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Abstract

Human-machine interfaces (HMI) are currently a trendy and rapidly expanding area of research.
Interestingly, the human user does not readily observe the interface between humans and
machines. Instead, interactions between the machine and electrical signals from the user’s body
are obscured by complex control algorithms. The result is effectively a one-way street, wherein
data is only transmitted from human to machine. Thus, a gap remains in the literature: how can
information be effectively conveyed to the user to enable mutual understanding between humans
and machines? Here, this paper reviews recent advancements in biosignal-integrated wearable
robotics, with a particular emphasis on “visualization” — the presentation of relevant data,
statistics, and visual feedback to the user. This review article covers various signals of interest,
such as electroencephalograms and electromyograms, and explores novel sensor architectures
and key materials. Recent developments in wearable robotics are examined from control and
mechanical design perspectives. Additionally, we discuss current visualization methods and
outline the field’s future direction. While much of the HMI field focuses on biomedical and
healthcare applications, such as rehabilitation of spinal cord injury and stroke patients, this paper
also covers less common applications in manufacturing, defense, and other domains.
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1. Introduction

HMI occupies a prominent place within the interdisciplinary research landscape, bridging intricate
human biological processes with cutting-edge technological advancements [1]. Over the years,
this domain has experienced significant growth, largely driven by transformative innovations in
soft sensors and wearable robotics [2], [3], [4], [5]. These advancements enable the precise
conversion of human physiological signals into formats that machines can readily interpret and
act upon [6], [7]. However, within the expanding corpus of HMI literature, the integration of visual
interfaces remains inadequately addressed. This gap not only underscores the uniqueness of this
manuscript but also emphasizes the urgent need for exploration in the HMI research field. As
HMIs become more commonplace across various sectors, this work aims to encourage further
research and provide a clearer perspective on the integrated role of sensors, robotics and visual
interfaces in HMIs. The scope of this paper is threefold: First, we delve into the field of soft
sensors. These tools epitomize the interface of human intent and machine functionality, with their
effectiveness largely contingent on the accurate interpretation of biological signals [8], [9], [10],
[11], [12], [13]. Alongside this, we highlight the latest developments in sensor architectures and
materials, emphasizing their crucial role in improving the responsiveness and accuracy of these
devices [3], [14]. Our attention then shifts to the foundations of robotics, investigating applications,
control strategies and mechanical aspects. This approach highlights the importance of a
harmonious relationship between the software directives and the hardware components, ensuring
overall efficiency and reliability in HMIs [15], [16], [17]. Finally, we turn our attention to the often-
overlooked aspect of visualization. As the demand for more transparent human-machine
interactions grows, visualization becomes increasingly vital, offering ways to present complex
machine feedback in a user-friendly manner [18], [19], [20], [21]. Collectively, these sections
converge on a singular goal: to transform HMI from a one-way interaction into a two-way
conversation where both humans and machines can understand and respond to each other.
Through this comprehensive review, we provide an in-depth look into the current landscape and
potential future of HMI. For a consolidated understanding of the interconnected roles of sensors,
robotics, and visual interfaces, Fig. 1 presents an overview of the integration and interdependence
of these systems.
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Figure 1. Elements of biosignal-integrated robotic systems. (a) Several strain sensors used
to measure joint angles, fingertip pressure, and pulse. Reproduced with permission [22].
Copyright 2018, Elsevier. (b) Stretchable EMG electrodes collect muscle activity data for
multimodal human-machine interfaces. Reproduced according to the terms of the CC BY license
[23]. Copyright 2020, the authors, published by Springer Nature. (¢) Design of a textile-based
sensor capable of detecting biosignals (e.g., pulse rate) as well as mechanical signals (e.qg., joint
dynamics). Reproduced with permission [14]. Copyright 2022, Elsevier. (d) Studying muscle
coordination and recruitment through synergy analysis during use of a robotic ankle-foot
exoskeleton. Reproduced according to the terms of the CC BY license [24]. Copyright 2023, the
authors, published by Springer Nature. (e) Control of a soft arm robot manipulator with tactile
sensors. Reproduced according to the terms of the CC BY license [14]. Copyright 2022, Elsevier.
(f) An ankle exoskeleton evaluated for reduction of metabolic cost. Reproduced with permission
[25]. Copyright 2018, AAAS. (g) A visual guidance screen can streamline training sessions for
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new users of exoskeletons. Reproduced according to the terms of the CC BY license [18].
Copyright 2022, the authors, published by Springer Nature. (h) Example of a mobile application
that can both monitor and control usage of an arm prosthesis. Reproduced according to the terms
of the CC BY license [26]. Copyright 2022, Springer Nature. (i) User interface for a nursing robot
displaying real-time signals, including heart rate, temperature, and blood oxygen. Reproduced
with permission [21]. Copyright 2023, Springer Nature.

Robotic systems have experienced significant evolution, mirrored in the progression of control
block diagrams [27]. These diagrams visually depict control systems, elucidating the interactions
between a robot’s feedback loops and components [28]. The evolution of robotic systems using
this block diagram approach is presented in Fig. 2. We use the term “intelligent robotics” in this
figure about recent robotic systems with a high degree of integration, cooperation, and
communication with other elements of an increasingly complex control system. Additionally, we
believe the capability to respond to new and emerging stimuli, especially physiological signals, to
be an important characteristic separating newer robots from previous generations. Historically,
robotic systems relied primarily on mechanical signals and non-physiological methods, with
interactions limited to physical connections between robot links and human limbs. By the early
21st century, physiological sensors such as electrocardiography (ECG) and electromyography
(EMG) sensors, initially designed to study human physiology [29], [30], were incorporated into
robotics, paving the way for biofeedback control. This focus constrained the depth of
understanding regarding human responses and intentions [31]. The "human in the loop" or "body
in the loop" concept, combined with these sensors, marked an important shift in robot control
considering unknown human-robot interactions. This perspective regarded both the robot and the
human as integral parts of a cohesive control system [31], [32], [33]. Through this perspective,
controllers could design strategies attuned not only to the robot's functionalities but also to human
states and intentions [34], [35]. Recent trends have centered on forging an even stronger synergy
between humans and robots [36]. Advances in visualization, including extended reality, promise
to redefine this dynamic [18], [19], [20], [21]. One of its primary objectives is a harmonious co-
adaptation between the two entities.



AlIP
Publishing

L

Visual Extended Human
Interface Reality
High-Level Mid/Low-Level k
Controller Controller RRoBot 4
Non-
Physiological
Sensor
Physiological
Sensor

a. Traditional Robotic c. Providing Visual
Systems Feedback to the User

Figure 2. Evolution of intelligent robotics systems. (a) Block diagram representation of the
conventional robotic control system reliant on non-physiological signals for robot control, with
human-robot interaction occurring solely through mechanical interactions between robot and
human body. (b) Closing the loop of by looking at the human and robot as an interactive system.
Achieved through capture of human physiological data using bio-sensors, enabling the controller
to harmonize robot behavior with the human condition. (¢) Introduction of visual feedback to
enhance user comprehension of controller actions and human status, facilitating user adaptation
to the system. (d) The advent of novel visualization methods, such as virtual and augmented
reality, driving enhanced interaction between human and robotic systems.

We followed the Preferred Reporting ltems for Systematic Reviews and Meta-Analyses (PRISMA)
process for literature retrieval and selection [37]. To capture the most recent developments in the
field, we conducted a focused review spanning five years from 2018 to 2023. Our initial search in
the SCOPUS database, using keywords (“interface” OR “visual”) AND (“sensor” OR “signal” OR
“feedback” OR *“biosignal” OR “biofeedback” OR “physiological signal’) AND (‘robot” OR
“exoskeleton” OR “prostheses” OR “exosuit” OR “orthoses”), yielded 784 records, supplemented
by an additional 19 records from other sources. The first screening phase entailed the exclusion
of records based on a set criterion: plant and animal research, inaccessible texts, duplicate
studies, incomplete studies, and papers not available in English. This resulted in the exclusion of
209 records. Subsequently, in the second phase, we reviewed titles and abstracts, eliminating
381 records that did not directly relate to biosignal-integrated robotics systems with visual
interfaces. The final screening phase involved a comprehensive review of the full texts. Here, 112
records were further excluded for not aligning specifically with the theme. In other words, the texts
did not include soft sensors, wearable robotics, and/or visual interfaces. Following this three-tiered
screening process, we identified a corpus of 101 papers, which form the basis of our review. Fig.
3 provides a visual overview of the PRISMA process undertaken in this work.
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Figure 3. Systematic review process. Selection process flowchart of the included studies for
this systematic review, following the PRISMA protocol.

2. Sensors

Sensors serve as the fundamental link between human users and robotic systems. An increasing
number of users are engaging with their robots by utilizing various biosignals, which are natural
electrical potentials generated by the human body, ranging from the heart and brain to skeletal
muscles and other organs. Some sensors also capture physiological phenomena that do not
inherently generate electrical potentials, such as the dynamic movements of joints, and convert
them into usable electrical signals. Harnessing the information streams within the human body,
sensors play a critical role in shaping HMI. Recent developments in sensor technology aim to
enhance key performance metrics such as signal-to-noise ratio, sensitivity, and packaging.
Additionally, wearable sensors designed for integration with robotics explore additional
dimensions, including environmental sustainability, biocompatibility, and optimizing user comfort
[38], [39]. In this section, we will showcase recent advancements in sensor design, materials, and
manufacturing techniques across various sensor classes commonly integrated into robotic
systems and visual interfaces.

2.1 EEG sensors
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One of the most widely used biosignals is electroencephalography (EEG), a noninvasive process
that involves the use of scalp electrodes to detect surface-level electrical currents originating from
brain activity, specifically cortical neurons. These signals are primarily generated by flow of ions
such as Na+ and K+ through neuron membranes. However, measuring potentials from surface
electrodes encounters challenges related to signal degradation as they pass through multiple
layers of skin and bone. EEG signal amplitudes typically display very small values, spanning from
0.5to 100 pv. To address this, various amplification devices are introduced into the signal chain,
serving to reject noise, eliminate interference from other body potentials, and apply gain. Both
analog and digital filtering techniques are employed to separate distinct EEG signal frequencies
[40]. EEG signals are commonly categorized into several recognized ranges: delta waves (8, 0.1-
4 Hz) associated with deep sleep and unconsciousness, theta waves (0, 4-8 Hz) commonly linked
with rapid eye movement, alpha waves (a, 8-13 Hz) corresponding to relaxed mental state, and
beta (B, 13-30 Hz) or gamma (y, 30-70 Hz) waves connected to focus, alertness, and higher motor
function [41]. This data serves multiple purposes, primarily offering valuable clinical insights to
physicians. For example, EEG is a critical component of polysomnography exams for assessing
sleep disorders and serves as the gold standard for diagnosing epilepsy [40]. However, of
particular interest in this context is EEG’s essential role in establishing connections between
humans and robotic systems through classifiable signal patterns [42]. In particular, evoked
potentials (EP) and event-related potentials (ERP) involve distinctive patterns that emerge in an
electroencephalogram as subjects react to specific external stimuli or mental cues, often
appearing as intermittent and low-amplitude signals [40]. Visual interfaces are now being
integrated with sensing and robotics systems to provide stimuli for EP/ERP classification and
control experiments. Once these signals are clearly identified, they become powerful tools that
can be incorporated into robotic control systems and extended reality platforms [43]. This
approach is especially popular in rehabilitation robotics, where motor imagery, linked with EEG,
can actuate assistive devices [2], [44], [45], [46], [47], [48]. Traditional clinical EEG setup employs
a large array of wired electrodes evenly distributed across the patient’s scalp. Conductive gel is
often applied beneath each electrode to reduce skin impedance. Electrode placement usually
follows the 10-20 system, an internationally standardized guideline for arranging up to 21
electrodes [49]. Common drawbacks include bulkiness, limited portability, extensive user
preparation, and skin irritation caused by the conductive gel. The limitations of complex wired
systems become particularly evident when testing robotics applications, where users are
generally more physically active compared to clinical EEG studies.
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Figure 4. Examples of recently developed sensor systems, highlighting commonly used
physiological signals. (a) Modular EEG cap in 16-channel configuration used for digital
hemiplegia rehabilitation. Reproduced according to the terms of the CC BY license [50]. Copyright
2022, IOP. (b) 3-channel EEG headband with custom FLG/TiO:z electrodes interfacing between a
user and a robotic arm. Reproduced with permission [9]. Copyright 2023, Elsevier. (¢) An EEG-
based universal brain-machine interface featuring (i) aerosol jet printed skin-like electrodes and
(i) flexible dry hair electrodes. Reproduced with permission [51]. Copyright 2019, the authors,
Springer Nature. (d) An EMG armband provides muscle activation data to guide a thumb
exoskeleton. Reproduced according to the terms of the CC BY license [52]. Copyright 2018,
MDPI. (e) Surface EMG electrodes used for control of a hip exoskeleton. Reproduced according
to the terms of the CC BY license [53]. Copyright 2018, Frontiers Media SA. (f) Tattoo-inspired
printed circuits for monitoring EMG and other biosignals. Reproduced with permission [54].
Copyright 2018, American Chemical Society. (g) Wearable ECG monitor for control of an ankle-
foot orthotic. Reproduced according to the terms of the CC BY license [12]. Copyright 2023, the
authors, Springer Nature. (h) EOG interface and eye-tracking glasses used in support of an arm
exoskeleton. Reproduced according to the terms of the CC BY license [55]. Copyright 2019,
MDPI. (i) Tactile fingertip sensor for prosthetics. Reproduced with permission [56]. Copyright
2018, AAAS.

Still, some researchers opt to use commercial clinical EEG equipment due to convenience or
familiarity. Various commercial EEG systems have been effectively integrated with robotics and
visual interfaces. For example, OpenBClI offers a modular EEG kit that has served as a platform
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for rehabilitating digital hemiplegia patients and operating smart home appliances (Fig. 4a) [47],
[50]. This example represents many rigid commercial EEG devices, highlighting their limitations
in comfort and portability. In another study, Baka et. al. used a 34-lead cap by Compumedics
Neuroscan to study emotional states during human-robot interactions, showing the 10-20
system’s capacity for expansion to achieve finer resolution [57]. However, the commercial
systems like Neuroscan and others used for general EEG data collection tend to be relatively
cumbersome, whether rigid or flexible in design [58], [59], [60], [61]. Although smaller, more
flexible, and wireless devices tailored for specific HMI applications have the potential to address
these limitations, they are not yet widely available commercially. Recent advances in EEG
technology have been addressing the aforementioned common issues. In addition, new devices
are being designed as dedicated companions to particular robotic systems, allowing for improved
comfort through optimized form factor and placement. To tackle electrode impedance and
concerns related to conductive gel, Li et. al. developed a novel dry EEG electrode incorporating
few-layer graphene (FLG) nanosheets and titanium oxide (TiO2) nanotubes (Fig. 4b) [9]. The
custom electrode involved potentiostatic anodization for the TiO2 nanotube arrays and plasma jet
chemical vapor deposition (CVD) for the FLG sheets (Fig. 4c). The length of the nanotubes could
be controlled by adjusting the anodization time, preserving the proper three-dimensional cross-
wrapping of the FLG nanosheets. This innovative design offers several advantages over a
traditional Ag/AgCl or gel electrode. First, by using a semiconductor material like graphene
instead of metal, the electrode functions in a capacitor or “non-contact” mode, measuring ion
current and converting it to electrical current, rather than directly measuring electrical current. This
approach typically reduces noise while potentially decreasing signal amplitude. However, the
incorporation of TiO2 nanotubes creates an exceptionally favorable environment for electron
transport through nanopore channels, mitigating amplitude loss and resulting in a higher overall
signal-to-noise ratio (SNR). Additionally, the FLG/TiO- electrode uses sweat absorbed from the
skin surface for ion conduction, eliminating the need for applying, maintaining, and cleaning
conductive gel. Finally, the device is customized for a specific application: teleoperation of a
robotic arm. This specification allows the device to target only the three occipital positions (O1,
0Oz, 02) of the standard 10-20 system to complete the control task. By eliminating the other
electrode positions, the entire system can be downsized into a headband, significantly improving
long-term comfort. Li et. al. demonstrated high amplitude (8.6 pV, nearly double that of their
Ag/AgCl control) and SNR (as high as 76.8 dB, exceeding that of the Ag/AgClI control) during EEG
measurement using a FLG/TiOz electrode with a one-hour TiOzdeposition time. These electrodes
exhibited stable SNR, signal correlation coefficient with Ag/AgCI control, and scalp resistance
during two hours of continuous use, as well as 30 minutes of daily use over one month.
Furthermore, the EEG headband was successfully used to measure steady-state visually evoked
potentials (SSVEP) at multiple frequencies, which were then implemented to command a robotic
arm to write letters. This study demonstrates the potential of unique 1D and 2D nanomaterials as
solutions to current challenges in biosignal sensor performance. Wang et. al. have developed a
compact, portable EEG system designed for integration with VR headsets and various robots
through teleoperation. Their wearable device resembles earbuds and features two custom dry
electrodes and microscale Bluetooth modules [62]. The electrode design eliminates the need for
skin preparation and allows for concurrent electrooculogram (EOG) recording (see Sections 2.3
and 2.5 respectively for further discussion of EOG and multimodal sensing). Employing
independent component analysis and support vector machine (SVM) techniques, the EEG system
achieves a remarkable 95% accuracy in interpreting brain signals associated with eye movements
and facial expressions. Studies using this device have successfully implemented human facial
expressions to control teleoperated drones, showcasing its potential for unobtrusive sensor
integration with VR devices and robotics. Finally, Mahmood et. al. have introduced a flexible,
wireless EEG system paired with a convolutional neural network for SSVEP classification [51].
This device tackles the limitations of traditional EEG setups, such as their obtrusive form factor
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and inconvenient wiring, by employing skin-conformal packaging and wireless data transmission.
Similar to the design by Li et. al., this wearable scalp electronics system optimizes electrode
placement for HMI applications. Dry, elastomeric electrodes with flexible legs cover the O1, Oz,
and O2 positions, adapting to the hairy skin of the scalp (Fig. 4c, inset ii). As the headband is
placed over these electrodes, the legs splay to push aside hair and achieve maximum contact
area. An aerosol-jet printed stretchable silver electrode serves as a ground applied at the mastoid
(Fig. 4c, inset i). Finally, the data acquisition and processing unit consists of a flexible printed
circuit board encapsulated in a soft elastomer, attached to the back of the user’s neck. Mechanical
testing confirmed reliable wireless transmission of EEG data under 180° bending. Additionally,
cyclic bending, compression, and stretching tests show minimal (<10%) resistance change for the
interconnects, electrodes, and circuit board. Signal quality and classification accuracy were
compared against two commercial devices: a 32-channel gel electrode EEG system and 8-
channel clip-on wireless system with dry electrodes. The newly developed EEG device easily
outperforms the two commercial options in capturing 12.5 Hz SSVEP signals, offering an average
SNR of 46.6+2.16 dB compared to 16.94+4.60 dB (conventional gel electrode system) and
28.89+2.28 dB (wireless system). Both offline and real-time EEG classification using SVM and
convolutional neural network (CNN) models display high accuracy, achieving values of
94.54+0.90% and 94.01+3.6% respectively. An information transfer rate (ITR) of 122.1+3.53 bits
per minute is competitive with commercial options. Practical applications include real-time
wireless control of an electric wheelchair, a small vehicle, and presentation software, with data
and results visualized through a custom Android mobile app. This system represents a substantial
improvement in user comfort, portability, and packaging optimization, along with enhancements
in key performance metrics such as SNR, indicating progress towards a more field-ready,
universal HMI platform.

2.2 EMG sensors

2.2.1 Background

EMG is another biosignal related to naturally occurring electrical activity in the human body.
Rather than monitoring the brain directly, EMG focuses on the potentials generated in skeletal
muscles by the peripheral nerves. As motor neurons activate their associated muscle fiber
bundles, electrodes can be used to detect the voltage changes during contraction and relaxation.
An increase in voltage is linked to firing of action potentials during muscle contraction, while
potential drops are associated with repolarization. There are two forms of electrode used during
EMG measurements. Intramuscular electrodes consisting of needle or fine wire can be inserted
under the subcutaneous layer directly into the muscle of interest to measure potentials. By
contrast, surface electrodes are attached to the skin and do not interface directly with the muscle
tissue. Both methods offer certain advantages and disadvantages. Surface EMG (sEMG) is
noninvasive and simpler to implement but suffers in terms of high-resolution targeting of specific
areas. Intramuscular measurements are invasive, and hence not as suited to HMI applications.
However, they generally yield more accurate data on individual muscle fibers [63]. Much like EEG,
raw EMG signals are low amplitude (around -5 to 5 mV) and often drowned out by ambient noise
or motion artifacts. In addition, EMG signals often display crosstalk from muscle fibers adjacent
to the target area. This is of particular concern for HMI applications, as sEMG is the preferred
method and tends to suffer from crosstalk to a greater degree. Various high/low-pass and notch
filters are used to remove noise or motion artifacts. Furthermore, advances in sensor design are
improving skin conformality to further eliminate noise. Wavelet analysis is often implemented to
decompose raw EMG data into constituent potentials from individual motor units. Other popular
signal processing techniques include autoregressive models, other time-frequency approaches
such as Wigner-Ville distribution, and artificial neural networks [63] Because of widespread
interest in active exoskeletons, prostheses [64], and orthoses, EMG has emerged as a popular
option for biosignal integration into robotic control algorithms and visual interfaces. By segmenting
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a user's EMG signal into specific muscle activation phases, a sequence of their movements can
be recreated. With adequate data transfer rates, this information can be incorporated into real-
time control algorithms. Many studies use commercial EMG acquisition units such as those
offered by Delsys and Ottobock [15], [65], [66], [67], [68], [69], [70], [71], [72], [73]. These have
been leveraged into biosignal-controlled upper and lower body robotics (Fig. 4d and 4e) as well
as the Lokomat rehabilitation system [53], [74], [75], [76], [77], [78], [79], [80], [81]. Both real-time
and offline EMG signal processing and muscle activity classification are used. While these studies
provide insightful results with clinical significance, their practical applications are limited by the
lack of portability. Commercial EMG acquisition systems are often centered around large,
cumbersome processing units that are wired for power and peripheral devices.

2.2.2 Improving comfort and portability

For successful adoption and field use in roles such as industrial work or support with activities of
daily living, the bulky, static nature of existing systems is a hindrance. Especially concerning is
the lack of low-profile sensing options and wireless data transfer capability. Minimizing form factor
and breaking free from wired systems will be critical requirements for many practical use cases.
Several studies have addressed these issues by presenting ultrathin, skin conformal, wireless
EMG acquisition devices. For example, Dong et. al. developed a stretchable SEMG electrode
based on a second-order self-similar serpentine pattern [82]. The slim, lightweight design was
created with wireless use in mind, ensuring portability and user comfort. The electrodes are
fabricated on a silicon carrier wafer by sputtering 0.3 um-thick gold between spin-coated polyimide
(P1) layers. Oxygen reactive ion etching is employed to pattern the electrode before the top layer
of Pl is applied. Photoresist process parameters were tuned to obtain 50 um line width. The
electrode displays excellent skin conformality and compliance under large deformation. Finite
element analysis and optical imaging concur that the electrode easily sustains 40% strain,
meeting the requirement to stretch with human skin (up to 30% strain). Using ZigBee transmitting
nodes and a DAQ, the electrodes successfully transfer EMG data from the user to a wheeled
robot in real time. A variety of bodily motions, such as wrist flexion and finger bending, are
demonstrated to drive the mobile robot with full range of motion. This system is an example of
how thin, flexible materials and unique micro- and nano-scale architectures can improve the EMG
data acquisition process for HMI applications.

2.2.3 Fabrication methods and materials

Many research teams are using new manufacturing techniques and materials to tackle the
problems facing the wearable EMG design space. Lopes et. al. present a novel hydroprinted
electronic skin (e-skin) incorporating the unique properties of eutectic gallium-indium (EGaln), a
liquid metal alloy [54]. The e-skin is ultrathin (~5 pm) and stretchable, in addition to having
excellent skin conformality due to the hydrographic transfer process. Various shapes can be
created to build a complete sensor circuit featuring electrodes and interconnects with microscale
line width and pitch. Electronic and mechanical stability is excellent, surviving applied strains of
over 70% with no breakage and minimal resistance change. The fabrication methods are of
particular interest because they not only permit for these desirable qualities but also eliminate
expensive and time-consuming cleanroom processes. To achieve reliable hydrographic transfer
onto 3D surfaces, the process begins with printing the circuit onto tattoo transfer paper (TTP) with
a standard office laserjet printer. Silver epoxy is spread over the TTP and selectively adheres to
the laserjet toner when cured, allowing subsequent application of liquid EGaln. Using a HCI vapor
or 2wt% acetic acid solution, the EGaln selectively wets to silver, creating a complete circuit with
high conductivity. The entire process can be completed at low temperature with off-the-shelf office
equipment, a great achievement for high-throughput manufacturing of ultrathin wearable sensors.
The e-skin can be transferred to the human body through a variety of water-based methods. When
using TTP, the device can be directly applied to the biosignal acquisition area and wetted before
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peeling the backing layer (Fig. 4f). With hydrographic paper, the entire printed device is
suspended on top of a water bath while the target object is passed through it vertically. When the
target breaks the surface of the bath, the e-skin sticks and conforms to its shape. These unique
transfer techniques enable superior adhesion and conformality to the shapes of the human body,
decreasing motion artifact noise and improving user comfort. HMI applications are further
supported by the e-skin’s ability to interface with surface mount electronic (SMD) components
through a thin film of Ag-coated Ni particles mixed into polyvinyl alcohol (PVA). By evaporating
water from the PVA film while the device is held in a magnetic field, the Ni particles vertically align
to form conductive vias between the printed circuit and any components placed over it. This
technique also allows the e-skin to connect to other circuits, expanding options for HMI
peripherals. The system’s versatility is demonstrated by connecting a flexible printed circuit board
(fPCB) EMG acquisition unit to the e-skin and applying it to a subject’s forearm. The EMG signal
is used to control a hand prosthetic which itself features an e-skin circuit with integrated LEDs
and touch pads providing visual feedback and additional command options, respectively. Kwon &
Kim et. al. used other printing methods to fabricate a comprehensive flexible, wireless EMG
system consisting of a data acquisition fPCB and electrodes [23]. The device is compact and
lightweight, improving overall comfort in multi-channel use for detection of detailed muscle
patterns. Another benefit of this system is that printing avoids the complex and costly cleanroom
fabrication processes of traditional electronics manufacturing. Aerosol-jet printing is deployed to
print functionalized conductive graphene (FCG) electrodes, Ag traces/pads, and Pl insulating and
structural layers. Due to the unique properties of FCG as an oxidation barrier, SMD components
for data processing and Bluetooth connectivity can be soldered directly to FCG-coated Ag pads.
The entire device weighs less than 5 g and measures under 2 mm in height. The mechanical
performance of the FCG electrodes and fPCB are both excellent. Electrodes displayed resilience
to cyclic 180° bending (100 cycles, 1.5 mm radius) and up to 60% stretching. The circuit showed
negligible resistance shift and deviation in EMG signal strength over similar cyclic bending
conditions. Signal quality was evaluated against the gold standard gel electrodes as well as
commonly used Ag and Au electrodes. The improved skin conformality of the FCG electrodes led
to SNR on par with gel electrodes and greater than that of both Ag and Au electrodes. All of these
demonstrated characteristics lend themselves to smooth integration with robotics and visual
interfaces in HMI applications. In this study, three devices were used to target the brachioradialis,
palmaris longus, and flexor carpi ulnaris muscles in the forearm. Full control of all five digits was
demonstrated through real-time wireless teleoperation of a custom robotic hand with 98.6%
classification accuracy, a task that would require over triple the channels using a traditional EMG
acquisition system. Even a single sensing unit is sufficient for many control tasks. Here, a single
EMG device is used to remotely fly a quadcopter drone and drive a wheeled vehicle, as well as
cycle through a slide deck with signal processing via CNN showing classification accuracy of 99%.
The devices were also integrated with Bluetooth to an Android tablet displaying real-time EMG
data plotting. Overall, devices presented in the studies discussed here represent a recent trend
towards flexible, low-profile epidermal electronics for EMG acquisition. Novel fabrication
techniques and materials feature at the forefront of this shift, showing their benefits in practical
HMI applications.



ing

AIP
Publishi

S ——

L

(i) Laser print (i) Coat with
circuit with silver epoxy
toner ink

Iy
g ARy
Kapton tape

Acrylic sneet;:-
G-

Pattern mask Drop coating Ag flakes Remove mask

=7

(iii) Coat
& with EGaln
. liquid metal
R

e

Conducting tape
a4
424 fu

\i\/" ‘ -’X«/w

Casting silicone rubber Peel off silicone rubber Assemble pressure
sensing structure

< - 4
3o, <%, 434
22030, = et o UP = 444
f < 4
#

Peeling off molded
Ti TiO; nanotubes FLG-TiO, Acrylic master CGasting silicone rubber silicone rubber

Figure 5. Selection of fabrication processes for sensors in integrated systems. (a)
Patterning and transferring laser-induced graphite for use in stretchable strain sensors.
Reproduced with permission [22]. Copyright 2018, Elsevier. (b) Hydroprinting method for rapid,
low-cost fabrication of flexible circuits and sensors. Reproduced with permission [54]. Copyright
2018, American Chemical Society. (¢) Process for fabrication of EEG electrodes using few-layer
graphene and TiO2 nanotube arrays. Reproduced with permission [9]. Copyright 2023, Elsevier.
(d) Molding three-dimensional structures for triboelectric sensing skins from silicone rubber and
silver flake. Reproduced with permission [83]. Copyright 2018, John Wiley and Sons.

2.3 Other bioelectric sensors

Here, we will explore less commonly used electrical signals generated by the human body. Recent
work has revealed compelling examples of integrated robotic systems using sensors for ECG,
EOG, and other biosignals. ECG is a biosignal that targets the depolarization and repolarization
of cardiac muscle as the heart is stimulated by the sinoatrial node. The natural coupling of
specialized conductive tissues with mechanical pumping provides unique insight into the cardiac
rhythm [84]. Traditionally measured in clinical settings to diagnose cardiac disorders such as
arrhythmias or ischemia [84], there has been a recent study integrating ECG as a control input
for a robotic system. Kim et. al. present a soft wearable ECG patch that provides estimation of
metabolic cost (see Section 2.4) to optimize power delivery of an ankle-foot orthotic (AFO) during
squatting, walking, and running [12]. The ECG device consists of three 210 nm-thick gold
electrodes paired to a data acquisition fPCB by serpentine interconnects, all mounted on a
stretchable, breathable medical tape substrate and encapsulated in soft silicone elastomer. The
compact, flexible design allows for robust mechanical performance up to 50% elongation.
Electrical resistance change of the electrodes and interconnects is less than 1% over hundreds
of cycles at 30% strain. Heart rate variability root mean square of successive differences (HRV-
RMSSD) is calculated from the ECG signal and correlated to metabolic cost with a strong Pearson
R of -0.758 and SNR of over 25 dB. This is a major improvement in terms of real-time signal
quality, user comfort, and portability over traditional methods of measuring metabolic cost, which
require bulky masks, tubing, and peripheral processing equipment. The ECG-based exoskeleton
feedback method presented shows promise for future adoption of biosignal-integrated robotics
and visual interfaces in labor-intensive work environments. EOG refers to measurement of the
potential difference within the eye. By placing electrodes around the eye, the eye motion can be
deciphered from rotation of the dipole formed by the cornea (front side) and retina (back side)
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[85]. It can achieve high rates of classification accuracy in HMI applications, but it is susceptible
to noise and there is limited room for multiple functions [86]. Tan et al. utilized EOG control as
part of a rehabilitation robot system with integrated visual interface [87]. The EOG signal is used
situationally during training exercises with a robotic arm to navigate menus in the integrated
display screen. Ban et al. developed a 3D-printed wireless EOG headband with gold electrodes
that performed competitively with commercial options in SNR and impedance. A proof of concept
HMI application was implemented through remote control of a robotic wheeled vehicle [88]. Crea
et al. also incorporated EOG into actual robotic control, demonstrating successful manipulation of
a wheelchair and arm exoskeleton system [89]. Badesa et al. expanded upon this, using EOG
and eye tracking data to guide an arm exoskeleton through object reach-and-grasp tasks [55].
Specifically, a right horizontal oculoversion triggered the exoskeleton to reach for an object in
front of the user, a movement with 99.85% success rate. Interestingly, the EOG-based control
scheme was found to cause reduced stress response and mental load compared to an EEG-
based algorithm driving the grasping portion of the training task. One more set of signals to note
are galvanic skin response (GSR) and photoplethysmogram (PPG). GSR, also known as
electrodermal activity (EDA) and several other names historically, is a measure of the
conductance of the epidermis. Physiologically, this is linked to the activation of sweat glands
during autonomic nervous system response [90]. Meanwhile, PPG tracks the change in blood
volume of microvasculature. This is often achieved by placing a light source on the skin and using
a photodetector to measure shifts in light intensity from the varying perfusion levels of the vascular
bed. This signal can be used to calculate a wide variety of cardiac features such as blood oxygen
and heart rate, which are also physiologically linked to autonomic nervous function [91]. Although
PPG is not strictly a naturally occurring electrical signal like GSR, it is introduced in this section
due to its use in combination with PPG for integrated robotics and visualization systems. More
specifically, the heavy overlap of the physiological underpinnings of both signals is highly relevant
in monitoring stress response and mental state [90], [91], [92]. Multiple studies have utilized GSR
and PPG sensors in tandem to characterize how users emotionally interact with social robots in
an effort to inform robot designs of the future [93], [94], [95], [96]. Although this review has thus
far tended to focus on wearable robotics, systems such as the nursing robot developed by Uluer
et. al. for hearing impaired children must also be considered relevant to the topic [19]. The robot
presented here displays real-time response to user GSR/PPG signals and features a highly
interactive visual interface to administer audiometry tests.

2.4 Non-bioelectric sensors

Not all sensors depend purely on the natural electrical potentials of the human body (Fig. 4g-i).
Mechanical sensors are also commonly used in human interactions with robotic systems,
translating physical motions of the body into electrical signals for processing. A diverse selection
of movements can be detected and applied towards integrated robotics and visual interfaces. One
popular sensing target is joint kinematics such as force, torque, and angle. These signals are
used for a variety of robotic form factors and are particularly applicable to impedance control [97].
Rotary encoders and inertial measurement units (IMUs) are both popular in traditional rigid
wearable robotics for gathering quantities such as joint angles [98], [99]. However, as robots
themselves evolve toward flexible designs, sensors must follow suit. New soft sensor designs and
data processing methods are helping researchers to do more with less, gathering kinematic data
with fewer, more user-friendly sensors [100]. Sun et. al. worked with force/torque sensors in an
upper body exoskeleton, developing a Kalman filter-based approach for reducing sensor channels
to improve wearability and joint alignment. The study was able to show that fusion of data from
just two force/torque sensors (arm, wrist) matched the performance of the full complement (two
arm, one wrist) in terms of operator-exoskeleton power exchange and actuation stress [101]. A
more niche sensing option is mechanomyography (MMG). As the mechanical counterpart to
EMG, MMG recognizes muscle activation sequences, but does so by detecting dimensional
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changes and lateral movement of the muscle from the surface. These signals can be gathered
with a variety of mechanical sensors, including piezoelectric devices and microphone chips [102].
Wilson et. al. combined six MEMS microphone MMG sensors and two IMU sensors to create a
custom teleoperation armband with accompanying control algorithm. The system was first
successfully integrated with the Oculus Rift virtual reality goggles as a controller, then used to
remotely operate a robotic arm [103]. Another major target is pressure sensing for the
implementation of tactile feedback in prosthetics. Accurate and consistent pressure data is critical
for the successful application of any feedback model, thus leading researchers to explore new
sensor designs to fulfill this need [104]. Existing wearable pressure sensors, such as the glove
used by Okorokova et. al., generally focus on fingertip sensing due to the outsized impact on daily
life of losing an upper limb [65]. Searching for a more accurate representation of the human sense
of touch, Osborn et. al. pursued a neuromorphic fingertip e-skin design that replicates the
functionality of mechanoreceptors and nociceptors in actual human dermis (Fig. 4i) [56].
Mechanoreceptors provide our general tactile feedback while nociceptors are specifically tuned
to transmit painful sensations. The e-skin consists of two layers separated by silicone
encapsulant, each containing an array of stretchable conductive fabric traces laid on top of a
piezoresistive fabric. The top layer represents the nociceptors and was fabricated with half the
number of sensing nodes in the bottom layer. This reflects the real balance of nociceptors to
mechanoreceptors in human skin and is also accounted for in the feedback model. After mapping
the feedback to his phantom limb through transcutaneous electrical nerve stimulation (TENS), an
amputee user was able to easily identify touch with three different digits, distinguish between
objects of varying shape, and execute a pain reflex coded into the feedback model. These results
represent a major step towards more lifelike pressure sensing for prosthetics and expansion of
tactile feedback features to cover all aspects of natural human physiology. In another study, Lai
et. al. developed a self-powered pressure sensing skin based on triboelectric principles [83]. The
sensing skin was fabricated by drop-coating Ag flakes into a thin matrix, then sandwiching the
matrix between two silicone rubber layers. The device displayed remarkable mechanical and
electrical stability under both 100% elongation and intense cyclic loading. In addition, the
triboelectric skin achieved a sensitivity of 0.29 kPa™ and was able to discern pressures as low as
63 Pa. In practical application, the sensor was adapted into a simple robotic gripper to complete
object manipulation tasks. The recorded data clearly showed distinct voltage responses
correlated to increasing and decreasing grip force, as well as full release of the object. Lastly, we
will discuss indirect calorimetry. Indirect calorimetry (IC) traditionally serves as the gold standard
in clinical metabolic analysis [105]. However, it can also be leveraged as a signal for integrated
robotics and visual interfaces [10], [24], [25], [106], [107]. In such applications, gas sensors are
sealed into portable mask-based systems that can measure a user’s Oz and CO2 volumes. From
this information, metabolic statistics such as respiratory quotient or energy expenditure can be
calculated for implementation into control algorithms [108]. Additionally, IC is a great way to
quantify the effect of assistive robotics and visual feedback. Recently, Kim et. al. utilized the
Cosmed K5 wearable metabolic system to provide visual feedback during ankle exoskeleton
training sessions, evaluating the efficacy of such feedback in user adaptation to exoskeleton
parameter tuning [18]. Using the calculated metabolic cost, subjects were constantly updated on
their ankle dorsiflexion/plantarflexion and given on-screen cues suggesting how to work more
harmoniously with the exoskeleton. Subjects training with suboptimal exoskeleton parameters
were actually able to adapt to the specific conditions and decrease their metabolic cost over the
course of a session by responding to the feedback presented through the integrated visual
interface. Additionally, Kang et. al. used metabolic cost to inform power delivery optimization of a
hip exoskeleton [109]. An indirect calorimetry system was used as an evaluation tool to study four
different levels of exoskeleton assistance. It was determined that delivering assistive torque
between 13% and 26% of the peak biological hip moment provided the greatest reduction of
metabolic cost. Studies such as these show how niche physiological signals can be adapted to
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robotics and visual interfaces in unique ways to educate new users of wearable robotic systems.
Additionally, metabolic cost derived through indirect calorimetry is a crucial tool for optimization
of wearable robotics, making it possible to see greater adoption of such systems in the future.

2.5 Multifunctional Sensors

Recently, sensor research has evolved to introduce systems capable of targeting multiple signals.
These systems tend to fall into one of two categories: those that include multiple sensors in one
device for multimodal signal collection, and those that target one signal at a time but can be
configured in different ways. Naturally, many systems of the first kind tend to be larger in size and
more complex. For example, the mobile nursing robot developed by Mireles et. al. [21]. This robot
seeks to provide automated health monitoring for senior citizens using an impressive suite of on-
board sensors. These include ECG, arterial pressure, heart rate, oxygen saturation, and
temperature. However, smaller multimodal sensing devices also exist, such as the unified
IMU/EMG sensor presented by Zhao et. al. [110]. Arm position and muscle activation data
collected with the IMU and EMG sensor, respectively, are fused to expand the library of
recognizable gestures during control of a wheeled robot. Dindorf et. al. chose to combine EEG
and EMG signals from a sensor headband to control a custom elbow orthosis. A unique control
algorithm was tuned to classify the combined signals, driving a set of pneumatic artificial muscles
providing assistive torque to the elbow joint for forearm flexion/extension [111]. On the other hand,
devices in the latter group tend to focus on novel electrode designs that enable adaptation to
different signal targeting areas. Zhang et al. present a unique dry electrode design suitable for
measuring ECG, EMG, or EEG [112]. Using a combination of
poly(ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), waterborne polyurethane
(WPU), and D-sorbitol, the electrodes are able to reduce contact impedance and noise compared
to commercial silver electrodes and previous examples in literature. In another study, Tian et. al.
expand the applications of epidermal electronics by introducing a sensor array covering up to 40
times the area of existing devices [113]. Each array consists of 17 Cr/Au electrodes, created using
traditional photolithography and encapsulated in polyimide and silicone layers. The large size
(over 200 cm?) and number of channels enables the device to reliably cover areas such as the
entire circumference of the arm. The design successfully demonstrated multichannel EMG control
of a transhumeral prosthesis (with classification accuracy of 89%), full-scalp EEG measurement
by linking four devices, and compatibility with MRI equipment. Highly adaptive mechanical
sensors with the ability to target many physical motions have also been designed recently. Wu et.
al. show how a simple strain sensor can be used in a variety of different ways to provide insight
into human motion [22]. A CO2 laser was used to directly pattern graphene serpentines from a
polyimide film, then polydimethylsiloxane (PDMS) served as a transfer layer to peel the laser-
induced graphene (LIG) off of the substrate (Fig. 5). The PDMS-encapsulated LIG sensor
displayed excellent mechanical and electrical stability under large strains (70-80%) and cyclic
application of smaller strains (20%, 1000 cycles). Demonstrations of HMI applications included
joint angle measurements of the phalanges, pressure measurements at the fingertip, and even
arterial pulse waveform measured at the wrist. Meanwhile, Zheng et al. applied a completely
different working mechanism to develop a sensor with similar versatility [8]. Their device was
based on triboelectric nanogenerator (TENG) technology, and thus boasts the additional benefit
of being self-powered. The sensor can be used in multiple modes, targeting joint angles, simple
gait detection, and respiratory cycles. A particularly unique application, personal identity
verification, was demonstrated by detecting minute differences in the waveforms of two subjects
making identical hand gestures. Finally, Pang et al. present a device that combines triboelectric
and piezoresistive sensing principles to mimic the behavior of different mechanoreceptors [14].
The skin-inspired sensor consists of a CNT-based piezoresistive sensing layer (mimicking the
sustained response of slow-acting mechanoreceptors) and a Teflon-infused textile triboelectric
layer (simulating how fast-acting mechanoreceptors respond sharply to momentary contact)
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stacked on a copper electrode base. Similar to previously discussed studies, many different
signals were targeted using the same fundamental working principle. The sensor displayed
excellent signal quality and mechanical robustness while measuring joint angles, arterial pulse
waveforms, and even speech patterns when applied to the throat.

2.6 Additional Sensor Developments

The previous sections have presented recent sensors through the lens of modality, with a focus
on highlighting demonstrations of integration with robotic systems and visual interfaces. Here, we
will supplement the preceding discussion by reviewing several broader developments in sensor
technology. These advancements can be applicable to biosignal-integrated robotic systems in the
future. Over time, research in the separate spaces of sensors, robotics, and visual interfaces
tends to cross-pollinate and unify due to significant overlap of applications. One area of sensor
technology we hope to see integrated is the use of nanomaterials. A major advantage of
nanomaterials is their ability to combine with polymers to form flexible electronics. Silver
nanowires (NW) are popular due to their excellent conductivity and electrical performance in
percolation networks. Jeong et al. used AgNW to demonstrate flexible pressure sensors with an
air gap structure to increase sensitivity. Using a printed electrode base, AQNW sensing element,
and PDMS encapsulation, the sensor displayed excellent cyclic stability and low hysteresis during
measurement [114]. Kim et al. also used AgNW and PDMS in a two-layer strain sensor. The
prestrained, electrically decoupled layers could sense multidirectional strain, which could be
appliedn biosignal-integrated robotics at multi-DOF joints such as the shoulder or hip [115]. While
initial synthesis of NWs can be time-consuming, the sensors are quickly fabricated by facile
methods such as drop casting [114], [116]. Copper NW is another nanomaterial with excellent
electrical properties and great potential for sensing biosignals. One major advantage of CUNW
over AgNW is their reduced cost (around 100 times cheaper) for a minimal loss in conductivity
[117]. However, a common problem that plagues CuNW is oxidation and subsequent degradation
of sensing performance. Hong et al. have addressed this shortcoming by developing several
encapsulation methods using polyethylene terephthalate, polyimide, and silicon oxides [117],
[118]. Kim et al. have also demonstrated oxidation-resistant CUNW sensors for EMG, ECG, and
capcitive touch sensing [119], [120]. Bang et al. build on this by introducing the reversible,
selective laser-induced redox (rSLIR) method for fabricating electronics with a seamless metal-
semiconductor interface. Along with smoothly integrating three different varieties of Cu-based
NW, rSLIR is able to pattern detailed images into thin-film electronics, showing promise for future
application towards biosignal detection and sensor-robotics integration [121]. Along with
nanowires, nanoparticles (NP) are widely used in the fabrication of flexible, wearable electronics.
Similarly to NW, metal NPs display good conductivity and are easily integrated with polymers, as
well as other sensor materials. For example, Zhan et al. combined AgNPs with CNTs on a spun
TPU/polydopamine mat to create a flexible strain sensor [122]. By using multiple conductive
materials forming their own networks, the sensor achieved both a broad sensing range and high
sensitivity. This was validated through strain measurements of a variety of human movements,
from skin stretching during blood pulse to large-angle bending of the fingers, wrists, and legs. In
a similar concept, Tsai et al. used AgNPs to enhance the conductivity and surface roughness of
a polymer/paper-based piezoresistive pressure sensor [123]. Nanoscale patterning has been
shown to increase sensitivity, a potential benefit in HMI applications using small-amplitude signals
such as EMG-controlled robotics. Truly skin-like wearable sensors are also being developed using
NPs. For example, Kim et al. have created a flexible, conformal, microscale thickness epidermal
electronic system capable of real-time circuit optimization and sensor modification [124].
Meanwhile, Shin et al. use NiO NPs to demonstrate a wearable temperature sensor on a substrate
just 25um thick [125]. Devices such as these have significant potential in biosignal-integrated
robotics applications, as their minimal form factor enables seamless combination with emerging
low-profile and soft wearable robots.
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Another area of sensor development with prospective relevance to biosignal-integrated
robotics is transparent sensors. While the visual characteristics of a sensor may not seem
important compared to its quantitative performance metrics, there are several reasons optical
transparency is desirable in modern sensors. Especially relevant to wearable healthcare sensors
is the fact that opaque devices obscure the sensing area. A transparent device preserves visual
access to the target tissue and, combined with measured biosignals, enables us to create a full
picture of the clinical situation [126]. Furthermore, along with high mechanical compliance, optical
transparency helps sensors remain imperceptible during daily use. Not only does this alleviate
concerns over visual obtrusiveness and help normalize the widespread adoption of wearable
sensors, but it also improves immersion in extended reality applications [126], [127]. Won et al.
present an excellent example of such a device. They use an ultra-stretchable kirigami structure
based on a colorless polyimide substrate to demonstrate multiple biosignal sensing modalities. A
proof of concept for HMI integration is also provided by using forearm EMG measurements to
control a drone with hand movements [128]. Chen et al. take a different approach, using ionogel
fibers as a transparent dielectric material for capacitive sensors [129]. The device displays
excellent pressure and temperature sensing capabilities, making it and other transparent
capacitive sensors a promising candidate for skin-like sensing in prosthetic HMI applications.
Finally, we will briefly discuss recent progress in machine learning (ML) methods for the analysis
of biosignals. Where flexible, stretchable, skin-compliant platforms represent the state of the art
in biosignal measurement, ML forms their counterpart on the signal analysis side. ML algorithms
are uniquely suited to biosignal-integrated robotics due to their excellent feature extraction
capabilities and ability to learn or evolve over time [130]. For example, unsupervised methods
such as contrastive learning can be implemented to train algorithms to adapt to new users or data
features not featured in their original training data [131]. Examples of popular ML algorithms
include deep learning models [132], [133], support vector machines [62], [134], and many types
of neural networks [51], [135]. These frameworks have been used to analyze a variety of signals,
from EEG and EOG to haptic touch, then turn and issue directives to robotic actuators and data
visualization interfaces [130].

3. Robots

A robot interprets sensor inputs, implements control strategies, and performs an action to a
specified objective [136], [137], [138]. This review centers on robots as the central component
bridging sensors and visualization interfaces, collectively forming the bio-integrated robotic
system designed for real-world applications. Viewed through a robotics perspective, this system
is actualized through an array of control strategies, each built upon diverse sensory input
modalities and output mechanisms. The yielded outputs can be channeled into either physical or
non-physical interaction with users, including visualization interfaces, thereby fostering a
symbiotic adaptation between humans and robots. Modern robots can take many forms, from
small teleoperated drones to full-body exoskeletons. An important axis by which this wide range
of robots is categorized is their flexibility, i.e., rigid vs soft robots. Most fully biosignal-integrated
robotic systems still feature traditional rigid robotic structures and actuation. This section will focus
on these rigid robots from a hardware perspective, but many of the control strategies discussed
will also be relevant to soft robots.

3.1 Applications

3.1.1 Healthcare

Robots have found applications in the field of healthcare and rehabilitation as a result of the fusion
between medical sciences and artificial intelligence [139]. These robots are designed for different
tasks, from elderly and patient care to walking assistance, rehabilitation, and neurorehabilitation
[140]. We describe three subcategories of bio-integrated robots in the healthcare field.
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Wearable assistive robotics has emerged as a promising technology to assist humans in
enhancing, supplementing, or replacing limb motor functions, commonly affected after suffering
an injury, a stroke, or as a result of natural aging [141], [142]. Robotic prostheses and
exoskeletons have emerged as important tools in wearable assistive robots with the aim of
enhancing the quality of life for individuals facing limb loss or dysfunction. Those devices are
designed to enhance functional mobility [143], independence [144], psychological well-being, and
self-esteem [145]. For instance, individuals with transtibial amputation, the most prevalent form
of amputation [146], frequently encounter balance-related challenges [68]. Such challenges can
be mitigated by a robotic ankle-foot prosthesis, including one with two toes, enabling ankle
inversion/eversion assistance in addition to the plantarflexion [68]. The effectiveness of the two-
degrees-of-freedom ankle-foot prosthesis was shown by reduced foot placement control effort,
physical exertion, and intact limb control effort [147]. Recent work showed that step-to-step
modulation of inversion/eversion torque can reduce metabolic cost by 13% (Fig. 6a) [148]. Similar
work further personalized the assistance from the device using human-in-the-loop optimization
with an objective function of enhancing symmetry [12]. The approaches, however, still lack
feedback to the user. BeBionic prosthetic hand (Ottobock, Duderstadt, Germany) equipped with
the capability to perceive both touch and pain through a multi-layered e-dermis (Fig. 6b), presents
the potential to create a more natural sensation encompassing various tactile stimuli for prosthetic
hands [56]. For paraplegic patients, movement predictability when using exoskeletons is a
challenge. Solutions using surface electromyography signals from the upper limbs show promise,
with some reporting predictive accuracies of up to 80.75% across different subjects [77]. Care
robots engaged in the process of patient care are often referred to as care robots. The major
target populations for care robots are the elderly [149] and children [150] with mental disorders.
These robots can offer both physical and mental assistance in the process of monitoring,
diagnosing, and education [140]. Persistent challenges in social communication and interactions,
as well as restricted and repetitive behavior patterns, have been observed in children with autism
spectrum condition (ASC) [151]. The Personalized Perception of Affect Network (PPA-net) is a
developed machine learning framework that adapts to a child’s affective states and engagement
across different cultures and individuals [96]. This robot-assisted therapy was implemented using
a NAO social robot. Results indicate that integrating audiovisual and physiological expressions of
affect and engagement reduced the issues of noise and missing data from children with ASC. A
new architecture for human-humanoid interaction, centered on an EEG-brain computer interface
(EEG-BCI), was designed specifically for patients with locked-in syndrome (ALS) [152]. This
system discerns users' mental states using biofeedback factors such as attention, intention, and
focus and employs a NAO robot to carry out tailored behaviors. Data indicates that ALS patients
can effectively command a humanoid robot through this BCI design, potentially enhancing their
capacity to manage daily tasks and engage with their surroundings. Care robots can collect
physiological signals to assist in monitoring and diagnosis tasks. This requires secure and
bidirectional communication between patients and healthcare providers [153]. For instance, a
mobile nursing robot with a user-friendly graphical user interface is presented by Mireles et al.
[21]. Nursing robots can monitor the patients’s vital signs such as electrocardiography potentials,
oxygen saturation levels, skin temperature, and non-invasive arterial pressure in home settings.
In another operation mode, this nursing robot can help individuals with gait assistance. Care
robots can be controlled with physiological signals. While brain-computer interfaces (BCI) were
primarily used for controlling single devices such as wheelchairs [153], robotic arms [9], or
prosthetic limbs [154], their scope is expanding. A hybrid BCI can manage both a wheelchair and
a robotic arm, showcasing the growing versatility of BCls in multi-task operations. The UL8W
wheelchair and JACO6 DOF-S robotic arm system has been controlled using EEG and EOG
signals (Fig. 6¢-d) [155]. Wheelchair direction is determined by hand motor imagery, whereas eye
blinks and eyebrow movements initiate commands for the wheelchair and robotic arm.
Neurorehabilitation robots have been used in the rehabilitation field. Independent robotic
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manipulators can measure the effects of simultaneous neuromuscular modifications [67]. To
enhance the efficiency of neurorehabilitation exercises, a novel BCI framework was introduced,
employing autoencoder-based transfer learning and a UR-5 robotic arm [87]. Experiments reveal
improved EEG signal classification compared to state-of-the-art approaches. Marini et al.
examined electrocortical dynamics of upper limb position matching task with and without vision
feedback using a planar robotic workspace (Fig. 6e) [59]. A interactive musculoskeletal simulator
(IMS) was developed by Hasson et al., permitting users to control a muscle activity-driven model
of their arm [67]. A custom robotic interface is described to move the user’'s hand following the
virtual arm model movements (Fig. 6f). By manipulating musculoskeletal dynamics in real-time,
insights can be gained into neuromuscular system intricacies linked to injury, disease, and aging.
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Figure 6. Applications of bio-integrated robotic systems. (a) Robotic ankle-foot prosthesis
with two degrees of freedom, aiding level walking for transtibial amputees. Reproduced according
to the terms of the CC BY license [148]. Copyright 2017, the authors, Frontiers Media SA (b)
Prosthetic hand capable of tactile and pain perception via a multilayered e-dermis. Reproduced
with permission [56]. Copyright 2018, AAAS. (c) A social robot offering ML-driven personalization
of autism care. Reproduced with permission [96]. Copyright 2018, AAAS. (d) Innovative hybrid
BCl using EEG and EOG to control an integrated assistive system, comprising a wheelchair and
robotic arm. Reproduced according to the terms of the CC BY license [155]. Copyright 2019,
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Frontiers Media SA. (e) Planar impedance-controlled robot, capable of measuring high-resolution
trajectories in generated force fields. Reproduced according to the terms of the CC BY license
[67]. Copyright 2019, PMC (f) Custom planar robot with interactive musculoskeletal simulator for
matching arm and arm model movements. Reproduced with permission [59]. Copyright 2018,
IEEE. (g) Wearable sensor-based motion capture for the human upper limb, facilitating
teleoperation of an arm robot. Reproduced according to the terms of the CC BY license [156].
Copyright 2022, MDPI. (h) Gesture recognition through IMU and MMG sensors on both arms,
controlling a Baxter Robot. Reproduced with permission [103]. Copyright 2019, Elsevier. (i)
Framework enabling continuous data collection during Human-Robot Collaborative tasks when
changing robot movements as a form of stimuli to invoke a human physiological response.
Reproduced with permission [157]. Copyright 2019, IEEE. (j) Physical HRI that combined the
electrical impedance tomography (EIT) based sensing approach with the robotic controllers to
produce proper assistance with external uncertainties in the collaborative sawing task using a
UR5 arm robot. Reproduced with permission [158]. Copyright 2021, IEEE. (k) Ankle-foot
exoskeleton with two degrees of freedom and active plantarflexion for squatting assistance,
utilizing ECG signal. Reproduced according to the terms of the CC BY license [12]. Copyright
2023, the authors, Springer Nature. (I) Reliable single EMG-based control of a portable robotic
glove, identifying power grasp for augmenting the grasping force. Reproduced according to the
terms of the CC BY license [70]. Copyright 2021, IEEE.

3.1.2 Industrial

Industrial robots played a prominent role in the development of industry in the past decades.
Industry 4.0 prevalence introduces more complex and flexible tasks. In order to meet these
demands, industrial robotic systems need to be more independent and intelligent [159]. Robot
teleoperation is defined as “controlling a robot that may be at some distance from the operator”
by Nielsen et al. [160].Teleoperation technology has been used in diverse industries, such as
space exploration [161], [162], military [163], under-water exploration [164], hazardous
environments [165], and oil and gas explorations [166], [167], [168]. Bio-integrated teleoperation
robots harness the cognitive and physiological signals of humans to assist robots in making critical
decisions [169]. By integrating this technology with advanced visualization methods, a
collaborative environment can bridge the user and robot [170]. The gForcePro+ armbands were
used to construct a kinematics model of the human arm (Fig. 6g) [156]. By applying surface
electromyography (sEMG) to counter physiological tremor effects, the model was evaluated with
the xMate3 Pro robot. The outcomes indicated enhanced teleoperation tracking and reduced
tremor. Another investigation introduced a headset that captures eye movement and facial
expressions to control a DJI Spark drone [171]. A hexapod robot also has been controlled using
another BCI interface [60]. Further research employed a Mechanomyography (MMG) gesture
recognition system [103]. This system integrated six unique analog control signals, corresponding
to the 3D Cartesian coordinates from each hand, to operate a Baxter robot (Fig. 6h). A study
explored the use of a biologically-inspired multimodal human-in-the-loop control system for a
pneumatically actuated robot arm, focusing on a hammering task [172]. This findings suggest the
system's effectiveness in autonomously deriving robot skills for tasks requiring precise motor
control. Collaborative tasks have been utilized to enhance productivity [173] and operational
efficiency [174], [175]. Therefore, creating collaboration tasks between humans and robots which
requires intuitive [176], [177] and safe [178], [179] human-robot interaction. Physiological signals
can be used to inform such systems of humans' mental [180]or physical state [93]. Visualization,
on the other hand, can provide visual cues in the shared human and robot working space, creating
human-aware behaviors of the robotic system [181]. Robots in human-centric environments can
lead to unpredictable physical interactions, known as active physical human-robot interaction
(APHRI). The nuances of human perception and the safe management of these interactions are
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still under exploration. To better understand this, Hu et.al., were engaged in a visual game with a
Sawyer arm robot, where they encountered tasks triggering active physical interactions [93].
Recognizing the importance of understanding human states for optimal human-robot
collaboration, machine learning techniques were employed to interpret interaction parameters
from the upper body's SEMG signals [11]. A convolutional neural network (CNN) was utilized to
predict motor control difficulties during a physical human-robot interaction (pHRI) using a Schunk
Powerball LWA4P arm robot. This model was further adapted to new subjects using a transfer
learning approach. To deliver to operator intentions and manage unpredictable external factors in
human-robot collaboration, a novel control interface was introduced [158]. It integrated electrical
impedance tomography (EIT) sensing with robotic controllers. By leveraging optimized EIT
features, the interface estimated forearm muscle contractions, using a wearable fabric band for
ease. This solution was validated in a human-robot sawing task and hints at its use in wearable
robots assisting hand movements (Fig. 6i-j). Industrial human-robot interaction (HRI) primarily
focuses on human safety, trust in automated systems, and productivity enhancement [182]. In
this context, it is important to create event markers for both humans and robots and to ensure
data synchronization during interactions [157]. The study aimed to understand how the
acceleration and path of UR5e and UR10 robotic arms influence human physiological responses
during joint tasks (Fig. 6i-j). It also evaluated human responses under varied safety algorithms in
these collaborations. As the industry grows, occupational safety grows as a common concern with
it worldwide. Addressing this challenge, automated and robotic systems can help prevent or
reduce occupational injuries and create safer workspaces for workers [183]. Beyond medical
applications, exoskeletons also offer potential in occupational settings. They can provide
assistance and reduce workplace injuries [184], [185]. In this context, the utility of a biopatch
becomes evident. This patch measures vital indicators such as heart rate and computes the
RMSSD, serving as a method to estimate metabolic cost (Fig. 6k) [12]. The Exo-Glove Power
(EGPO) is a bowden cable-driven robotic glove. lts purpose is to enhance the grasping force
when users exert a strong power grasp on an object (Fig. 6l) [70]. The EGPO utilizes a single
EMG sensor-based myoelectric interface to identify the user's grasp intention, offering a reliable
and intuitive mechanism. Unique biological features of the musculotendinous junctions allowed
two myoelectric control methods for robotic glove-dual-threshold control and morse-code control.

3.2 Control Strategy

Achieving precise and efficient control over complex robots is necessary for their successful
operation [186]. To address this challenge, a hierarchical approach known as the hierarchy of
control has emerged as a framework for robot control [187]. In this section, we categorize the
most prevalent control strategies employed in biosignal-integrated robotic systems.

3.2.1 High-level control

In the hierarchical structure of robotic systems, the high-level control layer takes center stage,
functioning as the cognitive core (Fig. 7). Here, strategic decisions and objectives are shaped by
sensor data and human input, addressing mission planning, task allocation, and decision-making
[188]. The integration of physiological sensors and the human-in-the-loop concept enables the
controller to receive both physiological and non-physiological feedback, enhancing precise robot
control [31], [189]. Commands from this layer are relayed to mid and low-level controllers. For
example, a BCl-driven upper body exoskeleton may utilize a wearable fPCB as its control
hardware. This fPCB could contain an analog-to-digital converter circuit, power circuit, and
microcontroller. The high-level control software’s job would be to take in a raw biosignal, filter it,
convert it to a digital signal, and then analyze it to generate a command consistent with the user’s
intention. For example, “close the left hand.” This is passed on to the control software's mid- and
low-level blocks for execution.



AlIP
Publishing

L

Movement and gesture recognition selects its action output automatically based on the user's
movements or intended actions. The primary advantage of this approach is its ability to operate
without imposing any cognitive load or requiring direct input from the user, thereby enhancing the
intuitiveness and naturalness of the interaction [190]. Various sensors, both physiological and
non-physiological, or a combination of both, can be employed to detect body movements and
gestures. The most commonly employed methods include muscle activation (EMG),
spatiotemporal sensors (IMU and encoders), and haptic and pressure-based measures. Antonelli
et al. employs a model-based approach to generate a control signal for executing a desired pick-
and-place task with a robot [16]. It involves the collection of surface EMG signals from three
fingers, which are subsequently processed and sent to the action block for controlling a pneumatic
muscle. Huang et. al., presented a continuous control scheme for effective management of an
upper-limb prosthesis . This system employs eight channels of EMG signals from the human
upper limb, which model and regulate reach and grasp functions of the prosthesis. Its operation
is based on model recognition control with an emphasis on the central processing unit (CCU).
After fulfilling model identification criteria, the relevant characteristics are extracted from the raw
EMG signals, enabling the establishment of desired speeds and grasping configurations. This
study indicates the necessity of defining the intentional control state and the unintentional control
state explicitly before implementing the continuous control scheme[15]. Myoelectric control has
also been investigated, mapping EMG features to prosthetic digit positions, specifically for the
Prensilia IH2 Azzurra hand [71]. Another study integrated a blend of implanted epimysial EMG
and surface EMG to manage a 12 K50 elbow and VaryPlus Hand for tasks linked to grasping and
transferring [73]. The nonnegative matrix factorization (NNMF) method was employed to extract
synergies from sEMG signals, leveraging its nonnegativity constraint. These extracted synergies
were subsequently used for decoding intention and operating a bionic neuroprosthetic arm [191].
For enhancing the biological control interface of myoelectric prostheses post above-elbow
amputation, targeted muscle reinnervation (TMR) was explored. This method found that surgical
nerve rerouting could achieve selective activation of muscle units, leading to a multitude of
independent myoelectric control signals. SEMG biofeedback was used to train the activation of
these new muscle units, facilitating the creation of up to six control signals for a tabletop hand
prosthesis [74]. Physiological sensors can provide valuable insights into human states or
intentions. However, limitations such as slower convergence, extended processing times, or the
body's delayed physiological responses can be restrictive for certain robotic applications. As a
result, combining physiological with non-physiological data is sometimes more effective. Beck et
al. suggest that for optimal balance in exoskeletons, reactions should be faster than physiological
responses [81]. To achieve this, metrics such as center of mass (CoM) kinematics, which are
faster than physiological responses, are recommended to generate control commands. Another
research introduced a controller utilizing a finite state machine model, focusing on weight shifts
between feet to produce gait trajectories. This controller was applied to the MOTION exoskeleton
[20]. A symmetric foot force-time integral (FFTI) has been presented as a cost function to optimize
stiffness in the control of an ankle-foot prosthesis [106]. For the position control of a Baxter arm
robot, a combination of IMU and mechanomyography (MMG) sensors was employed to detect
arm gestures and transmit commands to its lower components. This method generated six analog
control signals, corresponding to the 3D Cartesian coordinates of the hands, supplemented by a
discrete control signal initiated by right-hand gestures [103]. In another approach, a hybrid mix of
facial haptic feedback, sEMG signals, and IMU data was employed to produce multiple high-level
commands for a CyberLimb arm and hand prosthesis [26]. Eye and facial gesture recognition has
been showcased as a novel method to navigate a telepresence drone, emphasizing its intuitive
nature [171].
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Figure 7. Control strategy. The inner ring (blue) represents the high-level control strategy which
defines the overall behavior of the robotic system. Inputs to this high-level controller may originate
from the user through input devices and/or sensors. The outer ring (purple) portrays the mid and
low-level control strategies. This layer dictates device-specific, continuous behaviors of the robotic
interface. The color gradient signifies the varying utilization of physiological and non-physiological
signals across control strategy categories and layers.

Brain-computer interface (BCI) technology represents an approach to information exchange,
translating brain-generated signals into machine control commands [192]. The most common BCI
signal is the motor imagery (Ml) electroencephalography (EEG) signal, owing to their spontaneity
and device independence characteristics. The main steps in the BCI control process are signal
acquisition, preprocessing, feature extraction, and classification [193]. Several advances in EEG
signal outcomes have been utilized for robotic control. For instance, a KUKA robotic arm can be
controlled using a binary coding method, which interprets four MI-EEG signals. This approach
allows the robotic arm to have seven degrees of freedom, highlighting its intricate control
mechanism [44]. Robotic aids for rehabilitation and assistance to those with physical impairments
have also been a focus. A BCI, for example, integrates with a robotic hand orthosis specifically
designed for stroke patients. Upon detecting motor intention in a paralyzed hand, the system
sends a Bluetooth command to the ReHand orthosis. This device passively moves the paralyzed
fingers, suggesting a promising direction in restoring motor functionality [45]. Similarly, an EEG
helmet has been developed to transmit control signals to the PRISMA hand 1 prosthetic, aiming
to improve mobility for those with upper limb amputations [61]. Stress mitigation in robotic
interaction has also been examined. During a hybrid Brain-Neural Computer Interface (hBNCI)
experiment involving a whole-arm exoskeleton, it was found that using EEG-based control
resulted in higher stress levels and mental workload compared to using EoG control [55]. Further
integration of technologies has led to the development of a hybrid BCI system. This system, which
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merges Electrooculography (EOG), Steady State Visually Evoked Potential (SSVEP), and Motor
Imagery (MI) inputs, effectively manages a rehabilitation interface, consisting of a UR-5 arm robot
and a three-finger Barrett hand [87]. An innovative aspect of such integrations is seen in a hBNCI.
This interface uniquely combines EEG and EOG to control a system comprising a wheelchair and
a robotic arm, allowing users to navigate and send commands via motor imagery and specific eye
movements [155]. In another direction towards merging human activity with robotic assistance, a
comprehensive analysis of human walking has resulted in the creation of a Human-Machine
Interface (HMI). This system captures electromyography signals from upper limbs and EEG
signals during exercise. Such decoded signals then control a lower limb exoskeleton robot,
translating user intent into action [194]. Additionally, the exact gaze direction of an individual,
ascertained using the SSVEP brain response to visual stimuli, has been employed to steer a user
interface for an assistive self-feeder robot [47]. These studies collectively showcase the vast
potential of EEG-based controls in robotics and rehabilitation.

Metabolic cost emerges as a compelling metric for evaluating user performance and holds
potential for application in rehabilitation and assistive robots [189]. Inspired by the biological
principles of energy conservation and efficiency seen in living organisms, researchers are
increasingly focusing on developing control methods that enable robots to manage and optimize
user’s energy consumption [195]. Since the early 2000s, researchers have actively pursued the
development of lower-limb exoskeletons to enhance human mobility, with a primary goal of
reducing the metabolic cost associated with walking and running when compared to locomotion
without such devices [196]. For instance, Human-in-the-Loop (HIL) optimization with the
covariance matrix adaptation evolutionary strategy (CMA-ES) have been used to pinpoint optimal
energetic points for controlling an ankle exoskeleton [25]. Similarly, for squatting tasks, Bayesian
optimization combined with HIL techniques has been employed to develop personalized
assistance [12]. One of the challenges posed in these studies is the metabolic cost estimation.
Traditionally, respirometry is considered the benchmark for such estimations. Researchers have
focused on accelerating the convergence process such as a phase-plane based estimator of
steady state metabolic cost [197] or Kalman filter with stopping process [198]. Yet, this method is
hampered by the need for a cumbersome and rigid measurement apparatus, which reduces its
practicality in field applications [12]. To address this, alternative approach has been introduced,
such as energy expenditure estimation through heart rate variability, specifically the root mean
square of successive differences (HRV-RMSSD) [12]. Other methods for metabolic cost
estimation during squatting with an ankle-foot exoskeleton were investigated such as muscle
synergy [24] and foot pressure measurements [10].

Explicit or manual user input selects the operational mode of the robot based on the user’s
direct inputs through buttons or voice commands. Due to their ease of implementation, high
predictability, and reduced risk of errors, this method is sometimes preferred over other complex
control methods. However, these advantages come at the cost of requiring increased user
participation, resulting in a less natural user experience, heightened cognitive load, and potential
operational slowdowns [190]. This control strategy often involves the collection of physiological
signals rather than physiological-based control. A mobile nursing robot features multiple functions,
with user commands provided through a GUI, which are then relayed to the robot's controllers
[21]. The Pepper humanoid robot is equipped to recognize emotions in children with hearing
disabilities. Children's responses on a tablet activate the robot's behaviors, with the robot reacting
to correct answers. An Empatica E4 wristband and a camera collect physiological and facial data
[19]. The EKSO GT is an active exoskeleton for gait rehabilitation, offering several operation
modes. Actuation methods include button input from a therapist, buttons on crutches or a walker
used by the patient, or the patient's body weight shifting and movement [199]. Another method
controls the EKSO exoskeleton through manual input, utilizing collected EMG and robot sensor
data to adjust the robot's functions [200]. Lastly, a knee exoskeleton employs a servo-controlled
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mechanism to apply resistance during walking, beneficial for rehabilitating individuals with
neuromusculoskeletal injuries [66].

3.2.2 Mid and low-level control

Following the high-level control, the mid and low-level control layers act as the action block of the
control strategy (Fig 7). This layer is responsible for translating high-level directives into precise,
real-time commands that the robotic hardware can execute [190]. Revisiting the example from
Section 3.2.1, a command such as “close the left hand” is broken down at this level into
instructions for individual hardware components to follow. Actuators in the wrist and fingers will
need specific directions on actuation sequence and duration. The power delivery system requires
guidance on where, when, and how much current to deliver. Translating high-level commands
and delegating executables to different hardware elements is the ultimate task of the mid and low-
level control software. This layer includes a wide range of functions, from trajectory planning and
motion control to sensor fusion and feedback control [201], [202]. Mid and low-level controllers
ensure that the robot's movements and interactions with its environment are executed with
precision and adaptability [203]. We have categorized this layer into five categories. Position
control is one of the common low-level control strategies [203], [204]. An advantage is its
compatibility with various types of actuators, making it easy to integrate into diverse robotic
systems and industries [60], [110], [157], [158], [205]. While position control offers substantial
benefits, there are limitations to the method. Most electric motors have poor torque density,
therefore, they need to operate at high speed to generate high power output. This conversion is
often achieved through a high gear ratio which incearses the reflected inertia. In case of an
unexpected contact, the shock response could result in damaging and unsafe movements [206],
[207] Force and torque control is another common low-level control strategy in robotics, enabling
robots to precisely regulate the application of force and torque in their interactions with the
environment [208]. While they offer significant benefits such as real-time contact sensing and
adaptability to dynamic surroundings, they also pose challenges, often requiring more complex
joint-level design due to the usage of force sensors, which can lead to increased manufacturing
costs and complexity [209]. Force and torque control find extensive application in rehabilitation
robotics, including exoskeletons and prostheses, when designing assistive or resistive torque
profiles [66], [109]. Impedance control, as extensively used in fields such as rehabilitation robotics
and human-robot interaction (HRI) systems [97], [210], and human motor learning research [211],
[212]. Impedance control focuses on dictating the stiffness and damping properties of the robot,
allowing it to maintain a predefined trajectory and resist deviations caused by external forces,
making it suitable for precision tasks such as manufacturing [213], [214], [215]. Using this method,
controller can physically interact with users as active components. In impedance control, the
robot's behavior is configured with parameters such as stiffness, damping, and inertia to ensure
compliance with the user or the environment, delivering assistance or resistance torque when
deviations from the intended movement are substantial [190]. It functions as a means to manage
muscle stiffness to accommodate interaction forces, regulating the force exchanged between the
robot and the environment. However, it's crucial to note that improper adjustment of impedance
filter parameters may lead to unstable contact and excessive pressure on the target environment,
emphasizing the importance of precise parameter tuning [2], [190]. Admittance control and
impedance control represent distinct approaches to regulating a robot's interaction with its
environment. Admittance control emphasizes controlling the robot's compliance and flexibility in
response to external forces. Tracking external forces while providing significant assistant torque
makes this controller suitable for rehabilitation studies [2], [216], [217]. Hence, admittance control
is advantageous in applications requiring safe human-robot collaboration [11], [158], interaction
with deformable objects, or tasks in uncertain and dynamic environments. However, high cost
due to implementation of force sensors in the joint and trajectory instability due to external noise
or contact with a rigid body can limit its use [2], [216], [218]. The choice between these control
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strategies depends on the specific requirements of the task, with impedance control prioritizing
precision and admittance control emphasizing adaptability and safety. Pressure control has
employed in various pneumatic systems, including those using McKibben-type pneumatic artificial
muscles (PAMs) [16], [50], [219]. This control approach centers on the regulation of compressed
air pressure within these systems. By managing the air pressure, pressure control enables the
safe actuation of pneumatic components, making it a key driver in robotic applications in
rehabilitation [16], [44], where controlled and precise movements are essential. However, the
system is often challenged to maintain precise pressure levels over extended periods due to
issues such as air leakage, temperature variations, and limited response time [220], [221].

4. User Interfaces

The intersection of biosignal-integrated wearable robotics and user interfaces is foundational for
human-machine synergy. As technology evolves, so too do the demands and expectations of
users, leading to a diversifying landscape of interfaces. Recent literature highlights this
transformation, revealing a gradient of interfaces that range from traditional lab settings to
sophisticated augmented reality platforms. Interface design is ultimately driven by the specific
application the system is intended for. This determines what type of interface hardware to use
and which information is critical for the Ul to display. Especially relevant to biosignal-integrated
wearable robotics is feedback — visual cues and status indicators to update the user on key
changes in a dynamic environment. Above all else, however, an easy-to-use interface tends to
be the most successful. This incorporates visual clarity, consistency in navigation and
organization, and simplicity. Current research in biosignal-integrated wearable robotics
recognizes the key role of user interfaces and is adapting to develop best practices for their design
further. Fig. 8 visually represents these interfaces, plotted within quadrants, delineating their
integration with robots and sensors. This categorization offers a clear snapshot of the current
interface ecosystem, showcasing varying complexity and integration. This section will further
delve into three prominent categories: basic lab GUIs, mobile apps, and extended reality
platforms.



ing

AIP
Publishi

—

L

Without sensors With sensors

(2]
-
[]
K]
o
—
=
=
; TO MY BRAINY HOME !
e g
<& g
Feed MYSELF
5’ g max(4,,,)
o v Current
2 ° Angle (0)
< <
8 e
ﬂ Video Real & T max(d,,)
o cues object 44
Ke) Signals |
monitoring
g
)
=
o =3 -8
=
=
- A
= v
Display screen
Subject g

Figure 8. Approaches for visualization integration. Used to (a) send simple controls to
exoskeleton. Reproduced according to the terms of the CC BY license [20]. Copyright 2021, IEEE,
(b) send low level behaviors (e.g., directional control) and high-level behaviors (e.g., grasping
control) to robot. Reproduced with permission [152]. Copyright 2017, IEEE, (c) match orientation
of visualized puzzle pieces to the rotation of robot control arm. Reproduced with permission [93].
Copyright 2022, |IEEE, (d) provide real-time position information on robot end-effector.
Reproduced with permission [11]. Copyright 2022, ASME, (e) enable visual feedback on correct
identification of motor intention. Reproduced according to the terms of the CC BY license [45].
Copyright 2021, Frontiers Media SA, (f) provide reliable assistance to grasp a real object.
Reproduced according to the terms of the CC BY license [55]. Copyright 2019, MDPI, (g) show
real-time content acquired by a Microsoft Kinect camera. Reproduced according to the terms of
the CC BY license [87]. Copyright 2019, Sage Journals, (h) to display real-time physiological
signals (e.g., ECG, oxygen saturation, and corporal temperature) and select robot modes for
assistance. Reproduced with permission [21]. Copyright 2022, Springer Nature, (i) to control robot
response movement and visualize real-time physiological signals (e.g., joint angle, plantar
pressure, and pneumatic muscles). Reproduced with permission [219]. Copyright 2018, IEEE, (j)
enable robotic assistance (e.g., feeding) and control of home appliances via EEG signals.
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Reproduced with permission [47]. Copyright 2018, IEEE, (k) provide real-time feedback of hip and
knee joint angles as bar plots. Reproduced with permission [66]. Copyright 2021, Elsevier, and (l)
control the location of the virtual balls using IMU sensors. Reproduced according to the terms of
the CC BY license [103]. Copyright 2019, Elsevier.

4.1 Basic lab GUIs

In the realm of biosignal-integrated wearable robotics, traditional screen-based graphical user
interfaces (GUIs) remain an integral tool. Out of the papers reviewed in this category, many
emphasized the importance of GUIs that are either directly embedded onto the robotic system or
presented through dedicated computer applications. Such interfaces, primarily designed for lab
settings, are appreciated for their precision, real-time feedback mechanisms, and adaptability. The
integration of GUIs in healthcare and rehabilitation settings is paramount [222], enhancing both
patient experience and clinical outcomes. Mireles et al. recognized the significance of real-time
data, employing Matlab's GUIDE-based GUI to offer immediate clinical insights [21]. Similarly,
Cantillo et al. incorporated a Bluetooth-enabled command mechanism in a robotic hand orthosis,
providing empathetic feedback via facial expressions on a screen [45]. Uluer et al. introduced a
custom GUI that synergized with a humanoid robot to facilitate interactive audiometry tests for
children with hearing disabilities [19]. Li et al. developed a Windows 10-based control software
for an exoskeleton, decoding motor intent from EEG and sEMG signals with 99% accuracy,
exemplifying the seamless blend of biosignals and robotics in modern rehabilitation [194].
Exoskeletons, as extensions of the human body, require interfaces that ensure intuitive human-
robot interactions. Zhang et al. presented a pediatric lower-limb exoskeleton, accentuating the
importance of a GUI accessible via both a host PC and touchscreen [20]. Ai et al. employed a
GUI for an ankle rehabilitation robot, aiding therapists in formulating rehabilitation strategies [219].
Kim et al. explored the influence of visual feedback on users of a robotic ankle exoskeleton [18].
Through a dedicated GUI, users received real-time visual guidance on walking patterns,
emphasizing the pivotal role of GUIs in optimizing human-exoskeleton synergy. In experimental
settings, GUIs play a crucial role in standardizing procedures and ensuring replicability. Shi et al.
[223] and Batres-Mendoza et al. [60] employed GUIs to streamline and inform experimental flow.
Shao et al. implemented a GUI-based simulation enabling users to control a virtual robot through
EEG [224]. Hu et al.'s 2022 study leveraged a gamified GUI, allowing users to interact physically
with a robot through a visual game [93]. Krasoulis et al. emphasized the significance of real-time
feedback in myoelectric control research, using a GUI to guide participants in mimicking specific
hand motions, underlining the crucial role of GUIs in real-time experimental validation [71].
Adaptable GUIs, tailored to specific user needs, hold immense potential in diverse applications.
Vita et al. [225] and Sorbello et al. highlighted the necessity of adaptive interfaces for specialized
user groups, such as children with ADHD or patients with ALS [152], [226]. Tabbal et al.
introduced a versatile GUI that seamlessly transitioned between robotic arm control and
managing home appliances, exemplifying the vast potential of GUIs in bridging the gap between
healthcare and everyday life [47].

4.2 Mobile applications

In the contemporary digital era, the proliferation of mobile devices such as smartphones and
tablets has engendered a paradigm shift in interface mechanisms for wearable robotics. The work
by Leng et al. exemplifies this evolution [38]. This research delineates the integration of a mobile
application with wearable robotic systems via Bluetooth connectivity. This interface elegantly
translates user commands, such as "play", "previous song", and "next song", underscoring the
convergence of routine user interactions with the complexities of robotic systems. Furthermore,
Seppich et al.’s research elucidates the transformative potential of mobile devices in the realm of
robotic prosthetics [26]. By leveraging the Samsung Galaxy S3 as a control interface, the study
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accentuates the pivotal role of ubiquitous mobile platforms in facilitating intuitive and seamless
human-machine interactions.

4.3 Extended reality

The immersive nature of extended reality, encompassing both virtual and augmented reality,
offers a fresh perspective on user interfaces. The papers in this domain showcased the prowess
of three-dimensional, simulated environments that can emulate real-world scenarios, be it for
training, visualization, or therapeutic purposes. For instance, the work of Yeung et al. delves into
a virtual experimentation realm where participants navigated a two-dimensional space, engaging
with targets through varied controllers [227]. This exploration underscores the vast potential of
virtual environments in enhancing user feedback mechanisms and fostering interactivity. Further
emphasizing the immersive capabilities of XR, Wang et al. introduced an approach wherein real-
time imagery from drone-mounted cameras was relayed to virtual reality headsets [171]. This
integration not only facilitated an enriched visual experience but also harnessed human facial
expressions and ocular movements to control the drones, accentuating the symbiotic relationship
between user and machine. Zhu et al., while not elaborating on the specific intricacies of the
interface, underscored the significance of immersive feedback within virtual environments [156].
Such feedback mechanisms, especially in the context of wearable robotics, serve to augment
user experience and inform real-time interactions. Wilson et al. ventured into the domain of
immersive robot teleoperation, leveraging virtual reality to ascertain the potential applications of
IMUs [103]. The study highlighted the role of XR in expanding the horizons of experimental
methodologies and user engagement. Li et al. delved further into teleoperation, integrating
augmented-reality glasses with a reinforcement learning algorithm to carry out multi-robot
collaboration [228]. In summation, the user interfaces in biosignal-driven wearable robotics are
undergoing a transformative phase. As evidenced by the categorizations in Table 1, a substantial
portion of the reviewed literature integrates aspects of visualization, robotics, and sensors. As
technology continues to evolve, so does the canvas on which human-machine interactions are
painted. These interfaces, whether they are traditional GUIs, mobile apps, or immersive extended
reality platforms, are testimonies to the field's commitment to user-centric designs. Future
endeavors in this domain will undoubtedly prioritize the fusion of functionality with an unparalleled
user experience.

Table 1: Categorization of PRISMA-reviewed articles in biosignal-driven wearable robotics.

Includes Includes Robotics Includes
Sensors Visualization

Reference(s)

[18], [19], [21], [26], [45], [47], [48],
[55], [58], [59], [60], [62], [71], [78],
1831, [86], [87], [88], [89], [133], v v v
[134], [156], [171], [191], [194],
[219], [223], [227]
(11, (2], [3], [4], [5], [6], [7], [8]. [9],
[10], [12], [14], [15], [16], [17], [22],
[23], [24], [25], [39], [42], [44], [46],
[50], [51], [52], [53], [54], [56], [57],
[61], [64], [65], [67], [68], [69], [70], v
[72], [73], [74], [73], [76], [77], [79],
(801, [81], [82], [95], [96], [97], [101],
[104], [106], [107], [109], [110],
[111], [112], [113], [155], [157],
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[158], [172], [196], [199], [200],
[205], [225], [226]

[38], [43], [66], [103], [135], [224] v v
[11], [20], [93], [94], [152], [228],
[229]

5. Future Directions and Conclusion

Exciting new techniques for biosignal-integrated robotics systems are emerging, utilizing novel
materials, control strategies, and fabrication techniques. Of particular interest is the development
of new visualization methods, which bridge a critical gap in traditional HCI/BCI technologies by
actively engaging the human user in an aware and active part of the signal path. In this new era
of research, biosignal-integrated robotics with visualization are being designed with harmony as
the guiding principle. This entails making design choices for constituent components with the
overall system’s performance as the primary evaluation platform. This may involve deviating from
traditional designs and manufacturing techniques to further enhance biosignal quality, optimize
robot design and control, and leverage the numerous capabilities offered by visual interfaces.
Despite the progress, many challenges persist in seamlessly integrating human biosignals,
robotics, and visual interfaces. For example, power delivery is expected to become a significant
concern for certain wearable systems in the near future, particularly as they transition from lab
environments to field use. Fixed power cables and stabilization equipment will no longer be
feasible options. Complex wearable systems like exoskeletons will need slimmer and lighter form
factors to provide practical benefits to most users. This will necessitate optimizing power
consumption, battery design, structural component strength-to-weight ratios, and other factors.
Personalization of robots is yet another complex challenge that must be addressed to enhance
effectiveness and usability, especially in assistive robots. While integrating biosignals and robotics
poses its own set of obstacles, the visualization aspect adds a layer of complexity. Ensuring real-
time, intuitive, and unobtrusive visual feedback is crucial for user comprehension and interaction
efficacy. Striking the right balance between the richness of visual data and the cognitive load it
imposes on the user is essential. Optimizing display technologies for power efficiency, outdoor
readability, and adaptability to varying user needs is essential. The landscape of future
applications of the systems reviewed here is incredibly diverse and rapidly expanding. We
anticipate that popular existing use cases, such as rehabilitation devices, will continue to be in
demand as advances in sensors, robotic performance, and visualization technology improve their
efficacy. Other clinical applications also stand to benefit from these developments. Examples
include communication systems, environmental manipulation robots for patients lacking muscular
control, and assistive robots for surgical procedures. In the foreseeable future, the evolution of
human-in-the-loop control for robotic systems will be characterized by adopting sophisticated and
hybrid control strategies, harnessing and analyzing multiple physiological and non-physiological
signals. Additionally, some emerging cases aim to identify highly correlated alternative
physiological or non-physiological measures, enabling the estimation of the original measure,
thereby enhancing robotic systems’ portability, usability, and speed. These advances may enable
future devices to be deployable in the field in numbers not yet achieved. For example,
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exoskeletons to assist manual labor in warehouses, factories, and construction sites could reduce
occupational injuries and increase productivity for thousands of workers worldwide. Less common
applications, such as nursing robots, may see expanded adoption as our society increasingly
accepts human-robot interactions in daily life. New social robot designs could offer telemedicine,
package delivery, and customer service improvements. New applications could represent fertile
ground for significant expansion in biosignal-integrated robotics. The defense industry, for
instance, is a major potential player in this arena. For example, the United States Army has
recently completed trials of the Microsoft HoloLens mixed-reality goggles and is poised to adopt
a custom system version [230]. Commercial wearable sensors are already being tested to monitor
troops’ vital signs and stress levels [231]. Robots have long been utilized for military situations
requiring enhanced range, speed, and precision (e.g., unmanned aerial vehicles) [232] or tasks
too hazardous for troops (e.g., disposal of unexploded ordnance) [233]. A natural progression
appears to be sharing data between these elements for seamless communication within an
integrated system. Biosignal-integrated robotics continuously evolve to achieve higher
performance and cater to a wider variety of users. Recent developments include novel
nanomaterial-based sensor designs, incorporating metabolic cost into robotic control, and
integrating new XR visualization techniques. This review has divided integrated systems into three
distinct components: sensors, robotics, and the emerging field of visual interfaces. Physiological
sensing encompasses the measurement of potentials generated by the human body, such as
those arising from natural bioelectrical currents or mechanical deformation. The design space of
physiological sensors is expanding to encompass accurate devices applying novel materials and
synthesis methods, improving skin conformality, reducing noise and interference, and enhancing
breathability. Robots form the foundation of many of the systems covered in this review. Various
form factors, from wearable exoskeletons to humanoid social robots, provide dynamic benefits,
including physical assistance, real-time health monitoring, and haptic feedback. Visual interfaces,
long overlooked, are now gaining prominence. With the proliferation of extended reality devices,
richer and more immersive visual experiences are becoming available, benefiting HMI systems
by providing detailed monitoring and feedback on user actions and statistics. Overall, highly
integrated robotic systems leveraging biosignal feedback control and seamless data visualization
are gaining traction among diverse user bases. These highly adaptable devices pave the way for
further advancements in biotechnology, healthcare, and numerous other fields.
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