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Abstract

Vision-language alignment learned from image-caption
pairs has been shown to benefit tasks like object recogni-
tion and detection. Methods are mostly evaluated in terms
of how well object class names are learned, but captions
also contain rich attribute context that should be considered
when learning object alignment. It is unclear how methods
use this context in learning, as well as whether models suc-
ceed when tasks require attribute and object understanding.
To address this gap, we conduct extensive analysis of the
role of attributes in vision-language models. We specifically
measure model sensitivity to the presence and meaning of
attribute context, gauging influence on object embeddings
through unsupervised phrase grounding and classification
via description methods. We further evaluate the utility
of attribute context in training for open-vocabulary object
detection, fine-grained text-region retrieval, and attribution
tasks. Our results show that attribute context can be wasted
when learning alignment for detection, attribute meaning
is not adequately considered in embeddings, and describ-
ing classes by only their attributes is ineffective. A viable
strategy that we find to increase benefits from attributes is
contrastive training with adjective-based negative captions.

1. Introduction

Natural language has been shown to provide a strong sig-
nal for training visual representations. A visual-text align-
ment model can be pretrained with image-caption data and
used for downstream tasks like object recognition, detec-
tion, and retrieval. While the text embeddings that represent
object nouns are often used as classifier weights, the impact
and utility of other caption context, especially attributes, are
less clear. Consider the Fig. 1 caption: “A very large furry
brown bear on a rock by the water.” The model can learn
grounding using only nouns (underlined), but bear can also
be learned in the context of its attributes (bolded adjectives).
Do alignment models use attribute context to learn bear?

Figure 1. Do vision-language models effectively leverage at-
tribute context in captions? In captions, objects (e.g. bear) are
often described with rich contextual information (e.g. attributes
like big, furry, black). We evaluate the impact and utility of at-
tributes in VL modeling through tasks such as text-region retrieval.

Do they distinguish between brown bear and black bear?
Attributes in captions can aid object recognition and de-

tection in various ways. Attributes can serve as a proxy for
a fine-grained category which is not explicitly mentioned
(e.g. a small, young cat is a kitten). They can ensure that
the alignment model is paying attention to the right fea-
tures, rather than dataset artifacts (e.g. that a bear is being
grounded as such because it is brown/black, rather than be-
cause its background is a forest). They can be used to spec-
ify subcategories, e.g. when a user desires detections that
match a certain property (e.g. a red car, but not a blue car).

With this motivation, our goal is to better understand
the connection between attributes and objects in vision-
language (VL) models. In particular, we explore consid-
erations such as whether models leverage attributes in cap-
tions as important signals for object learning and whether
VL models can use object and attributes effectively in fine-
grained tasks (e.g. recognizing “a large bird with a brightly
colored bill”). We refer to a model’s capabilities in using
attribute information as attribute sensitivity.

We offer an extensive sensitivity analysis of two popular
alignment paradigms for VL models, region-word ground-
ing and whole image-text alignment, which we study with
OVR-CNN [55] and CLIP [37], respectively. We inves-
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tigate if model decisions consider attribute presence and
meaning, specifically testing how attribute perturbations af-
fect unsupervised phrase grounding and classification via
description tasks. We find an overall lack of sensitivity to
attribute meaning, inspiring an investigation into adjective-
based contrastive negative sampling of captions. Our explo-
ration results in strategies that increase the benefits from at-
tribute context, exhibited through improvements in practical
use cases of open-vocabulary object detection, fine-grained
text-region retrieval, and object attribution.

Our main contributions are insights into these questions:
1. Does attribute context play an impactful role in VL

pretraining for object detection?
2. Does learning to ground objects to contextualized

word embeddings utilize attribute meaning?
3. Do VL models perform well at tasks where objects are

described with/in terms of attributes?
4. Can contrastive negative sampling of captions increase

a model’s ability to use attribute context?
5. What sampling mechanisms are most effective?

2. Background and related work
Visual representation learning with language Common
VL tasks such as phrase grounding and visual question an-
swering leverage objectives that align and/or merge image
and text features [1, 25, 27, 28, 44, 45, 52, 53]. Alignment
achieved with large-scale contrastive learning [16] has pow-
ered the traditional vision task of image classification by
enabling impressive zero-shot capability (e.g. ALIGN [22],
CLIP [37]). The primary mechanism for adapting models
like CLIP to recognition is through creating prompts (e.g.
“a photo of a [classname]”) for all classes and using the text
encoder to convert prompts into classifier weights. Recent
methods have exploited this open-vocabulary capability of
CLIP to provide attribute context with LLM-based class de-
scriptions [32, 36]. It is still unclear the extent to which
VL models for recognition can consider attributes. As such,
we conduct more in-depth experiments within the “classi-
fication via description” task of [32], highlighting limited
utility of attributes in zero-shot recognition with CLIP.

Our analysis also hones in on object detection, which
typically entails a predefined class list and bounding box
annotations. The use of text embeddings has expanded the
detection vocabulary [3, 24, 29, 56], and large-scale image-
caption datasets and weakly supervised objectives have en-
abled “cheaper” supervision [9, 51]. Open-vocabulary de-
tection [55], which involves training on base classes and
using region-text alignment to extend to novel classes, has
become especially popular. Recent open-vocabulary detec-
tors leverage CLIP through mechanisms such as distillation,
prompting, and pseudo-labeling [2, 12–14, 46, 47, 57, 58].
Our work impacts this area as we gauge the attribute sensi-
tivity of the CLIP model widely used with these approaches.

Additionally, through [55], we study fine-grained region-
word alignment [8, 25, 29], which is tailored to region-level
tasks [50]. We in particular examine the impact of attribute
context in detection through comparing results to [55].
Bias and sensitivity measurement of embeddings in VL
tasks Our work relates to efforts to understand the biases
in embeddings from VL models. Such probing has high-
lighted that grounded/aligned embeddings encode social bi-
ases [41] and lack sensitivity to composition and word or-
der [43, 54]. Our investigation more thoroughly analyzes
embeddings with respect to attributes. For example, we
gauge whether visual embeddings are sensitive to attribute
presence and meaning when grounding to contextualized
word embeddings (from [10]). The work of [4] relates as
it involves use of contextualized object embeddings to de-
tect object states (e.g. sliced tomato, tomato in a bowl). Our
work instead explores if enhancing the attribute sensitivity
of contextualized object embeddings impacts more general
object detection and fine-grained text-region retrieval tasks.
Contrastive negative sampling “Hard” negative samples
can benefit contrastive learning [23, 40]. We explore neg-
ative sampling of captions to enhance attribute context in
region-word pretraining and CLIP finetuning. Past works
have created negatives by replacing nouns [15] and by
perturbing word order [54]. We alternatively test more
attribute-tailored strategies by replacing only adjectives in
captions, randomly/plausibly based on a dataset. We ex-
hibit that order perturbations [54] do not help fine-grained
text-region retrieval, while adjective negatives do. We also
show that adjective negatives improve vs. a generic cap-
tion sampling baseline on Visual Genome Attribution [54],
and that adjective negatives benefit detection in region-word
pretraining. Concurrent work [11] has also shown the value
of adjective negatives, though our work uniquely shows
value in detection. [6] also leverages attribute perturbations,
but alternatively with synthetic visual data.
Attributes in vision tasks Our work considers object at-
tributes, described through adjectives in captions, with re-
spect to object learning and model capabilities. Past work
has explored attributes with respect to direct prediction [35],
compositional zero-shot recognition with objects [33, 42],
and use as a bridge between base and novel classes in zero-
shot classification [26, 49]. With respect to localization, at-
tributes have served as signals to spatially constrain object
learning [21,48] and as part of an open-vocabulary attribute
detection task (detecting all attributes with an object) [5].
Our work is unique as we analyze attributes as context for
objects, gauging impact in tasks like retrieval and detection.

3. Methodology
When VL models learn alignment for recognition and

detection, the utility of attributes in captions is considerably
underlooked. We study object representation sensitivity to
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attributes through case studies in region-word grounding
(OVR-CNN [55]) and image-text alignment (CLIP [37]).
This section outlines these frameworks, our measurement
methods, and our strategies to enhance attribute context.

3.1. Vision-language frameworks of study

We study contrastive frameworks that learn in each iter-
ation using a batch B of image-caption pairs (BI and BC

for just images and captions, respectively). A score ⟨I, C⟩
is computed to quantify the relative matching between an
image I and a caption C. Image-to-text and text-to-image
contrastive objectives are as shown in Eqs. 1 and 2:

  \label {gen_loss_i2t} { \mathcal {L}_{I \rightarrow T}(I) = - \log \frac {\exp \langle I, C\rangle }{\sum _{C'\in \mathcal {B}_C } \exp \langle I, C'\rangle } }    



 

(1)

  \label {gen_loss_t2i} { \mathcal {L}_{T \rightarrow I}(C) = - \log \frac {\exp \langle I, C\rangle }{\sum _{I'\in \mathcal {B}_I } \exp \langle I', C\rangle } }   



 

(2)

Methods may differ in terms of how the scoring func-
tion is defined and whether losses include additional com-
ponents such as temperature or normalization constants.

3.1.1 Case study: Region-word grounding

We explore region-word grounding to learn fine-grained
alignment for detection. We specifically consider OVR-
CNN [55], which employs a weakly supervised, region-
word grounding pretraining task to learn class embeddings
for open-vocabulary detection with Faster R-CNN [39].
The model resembles PixelBERT [19], using ResNet-50
[17], a pretrained BERT [10], and a BERT-like multimodal
model. The total loss L(I, C) comprises four objectives:
masked language modeling (LMLM ), image-to-text match-
ing (LITM ), and two contrastive grounding terms (LG(C)
and LG(I)). ⟨I, C⟩ for OVR-CNN is defined with Eqs. 3
and 4, where the dot product is taken between each word
token eCj (nC total produced from BERT’s input layer) and
each region token eIi (nI total from ResNet then projected
into the language embedding space with a V2L layer):

  \label {groundingscore_contextfree} {\langle I,C \rangle = \frac {1}{n_C}\sum _{j=1}^{n_C} \sum _{i=1}^{n_I} a_{i,j} \langle e_{i}^{I}, e_{j}^{C} \rangle }   









    (3)

  \label {activitycoeff} { a_{i,j} = \frac {\exp \langle e_{i}^{I}, e_{j}^{C} \rangle }{\sum _{i'=1}^{n_I} \exp \langle e_{i'}^{I}, e_{j}^{C} \rangle } } 
  

   
(4)

Notably, this default alignment mechanism uses context-
free word embeddings (eCj in BERT), which do not change
with surrounding language context (e.g. orange has the
same embedding in the captions “orange basketball” and
“eating an orange”). We reason that this type of grounding
contributes to misalignment of concepts, potentially inhibit-
ing the benefits of attribute context. More recent models

(e.g. CLIP [37]) also align visual regions to text embed-
dings contextualized through transformers. For expansive
insights, we experiment with contextualization in OVR-
CNN by altering Eq. 3 to use fC

j , which are BERT’s out-
put embeddings that change with context (unlike BERT’s
eCj which are static). Eq. 5 shows this change:

  \label {groundingscore_contextualized} {\langle I,C \rangle = \frac {1}{n_C}\sum _{j=1}^{n_C} \sum _{i=1}^{n_I} a_{i,j} \langle f_{i}^{I}, f_{j}^{C} \rangle }   










 


  (5)

Since word embeddings are dynamically contextualized,
visual regions for an object are grounded to a collection of
embeddings instead of one. Naive integration of such em-
beddings into detection results in poor performance. We
use the following training recipe to effectively use contex-
tualized embeddings in detection: (1) using a prompt “A/an
<objName>.” when changing a class embedding for ob-
ject k from eCk to fC

k , (2) allowing the language encoder to
update in the grounding pretraining task, and (3) allowing
the V2L layer to update in finetuning. These strategies pro-
vide the training flexibility needed to thoroughly evaluate
attribute sensitivity with contextualized embeddings.

3.1.2 Case study: CLIP image-text alignment

Open-vocabulary detectors that have come after OVR-CNN
notably leverage CLIP [2, 12–14, 46, 47, 57, 58]. Their abil-
ity to use attribute context is thus highly dependent on the
attribute sensitivity of CLIP. We study CLIP’s attribute sen-
sitivity for insights that generalize to various methods. The
alignment objective of CLIP notably differs from OVR-
CNN in that it aligns embeddings corresponding to en-
tire images and text descriptions rather than to regions and
words. More specifically, an image I and caption C are
processed by CLIP’s image and text encoders to produce
normalized feature representations zIi and zCj . ⟨I, C⟩ for
CLIP is defined in Eq. 6, where ⟨zIi , zCj ⟩ is a dot product:

  \label {groundingscore_clip} {\langle I,C \rangle = \langle z_i^I,z_j^C \rangle }        (6)

A temperature τ is also used with the losses in Eqs. 1
and 2. Due to CLIP’s large size and scale, we focus on fine-
tuning representations, rather than pretraining from scratch.

3.2. Analyzing model sensitivity to attributes

We aim to measure how influential attribute context is
to a model’s decision (e.g. classification, grounding). We
reason that in an attribute-sensitive model, the presence of
attributes should help decisions, as this information is com-
plementary to objects. Additionally, the meaning of at-
tributes should be respected. Object representations should
be more aligned when correct attributes are used than when
incorrect attributes are used. Our mechanism for explor-
ing these considerations is through removing and changing
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attribute context in the text for a task, as removal tests pres-
ence, and changing tests meaning. In this section, we out-
line our measurement methodology, for which we explore
prior tasks that can show attribute sensitivity while fitting
each alignment mechanism. In particular, we use unsuper-
vised phrase grounding [34] for OVR-CNN and classifica-
tion via description [32] for CLIP, as shown in Fig. 2.
Isolating objects and attribute context For analysis of
OVR-CNN (and for training as outlined in Sec. 3.3), we
define a vocabulary V to be the nouns corresponding to ob-
jects in a dataset D. In our study, D is COCO [7], with
118,287 images and 5 captions per image. We build V from
the synonym list of COCO class names provided in [31],
with plural terms added. The vocabulary V captures vari-
ous terms for each class (e.g. jet, aircraft, planes for air-
plane). We identify a class attribute as any adjectival modi-
fier (“amod”) with dependency on a class synonym in D, de-
tected with [18]. The unique adjectives for each class make
up respective plausible sets, containing attribute properties
across the dataset (e.g. a frisbee is red/green/etc.). Unique
adjectives across all classes make up the random set. We
provide further details and statistics in the supp. material.
Measuring attribute sensitivity in region-word ground-
ing OVR-CNN is analyzed using unsupervised phrase
grounding [34], a task that returns a bounding box b for a
text query t. Given an image-caption pair (I , C), we ask:
if I has a red car, are visual regions for that car grounded
better when using the car embedding in the caption “a red
car...” than when using the embedding in “a blue car...” or
“a car...”? Put another way, we test if the model leverages
attribute meaning when grounding object regions to con-
textualized word embeddings. While a model could align
visual regions for car independently of attributes (e.g. with
context-free embeddings), we reason that bag-of-words be-
havior may result since embeddings are the same in cases
like “a red car and blue truck”/“a blue car and red truck”.
Also, the model would not be fully leveraging capabili-
ties of contextualized embeddings, where a region-word ob-
jective can encode attribute information within a contextu-
alized object grounding, such that the model dynamically
learns to represent red car vs. blue car.

In this setup, we test four grounding scenarios: (1) us-
ing the baseline caption, containing ground-truth attributes
in adjective form (e.g. “a yellow banana on the table”); (2)
using a caption that has object adjectives removed (e.g. “a
banana on the table”); (3) using a caption that has object
adjectives changed plausibly according to our sets (e.g. “a
rotten banana on the table”); and (4) using a caption that has
adjectives changed randomly to be any intra-corpus (e.g. “a
red banana on the table”). In an attribute-sensitive model,
we expect the top-performing grounding to have the most
information (e.g. “yellow banana”). We expect removal
performance to drop vs. this baseline as objects are less

Figure 2. Our attribute sensitivity measurement methodology.
We remove/change attributes/class names in text for grounding
and classification tasks to measure if model decisions are sensi-
tive to attributes. We show example predictions when attribute
meaning is ignored (e.g. rotten banana, toucan is a pink bird).

specified. We reason that changing adjectives should make
attributes incorrect and thus hurt vs. the baseline. In the
plausible case, we expect the dataset to cover disjoint states
(e.g. wooden vs. plastic spoon). While multiple attributes
could be valid for an object, in practice, we find such cases
rare. On 100 random samples, we find that 84% of captions
changed plausibly and 92% changed randomly are not rea-
sonably correct. We expect changing plausibly to thus result
in a smaller drop from the baseline vs. changing randomly.

To compute groundings, for each caption token j, if it
matches an object term in V , one or more bounding boxes
are generated from the binary map of region-word similarity
⟨f I

i , f
C
j ⟩ such that ⟨f I

i , f
C
j ⟩ ≥ thsim. In the supp. material,

we test at values thsim=5, 10, 15 and show trends are not
sensitive to this threshold. Then for all captions which men-
tion that object, these boxes are compared to the ground-
truth at various IoU thresholds, producing AP@t values.
We use t=30,40,50 as non-aggressive thresholds suitable for
unsupervised inference. The average AP@IoU=30:10:50 is
reported over all classes in the COCO validation set.
Measuring attribute sensitivity in CLIP image-text
alignment We analyze CLIP’s attribute sensitivity through
classification via description [32], which adds attribute con-
text to object prompts to aid zero-shot inference. In [32],
for each class c in a dataset D, GPT-3 is prompted to pro-
duce a list of descriptors D(c). The descriptors contain at-
tributes relevant to the object, along with c to condition the
attributes. For instance, the descriptors produced for toucan
are “a/an toucan which (is/has/etc) large, brightly colored
bill.”, “a/an toucan which (is/has/etc) long, pointed wings.”,
etc. To classify an image I , each descriptor d serves as a
prompt. The score for each class is computed using the av-
erage CLIP logits, ϕ(I, d), over each d, shown in Eq. 7:

  \label {score_orig} s(c, I) = \frac {1}{|D(\textit {c})|}\sum _{d \in D(\textit {c})} \phi (I,d)  







  (7)
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We select D to be ImageNetV2 [38] and use GPT-3
(davinci-002) to produce descriptors. We also test produc-
ing only a single-sentence description to simulate the re-
lated method [36] (e.g. “A toucan is a large bird with a dis-
tinctive large, brightly colored bill.”). With both setups, we
test sensitivity through removing and changing, detected as
“ADJ” with [18], but unlike OVR-CNN, we only use ran-
dom changing (and not plausible) since the descriptors do
not have a vocabulary like COCO. Then to further stress test
CLIP, in a given inference, we remove all class names by
replacing them with “a/an object”. This experiment gauges
whether CLIP can interpret objects from attribute-only de-
scriptions (e.g. a small, white, round object with red seams
is a baseball). In the supp. material, we provide specific
details, examples, and linguistic properties for descriptors.

3.3. Enhancing model sensitivity to attributes

We also hypothesize that enhancing attribute context’s
role can help tasks like object detection and text-region re-
trieval. We specifically experiment with adjective-based
negative caption sampling, where a negative for a caption
C includes the same words, just with an adjective replaced
(e.g. for “blue car in the street”, blue is replaced with red).
We reason that these negatives can encourage models to
capture attribute meaning when learning objects, increasing
the model’s fine-grained utility. In pretraining specifically,
another benefit is that attributes may help “guide” object
grounding to the correct regions (e.g. a car to a red region).

We test negative sampling in OVR-CNN pretraining and
CLIP finetuning, both with COCO. We explore two replace-
ment methods: (1) choosing a random adjective from the
corpus and (2) choosing a plausible adjective for a noun,
such that it is mentioned intra-dataset with the respective
class term. Through these strategies, we aim to gauge
whether it is beneficial to contrast disjoint states in a dataset
with plausible (e.g. wooden vs. metal spoon) or if simple
random adjectives suffice. Table 1 shows examples of plau-
sible and random captions. To implement in training, for
each caption in BC with an adjective detected, a negative
caption is added to a batch BN . The loss in Eq. 1 becomes:

  \label {groundingloss_image_with_negatives} { \mathcal {L}_{I \rightarrow T}(I) = - \log \frac {\exp \langle I, C\rangle }{\sum _{C'\in \mathcal {B_C} + \mathcal {B_N} } \exp \langle I, C'\rangle } }    



 

(8)

A potential shortcut with region-word grounding is that a
model can solve the task by grounding just adjectives rather
than object words. To encourage OVR-CNN to consider ob-
jects and attributes, we use noun negatives (using the same
caption, but replacing nouns with random ones from D).
For CLIP, if no adjective-noun pair is detected, we add a
random caption to BN . We also compare the plausible and
random strategies to order-perturbing sampling [54], since
order perturbations can influence attention to attributes (e.g.

Caption A bunch of green bananas growing in a tree.
Plausible Neg. A bunch of rotten bananas growing in a tree.
Random Neg. A bunch of pink bananas growing in a tree.

Table 1. Examples of negative adjective captions.

“red car and blue truck” vs. “red truck and blue car”). We
test this strategy by perturbing order when possible (i.e. the
caption has adjectives and nouns); as with other strategies,
we sample a random caption otherwise.

4. Evaluation
We evaluate context enhancement on one object-focused

task (open-vocabulary detection) and two fine-grained tasks
(text-region retrieval/object attribution).
Datasets For image-caption training, we use COCO Cap-
tions [7], and for finetuning open-vocabulary detection, we
use COCO Objects [30], (2017 train/val for both). The class
split for open-vocabulary detection is the same as [3,55] (48
base and 17 target classes). For retrieval, we use the 2,000
image COCO val subset with object and attribute annota-
tions from OVAD [5]. For attribution, we use ARO Visual
Genome Attribution (VGA) [54], with 28,748 examples.
Open-vocabulary object detection This task considers
base/target class sets with/without bounding box annota-
tions. A detector (i.e. Faster R-CNN [39]) is trained only
on base classes, and there are three evaluation settings: base
classes only, target only, and generalized. As in [55], base
only and target only classify over the respective set, while
in generalized, prediction is performed over the union of
base and target classes, and results are reported within each
group and overall. We report AP50 as the metric, as in [55].
Text-region retrieval We pose fine-grained text-to-region
retrieval as a use case where attribute-object understanding
is needed. We input a set of texts T for which each text t
contains an attribute a from the set A and an object o from
the set O (e.g. red car). The goal is to return as output top-
scoring regions that are correct if they contain the correct
attribute and object (e.g. for red car, non-red cars would be
incorrect). We select A to be colors, patterns (striped, dot-
ted, etc.), and materials (metal, wooden, etc.) in OVAD [5]
and O to contain all COCO objects. Since OVAD’s annota-
tions are dense, we exclude attribute-object pairs that are not
described in language due to being inherent (e.g. metal car)
and use attribute-object pairs with greater than 10 annota-
tions. Overall, we use 323 attribute-object pairs (273 with
colors, 42 materials, and 8 patterns). In evaluation, every
ground-truth box in OVAD is considered a possible retrieval
(≈14,300 samples). For CLIP, we input crops for each GT
box to the image encoder and use similarity between im-
age and text features to rank retrievals. For OVR-CNN, we
compute the region embedding f I

i for each box. Then for
all text t in T , we compute the dot product between the
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average word embedding f t
j of its attribute and object text

tokens (e.g. average(fred, fcar)) and every f I
i . We report

recall@k (a true positive is when at least one retrieval of the
correct attribute and object is within the top k). We also re-
port precision@k, the proportion of correct retrievals in the
top k. We do not directly evaluate on OVAD since the task
has the different goal of detecting all attributes rather than
differentiating between categories described with attributes.
Object attribution For CLIP, we consider object attribu-
tion (with the VGA dataset [54]) as a relevant benchmark
for image-text matching. This task involves selecting the
correct text for an image, given two choices with different
order (e.g. “the crouched cat and the open door” vs. “the
open cat and the crouched door”). Note that this task is
complementary to the retrieval task, in that they both test at-
tribute understanding, but text-region retrieval focuses more
on fine-grained differentiation among plausible attribute-
object pairs (blue car vs. red car vs. blue truck), while
attribution focuses on intra-caption ordering where negative
pairs are often implausible (e.g. “crouched door”).
Training Full-scale comparison to [55] uses 8 Quadro RTX
5000 GPUs and settings from [55]. For other OVR-CNN
results, we pretrain using 4 NVIDIA GeForce GTX 1080 Ti
with memory 11 GB. Pretraining uses 80k iter., batch size
(BS) 16, and learning rate (LR) 0.01 that scales down 10x
after 40k/70k steps. For COCO finetuning, we use 4 GPUs,
75k iter., BS 8, and LR 0.005 that scales down after 30k/60k
steps. CLIP finetuning is performed using OpenCLIP [20],
for 5 epochs using BS 64 and LR 1e-6 on 1 Quadro RTX
5000. CLIP’s image encoder is ViT-B/32.

5. Experimental results and analysis

In Section 5.1, we analyze the attribute sensitivity of VL
alignment. For OVR-CNN region-word grounding, we test
removing context in the captions used for pretraining detec-
tion (Fig. 3) and perturbing captions in unsupervised phrase
grounding (Fig. 4). For CLIP image-text alignment, we test
perturbing the text prompts for classification via description
(Fig. 5). In Section 5.2, we further evaluate how attribute
context sensitivity impacts practical downstream tasks. We
evaluate the impact of attribute sensitivity on an object-
focused task, in particular open-vocabulary detection with
OVR-CNN (Table 2/3). We also evaluate models on two
fine-grained tasks that require attribute knowledge, namely,
text-region retrieval and object attribution (Table 4/5).

5.1. Gauging the role of attribute context

Attribute context has limited impact in region-word pre-
training for object detection. We first examine the role of
attributes through removing all “amod” from captions dur-
ing VL pretraining with OVR-CNN. Open-vocabulary de-
tection results for baseline OVR-CNN [55] are shown in

Figure 3. Effects from removing adjectives in OVR-CNN pre-
training on COCO open-vocabulary detection. Across settings,
the maximum drop from removing adjectives from training is only
-0.36 AP50. These results indicate that attribute context has lim-
ited benefit in detection. Error bars show std. error (3 trials).

Figure 4. Measuring attribute sensitivity in contextualized ob-
ject grounding. We find limited sensitivity to attribute meaning
in default contextualized grounding, but enhanced sensitivity with
(plausible) adjective negatives added. This observation is sup-
ported by AP differences (in black) with incorrect adjectives used
for the adjective negative vs. default contextualized models. The
drops are discernibly larger with adjective negatives: -1.36% vs.
<0.2% from baseline captions to changing plausibly and -1.57%
vs. <0.2% from baseline captions to changing randomly. Values
are avgs. over 3 training runs. Bars show std. error.

Fig. 3. Note that the max. drop from training with to with-
out adjectives is -0.36 AP50 (base), and there are not dis-
cernible drops in target/generalized settings. These results
point to attribute context being wasted and not helpful when
learning object grounding, and thus serve as inspiration for
our investigation of ways to boost use of attribute context.
Contextualizing object grounding does not result in em-
beddings with high sensitivity to attribute meaning. As
outlined in Sec. 3.1.1, we contextualize grounding in OVR-
CNN as one strategy to integrate attribute context. Then
through unsupervised phrase grounding, we gauge sensitiv-
ity to attribute meaning and analyze whether the attributes
contextualizing an object noun (e.g. “a red car”) impact per-
formance. Fig. 4 shows AP@IoU=30:10:50 for (1) OVR-
CNN with contextualization and (2) OVR-CNN with con-
textualization and plausible adjective/noun negatives, on
the four region-word grounding scenarios of interest (base-
line grounding, removing adjectives, changing adjectives
plausibly, and changing adjectives randomly). On the left of
Fig. 4, we find that with default contextualization, chang-
ing adjectives plausibly/randomly yields similar AP to us-
ing baseline captions or captions with removed adjectives
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Adjective Noun Grounding LE/PL Base-Only Target-Only Generalized

Negative Negative Type Trained AP50 ∆ AP50 ∆ All AP50 ∆ Base AP50 ∆ Target AP50 ∆

- - Context-Free - 32.8 ± 0.08 − 15.8 ± 0.11 − 26.3 ± 0.04 − 31.4 ± 0.15 − 11.8 ± 0.28 −

Plausible ✓ Contextualized ✓ 35.8 ± 0.09 +3.0 17.7 ± 0.38 +1.9 28.8 ± 0.17 +2.5 33.9 ± 0.24 +2.5 14.2 ± 0.34 +2.4
Random ✓ Contextualized ✓ 35.7 ± 0.31 +2.9 18.0 ± 0.25 +2.2 28.6 ± 0.33 +2.3 33.5 ± 0.30 +2.1 14.5 ± 0.41 +2.7

- ✓ Contextualized ✓ 35.3 ± 0.19 +2.5 17.8 ± 0.18 +2.0 28.3 ± 0.12 +2.0 33.3 ± 0.13 +1.9 14.2 ± 0.13 +2.4
- - Contextualized ✓ 35.2 ± 0.13 +2.4 16.7 ± 0.26 +0.9 28.3 ± 0.20 +2.0 33.6 ± 0.16 +2.2 13.1 ± 0.30 +1.3
- - Contextualized - 31.8 ± 0.14 -1.0 10.5 ± 0.28 -5.3 22.7 ± 0.83 -3.6 28.0 ± 0.98 -3.4 7.5 ± 0.47 -4.3

Plausible ✓ Context-Free ✓ 34.1 ± 0.21 +1.3 19.3 ± 0.29 +3.5 28.4 ± 0.17 +2.1 33.4 ± 0.19 +2.0 14.3 ± 0.38 +2.5
- - Context-Free ✓ 34.1 ± 0.01 +1.3 19.1 ± 0.72 +3.3 28.3 ± 0.27 +2.0 33.2 ± 0.12 +1.8 14.4 ± 0.70 +2.6

Table 2. Adapting OVR-CNN [55] with attribute context enhancement strategies (Sec. 3.1.1/3.3): adjective/noun negative cap-
tion sampling, contextualized grounding, language encoder/projection layer training (LE/PL), AP50 mean over 3 trials ± std error,
∆=change vs. default OVR-CNN [55] (top row). Using adjective negatives with contextualization yields base/generalized AP50 increases,
and top base/generalized AP50 overall, as the model is able to take into account attribute meaning in object embeddings.

Figure 5. Perturbing attributes and object names in CLIP de-
scriptions used for ImageNetV2 classification. Removing and
changing adjectives have small effects on accuracy. When classes
are described without object names, accuracy significantly drops.

(a max. difference of 0.13 AP@IoU=30:10:50). These ob-
servations are counterintuitive, as embeddings can be con-
textualized by incorrect adjectives, yet ground similarly to
when there are correct adjectives. We posit that the model
may be sensitive to caption structure, where object em-
beddings with different adjectives are close together, and
the model does not have an incentive to differentiate them.
Such lack of sensitivity to attribute meaning motivates our
exploration of adjective negatives; we show the effects on
the right in Fig. 4. Contextualization aptly becomes less
aligned with incorrect adjectives, reaching notable drops
when changing plausible/randomly with respect to the base-
line (-1.36%/-1.57% respectively). In Sec. 5.2, we show the
importance of sensitivity in detection and retrieval.
Describing classes in terms of attributes alone is inef-
fective. We measure CLIP’s sensitivity to attributes with
classification via description. As outlined in Sec. 3.2, zero-
shot inference is performed on ImageNetV2 using CLIP de-
fault prompting, LLM-based sets of object feature descrip-
tions [32], and LLM-based single-sentence descriptions of
objects [36]. In Fig. 5, we show the results of remov-
ing/changing adjectives and removing class names in terms

of top1/5 accuracy. Removing/changing adjectives results
in insignificant drops vs. the baseline with [32], and slightly
bigger drops with the [36]-like method (-4.1% drop base-
line to changing), potentially as a result of more adjective-
dense descriptions (supported in the supp.). However, re-
moving class names results in close to ten times more sub-
stantial drops (max -40.5% top1 accuracy). These results
bring into question the model’s ability to leverage attribute
descriptions since class names drive performance. Such re-
sults also limit the appeal of using attribute descriptions for
new/custom objects with names not in the pretraining set.

5.2. Evaluating context enhancement strategies

Enhancing context sensitivity helps open-vocabulary de-
tection in base and generalized settings. We evalu-
ate OVR-CNN with four strategies to boost attribute con-
text in region-word pretraining: (1) contextualized ground-
ing, (2) adjective negative sampling (plausible/random), (3)
noun negative sampling (random), and (4) language en-
coder/projection layer training, with results shown at an ex-
perimental scale in Table 2. Compared to the baseline [55],
combining all strategies, in both plausible and random ad-
jective negative cases, provides the largest gains in base-
only and generalized (all-class) settings (e.g. +3.0 and +2.5
AP50 respectively with plausible). In Table 3, we also
present a proof-of-concept showing that enhancing attribute
context improves the results reported in [55] in 4/5 settings
(+0.9-1.0 AP50 in base-only and all generalized settings).
Such results highlight value in better using context, espe-
cially attributes, when learning grounding for detection.

Breaking down Table 2, a key observation is that plau-
sible/random adjective negatives, when used with contex-
tualized grounding, result in (comparable) base and gener-
alized gains over all other baselines (+0.5 and +0.4 AP50

with plausible). These results can be ascribed to increased
attention to attribute meaning that is obtainable with con-
textualized grounding, but not with context-free grounding
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Method Base Target Generalized
Base Target All

OVR-CNN [55] 46.8 27.5 46.0 22.8 39.9
+ Context Enhancement 47.7 26.5 46.9 23.8 40.8

Table 3. OVR-CNN at full scale with various context enhance-
ment strategies (plausible adjective/noun negatives, contextual-
ized grounding, language encoder/projection layer training), com-
pared to baseline reported in [55]. AP50 reported on COCO.

since embeddings do not vary with context. There is marked
benefit to learning to ground objects with attribute signals
for detection. Still, there is a tradeoff between contextu-
alized and context-free grounding. Contextualized models
result in top AP50 in base-only and all generalized settings,
but context-free results in top AP50 in target-only. These re-
sults can be attributed to using contextualized embeddings
and not adjective negatives, since all contextualized meth-
ods obtain worse target performance than the best context-
free method. We reason that the drop is due to the need for
a prompt: we use a simple “A/an <objName>.” (see Sec.
3.1.1), but this prompt may be suboptimal to represent the
large variance of contextualized embeddings for an object.
Training with box annotations in base may allow visual em-
beddings to adjust to prompts, explaining base gains, but
with no target training, adjustment cannot occur. We sur-
mise that recent work in context optimization [12] can over-
come this challenge. The noun negatives notably improve
target-only vs. contextualized (+1.1 AP50), showing that
differentiating nouns in the same context may also help.

We further inspect the plausible case by comparing class-
by-class results using models in row 2/4 of Table 2. No-
tably, the classes with top AP50 gains are oven (+4.6), bear
(+4.3), horse (+3.6), and frisbee (+3.4). Upon inspection of
the corpus, these are commonly described in captions with
visually distinctive adjectives that may help grounding such
as colors (e.g. “yellow frisbee”). Overall, we observe that
32/48 classes improve in AP50 with adjective negatives.
Adjective negatives increase CLIP’s fine-grained utility
in multiple tasks. We use text-region retrieval and attribu-
tion as fine-grained tasks to evaluate attribute-object under-
standing. Table 4 shows these results comparing strategies
for finetuning CLIP on COCO: (1) choosing a random nega-
tive caption, (2) order-perturbing adjectives/nouns [54], (3)
random adjective sampling, and (4) plausible adjective sam-
pling. On retrieval, random adjective sampling is gener-
ally most effective across values of k, plausible is second,
and both strategies outperform a random caption baseline
and the order-perturbing captions of [54]. The fine-grained
differentiation needed for retrieval is aided best by adjec-
tive negatives. On the attribution task, the order-perturbing
negatives perform best, which makes sense given that attri-
bution involves determining the correct order of adjectives

Method R@1 R@5 R@10 P@1 P@5 P@10 VGA

Default CLIP 48.92 82.97 90.40 48.92 42.66 37.62 62.82

Random Neg. 57.59 87.62 94.12 57.59 50.96 44.37 64.64

Order-Based Neg. [54] 56.97 85.76 92.88 56.97 48.73 42.79 73.87
Plausible Adj. Neg. 58.82 86.69 93.81 58.82 50.96 44.77 67.94
Random Adj. Neg. 60.06 88.24 92.26 60.06 51.76 44.98 67.93

Table 4. Fine-grained utility of CLIP finetuned with nega-
tive sampling strategies, on T2R retrieval and Visual Genome
Attribution (VGA) [54]. Recall/precision@k=1,5,10 are re-
ported for T2R retrieval and accuracy for VGA. Best=bold,
second=underlined, results > random baseline (row 2) in green.
Note that adjective sampling offers improvements across both at-
tribute tasks, while order only helps on the order-based VGA task.

Method R@1 R@5 R@10 P@1 P@5 P@10

Contextualized Baseline 13.21 37.36 52.01 13.21 12.84 11.75

Plausible Adjective Negative 16.82 39.83 53.35 16.82 14.14 12.63
Random Adjective Negative 17.44 39.42 52.53 17.44 13.70 12.32

Table 5. Fine-grained utility of OVR-CNN, pretrained with
adjective negatives, in text-region retrieval of attribute-object
concepts. Recall/precision@k=1,5,10 are reported over 3 trials.

and nouns. It is notable that adjective negatives improve
on this task and retrieval vs. a random caption baseline,
unlike the order-perturbing captions. This shows adjec-
tive negatives achieve more generalizable attribute-object
understanding across tasks. Adjective negatives similarly
improve in retrieval for OVR-CNN (Table 5). Plausible and
random adjective sampling are more competitive in this sce-
nario, though random sampling has highest R@1/P@1 and
plausible sampling P/R@5/10. We surmise that random ad-
jective sampling may solidify easier retrievals by comparing
to a wide array of adjectives, while plausible sampling may
help the model differentiate between tougher cases as plau-
sible adjectives serve as more realistic, harder negatives.

6. Conclusion
We answer these questions (Sec. 1): (1) Attribute con-

text can show limited impact in region-word pretraining for
detection. (2) Grounding objects to contextualized word
embeddings increases attribute consideration only to a lim-
ited degree. (3) Describing CLIP’s classes by only their
attributes results in poor accuracy. Also, models struggle at
fine-grained retrieval. (4) Adjective-based negative caption
sampling is promising to increase model sensitivity to at-
tribute meaning and especially boosts fine-grained retrieval.
(5) Plausible and random adjective sampling are competi-
tive in detection/retrieval following OVR-CNN grounding;
with CLIP, random sampling has higher retrieval gains.
Acknowledgements: This work was supported by a Na-
tional Science Foundation Grant No. 2006885.
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