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Abstract  
Human-machine interfaces (HMI) are currently a trendy and rapidly expanding area of research. 
Interestingly, the human user does not readily observe the interface between humans and 
machines. Instead
are obscured by complex control algorithms. The result is effectively a one-way street, wherein 
data is only transmitted from human to machine. Thus, a gap remains in the literature: how can 
information be effectively conveyed to the user to enable mutual understanding between humans 
and machines? Here, this paper reviews recent advancements in biosignal-integrated wearable 

 the presentation of relevant data, 
statistics, and visual feedback to the user. This review article covers various signals of interest, 
such as electroencephalograms and electromyograms, and explores novel sensor architectures 
and key materials. Recent developments in wearable robotics are examined from control and 
mechanical design perspectives. Additionally, we discuss current visualization methods and 
outline the  future direction. While much of the HMI field focuses on biomedical and 
healthcare applications, such as rehabilitation of spinal cord injury and stroke patients, this paper 
also covers less common applications in manufacturing, defense, and other domains.  
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1. Introduction 
HMI occupies a prominent place within the interdisciplinary research landscape, bridging intricate 
human biological processes with cutting-edge technological advancements [1]. Over the years, 
this domain has experienced significant growth, largely driven by transformative innovations in 
soft sensors and wearable robotics [2], [3], [4], [5]. These advancements enable the precise 
conversion of human physiological signals into formats that machines can readily interpret and 
act upon [6], [7]. However, within the expanding corpus of HMI literature, the integration of visual 
interfaces remains inadequately addressed. This gap not only underscores the uniqueness of this 
manuscript but also emphasizes the urgent need for exploration in the HMI research field. As 
HMIs become more commonplace across various sectors, this work aims to encourage further 
research and provide a clearer perspective on the integrated role of sensors, robotics and visual 
interfaces in HMIs. The scope of this paper is threefold: First, we delve into the field of soft 
sensors. These tools epitomize the interface of human intent and machine functionality, with their 
effectiveness largely contingent on the accurate interpretation of biological signals [8], [9], [10], 
[11], [12], [13]. Alongside this, we highlight the latest developments in sensor architectures and 
materials, emphasizing their crucial role in improving the responsiveness and accuracy of these 
devices [3], [14]. Our attention then shifts to the foundations of robotics, investigating applications, 
control strategies and mechanical aspects. This approach highlights the importance of a 
harmonious relationship between the software directives and the hardware components, ensuring 
overall efficiency and reliability in HMIs [15], [16], [17]. Finally, we turn our attention to the often-
overlooked aspect of visualization. As the demand for more transparent human-machine 
interactions grows, visualization becomes increasingly vital, offering ways to present complex 
machine feedback in a user-friendly manner [18], [19], [20], [21]. Collectively, these sections 
converge on a singular goal: to transform HMI from a one-way interaction into a two-way 
conversation where both humans and machines can understand and respond to each other. 
Through this comprehensive review, we provide an in-depth look into the current landscape and 
potential future of HMI. For a consolidated understanding of the interconnected roles of sensors, 
robotics, and visual interfaces, Fig. 1 presents an overview of the integration and interdependence 
of these systems.  
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Figure 1. Elements of biosignal-integrated robotic systems. (a) Several strain sensors used 
to measure joint angles, fingertip pressure, and pulse. Reproduced with permission [22].
Copyright 2018, Elsevier. (b) Stretchable EMG electrodes collect muscle activity data for 
multimodal human-machine interfaces. Reproduced according to the terms of the CC BY license 
[23]. Copyright 2020, the authors, published by Springer Nature. (c) Design of a textile-based 
sensor capable of detecting biosignals (e.g., pulse rate) as well as mechanical signals (e.g., joint 
dynamics). Reproduced with permission [14]. Copyright 2022, Elsevier. (d) Studying muscle 
coordination and recruitment through synergy analysis during use of a robotic ankle-foot
exoskeleton. Reproduced according to the terms of the CC BY license [24]. Copyright 2023, the 
authors, published by Springer Nature. (e) Control of a soft arm robot manipulator with tactile 
sensors. Reproduced according to the terms of the CC BY license [14].   Copyright 2022, Elsevier. 
(f) An ankle exoskeleton evaluated for reduction of metabolic cost. Reproduced with permission 
[25]. Copyright 2018, AAAS. (g) A visual guidance screen can streamline training sessions for 
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new users of exoskeletons. Reproduced according to the terms of the CC BY license [18]. 

Copyright 2022, the authors, published by Springer Nature. (h) Example of a mobile application 
that can both monitor and control usage of an arm prosthesis. Reproduced according to the terms 
of the CC BY license [26]. Copyright 2022, Springer Nature. (i) User interface for a nursing robot 
displaying real-time signals, including heart rate, temperature, and blood oxygen. Reproduced 
with permission [21]. Copyright 2023, Springer Nature. 
 
 
Robotic systems have experienced significant evolution, mirrored in the progression of control 
block diagrams [27]. These diagrams visually depict control systems, elucidating the interactions 

 [28]. The evolution of robotic systems using 
this block diagram approach is presented in Fig. 2. 
figure about recent robotic systems with a high degree of integration, cooperation, and 
communication with other elements of an increasingly complex control system. Additionally, we 
believe the capability to respond to new and emerging stimuli, especially physiological signals, to 
be an important characteristic separating newer robots from previous generations. Historically, 
robotic systems relied primarily on mechanical signals and non-physiological methods, with 
interactions limited to physical connections between robot links and human limbs. By the early 
21st century, physiological sensors such as electrocardiography (ECG) and electromyography 
(EMG) sensors, initially designed to study human physiology [29], [30], were incorporated into 
robotics, paving the way for biofeedback control. This focus constrained the depth of 
understanding regarding human responses and intentions [31]. The "human in the loop" or "body 
in the loop" concept, combined with these sensors, marked an important shift in robot control 
considering unknown human-robot interactions. This perspective regarded both the robot and the 
human as integral parts of a cohesive control system [31], [32], [33]. Through this perspective, 
controllers could design strategies attuned not only to the robot's functionalities but also to human 
states and intentions [34], [35]. Recent trends have centered on forging an even stronger synergy 
between humans and robots [36]. Advances in visualization, including extended reality, promise 
to redefine this dynamic [18], [19], [20], [21]. One of its primary objectives is a harmonious co-
adaptation between the two entities.  
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Figure 2. Evolution of intelligent robotics systems. (a) Block diagram representation of the 
conventional robotic control system reliant on non-physiological signals for robot control, with 
human-robot interaction occurring solely through mechanical interactions between robot and 
human body. (b) Closing the loop of by looking at the human and robot as an interactive system. 
Achieved through capture of human physiological data using bio-sensors, enabling the controller 
to harmonize robot behavior with the human condition. (c) Introduction of visual feedback to 
enhance user comprehension of controller actions and human status, facilitating user adaptation 
to the system. (d) The advent of novel visualization methods, such as virtual and augmented 
reality, driving enhanced interaction between human and robotic systems. 
 
 
We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 
process for literature retrieval and selection [37]. To capture the most recent developments in the 
field, we conducted a focused review spanning five years from 2018 to 2023. Our initial search in 

by an additional 19 records from other sources. The first screening phase entailed the exclusion 
of records based on a set criterion: plant and animal research, inaccessible texts, duplicate 
studies, incomplete studies, and papers not available in English. This resulted in the exclusion of 
209 records. Subsequently, in the second phase, we reviewed titles and abstracts, eliminating 
381 records that did not directly relate to biosignal-integrated robotics systems with visual 
interfaces. The final screening phase involved a comprehensive review of the full texts. Here, 112 
records were further excluded for not aligning specifically with the theme. In other words, the texts 
did not include soft sensors, wearable robotics, and/or visual interfaces. Following this three-tiered 
screening process, we identified a corpus of 101 papers, which form the basis of our review. Fig. 
3 provides a visual overview of the PRISMA process undertaken in this work. 
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Figure 3. Systematic review process. Selection process flowchart of the included studies for 
this systematic review, following the PRISMA protocol. 

2. Sensors 
Sensors serve as the fundamental link between human users and robotic systems. An increasing 
number of users are engaging with their robots by utilizing various biosignals, which are natural 
electrical potentials generated by the human body, ranging from the heart and brain to skeletal 
muscles and other organs. Some sensors also capture physiological phenomena that do not 
inherently generate electrical potentials, such as the dynamic movements of joints, and convert 
them into usable electrical signals. Harnessing the information streams within the human body, 
sensors play a critical role in shaping HMI. Recent developments in sensor technology aim to 
enhance key performance metrics such as signal-to-noise ratio, sensitivity, and packaging. 
Additionally, wearable sensors designed for integration with robotics explore additional 
dimensions, including environmental sustainability, biocompatibility, and optimizing user comfort 
[38], [39]. In this section, we will showcase recent advancements in sensor design, materials, and 
manufacturing techniques across various sensor classes commonly integrated into robotic 
systems and visual interfaces.

2.1 EEG sensors 
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One of the most widely used biosignals is electroencephalography (EEG), a noninvasive process 
that involves the use of scalp electrodes to detect surface-level electrical currents originating from 
brain activity, specifically cortical neurons. These signals are primarily generated by flow of ions 
such as Na+ and K+ through neuron membranes. However, measuring potentials from surface 
electrodes encounters challenges related to signal degradation as they pass through multiple 
layers of skin and bone. EEG signal amplitudes typically display very small values, spanning from 
0.5 to 100 μv. To address this, various amplification devices are introduced into the signal chain, 
serving to reject noise, eliminate interference from other body potentials, and apply gain. Both 
analog and digital filtering techniques are employed to separate distinct EEG signal frequencies 
[40]. EEG signals are commonly categorized into several recognized ranges: delta waves ( , 0.1-
4 Hz) associated with deep sleep and unconsciousness, theta waves ( , 4-8 Hz) commonly linked 
with rapid eye movement, alpha waves ( , 8-13 Hz) corresponding to relaxed mental state, and 
beta ( , 13-30 Hz) or gamma ( , 30-70 Hz) waves connected to focus, alertness, and higher motor 
function [41]. This data serves multiple purposes, primarily offering valuable clinical insights to 
physicians. For example, EEG is a critical component of polysomnography exams for assessing 
sleep disorders and serves as the gold standard for diagnosing epilepsy [40]. However, of 

humans and robotic systems through classifiable signal patterns [42]. In particular, evoked 
potentials (EP) and event-related potentials (ERP) involve distinctive patterns that emerge in an 
electroencephalogram as subjects react to specific external stimuli or mental cues, often 
appearing as intermittent and low-amplitude signals [40]. Visual interfaces are now being 
integrated with sensing and robotics systems to provide stimuli for EP/ERP classification and 
control experiments. Once these signals are clearly identified, they become powerful tools that 
can be incorporated into robotic control systems and extended reality platforms [43]. This 
approach is especially popular in rehabilitation robotics, where motor imagery, linked with EEG, 
can actuate assistive devices [2], [44], [45], [46], [47], [48]. Traditional clinical EEG setup employs 

often applied beneath each electrode to reduce skin impedance. Electrode placement usually 
follows the 10-20 system, an internationally standardized guideline for arranging up to 21 
electrodes [49]. Common drawbacks include bulkiness, limited portability, extensive user 
preparation, and skin irritation caused by the conductive gel. The limitations of complex wired 
systems become particularly evident when testing robotics applications, where users are 
generally more physically active compared to clinical EEG studies.  
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Figure 4. Examples of recently developed sensor systems, highlighting commonly used 
physiological signals. (a) Modular EEG cap in 16-channel configuration used for digital 
hemiplegia rehabilitation. Reproduced according to the terms of the CC BY license [50]. Copyright 
2022, IOP. (b) 3-channel EEG headband with custom FLG/TiO2 electrodes interfacing between a 
user and a robotic arm. Reproduced with permission [9]. Copyright 2023, Elsevier. (c) An EEG-
based universal brain-machine interface featuring (i) aerosol jet printed skin-like electrodes and 
(ii) flexible dry hair electrodes. Reproduced with permission [51]. Copyright 2019, the authors, 
Springer Nature. (d) An EMG armband provides muscle activation data to guide a thumb 
exoskeleton. Reproduced according to the terms of the CC BY license [52]. Copyright 2018, 
MDPI. (e) Surface EMG electrodes used for control of a hip exoskeleton. Reproduced according 
to the terms of the CC BY license [53]. Copyright 2018, Frontiers Media SA. (f) Tattoo-inspired 
printed circuits for monitoring EMG and other biosignals. Reproduced with permission [54]. 

Copyright 2018, American Chemical Society. (g) Wearable ECG monitor for control of an ankle-
foot orthotic. Reproduced according to the terms of the CC BY license [12]. Copyright 2023, the 
authors, Springer Nature. (h) EOG interface and eye-tracking glasses used in support of an arm 
exoskeleton. Reproduced according to the terms of the CC BY license [55]. Copyright 2019, 
MDPI. (i) Tactile fingertip sensor for prosthetics. Reproduced with permission [56]. Copyright 
2018, AAAS. 
 
 
Still, some researchers opt to use commercial clinical EEG equipment due to convenience or 
familiarity. Various commercial EEG systems have been effectively integrated with robotics and 
visual interfaces. For example, OpenBCI offers a modular EEG kit that has served as a platform 
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for rehabilitating digital hemiplegia patients and operating smart home appliances (Fig. 4a) [47], 
[50]. This example represents many rigid commercial EEG devices, highlighting their limitations 
in comfort and portability. In another study, Baka et. al. used a 34-lead cap by Compumedics 
Neuroscan to study emotional states during human-robot interactions, showing the 10-20 

[57]. However, the commercial 
systems like Neuroscan and others used for general EEG data collection tend to be relatively 
cumbersome, whether rigid or flexible in design [58], [59], [60], [61]. Although smaller, more 
flexible, and wireless devices tailored for specific HMI applications have the potential to address 
these limitations, they are not yet widely available commercially. Recent advances in EEG 
technology have been addressing the aforementioned common issues. In addition, new devices 
are being designed as dedicated companions to particular robotic systems, allowing for improved 
comfort through optimized form factor and placement. To tackle electrode impedance and 
concerns related to conductive gel, Li et. al. developed a novel dry EEG electrode incorporating 
few-layer graphene (FLG) nanosheets and titanium oxide (TiO2) nanotubes (Fig. 4b) [9]. The 
custom electrode involved potentiostatic anodization for the TiO2 nanotube arrays and plasma jet 
chemical vapor deposition (CVD) for the FLG sheets (Fig. 4c). The length of the nanotubes could 
be controlled by adjusting the anodization time, preserving the proper three-dimensional cross-
wrapping of the FLG nanosheets. This innovative design offers several advantages over a 
traditional Ag/AgCl or gel electrode. First, by using a semiconductor material like graphene 
instead of metal, the electrode funct -
current and converting it to electrical current, rather than directly measuring electrical current. This 
approach typically reduces noise while potentially decreasing signal amplitude. However, the 
incorporation of TiO2 nanotubes creates an exceptionally favorable environment for electron 
transport through nanopore channels, mitigating amplitude loss and resulting in a higher overall 
signal-to-noise ratio (SNR). Additionally, the FLG/TiO2 electrode uses sweat absorbed from the 
skin surface for ion conduction, eliminating the need for applying, maintaining, and cleaning 
conductive gel. Finally, the device is customized for a specific application: teleoperation of a 
robotic arm. This specification allows the device to target only the three occipital positions (O1, 
Oz, O2) of the standard 10-20 system to complete the control task. By eliminating the other 
electrode positions, the entire system can be downsized into a headband, significantly improving 
long-term comfort. Li et. al. demonstrated high amplitude (8.6 μV, nearly double that of their 
Ag/AgCl control) and SNR (as high as 76.8 dB, exceeding that of the Ag/AgCl control) during EEG 
measurement using a FLG/TiO2 electrode with a one-hour TiO2 deposition time. These electrodes 
exhibited stable SNR, signal correlation coefficient with Ag/AgCl control, and scalp resistance 
during two hours of continuous use, as well as 30 minutes of daily use over one month. 
Furthermore, the EEG headband was successfully used to measure steady-state visually evoked 
potentials (SSVEP) at multiple frequencies, which were then implemented to command a robotic 
arm to write letters. This study demonstrates the potential of unique 1D and 2D nanomaterials as 
solutions to current challenges in biosignal sensor performance. Wang et. al. have developed a 
compact, portable EEG system designed for integration with VR headsets and various robots 
through teleoperation. Their wearable device resembles earbuds and features two custom dry 
electrodes and microscale Bluetooth modules [62]. The electrode design eliminates the need for 
skin preparation and allows for concurrent electrooculogram (EOG) recording (see Sections 2.3 
and 2.5 respectively for further discussion of EOG and multimodal sensing). Employing 
independent component analysis and support vector machine (SVM) techniques, the EEG system 
achieves a remarkable 95% accuracy in interpreting brain signals associated with eye movements 
and facial expressions. Studies using this device have successfully implemented human facial 
expressions to control teleoperated drones, showcasing its potential for unobtrusive sensor 
integration with VR devices and robotics. Finally, Mahmood et. al. have introduced a flexible, 
wireless EEG system paired with a convolutional neural network for SSVEP classification [51]. 
This device tackles the limitations of traditional EEG setups, such as their obtrusive form factor 
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and inconvenient wiring, by employing skin-conformal packaging and wireless data transmission. 
Similar to the design by Li et. al., this wearable scalp electronics system optimizes electrode 
placement for HMI applications. Dry, elastomeric electrodes with flexible legs cover the O1, Oz, 
and O2 positions, adapting to the hairy skin of the scalp (Fig. 4c, inset ii). As the headband is 
placed over these electrodes, the legs splay to push aside hair and achieve maximum contact 
area. An aerosol-jet printed stretchable silver electrode serves as a ground applied at the mastoid 
(Fig. 4c, inset i). Finally, the data acquisition and processing unit consists of a flexible printed 

Mechanical 
testing confirmed reliable wireless transmission of EEG data under 180° bending. Additionally, 
cyclic bending, compression, and stretching tests show minimal (<10%) resistance change for the 
interconnects, electrodes, and circuit board. Signal quality and classification accuracy were 
compared against two commercial devices: a 32-channel gel electrode EEG system and 8-
channel clip-on wireless system with dry electrodes. The newly developed EEG device easily 
outperforms the two commercial options in capturing 12.5 Hz SSVEP signals, offering an average 
SNR of 46.6±2.16 dB compared to 16.94±4.60 dB (conventional gel electrode system) and 
28.89±2.28 dB (wireless system). Both offline and real-time EEG classification using SVM and 
convolutional neural network (CNN) models display high accuracy, achieving values of 
94.54±0.90% and 94.01±3.6% respectively. An information transfer rate (ITR) of 122.1±3.53 bits 
per minute is competitive with commercial options. Practical applications include real-time 
wireless control of an electric wheelchair, a small vehicle, and presentation software, with data 
and results visualized through a custom Android mobile app. This system represents a substantial 
improvement in user comfort, portability, and packaging optimization, along with enhancements 
in key performance metrics such as SNR, indicating progress towards a more field-ready, 
universal HMI platform. 
 
2.2 EMG sensors   
2.2.1 Background 
EMG is another biosignal related to naturally occurring electrical activity in the human body. 
Rather than monitoring the brain directly, EMG focuses on the potentials generated in skeletal 
muscles by the peripheral nerves. As motor neurons activate their associated muscle fiber 
bundles, electrodes can be used to detect the voltage changes during contraction and relaxation. 
An increase in voltage is linked to firing of action potentials during muscle contraction, while 
potential drops are associated with repolarization. There are two forms of electrode used during 
EMG measurements. Intramuscular electrodes consisting of needle or fine wire can be inserted 
under the subcutaneous layer directly into the muscle of interest to measure potentials. By 
contrast, surface electrodes are attached to the skin and do not interface directly with the muscle 
tissue. Both methods offer certain advantages and disadvantages. Surface EMG (sEMG) is 
noninvasive and simpler to implement but suffers in terms of high-resolution targeting of specific 
areas. Intramuscular measurements are invasive, and hence not as suited to HMI applications. 
However, they generally yield more accurate data on individual muscle fibers [63]. Much like EEG, 
raw EMG signals are low amplitude (around -5 to 5 mV) and often drowned out by ambient noise 
or motion artifacts. In addition, EMG signals often display crosstalk from muscle fibers adjacent 
to the target area. This is of particular concern for HMI applications, as sEMG is the preferred 
method and tends to suffer from crosstalk to a greater degree. Various high/low-pass and notch 
filters are used to remove noise or motion artifacts. Furthermore, advances in sensor design are 
improving skin conformality to further eliminate noise. Wavelet analysis is often implemented to 
decompose raw EMG data into constituent potentials from individual motor units. Other popular 
signal processing techniques include autoregressive models, other time-frequency approaches 
such as Wigner-Ville distribution, and artificial neural networks [63] Because of widespread 
interest in active exoskeletons, prostheses [64], and orthoses, EMG has emerged as a popular 
option for biosignal integration into robotic control algorithms and visual interfaces. By segmenting 
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be recreated. With adequate data transfer rates, this information can be incorporated into real-
time control algorithms. Many studies use commercial EMG acquisition units such as those 
offered by Delsys and Ottobock [15], [65], [66], [67], [68], [69], [70], [71], [72], [73]. These have 
been leveraged into biosignal-controlled upper and lower body robotics (Fig. 4d and 4e) as well 
as the Lokomat rehabilitation system [53], [74], [75], [76], [77], [78], [79], [80], [81]. Both real-time 
and offline EMG signal processing and muscle activity classification are used. While these studies 
provide insightful results with clinical significance, their practical applications are limited by the 
lack of portability. Commercial EMG acquisition systems are often centered around large, 
cumbersome processing units that are wired for power and peripheral devices.  
 
2.2.2 Improving comfort and portability 
For successful adoption and field use in roles such as industrial work or support with activities of 
daily living, the bulky, static nature of existing systems is a hindrance. Especially concerning is 
the lack of low-profile sensing options and wireless data transfer capability. Minimizing form factor 
and breaking free from wired systems will be critical requirements for many practical use cases. 
Several studies have addressed these issues by presenting ultrathin, skin conformal, wireless 
EMG acquisition devices. For example, Dong et. al. developed a stretchable sEMG electrode 
based on a second-order self-similar serpentine pattern [82]. The slim, lightweight design was 
created with wireless use in mind, ensuring portability and user comfort. The electrodes are 
fabricated on a silicon carrier wafer by sputtering 0.3 μm-thick gold between spin-coated polyimide 
(PI) layers. Oxygen reactive ion etching is employed to pattern the electrode before the top layer 
of PI is applied. Photoresist process parameters were tuned to obtain 50 μm line width. The 
electrode displays excellent skin conformality and compliance under large deformation. Finite 
element analysis and optical imaging concur that the electrode easily sustains 40% strain, 
meeting the requirement to stretch with human skin (up to 30% strain). Using ZigBee transmitting 
nodes and a DAQ, the electrodes successfully transfer EMG data from the user to a wheeled 
robot in real time. A variety of bodily motions, such as wrist flexion and finger bending, are 
demonstrated to drive the mobile robot with full range of motion. This system is an example of 
how thin, flexible materials and unique micro- and nano-scale architectures can improve the EMG 
data acquisition process for HMI applications.  
 
2.2.3 Fabrication methods and materials 
Many research teams are using new manufacturing techniques and materials to tackle the 
problems facing the wearable EMG design space. Lopes et. al. present a novel hydroprinted 
electronic skin (e-skin) incorporating the unique properties of eutectic gallium-indium (EGaIn), a 
liquid metal alloy [54]. The e-skin is ultrathin (~5 μm) and stretchable, in addition to having 
excellent skin conformality due to the hydrographic transfer process. Various shapes can be 
created to build a complete sensor circuit featuring electrodes and interconnects with microscale 
line width and pitch. Electronic and mechanical stability is excellent, surviving applied strains of 
over 70% with no breakage and minimal resistance change. The fabrication methods are of 
particular interest because they not only permit for these desirable qualities but also eliminate 
expensive and time-consuming cleanroom processes. To achieve reliable hydrographic transfer 
onto 3D surfaces, the process begins with printing the circuit onto tattoo transfer paper (TTP) with 
a standard office laserjet printer. Silver epoxy is spread over the TTP and selectively adheres to 
the laserjet toner when cured, allowing subsequent application of liquid EGaIn. Using a HCl vapor 
or 2wt% acetic acid solution, the EGaIn selectively wets to silver, creating a complete circuit with 
high conductivity. The entire process can be completed at low temperature with off-the-shelf office 
equipment, a great achievement for high-throughput manufacturing of ultrathin wearable sensors. 
The e-skin can be transferred to the human body through a variety of water-based methods. When 
using TTP, the device can be directly applied to the biosignal acquisition area and wetted before 
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peeling the backing layer (Fig. 4f). With hydrographic paper, the entire printed device is 
suspended on top of a water bath while the target object is passed through it vertically. When the 
target breaks the surface of the bath, the e-skin sticks and conforms to its shape. These unique 
transfer techniques enable superior adhesion and conformality to the shapes of the human body, 
decreasing motion artifact noise and improving user comfort. HMI applications are further 
supported by the e- erface with surface mount electronic (SMD) components 
through a thin film of Ag-coated Ni particles mixed into polyvinyl alcohol (PVA). By evaporating 
water from the PVA film while the device is held in a magnetic field, the Ni particles vertically align 
to form conductive vias between the printed circuit and any components placed over it. This 
technique also allows the e-skin to connect to other circuits, expanding options for HMI 

le printed circuit board 
(fPCB) EMG acquisition unit to the e-
is used to control a hand prosthetic which itself features an e-skin circuit with integrated LEDs 
and touch pads providing visual feedback and additional command options, respectively. Kwon & 
Kim et. al. used other printing methods to fabricate a comprehensive flexible, wireless EMG 
system consisting of a data acquisition fPCB and electrodes [23]. The device is compact and 
lightweight, improving overall comfort in multi-channel use for detection of detailed muscle 
patterns. Another benefit of this system is that printing avoids the complex and costly cleanroom 
fabrication processes of traditional electronics manufacturing. Aerosol-jet printing is deployed to 
print functionalized conductive graphene (FCG) electrodes, Ag traces/pads, and PI insulating and 
structural layers. Due to the unique properties of FCG as an oxidation barrier, SMD components 
for data processing and Bluetooth connectivity can be soldered directly to FCG-coated Ag pads. 
The entire device weighs less than 5 g and measures under 2 mm in height. The mechanical 
performance of the FCG electrodes and fPCB are both excellent. Electrodes displayed resilience 
to cyclic 180° bending (100 cycles, 1.5 mm radius) and up to 60% stretching. The circuit showed 
negligible resistance shift and deviation in EMG signal strength over similar cyclic bending 
conditions. Signal quality was evaluated against the gold standard gel electrodes as well as 
commonly used Ag and Au electrodes. The improved skin conformality of the FCG electrodes led 
to SNR on par with gel electrodes and greater than that of both Ag and Au electrodes. All of these 
demonstrated characteristics lend themselves to smooth integration with robotics and visual 
interfaces in HMI applications. In this study, three devices were used to target the brachioradialis, 
palmaris longus, and flexor carpi ulnaris muscles in the forearm. Full control of all five digits was 
demonstrated through real-time wireless teleoperation of a custom robotic hand with 98.6% 
classification accuracy, a task that would require over triple the channels using a traditional EMG 
acquisition system. Even a single sensing unit is sufficient for many control tasks. Here, a single 
EMG device is used to remotely fly a quadcopter drone and drive a wheeled vehicle, as well as 
cycle through a slide deck with signal processing via CNN showing classification accuracy of 99%. 
The devices were also integrated with Bluetooth to an Android tablet displaying real-time EMG 
data plotting. Overall, devices presented in the studies discussed here represent a recent trend 
towards flexible, low-profile epidermal electronics for EMG acquisition. Novel fabrication 
techniques and materials feature at the forefront of this shift, showing their benefits in practical 
HMI applications. 
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Figure 5. Selection of fabrication processes for sensors in integrated systems. (a) 
Patterning and transferring laser-induced graphite for use in stretchable strain sensors. 
Reproduced with permission [22]. Copyright 2018, Elsevier. (b) Hydroprinting method for rapid, 
low-cost fabrication of flexible circuits and sensors. Reproduced with permission [54]. Copyright 
2018, American Chemical Society. (c) Process for fabrication of EEG electrodes using few-layer 
graphene and TiO2 nanotube arrays. Reproduced with permission [9]. Copyright 2023, Elsevier. 
(d) Molding three-dimensional structures for triboelectric sensing skins from silicone rubber and 
silver flake. Reproduced with permission [83].  Copyright 2018, John Wiley and Sons. 
 
2.3 Other bioelectric sensors 
Here, we will explore less commonly used electrical signals generated by the human body. Recent 
work has revealed compelling examples of integrated robotic systems using sensors for ECG, 
EOG, and other biosignals. ECG is a biosignal that targets the depolarization and repolarization 
of cardiac muscle as the heart is stimulated by the sinoatrial node. The natural coupling of 
specialized conductive tissues with mechanical pumping provides unique insight into the cardiac 
rhythm [84]. Traditionally measured in clinical settings to diagnose cardiac disorders such as 
arrhythmias or ischemia [84], there has been a recent study integrating ECG as a control input 
for a robotic system. Kim et. al. present a soft wearable ECG patch that provides estimation of 
metabolic cost (see Section 2.4) to optimize power delivery of an ankle-foot orthotic (AFO) during 
squatting, walking, and running [12]. The ECG device consists of three 210 nm-thick gold 
electrodes paired to a data acquisition fPCB by serpentine interconnects, all mounted on a 
stretchable, breathable medical tape substrate and encapsulated in soft silicone elastomer. The 
compact, flexible design allows for robust mechanical performance up to 50% elongation. 
Electrical resistance change of the electrodes and interconnects is less than 1% over hundreds 
of cycles at 30% strain. Heart rate variability root mean square of successive differences (HRV-
RMSSD) is calculated from the ECG signal and correlated to metabolic cost with a strong Pearson 
R of -0.758 and SNR of over 25 dB. This is a major improvement in terms of real-time signal 
quality, user comfort, and portability over traditional methods of measuring metabolic cost, which 
require bulky masks, tubing, and peripheral processing equipment. The ECG-based exoskeleton 
feedback method presented shows promise for future adoption of biosignal-integrated robotics 
and visual interfaces in labor-intensive work environments. EOG refers to measurement of the 
potential difference within the eye. By placing electrodes around the eye, the eye motion can be 
deciphered from rotation of the dipole formed by the cornea (front side) and retina (back side) 
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[85]. It can achieve high rates of classification accuracy in HMI applications, but it is susceptible 
to noise and there is limited room for multiple functions [86]. Tan et al. utilized EOG control as 
part of a rehabilitation robot system with integrated visual interface [87]. The EOG signal is used 
situationally during training exercises with a robotic arm to navigate menus in the integrated 
display screen. Ban et al. developed a 3D-printed wireless EOG headband with gold electrodes 
that performed competitively with commercial options in SNR and impedance. A proof of concept 
HMI application was implemented through remote control of a robotic wheeled vehicle [88]. Crea 
et al. also incorporated EOG into actual robotic control, demonstrating successful manipulation of 
a wheelchair and arm exoskeleton system [89]. Badesa et al. expanded upon this, using EOG 
and eye tracking data to guide an arm exoskeleton through object reach-and-grasp tasks [55]. 
Specifically, a right horizontal oculoversion triggered the exoskeleton to reach for an object in 
front of the user, a movement with 99.85% success rate. Interestingly, the EOG-based control 
scheme was found to cause reduced stress response and mental load compared to an EEG-
based algorithm driving the grasping portion of the training task. One more set of signals to note 
are galvanic skin response (GSR) and photoplethysmogram (PPG). GSR, also known as 
electrodermal activity (EDA) and several other names historically, is a measure of the 
conductance of the epidermis. Physiologically, this is linked to the activation of sweat glands 
during autonomic nervous system response [90]. Meanwhile, PPG tracks the change in blood 
volume of microvasculature. This is often achieved by placing a light source on the skin and using 
a photodetector to measure shifts in light intensity from the varying perfusion levels of the vascular 
bed. This signal can be used to calculate a wide variety of cardiac features such as blood oxygen 
and heart rate, which are also physiologically linked to autonomic nervous function [91]. Although 
PPG is not strictly a naturally occurring electrical signal like GSR, it is introduced in this section 
due to its use in combination with PPG for integrated robotics and visualization systems. More 
specifically, the heavy overlap of the physiological underpinnings of both signals is highly relevant 
in monitoring stress response and mental state [90], [91], [92]. Multiple studies have utilized GSR 
and PPG sensors in tandem to characterize how users emotionally interact with social robots in 
an effort to inform robot designs of the future [93], [94], [95], [96]. Although this review has thus 
far tended to focus on wearable robotics, systems such as the nursing robot developed by Uluer 
et. al. for hearing impaired children must also be considered relevant to the topic [19]. The robot 
presented here displays real-time response to user GSR/PPG signals and features a highly 
interactive visual interface to administer audiometry tests. 
 
2.4 Non-bioelectric sensors 
Not all sensors depend purely on the natural electrical potentials of the human body (Fig. 4g-i). 
Mechanical sensors are also commonly used in human interactions with robotic systems, 
translating physical motions of the body into electrical signals for processing. A diverse selection 
of movements can be detected and applied towards integrated robotics and visual interfaces. One 
popular sensing target is joint kinematics such as force, torque, and angle. These signals are 
used for a variety of robotic form factors and are particularly applicable to impedance control [97]. 
Rotary encoders and inertial measurement units (IMUs) are both popular in traditional rigid 
wearable robotics for gathering quantities such as joint angles [98], [99]. However, as robots 
themselves evolve toward flexible designs, sensors must follow suit. New soft sensor designs and 
data processing methods are helping researchers to do more with less, gathering kinematic data 
with fewer, more user-friendly sensors [100]. Sun et. al. worked with force/torque sensors in an 
upper body exoskeleton, developing a Kalman filter-based approach for reducing sensor channels 
to improve wearability and joint alignment. The study was able to show that fusion of data from 
just two force/torque sensors (arm, wrist) matched the performance of the full complement (two 
arm, one wrist) in terms of operator-exoskeleton power exchange and actuation stress [101]. A 
more niche sensing option is mechanomyography (MMG). As the mechanical counterpart to 
EMG, MMG recognizes muscle activation sequences, but does so by detecting dimensional 
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changes and lateral movement of the muscle from the surface. These signals can be gathered 
with a variety of mechanical sensors, including piezoelectric devices and microphone chips [102]. 
Wilson et. al. combined six MEMS microphone MMG sensors and two IMU sensors to create a 
custom teleoperation armband with accompanying control algorithm. The system was first 
successfully integrated with the Oculus Rift virtual reality goggles as a controller, then used to 
remotely operate a robotic arm [103]. Another major target is pressure sensing for the 
implementation of tactile feedback in prosthetics. Accurate and consistent pressure data is critical 
for the successful application of any feedback model, thus leading researchers to explore new 
sensor designs to fulfill this need [104]. Existing wearable pressure sensors, such as the glove 
used by Okorokova et. al., generally focus on fingertip sensing due to the outsized impact on daily 
life of losing an upper limb [65]. Searching for a more accurate representation of the human sense 
of touch, Osborn et. al. pursued a neuromorphic fingertip e-skin design that replicates the 
functionality of mechanoreceptors and nociceptors in actual human dermis (Fig. 4i) [56]. 
Mechanoreceptors provide our general tactile feedback while nociceptors are specifically tuned 
to transmit painful sensations. The e-skin consists of two layers separated by silicone 
encapsulant, each containing an array of stretchable conductive fabric traces laid on top of a 
piezoresistive fabric. The top layer represents the nociceptors and was fabricated with half the 
number of sensing nodes in the bottom layer. This reflects the real balance of nociceptors to 
mechanoreceptors in human skin and is also accounted for in the feedback model. After mapping 
the feedback to his phantom limb through transcutaneous electrical nerve stimulation (TENS), an 
amputee user was able to easily identify touch with three different digits, distinguish between 
objects of varying shape, and execute a pain reflex coded into the feedback model. These results 
represent a major step towards more lifelike pressure sensing for prosthetics and expansion of 
tactile feedback features to cover all aspects of natural human physiology. In another study, Lai 
et. al. developed a self-powered pressure sensing skin based on triboelectric principles [83]. The 
sensing skin was fabricated by drop-coating Ag flakes into a thin matrix, then sandwiching the 
matrix between two silicone rubber layers. The device displayed remarkable mechanical and 
electrical stability under both 100% elongation and intense cyclic loading. In addition, the 
triboelectric skin achieved a sensitivity of 0.29 kPa-1 and was able to discern pressures as low as 
63 Pa. In practical application, the sensor was adapted into a simple robotic gripper to complete 
object manipulation tasks. The recorded data clearly showed distinct voltage responses 
correlated to increasing and decreasing grip force, as well as full release of the object. Lastly, we 
will discuss indirect calorimetry. Indirect calorimetry (IC) traditionally serves as the gold standard 
in clinical metabolic analysis [105]. However, it can also be leveraged as a signal for integrated 
robotics and visual interfaces [10], [24], [25], [106], [107]. In such applications, gas sensors are 
sealed into portable mask- 2 and CO2 volumes. From 
this information, metabolic statistics such as respiratory quotient or energy expenditure can be 
calculated for implementation into control algorithms [108]. Additionally, IC is a great way to 
quantify the effect of assistive robotics and visual feedback. Recently, Kim et. al. utilized the 
Cosmed K5 wearable metabolic system to provide visual feedback during ankle exoskeleton 
training sessions, evaluating the efficacy of such feedback in user adaptation to exoskeleton 
parameter tuning [18]. Using the calculated metabolic cost, subjects were constantly updated on 
their ankle dorsiflexion/plantarflexion and given on-screen cues suggesting how to work more 
harmoniously with the exoskeleton. Subjects training with suboptimal exoskeleton parameters 
were actually able to adapt to the specific conditions and decrease their metabolic cost over the 
course of a session by responding to the feedback presented through the integrated visual 
interface. Additionally, Kang et. al. used metabolic cost to inform power delivery optimization of a 
hip exoskeleton [109]. An indirect calorimetry system was used as an evaluation tool to study four 
different levels of exoskeleton assistance. It was determined that delivering assistive torque 
between 13% and 26% of the peak biological hip moment provided the greatest reduction of 
metabolic cost. Studies such as these show how niche physiological signals can be adapted to 
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robotics and visual interfaces in unique ways to educate new users of wearable robotic systems. 
Additionally, metabolic cost derived through indirect calorimetry is a crucial tool for optimization 
of wearable robotics, making it possible to see greater adoption of such systems in the future. 
 
2.5 Multifunctional Sensors 
Recently, sensor research has evolved to introduce systems capable of targeting multiple signals. 
These systems tend to fall into one of two categories: those that include multiple sensors in one 
device for multimodal signal collection, and those that target one signal at a time but can be 
configured in different ways. Naturally, many systems of the first kind tend to be larger in size and 
more complex. For example, the mobile nursing robot developed by Mireles et. al. [21]. This robot 
seeks to provide automated health monitoring for senior citizens using an impressive suite of on-
board sensors. These include ECG, arterial pressure, heart rate, oxygen saturation, and 
temperature. However, smaller multimodal sensing devices also exist, such as the unified 
IMU/EMG sensor presented by Zhao et. al. [110]. Arm position and muscle activation data 
collected with the IMU and EMG sensor, respectively, are fused to expand the library of 
recognizable gestures during control of a wheeled robot. Dindorf et. al. chose to combine EEG 
and EMG signals from a sensor headband to control a custom elbow orthosis. A unique control 
algorithm was tuned to classify the combined signals, driving a set of pneumatic artificial muscles 
providing assistive torque to the elbow joint for forearm flexion/extension [111]. On the other hand, 
devices in the latter group tend to focus on novel electrode designs that enable adaptation to 
different signal targeting areas. Zhang et al. present a unique dry electrode design suitable for 
measuring ECG, EMG, or EEG [112]. Using a combination of 
poly(ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), waterborne polyurethane 
(WPU), and D-sorbitol, the electrodes are able to reduce contact impedance and noise compared 
to commercial silver electrodes and previous examples in literature. In another study, Tian et. al. 
expand the applications of epidermal electronics by introducing a sensor array covering up to 40 
times the area of existing devices [113]. Each array consists of 17 Cr/Au electrodes, created using 
traditional photolithography and encapsulated in polyimide and silicone layers. The large size 
(over 200 cm2) and number of channels enables the device to reliably cover areas such as the 
entire circumference of the arm. The design successfully demonstrated multichannel EMG control 
of a transhumeral prosthesis (with classification accuracy of 89%), full-scalp EEG measurement 
by linking four devices, and compatibility with MRI equipment. Highly adaptive mechanical 
sensors with the ability to target many physical motions have also been designed recently. Wu et. 
al. show how a simple strain sensor can be used in a variety of different ways to provide insight 
into human motion [22]. A CO2 laser was used to directly pattern graphene serpentines from a 
polyimide film, then polydimethylsiloxane (PDMS) served as a transfer layer to peel the laser-
induced graphene (LIG) off of the substrate (Fig. 5). The PDMS-encapsulated LIG sensor 
displayed excellent mechanical and electrical stability under large strains (70-80%) and cyclic 
application of smaller strains (20%, 1000 cycles). Demonstrations of HMI applications included 
joint angle measurements of the phalanges, pressure measurements at the fingertip, and even 
arterial pulse waveform measured at the wrist. Meanwhile, Zheng et al. applied a completely 
different working mechanism to develop a sensor with similar versatility [8]. Their device was 
based on triboelectric nanogenerator (TENG) technology, and thus boasts the additional benefit 
of being self-powered. The sensor can be used in multiple modes, targeting joint angles, simple 
gait detection, and respiratory cycles. A particularly unique application, personal identity 
verification, was demonstrated by detecting minute differences in the waveforms of two subjects 
making identical hand gestures. Finally, Pang et al. present a device that combines triboelectric 
and piezoresistive sensing principles to mimic the behavior of different mechanoreceptors [14]. 
The skin-inspired sensor consists of a CNT-based piezoresistive sensing layer (mimicking the 
sustained response of slow-acting mechanoreceptors) and a Teflon-infused textile triboelectric 
layer (simulating how fast-acting mechanoreceptors respond sharply to momentary contact) 
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stacked on a copper electrode base. Similar to previously discussed studies, many different 
signals were targeted using the same fundamental working principle. The sensor displayed 
excellent signal quality and mechanical robustness while measuring joint angles, arterial pulse 
waveforms, and even speech patterns when applied to the throat. 
 
2.6 Additional Sensor Developments 
The previous sections have presented recent sensors through the lens of modality, with a focus 
on highlighting demonstrations of integration with robotic systems and visual interfaces. Here, we 
will supplement the preceding discussion by reviewing several broader developments in sensor 
technology. These advancements can be applicable to biosignal-integrated robotic systems in the 
future. Over time, research in the separate spaces of sensors, robotics, and visual interfaces 
tends to cross-pollinate and unify due to significant overlap of applications. One area of sensor 
technology we hope to see integrated is the use of nanomaterials. A major advantage of 
nanomaterials is their ability to combine with polymers to form flexible electronics. Silver 
nanowires (NW) are popular due to their excellent conductivity and electrical performance in 
percolation networks. Jeong et al. used AgNW to demonstrate flexible pressure sensors with an 
air gap structure to increase sensitivity. Using a printed electrode base, AgNW sensing element, 
and PDMS encapsulation, the sensor displayed excellent cyclic stability and low hysteresis during 
measurement [114]. Kim et al. also used AgNW and PDMS in a two-layer strain sensor. The 
prestrained, electrically decoupled layers could sense multidirectional strain, which could be 
appliedn biosignal-integrated robotics at multi-DOF joints such as the shoulder or hip [115]. While 
initial synthesis of NWs can be time-consuming, the sensors are quickly fabricated by facile 
methods such as drop casting [114], [116]. Copper NW is another nanomaterial with excellent 
electrical properties and great potential for sensing biosignals. One major advantage of CuNW 
over AgNW is their reduced cost (around 100 times cheaper) for a minimal loss in conductivity 
[117]. However, a common problem that plagues CuNW is oxidation and subsequent degradation 
of sensing performance. Hong et al. have addressed this shortcoming by developing several 
encapsulation methods using polyethylene terephthalate, polyimide, and silicon oxides [117], 
[118]. Kim et al. have also demonstrated oxidation-resistant CuNW sensors for EMG, ECG, and 
capcitive touch sensing [119], [120]. Bang et al. build on this by introducing the reversible, 
selective laser-induced redox (rSLIR) method for fabricating electronics with a seamless metal-
semiconductor interface. Along with smoothly integrating three different varieties of Cu-based 
NW, rSLIR is able to pattern detailed images into thin-film electronics, showing promise for future 
application towards biosignal detection and sensor-robotics integration [121]. Along with 
nanowires, nanoparticles (NP) are widely used in the fabrication of flexible, wearable electronics. 
Similarly to NW, metal NPs display good conductivity and are easily integrated with polymers, as 
well as other sensor materials. For example, Zhan et al. combined AgNPs with CNTs on a spun 
TPU/polydopamine mat to create a  flexible strain sensor [122]. By using multiple conductive 
materials forming their own networks, the sensor achieved both a broad sensing range and high 
sensitivity. This was validated through strain measurements of a variety of human movements, 
from skin stretching during blood pulse to large-angle bending of the fingers, wrists, and legs. In 
a similar concept, Tsai et al. used AgNPs to enhance the conductivity and surface roughness of 
a polymer/paper-based piezoresistive pressure sensor [123]. Nanoscale patterning has been 
shown to increase sensitivity, a potential benefit in HMI applications using small-amplitude signals 
such as EMG-controlled robotics. Truly skin-like wearable sensors are also being developed using  
NPs. For example, Kim et al. have created a flexible, conformal, microscale thickness epidermal 
electronic system capable of real-time circuit optimization and sensor modification [124]. 
Meanwhile, Shin et al. use NiO NPs to demonstrate a wearable temperature sensor on a substrate 
just 25μm thick [125]. Devices such as these have significant potential in biosignal-integrated 
robotics applications, as their minimal form factor enables seamless combination with emerging 
low-profile and soft wearable robots.  

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
1
8
5
5
6
8



 

Another area of sensor development with prospective relevance to biosignal-integrated 
robotics is transparent sensors. While the visual characteristics of a sensor may not seem 
important compared to its quantitative performance metrics, there are several reasons optical 
transparency is desirable in modern sensors. Especially relevant to wearable healthcare sensors 
is the fact that opaque devices obscure the sensing area. A transparent device preserves visual 
access to the target tissue and, combined with measured biosignals, enables us to create a full 
picture of the clinical situation [126]. Furthermore, along with high mechanical compliance, optical 
transparency helps sensors remain imperceptible during daily use. Not only does this alleviate 
concerns over visual obtrusiveness and help normalize the widespread adoption of wearable 
sensors, but it also improves immersion in extended reality applications [126], [127]. Won et al. 
present an excellent example of such a device. They use an ultra-stretchable kirigami structure 
based on a colorless polyimide substrate to demonstrate multiple biosignal sensing modalities. A 
proof of concept for HMI integration is also provided by using forearm EMG measurements to 
control a drone with hand movements [128]. Chen et al. take a different approach, using ionogel 
fibers as a transparent dielectric material for capacitive sensors [129]. The device displays 
excellent pressure and temperature sensing capabilities, making it and other transparent 
capacitive sensors a promising candidate for skin-like sensing in prosthetic HMI applications. 
Finally, we will briefly discuss recent progress in machine learning (ML) methods for the analysis 
of biosignals. Where flexible, stretchable, skin-compliant platforms represent the state of the art 
in biosignal measurement, ML forms their counterpart on the signal analysis side. ML algorithms 
are uniquely suited to biosignal-integrated robotics due to their excellent feature extraction 
capabilities and ability to learn or evolve over time [130]. For example, unsupervised methods 
such as contrastive learning can be implemented to train algorithms to adapt to new users or data 
features not featured in their original training data [131]. Examples of popular ML algorithms 
include deep learning models [132], [133], support vector machines [62], [134], and many types 
of neural networks [51], [135]. These frameworks have been used to analyze a variety of signals, 
from EEG and EOG to haptic touch, then turn and issue directives to robotic actuators and data 
visualization interfaces [130].  
 
3. Robots 
A robot interprets sensor inputs, implements control strategies, and performs an action to a 
specified objective  [136], [137], [138]. This review centers on robots as the central component 
bridging sensors and visualization interfaces, collectively forming the bio-integrated robotic 
system designed for real-world applications. Viewed through a robotics perspective, this system 
is actualized through an array of control strategies, each built upon diverse sensory input 
modalities and output mechanisms. The yielded outputs can be channeled into either physical or 
non-physical interaction with users, including visualization interfaces, thereby fostering a 
symbiotic adaptation between humans and robots. Modern robots can take many forms, from 
small teleoperated drones to full-body exoskeletons. An important axis by which this wide range 
of robots is categorized is their flexibility, i.e., rigid vs soft robots. Most fully biosignal-integrated 
robotic systems still feature traditional rigid robotic structures and actuation. This section will focus 
on these rigid robots from a hardware perspective, but many of the control strategies discussed 
will also be relevant to soft robots. 
 
3.1 Applications 
3.1.1 Healthcare 
Robots have found applications in the field of healthcare and rehabilitation as a result of the fusion 
between medical sciences and artificial intelligence [139]. These robots are designed for different 
tasks, from elderly and patient care to walking assistance, rehabilitation, and neurorehabilitation 
[140]. We describe three subcategories of bio-integrated robots in the healthcare field. 
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Wearable assistive robotics has emerged as a promising technology to assist humans in 
enhancing, supplementing, or replacing limb motor functions, commonly affected after suffering 
an injury, a stroke, or as a result of natural aging [141], [142]. Robotic prostheses and 
exoskeletons have emerged as important tools in wearable assistive robots with the aim of 
enhancing the quality of life for individuals facing limb loss or dysfunction. Those devices are 
designed to enhance functional mobility [143], independence [144], psychological well-being, and 
self-esteem [145]. For instance, individuals with transtibial amputation, the most prevalent form 
of amputation [146], frequently encounter balance-related challenges [68]. Such challenges can 
be mitigated by a robotic ankle-foot prosthesis, including one with two toes, enabling ankle 
inversion/eversion assistance in addition to the plantarflexion [68]. The effectiveness of the two-
degrees-of-freedom ankle-foot prosthesis was shown by reduced foot placement control effort, 
physical exertion, and intact limb control effort [147]. Recent work showed that step-to-step 
modulation of inversion/eversion torque can reduce metabolic cost by 13% (Fig. 6a) [148]. Similar 
work further personalized the assistance from the device using human-in-the-loop optimization 
with an objective function of enhancing symmetry [12]. The approaches, however, still lack 
feedback to the user. BeBionic prosthetic hand (Ottobock, Duderstadt, Germany) equipped with 
the capability to perceive both touch and pain through a multi-layered e-dermis (Fig. 6b), presents 
the potential to create a more natural sensation encompassing various tactile stimuli for prosthetic 
hands [56]. For paraplegic patients, movement predictability when using exoskeletons is a 
challenge. Solutions using surface electromyography signals from the upper limbs show promise, 
with some reporting predictive accuracies of up to 80.75% across different subjects [77]. Care 
robots engaged in the process of patient care are often referred to as care robots. The major 
target populations for care robots are the elderly [149] and children [150] with mental disorders. 
These robots can offer both physical and mental assistance in the process of monitoring, 
diagnosing, and education [140]. Persistent challenges in social communication and interactions, 
as well as restricted and repetitive behavior patterns, have been observed in children with autism 
spectrum condition (ASC) [151]. The Personalized Perception of Affect Network (PPA-net) is a 

across different cultures and individuals [96]. This robot-assisted therapy was implemented using 
a NAO social robot. Results indicate that integrating audiovisual and physiological expressions of 
affect and engagement reduced the issues of noise and missing data from children with ASC. A 
new architecture for human-humanoid interaction, centered on an EEG-brain computer interface 
(EEG-BCI), was designed specifically for patients with locked-in syndrome (ALS) [152]. This 
system discerns users' mental states using biofeedback factors such as attention, intention, and 
focus and employs a NAO robot to carry out tailored behaviors. Data indicates that ALS patients 
can effectively command a humanoid robot through this BCI design, potentially enhancing their 
capacity to manage daily tasks and engage with their surroundings. Care robots can collect 
physiological signals to assist in monitoring and diagnosis tasks. This requires secure and 
bidirectional communication between patients and healthcare providers [153]. For instance, a 
mobile nursing robot with a user-friendly graphical user interface is presented by Mireles et al. 
[21]
oxygen saturation levels, skin temperature, and non-invasive arterial pressure in home settings. 
In another operation mode, this nursing robot can help individuals with gait assistance. Care 
robots can be controlled with physiological signals. While brain-computer interfaces (BCI) were 
primarily used for controlling single devices such as wheelchairs [153], robotic arms  [9], or 
prosthetic limbs [154], their scope is expanding. A hybrid BCI can manage both a wheelchair and 
a robotic arm, showcasing the growing versatility of BCIs in multi-task operations. The UL8W 
wheelchair and JACO6 DOF-S robotic arm system has been controlled using EEG and EOG 
signals (Fig. 6c-d) [155]. Wheelchair direction is determined by hand motor imagery, whereas eye 
blinks and eyebrow movements initiate commands for the wheelchair and robotic arm. 
Neurorehabilitation robots have been used in the rehabilitation field. Independent robotic 
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manipulators can measure the effects of simultaneous neuromuscular modifications [67]. To 
enhance the efficiency of neurorehabilitation exercises, a novel BCI framework was introduced, 
employing autoencoder-based transfer learning and a UR-5 robotic arm [87]. Experiments reveal 
improved EEG signal classification compared to state-of-the-art approaches. Marini et al. 
examined electrocortical dynamics of upper limb position matching task with and without vision 
feedback using a planar robotic workspace (Fig. 6e) [59]. A interactive musculoskeletal simulator 
(IMS) was developed by Hasson et al., permitting users to control a muscle activity-driven model 
of their arm [67]. 
virtual arm model movements (Fig. 6f). By manipulating musculoskeletal dynamics in real-time, 
insights can be gained into neuromuscular system intricacies linked to injury, disease, and aging. 
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Figure 6. Applications of bio-integrated robotic systems. (a) Robotic ankle-foot prosthesis 
with two degrees of freedom, aiding level walking for transtibial amputees. Reproduced according 
to the terms of the CC BY license [148]. Copyright 2017, the authors, Frontiers Media SA (b)
Prosthetic hand capable of tactile and pain perception via a multilayered e-dermis. Reproduced 
with permission [56]. Copyright 2018, AAAS. (c) A social robot offering ML-driven personalization 
of autism care. Reproduced with permission [96]. Copyright 2018, AAAS. (d) Innovative hybrid 
BCI using EEG and EOG to control an integrated assistive system, comprising a wheelchair and 
robotic arm. Reproduced according to the terms of the CC BY license [155]. Copyright 2019, 
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Frontiers Media SA. (e) Planar impedance-controlled robot, capable of measuring high-resolution 
trajectories in generated force fields. Reproduced according to the terms of the CC BY license 
[67]. Copyright 2019, PMC (f) Custom planar robot with interactive musculoskeletal simulator for 
matching arm and arm model movements. Reproduced with permission [59]. Copyright 2018, 
IEEE. (g) Wearable sensor-based motion capture for the human upper limb, facilitating 
teleoperation of an arm robot. Reproduced according to the terms of the CC BY license [156]. 

Copyright 2022, MDPI. (h) Gesture recognition through IMU and MMG sensors on both arms, 
controlling a Baxter Robot. Reproduced with permission [103]. Copyright 2019, Elsevier. (i) 
Framework enabling continuous data collection during Human-Robot Collaborative tasks when 
changing robot movements as a form of stimuli to invoke a human physiological response. 
Reproduced with permission [157]. Copyright 2019, IEEE. (j) Physical HRI that combined the 
electrical impedance tomography (EIT) based sensing approach with the robotic controllers to 
produce proper assistance with external uncertainties in the collaborative sawing task using a 
UR5 arm robot. Reproduced with permission [158]. Copyright 2021, IEEE. (k) Ankle-foot 
exoskeleton with two degrees of freedom and active plantarflexion for squatting assistance, 
utilizing ECG signal. Reproduced according to the terms of the CC BY license [12]. Copyright 
2023, the authors, Springer Nature. (l) Reliable single EMG-based control of a portable robotic 
glove, identifying power grasp for augmenting the grasping force. Reproduced according to the 
terms of the CC BY license [70]. Copyright 2021, IEEE. 
 
 
3.1.2 Industrial 
Industrial robots played a prominent role in the development of industry in the past decades. 
Industry 4.0 prevalence introduces more complex and flexible tasks. In order to meet these 
demands, industrial robotic systems need to be more independent and intelligent [159]. Robot 
teleoperation is defined as controlling a robot that may be at some distance from the operator
by Nielsen et al. [160].Teleoperation technology has been used in diverse industries, such as 
space exploration [161], [162],  military [163], under-water exploration [164], hazardous 
environments [165], and oil and gas explorations [166], [167], [168]. Bio-integrated teleoperation 
robots harness the cognitive and physiological signals of humans to assist robots in making critical 
decisions [169]. By integrating this technology with advanced visualization methods, a 
collaborative environment can bridge the user and robot [170]. The gForcePro+ armbands were 
used to construct a kinematics model of the human arm (Fig. 6g) [156]. By applying surface 
electromyography (sEMG) to counter physiological tremor effects, the model was evaluated with 
the xMate3 Pro robot. The outcomes indicated enhanced teleoperation tracking and reduced 
tremor. Another investigation introduced a headset that captures eye movement and facial 
expressions to control a DJI Spark drone [171]. A hexapod robot also has been controlled using 
another BCI interface [60]. Further research employed a Mechanomyography (MMG) gesture 
recognition system [103]. This system integrated six unique analog control signals, corresponding 
to the 3D Cartesian coordinates from each hand, to operate a Baxter robot (Fig. 6h). A study 
explored the use of a biologically-inspired multimodal human-in-the-loop control system for a 
pneumatically actuated robot arm, focusing on a hammering task [172]. This findings suggest the 
system's effectiveness in autonomously deriving robot skills for tasks requiring precise motor 
control. Collaborative tasks have been utilized to enhance productivity [173] and operational 
efficiency [174], [175]. Therefore, creating collaboration tasks between humans and robots which 
requires intuitive [176], [177] and safe [178], [179] human-robot interaction. Physiological signals 
can be used to inform such systems of humans' mental [180]or physical state [93]. Visualization, 
on the other hand, can provide visual cues in the shared human and robot working space, creating 
human-aware behaviors of the robotic system [181]. Robots in human-centric environments can 
lead to unpredictable physical interactions, known as active physical human-robot interaction 
(APHRI). The nuances of human perception and the safe management of these interactions are 
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still under exploration. To better understand this, Hu et.al., were engaged in a visual game with a 
Sawyer arm robot, where they encountered tasks triggering active physical interactions [93]. 
Recognizing the importance of understanding human states for optimal human-robot 
collaboration, machine learning techniques were employed to interpret interaction parameters 
from the upper body's sEMG signals [11]. A convolutional neural network (CNN) was utilized to 
predict motor control difficulties during a physical human-robot interaction (pHRI) using a Schunk 
Powerball LWA4P arm robot. This model was further adapted to new subjects using a transfer 
learning approach. To deliver to operator intentions and manage unpredictable external factors in 
human-robot collaboration, a novel control interface was introduced [158]. It integrated electrical 
impedance tomography (EIT) sensing with robotic controllers. By leveraging optimized EIT 
features, the interface estimated forearm muscle contractions, using a wearable fabric band for 
ease. This solution was validated in a human-robot sawing task and hints at its use in wearable 
robots assisting hand movements (Fig. 6i-j). Industrial human-robot interaction (HRI) primarily 
focuses on human safety, trust in automated systems, and productivity enhancement [182]. In 
this context, it is important to create event markers for both humans and robots and to ensure 
data synchronization during interactions [157]. The study aimed to understand how the 
acceleration and path of UR5e and UR10 robotic arms influence human physiological responses 
during joint tasks (Fig. 6i-j). It also evaluated human responses under varied safety algorithms in 
these collaborations. As the industry grows, occupational safety grows as a common concern with 
it worldwide. Addressing this challenge, automated and robotic systems can help prevent or 
reduce occupational injuries and create safer workspaces for workers [183]. Beyond medical 
applications, exoskeletons also offer potential in occupational settings. They can provide 
assistance and reduce workplace injuries [184], [185]. In this context, the utility of a biopatch 
becomes evident. This patch measures vital indicators such as heart rate and computes the 
RMSSD, serving as a method to estimate metabolic cost (Fig. 6k) [12]. The Exo-Glove Power 
(EGPO) is a bowden cable-driven robotic glove. Its purpose is to enhance the grasping force 
when users exert a strong power grasp on an object (Fig. 6l) [70]. The EGPO utilizes a single 
EMG sensor-based myoelectric interface to identify the user's grasp intention, offering a reliable 
and intuitive mechanism. Unique biological features of the musculotendinous junctions allowed 
two myoelectric control methods for robotic glove-dual-threshold control and morse-code control. 
 
3.2 Control Strategy 
Achieving precise and efficient control over complex robots is necessary for their successful 
operation [186]. To address this challenge, a hierarchical approach known as the hierarchy of 
control has emerged as a framework for robot control [187]. In this section, we categorize the 
most prevalent control strategies employed in biosignal-integrated robotic systems. 
3.2.1 High-level control 
In the hierarchical structure of robotic systems, the high-level control layer takes center stage, 
functioning as the cognitive core (Fig. 7). Here, strategic decisions and objectives are shaped by 
sensor data and human input, addressing mission planning, task allocation, and decision-making 
[188]. The integration of physiological sensors and the human-in-the-loop concept enables the 
controller to receive both physiological and non-physiological feedback, enhancing precise robot 
control [31], [189]. Commands from this layer are relayed to mid and low-level controllers. For 
example, a BCI-driven upper body exoskeleton may utilize a wearable fPCB as its control 
hardware. This fPCB could contain an analog-to-digital converter circuit, power circuit, and 
microcontroller. The high-  it, 
convert it to a digital signal, and then analyze it to generate a command consistent with 

close the left hand  This is passed on to the control software's mid- and 
low-level blocks for execution. 
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Movement and gesture recognition selects its action output automatically based on the user's 
movements or intended actions. The primary advantage of this approach is its ability to operate 
without imposing any cognitive load or requiring direct input from the user, thereby enhancing the 
intuitiveness and naturalness of the interaction [190]. Various sensors, both physiological and 
non-physiological, or a combination of both, can be employed to detect body movements and 
gestures. The most commonly employed methods include muscle activation (EMG), 
spatiotemporal sensors (IMU and encoders), and haptic and pressure-based measures. Antonelli 
et al. employs a model-based approach to generate a control signal for executing a desired pick-
and-place task with a robot [16]. It involves the collection of surface EMG signals from three 
fingers, which are subsequently processed and sent to the action block for controlling a pneumatic 
muscle. Huang et. al., presented a continuous control scheme for effective management of an 
upper-limb prosthesis . This system employs eight channels of EMG signals from the human 
upper limb, which model and regulate reach and grasp functions of the prosthesis. Its operation 
is based on model recognition control with an emphasis on the central processing unit (CCU). 
After fulfilling model identification criteria, the relevant characteristics are extracted from the raw 
EMG signals, enabling the establishment of desired speeds and grasping configurations. This 
study indicates the necessity of defining the intentional control state and the unintentional control 
state explicitly before implementing the continuous control scheme[15].  Myoelectric control has 
also been investigated, mapping EMG features to prosthetic digit positions, specifically for the 
Prensilia IH2 Azzurra hand [71]. Another study integrated a blend of implanted epimysial EMG 
and surface EMG to manage a 12 K50 elbow and VaryPlus Hand for tasks linked to grasping and 
transferring [73]. The nonnegative matrix factorization (NNMF) method was employed to extract 
synergies from sEMG signals, leveraging its nonnegativity constraint. These extracted synergies 
were subsequently used for decoding intention and operating a bionic neuroprosthetic arm [191]. 
For enhancing the biological control interface of myoelectric prostheses post above-elbow 
amputation, targeted muscle reinnervation (TMR) was explored. This method found that surgical 
nerve rerouting could achieve selective activation of muscle units, leading to a multitude of 
independent myoelectric control signals. sEMG biofeedback was used to train the activation of 
these new muscle units, facilitating the creation of up to six control signals for a tabletop hand 
prosthesis [74]. Physiological sensors can provide valuable insights into human states or 
intentions. However, limitations such as slower convergence, extended processing times, or the 
body's delayed physiological responses can be restrictive for certain robotic applications. As a 
result, combining physiological with non-physiological data is sometimes more effective. Beck et 
al. suggest that for optimal balance in exoskeletons, reactions should be faster than physiological 
responses [81]. To achieve this, metrics such as center of mass (CoM) kinematics, which are 
faster than physiological responses, are recommended to generate control commands. Another 
research introduced a controller utilizing a finite state machine model, focusing on weight shifts 
between feet to produce gait trajectories. This controller was applied to the MOTION exoskeleton 
[20]. A symmetric foot force-time integral (FFTI) has been presented as a cost function to optimize 
stiffness in the control of an ankle-foot prosthesis [106]. For the position control of a Baxter arm 
robot, a combination of IMU and mechanomyography (MMG) sensors was employed to detect 
arm gestures and transmit commands to its lower components. This method generated six analog 
control signals, corresponding to the 3D Cartesian coordinates of the hands, supplemented by a 
discrete control signal initiated by right-hand gestures [103]. In another approach, a hybrid mix of 
facial haptic feedback, sEMG signals, and IMU data was employed to produce multiple high-level 
commands for a CyberLimb arm and hand prosthesis [26]. Eye and facial gesture recognition has 
been showcased as a novel method to navigate a telepresence drone, emphasizing its intuitive 
nature [171]. 
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Figure 7. Control strategy. The inner ring (blue) represents the high-level control strategy which 
defines the overall behavior of the robotic system. Inputs to this high-level controller may originate 
from the user through input devices and/or sensors. The outer ring (purple) portrays the mid and 
low-level control strategies. This layer dictates device-specific, continuous behaviors of the robotic 
interface. The color gradient signifies the varying utilization of physiological and non-physiological 
signals across control strategy categories and layers. 

Brain-computer interface (BCI) technology represents an approach to information exchange, 
translating brain-generated signals into machine control commands [192]. The most common BCI 
signal is the motor imagery (MI) electroencephalography (EEG) signal, owing to their spontaneity 
and device independence characteristics. The main steps in the BCI control process are signal 
acquisition, preprocessing, feature extraction, and classification [193]. Several advances in EEG 
signal outcomes have been utilized for robotic control. For instance, a KUKA robotic arm can be 
controlled using a binary coding method, which interprets four MI-EEG signals. This approach 
allows the robotic arm to have seven degrees of freedom, highlighting its intricate control 
mechanism [44]. Robotic aids for rehabilitation and assistance to those with physical impairments 
have also been a focus. A BCI, for example, integrates with a robotic hand orthosis specifically 
designed for stroke patients. Upon detecting motor intention in a paralyzed hand, the system 
sends a Bluetooth command to the ReHand orthosis. This device passively moves the paralyzed 
fingers, suggesting a promising direction in restoring motor functionality [45]. Similarly, an EEG 
helmet has been developed to transmit control signals to the PRISMA hand 1 prosthetic, aiming 
to improve mobility for those with upper limb amputations [61]. Stress mitigation in robotic 
interaction has also been examined. During a hybrid Brain-Neural Computer Interface (hBNCI) 
experiment involving a whole-arm exoskeleton, it was found that using EEG-based control 
resulted in higher stress levels and mental workload compared to using EoG control [55]. Further 
integration of technologies has led to the development of a hybrid BCI system. This system, which 
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merges Electrooculography (EOG), Steady State Visually Evoked Potential (SSVEP), and Motor 
Imagery (MI) inputs, effectively manages a rehabilitation interface, consisting of a UR-5 arm robot 
and a three-finger Barrett hand [87]. An innovative aspect of such integrations is seen in a hBNCI. 
This interface uniquely combines EEG and EOG to control a system comprising a wheelchair and 
a robotic arm, allowing users to navigate and send commands via motor imagery and specific eye 
movements [155]. In another direction towards merging human activity with robotic assistance, a 
comprehensive analysis of human walking has resulted in the creation of a Human-Machine 
Interface (HMI). This system captures electromyography signals from upper limbs and EEG 
signals during exercise. Such decoded signals then control a lower limb exoskeleton robot, 
translating user intent into action [194]. Additionally, the exact gaze direction of an individual, 
ascertained using the SSVEP brain response to visual stimuli, has been employed to steer a user 
interface for an assistive self-feeder robot [47]. These studies collectively showcase the vast 
potential of EEG-based controls in robotics and rehabilitation. 

Metabolic cost emerges as a compelling metric for evaluating user performance and holds 
potential for application in rehabilitation and assistive robots [189]. Inspired by the biological 
principles of energy conservation and efficiency seen in living organisms, researchers are 
increasingly focusing on developing control methods that enable robots to manage and optimize 

 [195]. Since the early 2000s, researchers have actively pursued the 
development of lower-limb exoskeletons to enhance human mobility, with a primary goal of 
reducing the metabolic cost associated with walking and running when compared to locomotion 
without such devices [196]. For instance, Human-in-the-Loop (HIL) optimization with the 
covariance matrix adaptation evolutionary strategy (CMA-ES) have been used to pinpoint optimal 
energetic points for controlling an ankle exoskeleton [25]. Similarly, for squatting tasks, Bayesian 
optimization combined with HIL techniques has been employed to develop personalized 
assistance [12]. One of the challenges posed in these studies is the metabolic cost estimation. 
Traditionally, respirometry is considered the benchmark for such estimations. Researchers have 
focused on accelerating the convergence process such as a phase-plane based estimator of 
steady state metabolic cost [197] or Kalman filter with stopping process [198]. Yet, this method is 
hampered by the need for a cumbersome and rigid measurement apparatus, which reduces its 
practicality in field applications [12]. To address this, alternative approach has been introduced, 
such as energy expenditure estimation through heart rate variability, specifically the root mean 
square of successive differences (HRV-RMSSD) [12]. Other methods for metabolic cost 
estimation during squatting with an ankle-foot exoskeleton were investigated such as muscle 
synergy [24] and foot pressure measurements [10]. 

Explicit or manual user input 
direct inputs through buttons or voice commands. Due to their ease of implementation, high 
predictability, and reduced risk of errors, this method is sometimes preferred over other complex 
control methods. However, these advantages come at the cost of requiring increased user 
participation, resulting in a less natural user experience, heightened cognitive load, and potential 
operational slowdowns [190]. This control strategy often involves the collection of physiological 
signals rather than physiological-based control. A mobile nursing robot features multiple functions, 
with user commands provided through a GUI, which are then relayed to the robot's controllers 
[21]. The Pepper humanoid robot is equipped to recognize emotions in children with hearing 
disabilities. Children's responses on a tablet activate the robot's behaviors, with the robot reacting 
to correct answers. An Empatica E4 wristband and a camera collect physiological and facial data 
[19]. The EKSO GT is an active exoskeleton for gait rehabilitation, offering several operation 
modes. Actuation methods include button input from a therapist, buttons on crutches or a walker 
used by the patient, or the patient's body weight shifting and movement [199]. Another method 
controls the EKSO exoskeleton through manual input, utilizing collected EMG and robot sensor 
data to adjust the robot's functions [200]. Lastly, a knee exoskeleton employs a servo-controlled 
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mechanism to apply resistance during walking, beneficial for rehabilitating individuals with 
neuromusculoskeletal injuries [66]. 
 
3.2.2 Mid and low-level control  
Following the high-level control, the mid and low-level control layers act as the action block of the 
control strategy (Fig 7). This layer is responsible for translating high-level directives into precise, 
real-time commands that the robotic hardware can execute [190]. Revisiting the example from 

close the left hand is broken down at this level into 
instructions for individual hardware components to follow. Actuators in the wrist and fingers will 
need specific directions on actuation sequence and duration. The power delivery system requires 
guidance on where, when, and how much current to deliver. Translating high-level commands 
and delegating executables to different hardware elements is the ultimate task of the mid and low-
level control software. This layer includes a wide range of functions, from trajectory planning and 
motion control to sensor fusion and feedback control [201], [202]. Mid and low-level controllers 
ensure that the robot's movements and interactions with its environment are executed with 
precision and adaptability [203]. We have categorized this layer into five categories. Position 
control is one of the common low-level control strategies [203], [204]. An advantage is its 
compatibility with various types of actuators, making it easy to integrate into diverse robotic 
systems and industries [60], [110], [157], [158], [205]. While position control offers substantial 
benefits, there are limitations to the method. Most electric motors have poor torque density, 
therefore, they need to operate at high speed to generate high power output. This conversion is 
often achieved through a high gear ratio which incearses the reflected inertia. In case of an 
unexpected contact, the shock response could result in damaging and unsafe movements [206], 
[207] Force and torque control is another common low-level control strategy in robotics, enabling 
robots to precisely regulate the application of force and torque in their interactions with the 
environment [208]. While they offer significant benefits such as real-time contact sensing and 
adaptability to dynamic surroundings, they also pose challenges, often requiring more complex 
joint-level design due to the usage of force sensors, which can lead to increased manufacturing 
costs and complexity [209]. Force and torque control find extensive application in rehabilitation 
robotics, including exoskeletons and prostheses, when designing assistive or resistive torque 
profiles [66], [109]. Impedance control, as extensively used in fields such as rehabilitation robotics 
and human-robot interaction (HRI) systems [97], [210], and human motor learning research [211], 
[212]. Impedance control focuses on dictating the stiffness and damping properties of the robot, 
allowing it to maintain a predefined trajectory and resist deviations caused by external forces, 
making it suitable for precision tasks such as manufacturing [213], [214], [215]. Using this method, 
controller can physically interact with users as active components. In impedance control, the 
robot's behavior is configured with parameters such as stiffness, damping, and inertia to ensure 
compliance with the user or the environment, delivering assistance or resistance torque when 
deviations from the intended movement are substantial [190]. It functions as a means to manage 
muscle stiffness to accommodate interaction forces, regulating the force exchanged between the 
robot and the environment. However, it's crucial to note that improper adjustment of impedance 
filter parameters may lead to unstable contact and excessive pressure on the target environment, 
emphasizing the importance of precise parameter tuning [2], [190]. Admittance control and 
impedance control represent distinct approaches to regulating a robot's interaction with its 
environment. Admittance control emphasizes controlling the robot's compliance and flexibility in 
response to external forces. Tracking external forces while providing significant assistant torque 
makes this controller suitable for rehabilitation studies [2], [216], [217]. Hence, admittance control 
is advantageous in applications requiring safe human-robot collaboration [11], [158], interaction 
with deformable objects, or tasks in uncertain and dynamic environments. However, high cost 
due to implementation of force sensors in the joint and trajectory instability due to external noise 
or contact with a rigid body can limit its use [2], [216], [218]. The choice between these control 
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strategies depends on the specific requirements of the task, with impedance control prioritizing 
precision and admittance control emphasizing adaptability and safety. Pressure control has 
employed in various pneumatic systems, including those using McKibben-type pneumatic artificial 
muscles (PAMs) [16], [50], [219]. This control approach centers on the regulation of compressed 
air pressure within these systems. By managing the air pressure, pressure control enables the 
safe actuation of pneumatic components, making it a key driver in robotic applications in 
rehabilitation [16], [44], where controlled and precise movements are essential. However, the 
system is often challenged to maintain precise pressure levels over extended periods due to 
issues such as air leakage, temperature variations, and limited response time [220], [221].  
 
4. User Interfaces 
The intersection of biosignal-integrated wearable robotics and user interfaces is foundational for 
human-machine synergy. As technology evolves, so too do the demands and expectations of 
users, leading to a diversifying landscape of interfaces. Recent literature highlights this 
transformation, revealing a gradient of interfaces that range from traditional lab settings to 
sophisticated augmented reality platforms. Interface design is ultimately driven by the specific 
application the system is intended for. This determines what type of interface hardware to use 
and which information is critical for the UI to display. Especially relevant to biosignal-integrated 
wearable robotics is feedback  visual cues and status indicators to update the user on key 
changes in a dynamic environment. Above all else, however, an easy-to-use interface tends to 
be the most successful. This incorporates visual clarity, consistency in navigation and 
organization, and simplicity. Current research in biosignal-integrated wearable robotics 
recognizes the key role of user interfaces and is adapting to develop best practices for their design 
further.  Fig. 8 visually represents these interfaces, plotted within quadrants, delineating their 
integration with robots and sensors. This categorization offers a clear snapshot of the current 
interface ecosystem, showcasing varying complexity and integration. This section will further 
delve into three prominent categories: basic lab GUIs, mobile apps, and extended reality 
platforms. 
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Figure 8. Approaches for visualization integration. Used to (a) send simple controls to 
exoskeleton. Reproduced according to the terms of the CC BY license [20]. Copyright 2021, IEEE,
(b) send low level behaviors (e.g., directional control) and high-level behaviors (e.g., grasping 
control) to robot. Reproduced with permission [152]. Copyright 2017, IEEE, (c) match orientation 
of visualized puzzle pieces to the rotation of robot control arm. Reproduced with permission [93].
Copyright 2022, IEEE, (d) provide real-time position information on robot end-effector. 
Reproduced with permission [11]. Copyright 2022, ASME, (e) enable visual feedback on correct 
identification of motor intention. Reproduced according to the terms of the CC BY license [45].
Copyright 2021, Frontiers Media SA, (f) provide reliable assistance to grasp a real object. 
Reproduced according to the terms of the CC BY license [55]. Copyright 2019, MDPI, (g) show 
real-time content acquired by a Microsoft Kinect camera. Reproduced according to the terms of 
the CC BY license [87]. Copyright 2019, Sage Journals, (h) to display real-time physiological 
signals (e.g., ECG, oxygen saturation, and corporal temperature) and select robot modes for 
assistance. Reproduced with permission [21]. Copyright 2022, Springer Nature, (i) to control robot 
response movement and visualize real-time physiological signals (e.g., joint angle, plantar 
pressure, and pneumatic muscles). Reproduced with permission [219]. Copyright 2018, IEEE, (j) 
enable robotic assistance (e.g., feeding) and control of home appliances via EEG signals. 
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Reproduced with permission [47]. Copyright 2018, IEEE, (k) provide real-time feedback of hip and 
knee joint angles as bar plots. Reproduced with permission [66]. Copyright 2021, Elsevier, and (l) 
control the location of the virtual balls using IMU sensors. Reproduced according to the terms of 
the CC BY license [103]. Copyright 2019, Elsevier. 
 
 
4.1 Basic lab GUIs 
In the realm of biosignal-integrated wearable robotics, traditional screen-based graphical user 
interfaces (GUIs) remain an integral tool. Out of the papers reviewed in this category, many 
emphasized the importance of GUIs that are either directly embedded onto the robotic system or 
presented through dedicated computer applications. Such interfaces, primarily designed for lab 
settings, are appreciated for their precision, real-time feedback mechanisms, and adaptability.The 
integration of GUIs in healthcare and rehabilitation settings is paramount [222], enhancing both 
patient experience and clinical outcomes. Mireles et al. recognized the significance of real-time 
data, employing Matlab's GUIDE-based GUI to offer immediate clinical insights [21]. Similarly, 
Cantillo et al. incorporated a Bluetooth-enabled command mechanism in a robotic hand orthosis, 
providing empathetic feedback via facial expressions on a screen [45]. Uluer et al. introduced a 
custom GUI that synergized with a humanoid robot to facilitate interactive audiometry tests for 
children with hearing disabilities [19]. Li et al. developed a Windows 10-based control software 
for an exoskeleton, decoding motor intent from EEG and sEMG signals with 99% accuracy, 
exemplifying the seamless blend of biosignals and robotics in modern rehabilitation [194]. 
Exoskeletons, as extensions of the human body, require interfaces that ensure intuitive human-
robot interactions. Zhang et al. presented a pediatric lower-limb exoskeleton, accentuating the 
importance of a GUI accessible via both a host PC and touchscreen [20]. Ai et al. employed a 
GUI for an ankle rehabilitation robot, aiding therapists in formulating rehabilitation strategies [219]. 
Kim et al. explored the influence of visual feedback on users of a robotic ankle exoskeleton [18]. 
Through a dedicated GUI, users received real-time visual guidance on walking patterns, 
emphasizing the pivotal role of GUIs in optimizing human-exoskeleton synergy. In experimental 
settings, GUIs play a crucial role in standardizing procedures and ensuring replicability. Shi et al. 
[223] and Batres-Mendoza et al. [60] employed GUIs to streamline and inform experimental flow. 
Shao et al. implemented a GUI-based simulation enabling users to control a virtual robot through 
EEG [224]. Hu et al.'s 2022 study leveraged a gamified GUI, allowing users to interact physically 
with a robot through a visual game [93]. Krasoulis et al. emphasized the significance of real-time 
feedback in myoelectric control research, using a GUI to guide participants in mimicking specific 
hand motions, underlining the crucial role of GUIs in real-time experimental validation [71]. 
Adaptable GUIs, tailored to specific user needs, hold immense potential in diverse applications. 
Vita et al. [225] and Sorbello et al. highlighted the necessity of adaptive interfaces for specialized 
user groups, such as children with ADHD or patients with ALS [152], [226]. Tabbal et al. 
introduced a versatile GUI that seamlessly transitioned between robotic arm control and 
managing home appliances, exemplifying the vast potential of GUIs in bridging the gap between 
healthcare and everyday life [47]. 
 
4.2 Mobile applications  
In the contemporary digital era, the proliferation of mobile devices such as smartphones and 
tablets has engendered a paradigm shift in interface mechanisms for wearable robotics. The work 
by Leng et al. exemplifies this evolution [38]. This research delineates the integration of a mobile 
application with wearable robotic systems via Bluetooth connectivity. This interface elegantly 
translates user commands, such as "play", "previous song", and "next song", underscoring the 
convergence of routine user interactions with the complexities of robotic systems. Furthermore, 
Seppich et al.  research elucidates the transformative potential of mobile devices in the realm of 
robotic prosthetics [26]. By leveraging the Samsung Galaxy S3 as a control interface, the study 
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accentuates the pivotal role of ubiquitous mobile platforms in facilitating intuitive and seamless 
human-machine interactions. 
 
4.3 Extended reality  
The immersive nature of extended reality, encompassing both virtual and augmented reality, 
offers a fresh perspective on user interfaces. The papers in this domain showcased the prowess 
of three-dimensional, simulated environments that can emulate real-world scenarios, be it for 
training, visualization, or therapeutic purposes. For instance, the work of Yeung et al. delves into 
a virtual experimentation realm where participants navigated a two-dimensional space, engaging 
with targets through varied controllers [227]. This exploration underscores the vast potential of 
virtual environments in enhancing user feedback mechanisms and fostering interactivity. Further 
emphasizing the immersive capabilities of XR, Wang et al. introduced an approach wherein real-
time imagery from drone-mounted cameras was relayed to virtual reality headsets [171]. This 
integration not only facilitated an enriched visual experience but also harnessed human facial 
expressions and ocular movements to control the drones, accentuating the symbiotic relationship 
between user and machine. Zhu et al., while not elaborating on the specific intricacies of the 
interface, underscored the significance of immersive feedback within virtual environments [156]. 
Such feedback mechanisms, especially in the context of wearable robotics, serve to augment 
user experience and inform real-time interactions. Wilson et al. ventured into the domain of 
immersive robot teleoperation, leveraging virtual reality to ascertain the potential applications of 
IMUs [103]. The study highlighted the role of XR in expanding the horizons of experimental 
methodologies and user engagement. Li et al. delved further into teleoperation, integrating 
augmented-reality glasses with a reinforcement learning algorithm to carry out multi-robot 
collaboration [228]. In summation, the user interfaces in biosignal-driven wearable robotics are 
undergoing a transformative phase. As evidenced by the categorizations in Table 1, a substantial 
portion of the reviewed literature integrates aspects of visualization, robotics, and sensors. As 
technology continues to evolve, so does the canvas on which human-machine interactions are 
painted. These interfaces, whether they are traditional GUIs, mobile apps, or immersive extended 
reality platforms, are testimonies to the field's commitment to user-centric designs. Future 
endeavors in this domain will undoubtedly prioritize the fusion of functionality with an unparalleled 
user experience. 
 
Table 1: Categorization of PRISMA-reviewed articles in biosignal-driven wearable robotics. 

Reference(s) Includes 
Sensors Includes Robotics Includes 

Visualization 
[18], [19], [21], [26], [45], [47], [48], 
[55], [58], [59], [60], [62], [71], [78], 

[83], [86], [87], [88], [89], [133], 
[134], [156], [171], [191], [194], 

[219], [223], [227] 

   

[1], [2], [3], [4], [5], [6], [7], [8], [9], 
[10], [12], [14], [15], [16], [17], [22], 
[23], [24], [25], [39], [42], [44], [46], 
[50], [51], [52], [53], [54], [56], [57], 
[61], [64], [65], [67], [68], [69], [70], 
[72], [73], [74], [75], [76], [77], [79], 
[80], [81], [82], [95], [96], [97], [101], 

[104], [106], [107], [109], [110], 
[111], [112], [113], [155], [157], 
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[158], [172], [196], [199], [200], 
[205], [225], [226] 

 

[38], [43], [66], [103], [135], [224]    

[11], [20], [93], [94], [152], [228], 
[229]    

 
 
5. Future Directions and Conclusion 
Exciting new techniques for biosignal-integrated robotics systems are emerging, utilizing novel 
materials, control strategies, and fabrication techniques. Of particular interest is the development 
of new visualization methods, which bridge a critical gap in traditional HCI/BCI technologies by 
actively engaging the human user in an aware and active part of the signal path. In this new era 
of research, biosignal-integrated robotics with visualization are being designed with harmony as 
the guiding principle. This entails making design choices for constituent components with the 

traditional designs and manufacturing techniques to further enhance biosignal quality, optimize 
robot design and control, and leverage the numerous capabilities offered by visual interfaces. 
Despite the progress, many challenges persist in seamlessly integrating human biosignals, 
robotics, and visual interfaces. For example, power delivery is expected to become a significant 
concern for certain wearable systems in the near future, particularly as they transition from lab 
environments to field use. Fixed power cables and stabilization equipment will no longer be 
feasible options. Complex wearable systems like exoskeletons will need slimmer and lighter form 
factors to provide practical benefits to most users. This will necessitate optimizing power 
consumption, battery design, structural component strength-to-weight ratios, and other factors. 
Personalization of robots is yet another complex challenge that must be addressed to enhance 
effectiveness and usability, especially in assistive robots. While integrating biosignals and robotics 
poses its own set of obstacles, the visualization aspect adds a layer of complexity. Ensuring real-
time, intuitive, and unobtrusive visual feedback is crucial for user comprehension and interaction 
efficacy. Striking the right balance between the richness of visual data and the cognitive load it 
imposes on the user is essential. Optimizing display technologies for power efficiency, outdoor 
readability, and adaptability to varying user needs is essential. The landscape of future 
applications of the systems reviewed here is incredibly diverse and rapidly expanding. We 
anticipate that popular existing use cases, such as rehabilitation devices, will continue to be in 
demand as advances in sensors, robotic performance, and visualization technology improve their 
efficacy. Other clinical applications also stand to benefit from these developments. Examples 
include communication systems, environmental manipulation robots for patients lacking muscular 
control, and assistive robots for surgical procedures. In the foreseeable future, the evolution of 
human-in-the-loop control for robotic systems will be characterized by adopting sophisticated and 
hybrid control strategies, harnessing and analyzing multiple physiological and non-physiological 
signals. Additionally, some emerging cases aim to identify highly correlated alternative 
physiological or non-physiological measures, enabling the estimation of the original measure, 
thereby enhancing robotic syste  portability, usability, and speed. These advances may enable 
future devices to be deployable in the field in numbers not yet achieved. For example, 
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exoskeletons to assist manual labor in warehouses, factories, and construction sites could reduce 
occupational injuries and increase productivity for thousands of workers worldwide. Less common 
applications, such as nursing robots, may see expanded adoption as our society increasingly 
accepts human-robot interactions in daily life. New social robot designs could offer telemedicine, 
package delivery, and customer service improvements. New applications could represent fertile 
ground for significant expansion in biosignal-integrated robotics. The defense industry, for 
instance, is a major potential player in this arena. For example, the United States Army has 
recently completed trials of the Microsoft HoloLens mixed-reality goggles and is poised to adopt 
a custom system version [230]. Commercial wearable sensors are already being tested to monitor 

vital signs and stress levels [231]. Robots have long been utilized for military situations 
requiring enhanced range, speed, and precision (e.g., unmanned aerial vehicles) [232] or tasks 
too hazardous for troops (e.g., disposal of unexploded ordnance) [233]. A natural progression 
appears to be sharing data between these elements for seamless communication within an 
integrated system. Biosignal-integrated robotics continuously evolve to achieve higher 
performance and cater to a wider variety of users. Recent developments include novel 
nanomaterial-based sensor designs, incorporating metabolic cost into robotic control, and 
integrating new XR visualization techniques. This review has divided integrated systems into three 
distinct components: sensors, robotics, and the emerging field of visual interfaces. Physiological 
sensing encompasses the measurement of potentials generated by the human body, such as 
those arising from natural bioelectrical currents or mechanical deformation. The design space of 
physiological sensors is expanding to encompass accurate devices applying novel materials and 
synthesis methods, improving skin conformality, reducing noise and interference, and enhancing 
breathability. Robots form the foundation of many of the systems covered in this review. Various 
form factors, from wearable exoskeletons to humanoid social robots, provide dynamic benefits, 
including physical assistance, real-time health monitoring, and haptic feedback. Visual interfaces, 
long overlooked, are now gaining prominence. With the proliferation of extended reality devices, 
richer and more immersive visual experiences are becoming available, benefiting HMI systems 
by providing detailed monitoring and feedback on user actions and statistics. Overall, highly 
integrated robotic systems leveraging biosignal feedback control and seamless data visualization 
are gaining traction among diverse user bases. These highly adaptable devices pave the way for 
further advancements in biotechnology, healthcare, and numerous other fields. 
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