. Using Lemma A.2 and

applying the above tail estimate again yields
P[Vy € Dyn,] =1—0(1) when C'vlog < < K2,
P[Vy € Dyn,x] = o(1) when ’vlog £ > k2
for some universal constants ¢/, C’ > 0. The conclusion follows readily. ]
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