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Designing phase sensitive probes of monopole superconducting order
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Distinct from familiar s-, p-, or d-wave pairings, the monopole superconducting order represents a novel class
of pairing order arising from nontrivial monopole charge of the Cooper pair. In the weak-coupling regime, this
order can emerge when pairing occurs between Fermi surfaces with different Chern numbers in, for example,
doped Weyl semimetal systems. However, the phase of monopole pairing order is not well-defined over an entire
Fermi surface, making it challenging to design experiments sensitive to both its symmetry and topology. To
address this, we propose a scheme based on symmetry and topological principles to identify this elusive pairing
order through a set of phase-sensitive Josephson experiments. By examining the discrepancy between global
and local angular momentum of the pairing order, we can unveil the monopole charge of the pairing order,
including for models with higher pair monopole charge |qp| = 1, 2, and 3. We demonstrate the proposed probe
of monopole pairing order through analytic and numerical studies of Josephson coupling in models of monopole
superconductor junctions. This work opens a promising avenue to uncover the unique topological properties
of monopole pairing orders and to distinguish them from known pairing orders based on spherical harmonic
symmetry.
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I. INTRODUCTION

Monopole superconducting order [1] is an exotic family of
three-dimensional topological superconducting orders. This
pairing order arises from the nontrivial geometric phase of
Cooper pairs [2] formed between two Fermi surfaces with
different Chern numbers, which can occur in weak-coupling
superconducting materials supporting Weyl Fermi surfaces
[3–6]. For example, when superconductivity is developed
in a three-dimensional inversion symmetric magnetic Weyl
system, intrinsically or by proximity, monopole harmonic
pairing exists as the zero center-of-mass momentum pair-
ing between two inversion-related Fermi surfaces enclosing
Weyl points of opposite chiralities [1,7,8]. Unlike many other
known topological superconductors, where only Bogoliubov-
de Gennes (BdG) quasiparticle states cannot be adiabatically
connected to a Bose-Einstein condensate [9,10], the pair-
ing order of a monopole superconductor also fails to be
globally well-defined over the entire Fermi surface due to
topological obstruction in the U(1) pairing phase. The topo-
logical obstruction in the pairing order also fundamentally
changes the symmetry representation: monopole pairing or-
der is no longer describable by familiar symmetry in terms
of s-, p-, and d-waves based on spherical harmonics but
is rather characterized by the so-called monopole harmonic
functions [1,7,11,12]. Moreover, the existence of pairing
nodes in monopole superconducting order is independent of
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specific pairing mechanisms and is instead dictated by
nonzero monopole charge of Cooper pairs, which results in
unconventional pairing with nontrivial winding of pairing
phase over an entire Fermi surface [1,2].

It has been known that, in the presence of a magnetic
monopole in real space, the orbital angular momentum of a
charged particle is no longer conserved. However, the total
angular momentum, which includes the angular momentum of
the electromagnetic field, remains conserved in both classical
and quantum scatterings of charged particles [13,14]. In a
monopole superconductor, Cooper pairs scatter in the pres-
ence of a momentum space “magnetic” monopole. The total
angular momentum of the pairing order, which we refer to
as the “global angular momentum,” includes the contribution
from the pair Berry flux and is a conserved physical observ-
able that characterizes the global symmetry of the pairing
order. However, even though the global angular momentum
is conserved, the pairing order is not well-defined globally,
i.e., for any choice of gauge, there exists at least a singular
point at the Fermi surface at which the pairing phase cannot
be well-defined. Only away from the singular point is the
pairing order locally well-defined and able to be described in
terms of spherical harmonic functions, which determine the
“local angular momentum” of the pairing order. The shift, or
say, the discrepancy, between the conserved global angular
momentum and local angular momentum is a unique signature
of the monopole charge of the pairing order.

To detect superconducting pairing symmetries, phase-
sensitive experiments have long played an essential role
[15–21]. For example, the dx2−y2 pairing symmetry of a
high-temperature cuprate superconductor has been revealed
by a corner Josephson junction. The relative sign difference
of the pairing order along the a and b axes of a cuprate
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superconductor leads to a destructive Fraunhofer interference
pattern at zero magnetic flux [20]. For p-wave topological su-
perconductors, Majorana modes localized at boundaries have
been proposed to contribute to single particle tunneling and
the 4π -periodic Josephson current phase relation [22–29]. For
monopole pairing order, the pairing phase is not well-defined
over an entire Fermi surface, making it challenging to design
experiments sensitive to both its symmetry and topology.

We propose a phase-sensitive approach to address the out-
standing question of experimentally identifying the monopole
superconducting order. Guided by symmetry and topological
principles, we develop the design of a set of Josephson junc-
tions that can extract the shift between the global and local
angular momentum of the monopole pairing order, thereby
determining the pair monopole charge. Specifically, we in-
vestigate two classes of Josephson junctions and study the
Josephson currents in these junctions by combining linear
response and numerical tight-binding calculations. The first
class consists of junctions aligned along the common high-
symmetry rotational axis between a monopole superconductor
and a superconductor with known spherical harmonic pairing
symmetry. This junction probes the global angular momentum
of the monopole pairing order, as only when the angular mo-
mentum components at two sides of the junction are identical
does the system exhibit nonzero first-order Josephson cou-
pling. The second class consists of junctions between identical
monopole superconductors, probing the local pairing symme-
try at the momenta conserved at the junction interface. Our
investigation provides guiding principles for designing phase-
sensitive experiments to probe the exotic monopole pairing
order and distinguish it from all known superconducting or-
ders with spherical harmonic symmetry.

This paper is organized as follows. In Sec. II, we dis-
cuss the first-order Josephson coupling between two uniform
superconductors based on linear response theory, initially
considering spin-orbit interactions at the interface and then
extending to spin-orbit coupling in the bulk, emphasizing
the role of the symmetry of superconducting orders in terms
of a scattering form factor in this microscopic formula-
tion. In Sec. III, we focus on Josephson junctions involving
monopole superconductors, first deriving the form factor dis-
cussed in Sec. II based on linear response theory, and then
analyzing the symmetry and topological principles which are
independent of microscopic tunneling processes. We propose
designing Josephson junctions aligned along or perpendic-
ular to the high-symmetry rotational axis of the monopole
superconductor to reveal the shift between the global and
local angular momentum of the pairing order and extract
the pair monopole charge. In Sec. IV, we design Joseph-
son junctions to extract the global angular momentum of
the monopole superconducting order, presenting results from
both linear response theory and numerical results of a tight-
binding model. Section V explores the design of Josephson
junctions to probe the local angular momentum component
by considering junctions between identical monopole su-
perconductors. Finally, Sec. VII addresses the presence of
spin-orbit interactions at the junction interface, proposing
additional junction designs to distinguish monopole super-
conducting order from chiral spherical harmonic pairing
orders.

II. FIRST-ORDER JOSEPHSON COUPLING IN THE
PRESENCE OF SPIN-ORBIT COUPLING

In this section, we employ linear response theory to
derive the first-order Josephson coupling [30,31] in a
superconductor-insulator-superconductor (SIS) junction in
the presence of spin-orbit coupling in the bulk of the su-
perconductors. Initially, we examine the scenario where only
spin-orbit interactions occur at the junction interface, as-
suming the absence of spin-orbit coupling in the bulk. We
emphasize the role of a form factor, which determines the
symmetry selection rules for the first-order Josephson current.
Then, we additionally consider spin-orbit coupling in the bulk
of superconductors. In the weak-coupling regime, by project-
ing to states near Fermi surfaces, we demonstrate that the bulk
spin-orbit coupling can be treated as an effective interface
spin-orbit interaction. Using this formalism, we can obtain
the first-order Josephson current in the presence of spin-orbit
interactions in the bulk superconductors or at the interface.

We restrict our consideration to the Josephson effects
between two uniform superconductors separated by a thin
insulating barrier, as described by the following Hamiltonian:

HJJ = HBdG,L + HBdG,R + Hlink. (1)

Here, we use subscripts L and R to denote the two sides
of a junction, irrespective of its spatial orientation. The
Bogoliubov-de-Gennes (BdG) Hamiltonians HBdG,α=L,R of
the superconductors on opposite sides of the junction gener-
ally take the form

HBdG,α =
∑
k

′
�†

α (k)

(
Hkin,α (k) �α (k)eiφα

�†
α (k)e

−iφα −HT
kin,α (−k)

)
�α (k),

(2)
where

∑′
k denotes the sum over half the Brillouin zone and

�α (k) = (cα,k,↑, cα,k,↓, c†α,−k,↑, c†α,−k,↓)
T denotes the annihi-

lation operator of Nambu spinor. Here, cα=L(R),k,σ annihilates
a single-particle state with momentum k and spin σ =↑, ↓
at the left (right) side of the junction. Hkin,α is the kinetic
Hamiltonian kernel defined in the particle-hole channel, and
�αeiφα is the superconducting pairing matrix defined in the
particle-particle channel with the overall U(1) pairing phase
eiφα separated out here. Hlink describes the single particle tun-
nelings across the insulating junction link and takes the form
of the Bardeen-Josephson Hamiltonian [15,32,33] as follows:

Hlink =
∑
k,k′

∑
σ,σ ′=↑,↓

Tσ,σ ′ (k,k′)c†R,k,σ cL,k′,σ ′ + H.c. (3)

The tunneling amplitudes Tσ,σ ′ (k,k′) form a 2 × 2 matrix
T (k,k′) which can be decomposed into spin-independent
and spin-dependent tunneling amplitudes as T (k,k′) =
T0(k,k′)σ0 + T(k,k′) · σ, where σ0 and σi=x,y,z are the
identity and Pauli matrices in spin space. T(k,k′), the spin-
dependent tunneling amplitude, results from the spin-orbit
interactions at the junction interface. The results are also
generalizable to systems with additional internal degrees of
freedom, like valley or orbital.

We now derive the first-order Josephson current in this SIS
junction at zero bias, where the dissipationless DC Josephson
current running in thermal equilibrium is the only contributor
to the tunneling current through the junction. Using linear
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response theory, to first order in the perturbation Hlink in the
expansion of the thermal weight e−βHlink with β = 1/(kBT ),
the DC Josephson current is given by

IJ (φ) = limδ→0+
2e

h̄
Im

{
1

β

∑
ipn

∑
k,k′

Tr[FL(k, ipn − iδ)

× T T(−k,−k′)F∗
R (k, ipn)T (k,k′)]

}
,

(4)

where φ = φR − φL is the overall U(1) phase difference
of superconducting pairing across the junction, the trace is
taken over spin space, and pn = (2n + 1)π/β with n ∈ Z are
fermion Matsubara frequencies. Fα (k, ipn) is the anomalous
Green’s function of the unperturbed BdG Hamiltonian HBdG,α

in Eq. (2). Generally, the total first-order Josephson current
can be expressed as

IJ (φ) = Ic sin(φ), (5)

in which Ic is the Josephson critical current at zero bias.
When the band Hamiltonian Hkin,α has no spin

dependence and when the pairing is unitary, �†� ∝ σ0,
the anomalous Green’s function Fα (k, ipn) can be
simplified to −eiφα�α (k)/(p2n + E2

α,k ). Here, Eα,k =√
ξ 2
α,k + Tr(�†

α (k)�α (k))/2 is the dispersion of the
unperturbed BdG quasiparticle on the α side of the junction
with ξα,k being the spin-degenerate band dispersion. The form
of F (k, ipn) for more general pairings, including non-unitary
spin triplet pairing, is shown in Appendix A 1.

The trace part of Eq. (4) can be regarded as the following
product of three distinct factors:

1

β

∑
ipn

Tr[· · · ] = e−iφw(EL,k′ ,ER,k;β )F(k,k′). (6)

Here, the first term e−iφ gives rise to 2π periodicity with
respect to the pairing phase difference φ in the Josephson
current IJ (φ). This reflects the first-order process correspond-
ing to a single Cooper pair tunneling through the junction
barrier. The second term w(EL;k′,ER,k;β ) ≡ 1

β

∑
ipn
(p2n +

E2
L,k′ )−1(p2n + E2

R,k )
−1 includes the temperature dependence

and contribution from the unperturbed BdG quasiparticle
energy dispersions, Eα,k. After frequency summation, it
becomes

w(EL;k′,ER,k;β )

= 1

4EL,k′ER,k
limω→0+

[
(nF (EL,k′ ) − nF (ER,k ))

×
(

1

EL,k′ − ER,k − iω
+ 1

EL,k′ − ER,k + iω

)
+ (1 − nF (EL,k′ ) − nF (ER,k ))

×
(

1

EL,k′ + ER,k + iω
+ 1

EL,k′ + ER,k − iω

)]
, (7)

where nF is the Fermi-Dirac distribution.
The last and the most essential term is the form factor

F(k,k′), defined as

F(k,k′) ≡ Tr[�L(k′)T T(−k,−k′)�∗
R(k)T (k,k′)]. (8)

Though the magnitude of the form factor depends on the
microscopic details of tunneling at the junction interface via
T (k,k′), whether it vanishes or not is sensitive to the super-
conducting orders at the two sides of the junction, �L and �R,
as well as the symmetry of the junction geometry. Therefore
the form factor F(k,k′) gives rise to symmetry selection rules
which determine whether the first-order Josephson current
vanishes.

To demonstrate the symmetry selection rule provided by
the form factor, consider a Josephson junction between a spin
singlet and a spin triplet superconductor without spin-orbit
coupling in the bulk superconductors but with spin-dependent
tunneling at the junction interface. The pairing matrices of
superconductors at two sides of the junction generally take the
form �L(k) = dL,0(k)iσy and �R(k) = (dR(k) · σ )iσy, with
dL,0(k) the spatial part of the singlet pairing order and dR(k)
the d-vector of the triplet pairing order [34,35]. Employing
trace identities of Pauli matrices, we simplify the form factor
for this singlet-triplet junction, denoted as Fsing-trip, to the
following form:

Fsing-trip(k,k′) = 2dL,0(k′){T0(−k,−k′)d∗
R(k) · T(k,k′)

− id∗
R(k) · [T(k,k′) × T(−k,−k′)]

−T0(k,k′)d∗
R(k) · T(−k,−k′)}. (9)

Consequently, in the absence of spin-orbit interaction at junc-
tion interface, T(k,k′) = 0, the form factor vanishes and
forbids first-order Josephson coupling. This reflects the sym-
metry principle that when pairing orders are in different total
spin channels, the first-order Josephson coupling vanishes in
the system where spin and orbital angular momentum are
separately conserved.

Further consider Rashba-type spin-orbit interaction at the
junction interface, as will be used later in Sec. VII, which
has the form T(k,k′) = TSO(n̂ × k̂)δk,k′ , with n̂ being the
junction orientation. The form factor reduces to

Fsing-trip(k,k′) = 4T0TSOdL,0(k′)[n̂ · (k̂ × d∗
R(k))]δk,k′ , (10)

where we take T0(k,k′) = T0, a constant, for
simplicity. Together with Eq. (4), the first-order
Josephson current takes the form, IJ = (8e/h̄)T0TSO
Im[e−iφ

∑
k w(EL,k,ER,k;β )dL,0(k)n̂ · (k̂ × d∗

R(k))], which
agrees with the result obtained by Geshkenbein and
Larkin [36]. Then, when dL,0(k′) = �L,0 for an s-wave
superconductor, dR(k) = �R,0(0, 0, (kx + iky)/kF ) for
a chiral p-wave triplet superconductor with total spin
sz = 0, and the junction is oriented along n̂ = ẑ ‖ dR, the
form factor in Eq. (10) vanishes, forbidding first-order
Josephson coupling even though there is nonvanishing
Rashba spin-orbit interaction. This result can be understood
from the following spin symmetry selection rules. In the
spin-independent tunneling channel, as the singlet and triplet
superconductors have different total spins, their first-order
Josephson coupling is zero. In the spin-dependent tunneling
channel, the junction geometry determines the form of
Rashba spin-orbit interaction as consisting of only in-plane
spins which change sz, the total spin-z component of the
Cooper pair, by 1. However, sz of the pairing orders at
two sides of the junction are identical, sz = 0. Hence, the
first-order Josephson coupling in this example vanishes.
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In this work, to take into account spin-orbit couplings in
bulk topological superconductors, we introduce a convenient
formalism to treat the spin-orbit coupling in terms of effective
spin-dependent tunneling at the junction barrier. We consider
the tunneling of band eigenstates through the junction, where
Hlink in Eq. (3) now takes the form

Hlink =
∑

k,s;k′,s′
T (b)
s,s′ (k,k′)ψ†

R,k,sψL,k′,s′ + H.c. (11)

Here, ψα,k,s with α = L(R) annihilates a band eigenstate with
band index s = ± and momentum k at the left (right) of the
junction. For a generic two-band Hamiltonian,ψα,k,s is related
to the annihilation operators in spin basis, cα,k,σ , by a uni-
tary transformation, ψα,k,s =∑σ=↑,↓[U

†
α (k)]s,σ cα,k,σ , where

Uα (k) encodes the spin-orbit coupling in band Hamiltonian
Hkin,α (k). It is convenient to define the complex four-vector
(uα,0(k),uα (k)), such that Uα (k) = uα,0(k)σ0 + uα (k) · σ,
with uα,i=0,··· ,3(k) being complex functions. Correspondingly,
the tunneling matrix defined in the band representation,
denoted by the superscript “b”, is given by T (b)(k,k′) =
U †
R (k)T (k,k′)UL(k′) with T (k,k′) defined below Eq. (3) in

the spin basis. Therefore, even in the absence of bare spin-
orbit interaction at the junction interface, T(k,k′) = 0, the
effective tunneling in the band eigenbasis takes the following
form:

T (b)(k,k′) = T (b)
0 (k,k′) + T(b)(k,k′) · σ, (12)

where T (b)
0 (k,k′)= T0(k,k′)(u∗

R,0(k)uL,0(k′)+u∗
R(k) · uL(k′))

and T(b)(k,k′) = T0(k,k′)(u∗
R,0(k)uL(k

′) + u∗
R(k)uL,0(k′) +

iu∗
R(k) × uL(k′)). For most parts of the manuscript, we con-

sider the case of zero bare interface spin-orbit interaction
for simplicity. We discuss the results when the bare interface
spin-orbit coupling T(k,k′) �= 0 in Sec. VII.

Furthermore, in a weak-coupling superconductor, we can
project its pairing order to low-energy states near the
Fermi surfaces participating in Cooper pairing. For pair-
ing order already expressed in the band representation
�(b)

α (k) = U †
α (k)�α (k)U ∗

α (−k), we capture the key ingre-
dients of the low-energy pairing by focusing on the Fermi
surface projected pairing order in this representation, defin-
ing �

(bp)
α (k) ≡ P(b)

+ �(b)
α (k)P(b)

+ , where P(b)
+ = diag(1, 0) is

the projection operator in band representation. Here, with-
out loss of generality, we have ordered the band basis so
that the states at the Fermi surface of interest correspond
to the first eigenvalues in the particle and hole parts (see
Appendix B). The superscript “bp” denotes the band diagonal
basis with bands projected to the Fermi surfaces of inter-
est. The anomalous Green’s function of the corresponding
BdG Hamiltonian in this band projected basis takes a sim-
ple form, F (bp)

α (k, ipn) ≈ −eiφα�
(bp)
α (k)/(p2n + E (bp)2

α,k ). This
form is analogous to the simplified form of Fα (k, ipn) in the
case of spin degenerate band and unitary pairing. However,
here, the energy of the BdG quasiparticle is given by E (bp)

α,k =√
ξ
(bp)2
α,k + Tr(�(bp)†

α (k)�(bp)
α (k)), where ξ

(bp)
α,k is the dispersion

of the band that forms the Fermi surface. The expression
of the form factor in Eq. (8) now reduces to F(k,k′) =
Tr[�(bp)

L (k′)T (b)T(−k,−k′)�(bp)∗
R (k)T (b)(k,k′)], where the

pairing and tunneling matrices are in the projected band basis.

We use this band projected form factor to analyze Josephson
junctions of monopole superconductors, as demonstrated in
the following section.

III. JOSEPHSON COUPLING IN JUNCTIONS
OF MONOPOLE SUPERCONDUCTORS

Having discussed the form of the first-order Josephson cur-
rent in a general SIS junction, our focus turns to junctions that
include monopole superconductors. This discussion unfolds
in two different approaches. We first derive the form factor
that determines the Josephson current using the microscopic
derivation based on linear response theory, as discussed in
Sec. II. We work in the weak-coupling regime, projecting the
pairing order to low-energy states that comprise the Fermi
surface. Secondly, we supplement the first approach with a
discussion based on the underlying symmetry and topological
principles, which are essential in designing a set of Josephson
junctions to probe the monopole superconducting order.

A. Microscopic derivation of Josephson coupling for monopole
superconductors

We first extend the results from linear response theory
in Sec. II to determine the first-order Josephson current for
junctions that include monopole superconductors. Monopole
pairing order is an exotic class of topologically obstructed
pairing order that arises from the nontrivial Berry phase of
Cooper pairs. This, for example, can arise when pairing oc-
curs between two Fermi surfaces FS1 and FS2 with different
Chern numbers, C1 and C2 respectively, in doped time-reversal
symmetry broken Weyl semimetals in three dimensions [1].
In the weak-coupling regime, we describe this system us-
ing mean-field BdG Hamiltonian in Eq. (2), with its Nambu
spinor modified to �(k) = (c1;k,↑, c1;k,↓, c†2;−k,↑, c†2;−k,↓)

T to
describe the inter-Fermi surface pairing �inter (k) between
parity-related FS1 and FS2, where ci;k,σ denotes the annihila-
tion operator of an electron on FSi (i = 1, 2) with momentum
k and spin σ =↑, ↓. Correspondingly, the BdG Hamiltonian
kernel takes the following form:

HBdG(k) =
(
Hkin,1(k) �inter (k)

�
†
inter (k) −HT

kin,2(−k)

)
. (13)

Here, we suppress the subscript α = L,R when only dis-
cussing the bulk superconductor residing at one side of the
junction in this and later sections.

We use the following two-band models to describe the two
topological Fermi surfaces with nontrivial Chern numbers C1
and C2:

Hkin,1(k = K0 + k̃) = h1(k̃) · σ − μ1, (14a)

Hkin,2(k = −K0 + k̃) = h2(k̃) · σ − μ2, (14b)

where k̃ is the momentum relative to the corresponding Weyl
nodes at ±K0 and hi(k̃) denotes the pseudo “magnetic” field
in momentum space which determines the chirality of Weyl
node at K0 (−K0) for i = 1 (i = 2). There are helical eigen-
states χi,s(k̃) of Hkin,i in which i = 1, 2 refers to the valley
index and s = ± denotes the band index. Here, we use s = +
to denote the band at the Fermi level. The Fermi surfaces have
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Chern numbers Ci = (1/2π )
∮
FSi

�i(k̃) · dSk̃, where �i(k̃) =
∇k̃ × 〈χi,+(k̃)|i∇k̃|χi,+(k̃)〉 is the corresponding single parti-
cle Berry curvature.

The inter-Fermi surface pairing, �inter;σ,σ ′ (k) ∼
〈c2;−k,σ ′c1;k,σ 〉 in the spin-↑,↓ representation, describes
the zero center-of-mass momentum pairing, since FS1 and
FS2 are related by parity. In the weak-coupling regime,
superconducting pairing occurs at low energy close to
the Fermi surfaces; hence, we express the pairing in the
helical band representation as �

(b)
inter;s,s′ (k̃) ∼ 〈ψ2;−k̃,s′ψ1;k̃,s〉,

where ψ1;k̃,s =∑σ=↑,↓ χ∗
1;s,σ (k̃)c1;k̃+K0,σ

and ψ2;k̃,s =∑
σ=↑,↓ χ∗

2;s,σ (k̃)c2;k̃−K0,σ
are annihilation operators of

helical band eigenstates of Hkin,1 and Hkin,2 respectively.
When the Chern numbers of two Fermi surfaces are different,
the inter-Fermi surface pairing inherits the band topology of
single-particle states at k and −k in a nontrivial way, and the
Cooper pair scatters in the presence of a magnetic monopole
in momentum space given by the pair monopole charge,
qp = (C1 − C2)/2. Consequently, this leads to a topologically
obstructed superconducting pairing order that cannot be well
defined over an entire Fermi surface. Instead, the pairing
order is described by monopole harmonics [11,37] that all
belong to the topological sector characterized by the pair
monopole charge qp [1].

Upon projecting to the helical Fermi surfaces in the
weak-coupling regime, the effective pairing in the helical
band-diagonal Nambu basis (ψ1;k̃,+, ψ

†
2;−k̃,+)

T is

�
(bp)
inter (k̃) =

(
�

(qp)
MSC(k̃) 0

0 0

)
, (15)

in which

�
(qp)
MSC(k̃) = 〈χ1,+(k̃)|�inter (k)|χ∗

2,+(−k̃)〉. (16)

In the pseudospin space formed by the helical band eigenba-
sis, we define an effective d-vector for the monopole pairing
order as

d(bp)
inter (k̃) = − 1

2�
(qp)
MSC(k̃)(1, i, 0)

T, (17)

with �
(bp)
inter (k̃) ≡ d(bp)

inter (k̃) · σ(iσy). In the following sections,
we will use the effective pairing order and the symmetry
principles encoded in the form factor, F(k,k′), to extract
the symmetry and topology of the monopole superconducting
order.

To note, if each Fermi surface of the doped Weyl sys-
tem has additional symmetry with respect to its enclosed
Weyl point, intra-Fermi surface pairing is also possible,
corresponding to nonzero center-of-mass momentum Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) pairing [38,39]. As the
pair monopole charge of the FFLO pairing is zero, the pairing
can be fully gapped and compete with the inter-Fermi-surface
pairing [1]. However, without the additional symmetry of
Fermi surfaces, the inter-Fermi-surface monopole pairing is
energetically preferable to the intra-Fermi-surface FFLO pair-
ing. Hence, we only consider zero center-of-mass pairing in
this work.

To describe a monopole superconductor with pair
monopole charge qp = −1, we consider the pairing be-
tween Fermi surfaces of Chern numbers C1 = −1 and

C2 = 1. The Hamiltonian in Eq. (13) takes a spe-
cific form below, with h(ν=1)

1 (k̃) = h̄vF (k̃x, k̃y, k̃z ) and
h(ν=−1)
2 (k̃) = h̄vF (k̃x, k̃y,−k̃z ) defined near the Weyl nodes at

±K0 = (0, 0,±K0,z ) respectively,

H(qp=−1)
BdG (k) =

(
H(ν=1)

kin (k) �inter (k)

�
†
inter (k) −[H(ν=−1)

kin (−k)]T

)
. (18)

Here, the band Hamiltonians are given by

H(ν=1)
kin (k) = h(ν=1)

1 (k̃) · σ − μ, (19a)

H(ν=−1)
kin (k) = h(ν=−1)

2 (k̃) · σ − μ, (19b)

with the superscript ν denoting the chiralities of the Weyl
nodes. vF is the Fermi velocity, and μ > 0 is chosen so that
we have disjoint Fermi surfaces which are related by parity
viaH(ν=+1)

1 (k) = σzH(ν=−1)
2 (−k)σz. The helical eigenstate of

H(ν=1)
kin in Eq. (19) describing FS1 takes the form

χ1,+(k̃) =
(
cos

θk̃

2
ei(λ−1)ϕk̃/2, sin

θk̃

2
ei(λ+1)ϕk̃/2

)

=
√
2π
(
Y 1

2 ;
1
2 ,− 1

2
(�k̃ ),−Y 1

2 ;
1
2 ,+ 1

2
(�k̃ )

)
(20)

and is related to states on FS2 by χ2,+(k̃) = σzχ1,+(−k̃).
Here, �k̃ = (θk̃, ϕk̃ ), with θk̃ and ϕk̃ being the polar and az-
imuthal angles of the spherical Fermi surfaces. Yq;l,lz (�k̃ )
is the monopole harmonic function [11,37] (reviewed in
Appendix C), now defined in momentum space. The
monopole harmonic function is labeled by the monopole
charge q, the eigenvalue of angular momentum l , and the
eigenvalue of z-component angular momentum lz. Above, λ =
±1 corresponds to two different choices of gauge. The upper
(lower) sign denotes the choice in which the state χ1,+(k̃)
is well-defined locally near the north (south) pole of FS1,
while χ2,+(k̃) is well-defined near the south (north) pole of
FS2, with the Dirac strings located at the respective antipodal
points of these two Fermi surfaces. The Chern numbers of
χ1,+ on FS1 and χ2,+ on FS2 are C1 = −1 and C2 = +1
respectively. The unitary transformations that diagonalize the
Weyl band Hamiltonians H(ν=±1)

kin in Eq. (19) take the form

U (±K0 )(k̃) =
√
2π

(
Y± 1

2 ;
1
2 ,− 1

2
(�k̃ ) Y∓ 1

2 ;
1
2 ,− 1

2
(�k̃ )

∓Y± 1
2 ;

1
2 ,+ 1

2
(�k̃ ) ∓Y∓ 1

2 ;
1
2 ,+ 1

2
(�k̃ )

)
.

(21)
As introduced below Eq. (11), the unitary transformations
can be written conveniently in terms of complex four-vectors,
where here, the components are given by

u(±K0 )
0 (±k̃) =

√
π

2

[
Y 1

2 ;
1
2 ,− 1

2
(�k̃ ) ∓ Y∗

1
2 ;

1
2 ,− 1

2
(�k̃ )

]
,

u(±K0 )
1 (±k̃) =

√
π

2

[
∓Y 1

2 ;
1
2 , 12

(�k̃ ) − Y∗
1
2 ;

1
2 , 12

(�k̃ )
]
,

u(±K0 )
2 (±k̃) = i

√
π

2

[
±Y 1

2 ;
1
2 , 12

(�k̃ ) − Y∗
1
2 ;

1
2 , 12

(�k̃ )
]
,

u(±K0 )
3 (±k̃) =

√
π

2

[
Y 1

2 ;
1
2 ,− 1

2
(�k̃ ) ± Y∗

1
2 ;

1
2 ,− 1

2
(�k̃ )

]
, (22)

in which Y∗
q;l,lz

= (−1)q+lzY−q;l,−lz .

043189-5



FRAZIER, ZHANG, ZHANG, SUN, AND LI PHYSICAL REVIEW RESEARCH 6, 043189 (2024)

For a general form of inter-Fermi-surface pairing
[�inter (k)]σ,σ ′ , the effective pairing order takes the form

�
(qp=−1)
MSC =

√
4π

3
Y−1;1,1(�k̃ )[�inter (k)]↑,↑

−
√
2π

3
Y−1;1,0(�k̃ )([�inter (k)]↑,↓

− [�inter (k)]↓,↑) −
√
4π

3
Y−1;1,+1(�k̃ )

× [�inter (k)]↓,↓. (23)

Here, the spin pairing channels in addition to the momen-
tum dependence of �inter (k) determine the rotational irreps
in the decomposition of �

(qp=−1)
MSC but do not influence the

underlying topology. When the system has rotational sym-
metry, lz is a conserved quantity and further constrains the
pairing channels. Globally, the monopole superconducting or-
der transforms under rotation Rz according to its conserved
angular momentum lz = lz,glob. However, the pairing order is
a singular representation of lz and thus cannot be well-defined
globally over the Fermi surface under a single gauge. In
other words, due to U(1) obstruction of the pairing phase,
the monopole pairing order can no longer be described glob-
ally by conventional spherical harmonics. Though, depending
on the choice of gauge, λ = ±1, the qp = −1 monopole
pairing can be described locally with spherical harmonic sym-
metry, with lz,loc = lz,glob + qpλ denoting the local angular
momentum. Here, lz,loc plays an essential role in the under-
lying topology of the system in momentum space. Namely,
the shift in angular momentum reflects the nontrivial pair
monopole charge |qp| = |lz,loc − lz,glob|, which, in addition to
the discrepancy between lz,loc near the gap nodes, is unique
to monopole harmonic symmetry. This shift between global
and local angular momentum is a general feature of monopole
superconducting order, which we shall later exploit in order
to distinguish it from other pairing orders with spherical har-
monic symmetry.

As an example, when there is inter-Fermi surface s-wave
pairing, �inter = �0iσy, the effective low-energy pairing in
Eq. (23) resides in the lowest possible angular momentum
l = 1 channel as follows:

�
(qp=−1,lz=0)
MSC (k̃) = −�0

√
8π

3
Y−1;1,0(θk̃, ϕk̃ )

= −4π�0Y− 1
2 ;

1
2 ,+ 1

2
(�k̃ )Y− 1

2 ;
1
2 ,− 1

2
(�k̃ )

= −�0 sin θk̃e
−iλϕk̃ . (24)

Here, H(qp=−1)
BdG (k) is invariant under rotation Rz, and the

low-energy pairing order �
(qp=−1)
MSC , if it does not break the

symmetry spontaneously, is also invariant under Rz and char-
acterized by good quantum number lz = lz,glob = 0 that labels
the trivial irrep. However, for given choice of gauge λ = ±1,
the �

(qp=−1,lz=0)
MSC pairing order locally has well-defined px −

λipy symmetry with angular momentum lz,loc = −λ near the
gap node at the north (λ = +1) or south (λ = −1) pole of FS1.
As k̃z is varied between the gap nodes, the local symmetry
changes from px − ipy to px + ipy, as evident in the group
velocity of the surface modes (see Appendix E). The shift

between the global and local angular momenta is indicative
of the pair monopole charge, qp = −1. Moreover, this shift is
generally true for any form of�inter and therefore for a general
�

(qp=−1)
MSC in Eq. (23).
We now derive the form factor in the first-order Josephson

coupling between a spin singlet superconductor with a spin-
independent band Hamiltonian at the left side and the qp =
−1 monopole superconductor at the right side, in which there
is only bare spin-independent tunneling at the barrier. In the
band-projected basis, the monopole pairing order is described
by an effective d-vector shown in Eq. (17). The form factor
hence takes the form

Fsing-MSC(k,k′)

= 2dL,0(k′)T (b)
0 (−k,−k′)[d(bp)∗

R (k) · T(b)(k,k′)]

− 2dL,0(k′)T (b)
0 (k,k′)[d(bp)∗

R (k) · T(b)(−k,−k′)]

− 2idL,0(k′)d(bp)∗
R (k) · [T(b)(k,k′) × T(b)(−k,−k′)],

(25)

which is analogous to that of Eq. (9), only now the effective
d-vector and tunneling matrices are evaluated in the projected
helical band basis. The tunneling amplitudes that describe
the tunneling between the states at the left, in the spin-↑, ↓
representation, and the states at the right, in the helical band
representation, are given by

T (b)
0 (±k,±k′) = T0(±k,±k′)[u(±K0 )

R,0 (±k̃)]∗, (26a)

T(b)(±k,±k′) = T0(±k,±k′)[u(±K0 )
R (±k̃)]∗. (26b)

Here, (u(±K0 )
R,0 (k̃),u(±K0 )

R (k̃)) are the complex four-vectors
defined in Eq. (22), related to the unitary transformation of the
Weyl band Hamiltonian. As the spinful bands of the s-wave
superconductor are decoupled, we have uL,0 = 1 and uL = 0.

Consequently, the form factor describing the first-order
Josephson coupling between a qp = −1 monopole supercon-
ductor and a singlet superconductor simplifies to

F
(qp=−1)
sing-MSC(k̃,k′) = − 4π�L,0(k′)

[
�

(qp=−1)
R,MSC (k̃)

]∗
× T0(−k,−k′)T0(k,k′)

× Y− 1
2 ;

1
2 ,− 1

2
(�k̃ )Y− 1

2 ;
1
2 , 12

(�k̃ ), (27)

in which �L,0(k′) = dL,0(k′), �
(qp=−1)
R,MSC (k̃) is the band-

projected effective monopole harmonic pairing order in
Eq. (23) characterized by the pair monopole charge qp =
−1, and k̃ = k − K0 is the wave vector with respect to the
Weyl node. Despite the form factor expressed in Eq. (27)
including multiple monopole harmonic functions, Fsing-MSC is
always non-singular, as it is related to the Josephson current,
a physical observable. By employing the addition theorem of
monopole harmonic functions [37] (see also Appendix C),
which states that the product of two monopole harmonic
functions with charges q1 and q2 can be expressed as a sum
of monopole harmonic functions with monopole charge q3 =
q1 + q2, we find that the form factor in Eq. (27) has zero total
monopole charge. In other words, it can be represented using
standard spherical harmonic functions without singularities
over the Fermi surface.
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Similarly, we derive the form factor for a junction between
the same qp = −1 monopole superconductor and a standard
spin triplet superconductor as follows: which is non-singular
for the same reason as that of F(qp=−1)

sing-MSC,

F
(qp=−1)
trip−MSC(k̃,k′) = −2πT0(−k,−k′)T0(k,k′)�(qp=−1)∗

R,MSC (k̃)

× [(dL,x(k′) − idL,y(k′))Y2
− 1

2 ;
1
2 ,− 1

2
(�k̃ )

+ (dL,x(k′) + idL,y(k′))Y2
− 1

2 ;
1
2 , 12

(�k̃ )
]
.

(28)

It depends on, dL(k′), the d-vector which encodes the spin
structure of the triplet pairing order at the left. In contrast,
the form factor F(qp=−1)

sing-MSC in Eq. (27) takes a simpler form,
as the symmetry of the singlet pairing order at the left is
primarily determined by its symmetry in momentum space.
For the microscopic models studied later in Secs. IV and VII,
to identify the momentum space topology of the monopole
pairing order, we will focus on junctions with a spin singlet
superconductor for simplicity.

B. Symmetry and topological principles to probe monopole
superconducting order

Symmetry principles have long been crucial in the design
of Josephson experiments to reveal the pairing symmetry of
unconventional superconductors [16,20,21,36]. We now pro-
pose symmetry and topological principles to guide the design
of a set of Josephson junctions which together can identify
monopole superconducting order. This approach comple-
ments the discussion in Sec. III A, which was mainly based
on microscopic derivations of the Josephson current.

Monopole pairing order with pair monopole charge qp gen-
erally takes the form of a superposition of monopole harmonic
functions Yqp,l,ln̂,glob for different integer values of l � |qp| and
|ln̂| � l . For qp �= 0, the monopole harmonic functions exhibit
nodes pinned to the rotation quantization axis, n̂, which we
often take as ẑ without loss of generality. Furthermore, as
discussed in Sec. III A, local angular momenta differ from the
global angular momentum by the pair monopole charge,

ln̂,loc = ln̂,glob + λqp. (29)

Here, λ = ±1 corresponds to different choices of gauge (see
Appendix C). To identify this exotic pairing order, we design
a set of two Josephson junctions which respectively probe
the global and local angular momentum of the pairing order.
The nonzero shift between lz,glob and lz,loc indicates the pair
monopole charge.

(i) Globally, the monopole superconducting order remains
a representation of the rotation group but resides in a topolog-
ical sector characterized by its pair monopole charge qp. For
two superconductors that transform identically under a given
symmetry operation, which is also a symmetry of the junction,
the Josephson energy phase relationship is invariant under this
symmetry transformation. Hence, if rotation Rz with respect to
the z axis is a symmetry of the junction, then the first-order
Josephson coupling is allowed only if the superconducting
orders at both sides of the junction transform in the same
way under Rz, i.e., they both form an irrep of Rz labeled by

FIG. 1. Josephson junction designs to probe monopole supercon-
ducting order, shown schematically in a hybrid picture of momentum
and real space. The junction barrier (gray, striped) is shown in real
space, separating two superconductors at the left (L) and right (R).
Band Fermi surfaces are shown in momentum space at either side
of the junction. (a) Junction design to probe the global angular
momentum, consisting of a junction oriented along the rotational
axis (z axis) between a monopole superconductor (cyan) and other
known superconductor (orange). (b) Junction design to probe the
local angular momentum of the pairing order in momentum space.
The junction is between two identical monopole superconductors
and is oriented perpendicular to the rotational z axis along which
the gap nodes lie. For conserved momentum kz, it can be treated as
an effective 2D junction (yellow).

the same lz. Monopole superconducting order given by, for
example, Yqp;l,lz,glob transforms under rotation Rz according to
its globally conserved angular momentum, lz,glob. As such, to
extract lz,glob, we consider a junction which is oriented along a
rotational z axis, as shown in Fig. 1(a). By placing a monopole
superconductor in junction with another superconductor with
known pairing symmetry, one can extract the global angular
momentum lz,glob based on the existence of first-order 2π -
periodic Josephson current.

(ii) Locally in momentum space, the symmetry of
monopole superconductor pairing order can be described by
regular spherical harmonic symmetry. In the local represen-
tation, the pairing phase possesses nontrivial winding (see
Appendix C), corresponding to chiral pairing order charac-
terized by angular momentum lz,loc. Between the gap nodes
pinned to the rotational axis, the local chirality changes by
twice the pair monopole charge, as shown in the model in
Sec. III A. To probe lz,loc, we consider the design shown in
Fig. 1(b), in which two identical monopole superconductors
form a Josephson junction oriented normal to the z axis. For
given conserved momentum kz along the rotational axis, the
junction can be regarded effectively as a junction between
two identical two-dimensional superconductors whose pairing
orders are characterized by local angular momentum lz,loc.
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Consequently, the total Josephson current of the proposed
junction is a superposition of contributions from these planar
junctions, which can give signatures, for example the period-
icity and phase shift of the current phase relation, that can
indicate the local pairing angular momentum lz,loc.

In the following two sections, we analyze a set of Joseph-
son junctions guided by the above design principles to probe
the pairing symmetry of a prototypical monopole supercon-
ductor arising in a magnetic doped Weyl semimetal with
inter-Fermi surface pairing in Eq. (18). In Secs. IV and V,
we propose junctions to probe the global angular momen-
tum lz,glob and local angular momentum lz,loc, respectively.
Together, these junctions can be used to extract the monopole
charge, |qp| = |lz,glob − lz,loc|, and provide a foundation to
guide efforts to experimentally uncover the monopole super-
conducting order.

IV. JOSEPHSON JUNCTIONS TO PROBE lz,glob OF THE
MONOPOLE SUPERCONDUCTING ORDER

Following the symmetry principles presented in Sec. III B,
we design Josephson junctions to extract the global angu-
lar momentum of monopole superconducting order, lz,glob.
We first examine a Josephson junction oriented along the z
direction between a monopole superconductor with pairing
order �

(qp=−1,lz=0)
MSC and a conventional s-wave superconductor,

demonstrating the nonvanishing first-order Josephson current.
After, in Sec. IVB, we study the Josephson coupling for the
monopole pairing order �

(qp=−1,lz=2)
MSC in the same topological

sector but with different global angular momentum, and in
Sec. IVC, monopole pairing order �

(qp=3,lz=0)
MSC in a different

topological sector of qp = 3.

A. First-order Josephson current between s-wave
superconductor and �

(qp=−1,lz=0)
MSC monopole superconductor

1. Method 1: linear response theory

We study Josephson effects between an s-wave supercon-
ductor and a monopole superconductor with pairing order
�

(qp=−1,lz=0)
MSC in a junction along the z direction, shown

schematically in Fig. 2(a). Following the symmetry principles,
as discussed in Sec. III B, the first-order Josephson coupling
in this system is allowed due to the pairing order at two sides
of the junction being characterized by the same global angular
momentum lz = 0. To show this, we consider the continuum
model of the monopole superconductor introduced in Eq. (18),
for which the effective pairing order �

(qp=−1,lz=0)
MSC in Eq. (24)

is invariant under rotation Rz, having global angular momen-
tum lz = 0. Following the derivation based on linear response
theory in Sec. III A, we demonstrate the nonzero first-order
Josephson coupling and the resulting critical current.

For a junction between an s-wave superconductor and
�

(qp=−1,lz=0)
MSC monopole superconductor, the form factor in

Eq. (27) can be simplified to

F
(qp=−1,lz=0)
s−MSC (k̃,k′) = 8π

3
�L,0�R,0|Y1,1(�k̃ )|2T 2

0 δk‖,k′
‖ , (30)

where �L,0 is the pairing amplitude of the s-wave super-
conductor, and �R,0 is the amplitude of the inter-Fermi

FIG. 2. (a) Schematic of the Josephson junction oriented along
z direction between an s-wave superconductor and a �

(qp=−1,lz=0)
MSC

monopole superconductor. (b) Bulk Fermi surface projections on
the kxky plane for s-wave superconductor (hatched) and monopole
superconductor (solid) at two sides of the junction in (a). (c) Rel-
ative magnitude of the contributions to the first-order Josephson
current phase relation for different transverse momentum, k‖, cor-
responding to Eq. (32). (d) first-order Josephson current between
the monopole superconductor and s-wave superconductor at zero
temperature and zero bias. Here, vF = 0.5, μR = 0.1, k̃F = 0.2, and
μL = 0.8. �L,0 = �R,0 = �0 = 0.005, Ic = 0.62�0e/h̄, and Nk‖ is
the number of transverse momentum cuts in the calculation. T0, A,
�L , �R, and m are set to unity.

surface pairing in the monopole superconductor. We model
the tunneling amplitude through the junction barrier as a
spin-independent delta function that preserves in-plane mo-
menta with T0(k,k′) = T0δk‖,k′

‖ and T(k,k′) = 0. Here, T0
is a constant, and k‖ = k′

‖ = k̃‖ is the wave vector in the
kxky plane, which is conserved at the barrier. Already, the
nonvanishing first-order Josephson coupling can be seen from
the form factor F(qp=−1,lz=0)

s−MSC , which encodes the symmetry of
the junction as well as the pairing orders and itself is invariant
under rotation Rz and parity.

With the form factor and tunneling matrix above, the
Josephson current in Eq. (4) evaluates to

IJ (φ) = 4e

h
AT 2

0 �L,0�R,0 sin φ

∫
dk‖ k‖J (k‖), (31)

in which

J (k‖) = k2‖
�L�R

(2π )2

∫
dk̃zdk′

z

k2‖ + k̃2z
w
(
EL,k′ ,E (bp)

R,k̃
;β
)

(32)

describes the contribution to the Josephson current for
conserved transverse momentum, k‖. Above, A is the sur-
face area of the interface, and �L and �R are the system
lengths along z direction at the left and right sides, re-
spectively. We consider the Josephson current at zero tem-
perature, for which w(EL,k′,E (bp)

R,k̃
;β ) = [2EL,k′E (bp)

R,k̃
(E2

L,k′ −
E (bp)2
R,k̃

)]−1 and is positive-definite. The dispersions of the BdG
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quasiparticles for the s-wave superconductor and monopole

superconductor are given by EL,k′ =
√

ξ 2
L,k′ + |�L,0|2 and

E (bp)
R,k̃

=
√

ξ
(bp)2
R,k̃

+ |�R,0|2k̃2‖/k̃2 respectively. Here, ξL,k′ =
h̄2(k′

z
2 + k′2

‖)/2m − μL and ξ
(bp)
R,k̃

= h̄vF
√
k̃2z + k̃2‖ − μR are

the respective band dispersions. The Fermi surfaces of ξL,k′

and ξ
(bp)
R,k̃

are shown projected to the kxky plane in Fig. 2(b).
In Fig. 2(c), we show J (k‖), the contributions to the first-

order Josephson current, for different conserved transverse
momentum k‖. States near the equator of the Fermi surface
of the doped Weyl semimetal, with k‖ ≈ k̃F , contribute the
most to the Josephson tunneling, where the magnitude of
�

(qp=−1,lz=0)
MSC is at its maximum. As k‖ approaches zero, the

contributions to the Josephson current are suppressed as the
magnitude of �

(qp=−1,lz=0)
MSC reaches its minimum near its gap

nodes along the kz axis. For transverse momentum away from
the Weyl Fermi surfaces, k‖ > k̃F + �R,0/vF , its contribution
to the Josephson current vanishes due to vanishing low-energy
density of states in �

(qp=−1,lz=0)
MSC monopole superconductor.

Furthermore, in Fig. 2(d), we show the total first-order
Josephson current phase relation given in Eq. (31) numer-
ically. It exhibits 2π periodicity and nonvanishing critical
current Ic = 0.62�0e/h̄. In contrast, for a Josephson junc-
tion in the same geometry between an s-wave and a chiral
px ± ipy-wave superconductor, the first-order Josephson cur-
rent vanishes when there is no spin-orbit coupling in the
bulk nor at the interface. Hence, though locally �

(qp=−1,lz=0)
MSC

exhibits chiral px ± ipy pairing symmetry, the Josephson cur-
rent in the above junction serves as an effective probe of the
global angular momentum of the pairing order lz,glob = 0. We
discuss later the case when there exist spin-orbit interactions
in Sec. VII.

2. Method 2: numerical results from tight-binding model

We further show the nonzero Josephson coupling in the
same Josephson junction between an s-wave superconduc-
tor and �

(qp=−1,lz=0)
MSC monopole superconductor, as shown in

Fig. 2(a), using a tight-binding model on a cubic lattice (see
Appendix D and E for details). As kx and ky are assumed to be
conserved across the junction, we take periodic boundary con-
ditions in the x and y directions. We consider 2Nz sites along z
direction and take open boundary conditions at the two ends at
nz = 1 and 2Nz. The junction barrier is located between nz =
Nz and nz = Nz + 1, in which only spin-independent nearest
neighbor hopping within the barrier is considered. At given
conserved momenta kx and ky, we model the barrier along z
direction as

Hlink (kx, ky) = t0
∑

σ=↑,↓
(c†kx,ky;σ,Nz+1ckx,ky;σ,Nz + H.c.) (33)

in which t0 is the spin-independent hopping amplitude, and
ckx,ky;σ,nz annihilates a particle at site nz with momentum kx
and ky and spin σ . If we increase the thickness of the barrier to
a few sites, there is no qualitative change in Josephson current.

In Fig. 3, we present our numerical results of the Josephson
current for the junction between an s-wave superconduc-
tor and a �

(qp=−1,lz=0)
MSC monopole superconductor. Since the

FIG. 3. Numerical results for a tight-binding model of the
Josephson junction along z direction between an s-wave super-
conductor and �

(qp=−1,lz=0)
MSC monopole superconductor. (a) Maximal

cross section of bulk Fermi surface FS+ of the monopole supercon-
ductor at kz = K0,z (solid) and that of the Fermi surface FS0 of the
s-wave superconductor at kz = 0 (hatched). Here, μL/t0 = 3.88 and
μR/t0 = 0.05. (b) The Josephson energy phase relation contributed
by different momenta in (a), k‖,n = (n − 1)k̃F/4, n = 1, . . . , 5, and
k̃F = 0.2. Here, the relative magnitude is given by �

(n)
0 = �0k‖,n/k̃F ,

with �0/|t0| = 0.04. Lowest energy states for a given radial cut
correspond to the cuts shown in (a) and are shown in color, while
the gray bands represent higher-energy contributions. (c) The total
Josephson current phase relation (red, solid) compared to that of
a z direction junction between a px − ipy superconductor and an
s-wave SC (black, dashed). (d) The Fraunhofer pattern of a cor-
ner junction (inset) in the xy plane of a monopole superconductor
(red, solid), compared to that of a px + ipy superconductor (black,
dashed). Above, I0 = e�0/h̄, and the system size is 2Nz = 300.

junction breaks translational symmetry along z direction,
longitudinal momentum kz is not conserved. This effectively
allows Cooper pairs with different kz components on either
side of the junction to tunnel across the interface. Conse-
quently, even with mismatched 3D Fermi surfaces, a nonzero
Josephson current can still occur as long as their 2D projec-
tions in the transverse momentum plane overlap sufficiently,
as illustrated in Fig. 3(a). Although the lattice has fourfold ro-
tation symmetry with respect to the z axis, the projected Fermi
surfaces are nearly spherical in the kxky plane. In Fig. 3(b),
contributions to the Josephson energy phase relation are cal-
culated for representative momenta k‖ at different radii k‖ =√
k2x + k2y . At a given value of k‖, different azimuthal angles,

ϕk̃ , contribute nearly the same energy phase relation. Hence,
the contributions from states at two representative azimuthal
angles, ϕk̃ = 0 and π/4, shown in the inset of Fig. 3(a), over-
lap with each other in Fig. 3(b). At k‖ = k‖,1 = 0, the states
close to north and south poles of the Fermi surfaces contribute
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to the Josephson coupling. However, the magnitude of the
pairing gap of the monopole superconductor, �

(qp=−1,lz=0)
MSC ,

vanishes at the poles of the Weyl Fermi surfaces. As such,
states at k‖,1 correspond to vanishingly small Josephson en-
ergy and therefore flat energy phase relation. As k‖ increases
to nonzero values of k‖,i with i � 2, the corresponding contri-
bution to Josephson energy shows significant 2π periodicity.
Furthermore, the overall magnitude of Josephson energy in-
creases as the magnitude of pairing order �

(qp=−1,lz=0)
MSC at k‖,i

increases until reaching its maximum at k‖,5 ≈ k̃F .
In addition to the net 2π -periodic Josephson energy phase

relation, there are contributions from second-order Josephson
tunneling, where multiple scatterings from the junction in-
terface lead to π -periodic contributions to the energy phase
relation. Such higher order contributions are most significant
for states near the gap nodes of the �

(qp=−1,lz=0)
MSC monopole

pairing order, for example, at k‖ = k‖,2 in Fig. 3(b). We pro-
vide further detailed explanation on this in Appendix B.

We calculate the total Josephson current at zero
temperature, IJ (φ)|T=0 = (−2e/h̄)

∑
k‖ ∂EJ (k‖, φ)/∂φ.

Here, EJ (k‖, φ) is the Josephson energy phase relation for
occupied states with transverse momentum k‖. In Fig. 3(c),
we show our numerical result of Josephson current with
the summation over transverse momentum k‖ � k̃F at
representative values, k‖,i=1,...,5, and taking account of the
measure in polar coordinates. For k‖ > k̃F + �R,0/vF , there
are no in-gap Andreev states contributing to the Josephson
current as discussed in Sec. IVA1. Moreover, comparing with
Fig. 2(c), the total Josephson current phase relation in Fig. 3(c)
is modulated by π -periodic contributions from higher order
tunneling processes. However, the total Josephson current,
obtained by superimposing contributions from different k‖, is
nonetheless 2π -periodic.

The Josephson current can be further enhanced when the
Weyl points of the bulk monopole superconductor are close
to the Fermi surface of the bulk s-wave superconductor. As
an additional example, we keep the overlap area of the 2D
projections of the Fermi surfaces in the transverse momentum
plane identical to that in Fig. 3(a). However, we reduced the
s-wave superconductor’s Fermi wavevector from kF = 1.63
(μL/t0 = 3.88) to kF = 1.05 (μL/t0 = 5), ensuring that the
bulk Fermi surfaces at two sides of the junction also over-
lap in 3D momentum space. We observed 28% enhancement
in the critical Josephson current. Nonetheless, the qualita-
tive features remained unchanged, including the nonvanishing
first-order Josephson current as well as the periodicity of the
Josephson current phase relations.

The first-order 2π -periodic Josephson current between
an s-wave superconductor and �

(qp=−1,lz=0)
MSC monopole su-

perconductor is nonvanishing in this tight-binding model
for the same symmetry reasons discussed for the con-
tinuum model in Sec. IVA1. The tight-binding model
preserves the two parity-related Fermi surfaces which
have opposite Chern numbers. Although the Fermi sur-
faces are not perfectly spherical, the topology of the
effective pairing remains invariant and is still classified by
the pair monopole charge, qp = −1. Additionally, the global
angular momentum of the pairing order is constrained to
the lz = 0 channel, as both the kinetic and the proximitized

pairing parts of the tight-binding Hamiltonian are invariant
under lattice rotations Rz. Therefore the effective pairing or-
der likewise transforms according to conserved lz,glob = 0.
However, compared to the effective pairing derived in the
continuum model in Eq. (24), there are small but nonzero
contributions to the pairing order from monopole harmonics
in the l = 2 partial wave channel as a result of the lattice sym-
metry. Nonetheless, these contributions from higher partial
wave channels do not significantly affect the nonzero first-
order Josephson coupling. Hence, because the tight binding
model preserves the symmetry and topology of the system,
the essential features of the Josephson current, for example
its 2π periodicity, agree with the previous result based on
continuum model. Furthermore, these features persist in the
long Josephson junction limit, as discussed in Sec. VI.

We additionally examine a corner junction between a
�

(qp=−1,lz=0)
MSC monopole superconductor and s-wave supercon-

ductor. The corner junction is symmetrically aligned with two
faces along the x and y directions, as shown schematically
in the inset in Fig. 3(d). Because this geometry is sensitive
to pairing phase difference along the two orthogonal crystal
axes [20], it can be used as an additional probe of global
angular momentum lz,glob. Based on the same tight-binding

model of �
(qp=−1,lz=0)
MSC monopole superconductor, we study

the resulting critical current in the presence of an external
magnetic field along the z direction. As the external flux �B

through the barrier of the corner junction varies, we obtain
the Fraunhofer pattern of the corner junction, as shown in
Fig. 3(d). The Fraunhofer pattern is qualitatively the same as
that of an SIS junction between two s-wave superconductors,
with nodes at integer flux quantum, �0 = h/2e. This is in
contrast to, for example, a corner junction between an s-wave
and chiral p-wave superconductor, which gives rise to an
interference pattern that is asymmetric with respect to zero
flux.

In alignment with the findings presented in the preceding
section, in which the Josephson current was analyzed through
linear response theory, the results from the tight-binding
model further reinforce that, globally, the �

(qp=−1,lz=0)
MSC

monopole superconducting pairing order transforms accord-
ing to lz,glob = 0. Consequently, the monopole superconductor
has nonzero Josephson coupling with an s-wave supercon-
ductor in a junction along the z axis, leading to an overall
nonvanishing 2π -periodic first-order Josephson current. We
next discuss similar junction designs to probe monopole
superconductors with nonzero global angular momentum z
component, or when the pairing order is in a different topo-
logical sector.

B. Probing monopole superconducting orders with nonzero
global angular momenta lz,glob

We now demonstrate that the z -direction Josephson junc-
tion design introduced in Sec. III B can be generalized to
probe monopole pairing orders with nonzero z-component
global angular momentum. As an example, we consider the
monopole pairing order in the same topological sector as
that in Sec. IVA given by the pair monopole charge qp =
−1, but in a different angular momentum channel with l =
lz = 2. Following the symmetry argument, the first-order
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FIG. 4. Junction along z direction between a dx2−y2 + idxy super-

conductor (left) and �
(qp=−1,lz=2)
MSC monopole superconductor (right).

Josephson coupling is allowed only when coupled to another
superconductor with pairing order in the lz = 2 channel, for
example, a dx2−y2 + idxy wave superconductor, in an SIS junc-
tion with geometry preserving the rotational symmetry about
z axis. To demonstrate the symmetry principle, here, we focus
on deriving the form factor F(qp=−1)

sing-MSC in this system and show
that it leads to nonzero first-order Josephson coupling. In
Appendix F, we also show nonvanishing first-order Josephson
current obtained numerically from a tight-binding model of
this system.

We first introduce the model of a monopole superconductor
for which the pairing order is in the topological sector defined
by pair monopole charge qp = −1 yet now transforms under
rotation Rz according to global angular momentum lz = 2. For
simplicity, we start from the same band Hamiltonian of the
doped magnetic Weyl semimetal, as shown in Eq. (19). We
now consider the case of inter-Fermi surface px + ipy pairing
in the |↑ ↑〉 channel, given by �inter (k) = (�0/2k̃F )(kx +
iky)(σ0 + σz ). The band-projected superconducting order in
Eq. (23) describing the low-energy pairing between helical
Fermi surfaces enclosing the Weyl nodes at ±K0 is now given
by

�
(qp=−1,lz=2)
MSC (k̃) = �0

√
4π

5
Y−1;2,2(θk̃, ϕk̃ )

= �0 cos
2 θk̃

2
sin θk̃e

i(2−λ)ϕk̃ , (34)

where, in consistency with prior notation, λ = ±1 corre-
sponds to a gauge in which the Dirac string is located
at θk̃ = π (1 + λ)/2. As the Chern numbers of the Fermi
surfaces that participate in the inter-Fermi surface pairing
are unchanged, the effective pairing order remains in the
same topological sector characterized by the pair monopole
charge, qp = −1. However, the pairing order now transforms
according to its global angular momentum, lz = lz,glob = 2.
The nonzero global angular momentum can be attributed to
the inter-Fermi surface (px + ipy)|↑ ↑〉 pairing, which trans-
forms according to its total angular momentum jz = 2 in the
presence of spin-orbit coupling. When coupled to the spin-
texture of the Weyl semimetal Fermi surface, this induces
the global lz = 2 winding of the monopole superconducting
order in momentum space. We now consider a Josephson
junction along the z direction between a dx2−y2 + idxy su-

perconductor and �
(qp=−1,lz=2)
MSC monopole superconductor, as

shown in Fig. 4. We employ the form factor for a junc-
tion between a qp = −1 monopole superconductor and spin

singlet superconductor, F(qp=−1)
sing-MSC, as shown in Eq. (27). Only

now, �L,0(k′) = (�L,0/k2F )(k
′
x + ik′

y)
2 describes the dx2−y2 +

idxy pairing order and �
(qp=−1)
R,MSC = �

(qp=−1,lz=2)
MSC (k̃) is the

monopole superconducting order in Eq. (34). For simplicity,
we consider spin-indpendent tunneling that trivially respects
the junction geometry, given by constant T0(k,k) = T0 and
T(k,k′) = 0. The form factor for the junction between a
dx2−y2 + idxy superconductor and �

(qp=−1,lz=2)
MSC monopole su-

perconductor simplifies to

F
(qp=−1,lz=2)
d+id,MSC (k,k′) = �L,0�R,0T

2
0
k′2

k2F
cos2

θk̃

2
sin2 θk̃, (35)

with �R,0 being the amplitude of the inter-Fermi surface
pairing. Because both the dx2−y2 + idxy superconductor and

�
(qp=−1,lz=2)
MSC monopole superconductor transform under rota-

tion Rz according to their global angular momentum lz = 2,
the form factor itself is invariant under Rz. Hence, per the same
symmetry arguments in Sec. IVA1, this leads to nonvanish-
ing first-order Josephson coupling.

C. Generalization to monopole pairing orders with higher
monopole charges

We further demonstrate the probe of global angular mo-
mentum for monopole superconductors in different topologi-
cal sectors characterized by higher monopole charges, |qp| >

1. Although the topological sector is different, the same sym-
metry principles to extract lz,gob outlined in Sec. III B still
hold. We begin with the general model of the monopole
superconductor in Eq. (13) but now consider a multi-Weyl
semimetal with inter-Fermi surface pairing between two
parity-related Fermi surfaces. For three-dimensional Weyl
semimetals on a lattice with n-fold rotational symmetry (n =
2, 3, 4, 6), there can exist single, double, or triple Weyl nodes
[40,41]. The lattice point group symmetry sets an upper bound
to the chirality of the Weyl node, with |ν| � [n/2], and simi-
larly for the pair monopole charge, |qp| � n/2.

As an example, we study monopole pairing order
�

(qp=3,lz=0)
MSC that has pair monopole charge qp = 3 and trans-

forms according to global angular momentum lz = 0. Such
pairing order can arise in a doped triple Weyl semimetal with
inter-Fermi surface s-wave pairing. We consider a minimal
model of a triple Weyl semimetal on a three-dimensional
hexagonal lattice, which hosts triple Weyl nodes protected by
C6 symmetry (see Appendix E 2). At appropriate doping, the
system has two parity-related Fermi surfaces, FS1 and FS2,
with Chern numbers C1 = 3 and C2 = −3.

From the tight-binding model, we consider the continuum
model of the band HamiltoniansH(ν=−3)

kin,1 andH(ν=+3)
kin,2 describ-

ing Fermi surfaces FS1 and FS2 surrounding triple Weyl nodes
at ±K0 = (0, 0,±K0,z ). The low-energy band Hamiltonian
defined near K0 is given by

H(ν=−3)
kin,1 (k̃ + K0)

= −μ + h(ν=−3)
1 (k̃) · σ

= −μ + h̄vF k̃zσz + h̄vF [(k̃x + ik̃y)
3σ+ + H.c.], (36)
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in which σ± = (σx ± iσy)/2, and is related to
the other Fermi surface by parity, H(ν=−3)

kin,1 (k) =
σzH(ν=+3)

kin,2 (−k)σz. The helical eigenstate at FS1 is
χ1,+(k̃) = (cos(θh1/2)e

−i(λ−1)ϕh1 /2, sin(θh1/2)e
−i(λ+1)ϕh1 /2),

and at FS2, it is χ2,+(k̃) = σzχ1,+(−k̃). Here, consistent
with previous notation, λ = ±1 denotes the choice of
gauge, and θh1 and ϕh1 are the polar and azimuthal
angles defined in h(ν=−3)

1 spherical coordinates by
h(ν=−3)
1 ≡ |h(ν=−3)

1 |(sin θh1 cosϕh1 , sin θh1 sin ϕh1 , cos θh1 ).
They are related to momentum space polar and azimuthal
angles by sin θh1 = sin3 θk̃/(cos

2 θk̃ + sin6 θk̃ )
1/2 and

ϕh1 = −3ϕk̃ . We study the case of inter-Fermi surface
s-wave pairing in Eq. (13), in which �inter (k) = i�0σy, with
�0 being the pairing amplitude.

In the weak-coupling regime, we obtain the low-energy
band-projected pairing order from Eq. (16) which takes the
following form:

�
(qp=3,lz=0)
MSC (k̃) = −�0

√
8π

3
Y−1;1,0(θh1 , ϕh1 )

= −�0
sin3 θk̃√

cos2 θk̃ + sin6 θk̃

ei3λϕk̃ . (37)

As the mapping from the spherical coordinates in h(ν=−3)
1

space to those in k̃ space is characterized by a winding num-
ber of −3, the q = −1 monopole harmonic order defined
here in h(ν=−3)

1 spherical coordinates implies that the pairing
order in momentum space is characterized by qp = 3 pair
monopole charge, which agrees with qp = (C1 − C2)/2 = 3.
As a result, local angular momentum is given by lz,loc = ±3,
while the global angular momentum is lz = 0. Furthermore,
the pair monopole charge sets the lower bound of the par-
tial wave channels, l � 3. Different partial wave channels
of l � 3 contribute to the pairing order, �

(qp=3,lz=0)
MSC (k̃) =∑

l�3 αlYqp=3;l;lz=0(θk̃, ϕk̃ ) with decreasing values of superpo-
sition coefficients αl as l increases from 3.

We now examine the Josephson coupling between the
above qp = 3 monopole superconductor and a spin singlet su-
perconductor, following the methods introduced in Sec. III A.
For comparison, we consider the case in which there is bare
spin-independent tunneling at the junction barrier. The form
factor for this system evaluates to

F
(qp=3)
sing-MSC(k̃,k′) = − 4π�L,0(k′)[�(qp=3)

R,MSC(k̃)]
∗T0(−k,−k′)

× T0(k,k′)Y− 1
2 ;

1
2 ,− 1

2
(�h1 )Y− 1

2 ;
1
2 , 12

(�h1 ),

(38)

in which �h1 = (θh1 , ϕh1 ) is the solid angle in h(ν=3)
1 -space

and �
(qp=3
MSC (k̃) is the effective pairing order of the qp = 3

monopole superconductor. Similar to the case of the qp =
−1 monopole superconductor, whose form factor is given in
Eq. (27), the half-integer monopole harmonics arise from the
effective spin-dependent tunneling arising from the spin-orbit
coupling in the triple Weyl semimetal. The above form factor
is non-singular and can be used to determine the first-order
Josephson coupling of this system.

Similar to Sec. IVA, we further consider a simple case
that the junction is aligned along z direction, the singlet super-
conductor is s-wave, and the bare spin-independent tunneling
is a constant, T0(k,k′) = T0. Then, the form factor for this
junction simplifies to

F
(qp=3,lz=0)
s−MSC (k̃,k′) = T 2

0 �L,0�R,0
sin6 θk̃

cos2 θk̃ + sin6 θk̃
, (39)

in which �L,0 and �R,0 are the pairing amplitudes of
the s-wave superconductor and �

(qp=3,lz=0)
MSC monopole super-

conductor, respectively. F(qp=3,lz=0)
s−MSC itself is invariant under

rotation Rz and parity, as both the s-wave superconductor
and �

(qp=3,lz=0)
MSC monopole superconductor both form irreps of

lz = 0. As discussed in Sec. IVA1, this leads to nonvanishing
first-order Josephson current. Hence, following the junction
design principles introduced in Sec. III B, we may similarly
design probes of monopole pairing order in different topolog-
ical sectors.

V. JOSEPHSON JUNCTIONS TO PROBE lz,loc OF THE
MONOPOLE SUPERCONDUCTING ORDER

We now explore how to design Josephson junctions
to probe local angular momentum lz,loc of monopole su-
perconducting order, following the second junction design
introduced in Sec. III B. We consider two identical monopole
superconductors forming a Josephson junction oriented along,
for example, the x direction, which is perpendicular to
the high-symmetry rotational axis along z. As discussed in
Sec. III B, the total Josephson current can be regarded as a
superposition of contributions from a family of Josephson
junctions between two 2D chiral superconductors, corre-
sponding to different values of conserved momentum kz. It has
been studied extensively in, for example, Refs. [23,29] that a
planar junction between two chiral superconductors can host
4π -periodic Josephson current arising from the tunneling of
chiral boundary modes. Therefore, by studying the Josephson
energy phase relation in our system, we can obtain the infor-
mation about local symmetry of monopole pairing order. In
the continuum model of a �

(qp=−1,lz=0)
MSC monopole supercon-

ductor, its pairing order, described by Eq. (18), exhibits local
chiral p-wave pairing with lz,loc = ∓1 for a given value of k̃z,

�
(qp=−1,lz=0)
MSC (k̃) = �̃(k̃z )(k̃x − iλk̃y). (40)

Here, the local pairing amplitude is modulated by k̃z as
�̃(k̃z ) = −�0

√
1 − (k̃z/k̃)2, and λ = ±1 describes the local

chirality of the pairing order, which changes sign as k̃z varies
from the north pole to south pole, indicative of the nontrivial
topological charge of the pairing order, qp = −1.

We next consider a Josephson junction along the x direc-
tion between two monopole superconductors with identical
pairing order �

(qp=−1,lz=0)
MSC , shown schematically in Fig. 5(a).

Periodic boundary conditions are taken in y and z directions so
that momenta k̃y and k̃z transverse to the junction barrier are
conserved. At k̃y = 0, the above monopole superconducting
pairing order can be reduced to a family of px-wave pairing
orders locally at different values of k̃z with pairing amplitudes
�̃(k̃z ), each of which support a Majorana state localized at the
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FIG. 5. (a) Single Josephson junction along the x direction be-
tween two identical monopole superconductors with pairing order
�

(qp=−1,lz=0)
MSC and the same crystal orientation. (b) Same Josephson

junction as in (a), only now that the superconductor at the left (yel-
low) is rotated by an angle θ about the z axis pointing out of plane.
(c) Bulk Fermi surface FS1 of the doped Weyl semimetal on a cubic
lattice. Representative momenta k̃i=1,...,5 are shown, with k̃y = 0 and
k̃z = −0.2, −0.1, 0.0, 0.1, 0.15, respectively. As a reference, we plot
the largest k̃yk̃z cross sections (k̃x = 0) of bulk Fermi surfaces, which
are identical for the two sides of the junction. (d) Josephson energy
phase relations for states at the representative transverse momenta
(in color) and states at the same values of k̃z but ky = ±0.1, ±0.2 (in
gray). Here, the system size and other parameters are the same as
those taken in Fig. 3.

junction interface contributing 4π -periodic Josephson energy
phase relation, EJ ∝ cos(φ/2). Therefore we expect the total
Josephson current phase relation in our system to exhibit
4π -periodicity as a result of the local chiral p-wave pairing
symmetry of the �

(qp=−1,lz=0)
MSC monopole pairing order.

We study a tight-binding model of the Josephson junction
between two identical �

(qp=−1,lz=0)
MSC monopole superconduc-

tors on a cubic lattice, similar to that discussed in Sec. IVA2,
but with the junction now aligned along the x direction,
as shown schematically in Fig. 5(a). Due to the mirror
Mz symmetry of the system, there are identical contribu-
tions to the Josephson energy phase relation from FS1 and
FS2. Thus, we first examine states at five representative
transverse momentum k̃i = (0, k̃i ) (i = 1, . . . , 5) within FS1
in the kykz plane, as shown in Fig. 5(c). At each con-
served k̃i, the effective 1D Josephson junction along x
direction hosts midgap states localized at the junction in-
terface, which contribute to 4π -periodic Josephson energy
phase relation, as shown in Fig. 5(d). As the magnitude
of k̃z increases towards the locations of pairing gap nodes,
the effective pairing amplitude, �̃(k̃z ), decreases. Further-
more, at phase difference φ = π , the junction interface
plays the role of a domain wall, where the pairing order
changes its sign at the junction barrier. For each representa-
tive transverse momentum at k̃y = 0, the pairing order is odd

under mirror Mx reflection, �
(qp=−1,lz=0)
MSC (k̃x, k̃y = 0, k̃z ) =

−�
(qp=−1,lz=0)
MSC (−k̃x, k̃y = 0, k̃z ). Together with the BdG

FIG. 6. Josephson current of the junction shown in Fig. 5 without
and with magnetic flux through the junction interface. (a) The total
Josephson current phase relation and (b) the Fraunhofer pattern when
conserving (red, solid) or breaking (blue, dashed) fermion parity.
Here, I0 = e�0/h̄, �0 = h/2e, and �0/t = 0.04.

particle-hole symmetry, this system is analogous to the
Jackiw-Rebbi model [42] and exhibits zero energy Andreev
states localized at junction interface when φ = π . When
fermion parity is conserved at φ = π , the total energy phase
relation is 4π -periodic and leads to Josephson current phase
relation of the same periodicity, shown in Fig. 6(a) in red.
As a result, when a nonzero external magnetic flux is varied
through the junction interface, the Josephson Fraunhofer pat-
tern exhibits lifted nodes at odd integer flux quanta, shown
in red in Fig. 6(b). The conserved fermion parity can be
achieved experimentally, for example, by taking a dynamic
measurement of the Josephson current while maintaining a
fixed voltage to prevent parity transitions [43–45].

The existence of 4π -periodic Josephson energy phase re-
lation in this single Josephson junction oriented along the x
direction stems from the local spatial symmetry property of
the monopole pairing order, which contains nonzero com-
ponent of px-wave pairing, or say, nonzero components of
lz,loc = ±1. Furthermore, due to spin-orbit coupling from
Weyl band Hamiltonian, we examine the pairing order un-
der combined spin and spatial rotations. The �

(qp=−1,lz=0)
MSC

monopole superconductor is invariant under simultaneous
spin and spatial rotations; hence, the local z-component an-
gular momentum, lz,loc, in momentum space and of spin, sz,
of the pairing order satisfies lz,loc + sz = 0. However, the ex-
istence of 4π -periodic Josephson current constrains lz,loc �= 0,
i.e., the monopole superconducting order has the symmetry
of a chiral superconducting order locally in momentum space.
Specifically, at conserved momentum k̃z, the above junction
can only be described in analogy to that between two super-
conductors with spin-polarized chiral p-wave pairing order, in
which the Cooper pair is locally described by (px + ipy)|↓ ↓〉
or (px − ipy)|↑ ↑〉 pairing, satisfying lz,loc = −sz. Later, in

Sec. VII, we show that the �
(qp=−1,lz=0)
MSC monopole supercon-

ducting order is indeed unique and different from these chiral
superconductors globally. Nonetheless, though the monopole
superconducting order is inherently different from any pairing
based on spherical harmonic symmetry, at given k̃z, one can
describe the symmetry of the monopole pairing order locally
in analogy to that of a 2D chiral superconducting pairing
order. As such, for given conserved k̃z, the �

(qp=−1,lz=0)
MSC su-

perconductor can be described locally in momentum space as
having chiral p-wave symmetry. Furthermore, the qualitative
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features of the Josephson current phase relation in Fig. 6(a),
specifically the periodicity, are unchanged in the long junction
limit, as discussed in Sec. VI.

If the symmetry of the spin-orbit coupled system is not
known a priori, we additionally examine a second Joseph-
son junction to demonstrate the local symmetry of pairing
order. Consider the junction geometry in which the monopole
superconductor to the left of the junction barrier is rotated
by an angle θ about the z axis, as shown in Fig. 5(b). If
the Josephson energy phase relation is invariant under the
rotation, exhibiting 4π periodicity with no phase shift, the
pairing order lies in the zero total angular momentum sector
with a nonzero orbital angular momentum lz,loc. We check this
numerically using the tight-binding model, where the fourfold
lattice rotation takes discrete values of θ = nπ/2 with n ∈ Z,
and obtain the same Josephson energy phase relation as in
Fig. 5(d). Then, following the same reasoning as in the para-
graph above, this additional rotated junction demonstrates the
local chiral p-wave symmetry of the �

(qp=−1,lz=0)
MSC monopole

pairing order.
Generally, the monopole superconducting order is always

nodal, and, locally in momentum space, its pairing order
can always be described by chiral spherical harmonic pairing
symmetry with angular momentum lz,loc (see Appendix C for
details). We can consider the same Josephson junction geom-
etry to identify the local pairing symmetry of other monopole
orders that have a different pair monopole charge or a different
angular momentum lz,glob.

VI. LONG JOSEPHSON JUNCTIONS

In this section, we explore the Josephson effect in long
superconductor-normal metal-superconductor (SNS) junc-
tions using tight-binding models, where the width of the
normal metal region exceeds the superconducting coherence
length. Our numerical calculations show that both the nonzero
Josephson coupling and the 2π - and 4π -periodic Josephson
current phase relations, as discussed in Secs. IV and V, are
not exclusive to the short junction regime. Instead, these
fundamental features arise from the symmetry of the super-
conducting order and the presence of topological boundary
states, which remain robust for varying junction lengths as
long as ballistic transport is maintained in the normal metal
regime. However, the critical Josephson current magnitude
decreases with increasing junction length.

We consider the tight-binding model Hamiltonian, anal-
ogous to the setup in Appendix D, HJJ(k‖) = HBdG,L(k‖) +
Hlink (k‖) + HBdG,R(k‖). Here, the junction is oriented along
the n̂ direction (n̂ = x̂, ẑ), and transverse momentum k‖ is
conserved. The bulk superconductor BdGHamiltonians on the
left and right sides follow the form of Eq. (D1). For the normal
metal region, the tight-binding Hamiltonian is defined as

Hlink (k‖) =
∑
〈n,n′〉

∑
σ=↑,↓

t0δn,n′+1c
†
n,k‖;σ cn′,k‖;σ + H.c., (41)

where the nearest-neighbor sum 〈n, n′〉 runs from site N to
site N + L along n̂ at the two ends of the normal metal re-
gion. For L = 1, this reduces to Eq. (33). Here, we assume

qp=-1, lz=0
MSC
z

L

(a) (c)

qp=-1, lz=0 qp=-1, lz=0
MSC MSC

x

L

s-wave
SC

IC (L)/IC (1)

L
0 50 100 1500

0.4

0.8

1.2
IC (L)/IC (1)

L
0 50 100 1500

0.4

0.8

1.2

NM NM

(b) (d)

FIG. 7. (a) SNS Josephson junction along the z direction between
and s-wave and �

(qp=−1,lz=0)
MSC monopole superconductor, analogous

to that of Fig. 2(a) but consisting of a normal metal (NM) region of
length L shown in gray. (b) Josephson critical current as a function of
L in (a), normalized to the critical current for the junction of L = 1.
Parameters are identical to those in Fig. 3. (c) SNS Josephson junc-
tion along the x direction between identical �

(qp=−1,lz=0)
MSC monopole

superconductors, analogous to that of Fig. 5(a) but consisting of a
normal metal (NM) region of length L shown in gray. (d) Josephson
critical current as a function of L in (c), normalized to the critical
current for the junction of L = 1. Parameters are identical to those in
Fig. 5.

spin-independent and transverse momentum-independent
nearest-neighbor hopping with constant amplitude t0 = −0.5.

We first study a long Josephson junction oriented along the
z direction, between an s-wave and a �

(qp=−1,lz=0)
MSC monopole

superconductor, as shown schematically in Fig. 7(a). The
Fermi velocities for the left and right superconductors are
vF,L = 1.00 and vF,R = 0.90, with a pairing amplitude �0 =
0.02 which corresponds to coherence lengths ξL ≈ 50 and
ξR ≈ 45 in the unit of lattice constant. As the length of nor-
mal metal region L increases from 1 to 151, the first-order
Josephson coupling remains nonvanishing, with a 2π peri-
odic Josephson energy phase relation similar to that shown
in Fig. 3(c) for the short junction studied in Sec. IVA2.
The critical Josephson current IC , shown in Fig. 7(b), initially
increases for L = 11 and then decays exponentially as L in-
creases from 11 to 151.

Next, we examine an SNS junction along the x direction
between identical �(qp=−1,lz=0)

MSC monopole superconductors, as
described in Sec. V, with Fermi velocity vF = 0.51 and coher-
ence length ξ ≈ 25. We find nonvanishing Josephson current
and 4π -periodic Josephson energy phase relation, which is
qualitatively the same as that shown in Fig. 6(a), as the junc-
tion length increases from L = 1 to L = 151. The zero-energy
Majorana bound states still contribute 4π periodic Josephson
current, as discussed in Sec. V. The Josephson critical cur-
rent decays exponentially for increasing L, as presented in
Fig. 7(d).

Overall, for both junctions in Figs. 7(a) and 7(b), the qual-
itative properties of Josephson current and its current phase
relation remain unchanged despite an exponential decay in
the critical current for long junctions. These results affirm
that even in the long SNS junction geometry, our design
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principles remain valid to identify the monopole super-
conducting order via probing the global and local angular
momenta of the monopole superconducting order through the
Josephson coupling.

VII. JOSEPHSON JUNCTIONS TO PROBE MONOPOLE
SUPERCONDUCTING ORDER IN THE PRESENCE

OF SPIN-ORBIT INTERACTIONS

Lastly, in the presence of spin-orbit interactions at the junc-
tion interface or spin-orbit coupling in the bulk, the spin and
orbital angular momentum are no longer conserved separately.
The Josephson coupling is allowed when the pairing orders at
two sides of the junction share the same value of total angular
momentum along the common rotational symmetry axis fol-
lowing the junction geometry. For example, consider an SIS
Josephson junction along z axis between an s-wave super-
conductor with pairing �L,0|↑ ↓ − ↓↑〉 and a chiral p-wave
triplet superconductor with zero total angular momentum pair-
ing, for example �R,0[(px − ipy)|↑ ↑〉 + (px + ipy)|↓ ↓〉]. In
the presence of spin-orbit interactions, it shows nonzero first-
order Josephson coupling, similar to that in the Josephson
junction of the same geometry between an s-wave supercon-
ductor and a monopole superconductor with pairing order
�

(qp=−1,lz=0)
MSC . Consequently, junction design (I) introduced in

Sec. IV cannot distinguish �
(qp=−1,lz=0)
MSC monopole pairing

order from chiral p-wave pairing with jz = 0. Furthermore,
junction design (II) introduced in Sec. V similarly cannot
distinguish them, as the Majorana surface modes localized at
the junction interface between chiral p-wave superconductors
also give rise 4π -periodic Josephson current phase relation.
Hence, we must resort to a third junction design to discern
the �

(qp=−1,lz=0)
MSC superconducting order in the presence of

spin-orbit interaction at the barrier.
As an example, we consider the effect of bare interface

Rashba-type spin-orbit interaction. Generally, when spin-orbit
interaction preserves time-reversal symmetry, the form factor
between a spin singlet and a qp = −1 monopole superconduc-
tor takes the following form:

F
(qp=−1)
sing−MSC(k̃,k′) = f0(k̃,k′) + f1(k̃,k′) + f2(k̃,k′), (42)

where

f0(k̃,k′) = −4π�L,0(k′)
[
�

(qp=−1)
R,MSC (k̃)

]∗
×T 2

0 (k,k′)Y− 1
2 ;

1
2 ,− 1

2
(�k̃ )Y− 1

2 ;
1
2 , 12

(�k̃ ), (43a)

f1(k̃,k′) = −4π�L,0(k′)
[
�

(qp=−1)
R,MSC (k̃)

]∗
T0(k,k′)

×
{
Y2

− 1
2 ;

1
2 ,+ 1

2
(�k̃ )[Tx(k,k′) − iTy(k,k′)]

+Y2
− 1

2 ;
1
2 ,− 1

2
(�k̃ )[Tx(k,k′) + iTy(k,k′)]

}
, (43b)

and

f2(k̃,k′) = − 4π�L,0(k′)
[
�

(qp=−1)
R,MSC (k̃)

]∗
× |T(k,k′)|2Y− 1

2 ;
1
2 ,− 1

2
(�k̃ )Y− 1

2 ;
1
2 , 12

(�k̃ ). (43c)

Here, f0, f1, and f2 denote the contributions to the form
factor that are independent of, linear in, and quadratic in spin-
orbit interaction amplitude, respectively. We take T(k,k′) =

FIG. 8. Tight-binding results of Josephson current for a junc-
tion with an s-wave superconductor in the presence of Rashba-type
spin-orbit interaction at the junction interface. (a) Schematic of
single Josephson junction between an s-wave superconductor and
�

(qp=−1,lz=0)
MSC monopole superconductor and along the x direction.

(b) 2π -periodic Josephson current phase relation (red, solid) for
the junction shown in (a). (c) Schematic of junction between an
s-wave superconductor and (px − ipy )|↑ ↑〉 + (px + ipy )|↓ ↓〉 su-
perconductor. (d) π -periodic Josephson current phase relation (black,
dashed) of the junction shown in (c). Results are computed using
a system of 2Nx = 300 sites and with the same parameters of the
tight-binding band Hamiltonians in Fig. 3. For simplicity, tSO = t0 at
the interface.

−T(−k,−k′) and T0(k,k′) = T0(−k,−k′) so that the tunnel-
ing Hamiltonian in Eq. (3) has time-reversal symmetry.

Now we consider a Josephson junction along x direction
between an s-wave superconductor and the �

(qp=−1,lz=0)
MSC

monopole superconductor, as shown schematically in
Fig. 8(a). In the presence of Rashba-type spin-orbit interaction
at the junction interface, T(k,k′) = TSOδk‖,k′

‖ x̂ × k̂. For
simplicity, we take the spin-independent tunneling amplitude
as a constant, T0(k,k′) = T0. Terms in the form factor in
Eq. (42) that contribute to nonvanishing first-order Josephson
coupling are given by f0(k̃,k′) = −T 2

0 �L,0�R,0 sin2 θk̃
and f2(k̃,k′) = −T 2

SO|x̂ × k̂|2�L,0�R,0 sin2 θk̃δk‖,k′
‖ , with

�L,0 and �R,0 being the pairing amplitudes of the s-wave
and �

(qp=−1,lz=0)
MSC monopole superconductor respectively.

Specifically, contributions from f0 and f2 are invariant under
rotation Rx and thus lead to nonzero first-order Josephson
current between the �

(qp=−1,lz=0)
MSC monopole superconductor

and s-wave superconductor in a junction along the x direction.
In contrast, a (px − ipy)|↑ ↑〉 + (px + ipy)|↓ ↓〉 chiral p-

wave superconductor has vanishing first-order Josephson
coupling with an s-wave superconductor in the same junc-
tion geometry, shown schematically in Fig. 8(c), and with
the same Rashba-type spin-orbit interaction at the interface.
The form factor in Eq. (10) simplifies to Fsing-trip ∝ T0TSOx̂ ·
(k̂ × d∗

R(k)). Here, the d-vector in consideration is dR(k) ∝
(ky,−kx, 0). The form factor reduces to Fsing-trip(k,k′) ∝
kxkz, which is odd under mirror Mz reflection, kz �→ −kz.
Therefore the net first-order Josephson current of this
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system is zero. As such, the presence of first-order Joseph-
son current in this additional junction design can be used
to distinguish (px − ipy)|↑ ↑〉 + (px + ipy)|↓ ↓〉 chiral super-
conductor from the �

(qp=−1,lz=0)
MSC monopole superconductor.

For other monopole superconducting pairing orders in dif-
ferent qp or lz sectors, one can design similar junctions to
distinguish monopole superconducting order from chiral pair-
ing orders in the presence of bare spin-orbit interactions at the
interface.

We demonstrate the analytic results above using numerical
calculation of the Josephson current based on tight bind-
ing models. The system is analogous to that introduced in
Sec. IVA2, only now the junction is oriented along x direc-
tion and includes spin-dependent tunneling at the interface.
For given conserved transverse momenta ky and kz, we model
the junction barrier as

Hlink (ky, kz ) =
∑

σ,σ ′=↑,↓
c†ky,kz,σ,Nx+1[t̂ (ky, kz )]σ,σ ′cky,kz,σ ′,Nx

+ H.c. (44)

Above, t̂ (ky, kz ) = t0σ0 + t(ky, kz ) · σ, in which t0 is the spin-
independent hopping amplitude, and t(ky, kz ) = tSO(sin kyẑ −
sin kzŷ) is the Rashba-type spin-orbit coupling at the
interface, with tSO being the spin-dependent hopping
amplitude.

The Josephson current for the junction along x direction
between a �

(qp=−1,lz=0)
MSC monopole superconductor and s-wave

superconductor is shown in Fig. 8(b). In agreement with
the above arguments using the form factor F

(qp=−1)
sing-MSC, there

is an overall 2π -periodic Josephson current corresponding
to nonvanishing first-order Josephson coupling. In contrast,
for a junction between an s-wave superconductor and (px −
ipy)|↑ ↑〉 + (px + ipy)|↓ ↓〉 chiral superconductor, there is no
first-order Josephson coupling, as shown in Fig. 8(d). Rather,
the leading order Josephson coupling between the s-wave and
chiral p-wave superconductor is a second-order process, cor-
responding to π -periodic Josephson current. It is to be noted
that because we have taken the spin-independent and spin-
dependent tunneling amplitudes to both be of order 1 in the
tight-binding model, the magnitude of the Josephson critical
current for the two junctions is similar; however, this does
not change the qualitative aspects, specifically the periodicity.
The numerical results are in agreement with the above micro-
scopic analysis and demonstrate that this additional junction
can be used to distinguish �

(qp=−1,lz=0)
MSC pairing order from

other chiral p-wave superconductors in the presence of spin-
orbit interaction at the interface. Similar results hold for a
chiral (px + ipy)|↓ ↓〉 superconductor, (px − ipy)|↑ ↑〉 super-
conductor, or linear superposition of the two. In other words,
the monopole superconducting order cannot be described as
a simple linear superposition of spin-polarized chiral super-
conducting pairing orders globally but rather exists in its own
distinct topological class.

VIII. CONCLUSION

We have proposed using a set of phase-sensitive Joseph-
son junctions to probe monopole superconducting orders and

to distinguish them from other known pairing orders with
spherical harmonic symmetry. We develop the designs based
on two approaches. Firstly, we employed the linear response
approach to derive the first-order Josephson current between
two uniform superconductors. In addition to accounting for
the microscopic details of the tunneling processes, including
spin-orbit interactions at the junction interface and spin-orbit
coupling in the bulk superconductors, we emphasize that the
symmetry of superconducting pairing orders and the junc-
tion geometry is encoded in a form factor F(k,k′), which is
nonsingular and determines the symmetry selection rules of
the first-order Josephson coupling. Complementing the first
approach, we have also proposed symmetry and topological
principles in the design of phase-sensitive probes of monopole
superconducting order. We noted that the U(1) topologi-
cal obstruction of the pairing phase can be exhibited as a
nonzero shift between the global and local angular momen-
tum of the monopole superconducting order. Then, following
symmetry principles, we proposed two classes of Joseph-
son junctions of monopole superconductors to probe the
global and local angular momentum of the superconducting
order.

We considered the first class of Josephson junctions
aligned along the rotational axis (z axis) between a monopole
superconductor and other superconductors with known pair-
ing symmetry. As the first-order 2π -periodic Josephson
current is allowed only when superconducting orders at
both sides of the junction transform under rotation Rz

in the same way, we can use this to probe lz,glob, the
global angular momentum of the monopole pairing order.
We have studied Josephson currents in this class of junc-
tions between monopole superconductors with different pair
monopole charges and different lz,glob and superconductors
with standard s- and d-wave spherical harmonic symmetry,
using both linear response and tight-binding calculations.
The second class of junctions, designed to extract the lo-
cal angular momentum lz,loc of the pairing order, consists
of two identical monopole superconductors in a junction
aligned perpendicular to the rotational z axis. The Josephson
current can be viewed as a superposition of contributions
from different values of conserved momentum kz local
in momentum space. By analyzing the existence of 4π -
periodic Josephson current at different orientations of the
monopole superconductor based on tight-binding models, we
have identified the local chiral symmetry of monopole pair-
ing order characterized by angular momentum lz,loc. The
shift between lz,glob and lz,loc indicates the nonzero pair
monopole charge of the exotic superconducting order. The
underlying symmetry and topological principles of this work
provide useful guidance for the ongoing experimental efforts
toward realizing and identifying exotic monopole super-
conducting pairing orders in doped topological semimetal
materials.
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APPENDIX A: LINEAR RESPONSE THEORY
OF JOSEPHSON COUPLING IN PRESENCE

OF SPIN-ORBIT INTERACTIONS

We review the derivation of the first-order Josephson cur-
rent in an SIS junction via linear response theory, accounting
for a general form of spin-orbit interaction in the bulk su-
perconductors or at the junction interface. We consider the
Hamiltonian of the Josephson junction presented in Eq. (1),
in which two superconductors are connected by a weak link
modelled by the tunneling Hamiltonian in Eq. (3).

1. First-order Josephson current and form factor in presence
of spin-dependent tunneling

The total electric tunneling current through the junction
reads I (t ) = |e|〈ṄL(t )〉, in which NL =∑σ,k c

†
L,k,σ

cL,k,σ is
the number of particles at the left side of the barrier. We
evaluate using linear response theory, in which Hlink in Eq. (3)
is treated perturbatively in the thermal weight expansion
to the first-order. The first-order current is given by I (t ) =
−i(e/h̄)

∫ +∞
−∞ dt ′�(t − t ′)〈[ṄL(t ),Hlink (t ′)]〉, where �(t − t ′)

is the Heaviside function, and ṄL(t ) and Hlink (t ′) are in the
interaction picture. It follows that the current is a superpo-
sition of the normal current from quasiparticle tunneling and
the Josephson supercurrent from the tunneling of Cooper pairs
[46]. The Josephson tunneling current is given by the imagi-
nary part of the current-current correlation function,

IJ (t, φ) = −2e

h̄
Im[e−2ieV t�ret (eV, φ)], (A1)

in which eV = μL − μR is the voltage bias, and φ = φR − φL

is the overall U(1) phase difference of the superconducting
order parameters. Note that in the main text, we work at
zero bias, eV = 0. Above, the correlation function is given
by �ret (t − t ′, φ) = −i�(t − t ′)〈[A(t ),A(t ′)]〉, in which

A(t ) =
∑

k,σ ;k′,σ ′
Tσ,σ ′ (k,k′)c†R,k,σ (t )cL,k′,σ ′ (t ) (A2)

is the current operator and T (k,k′) is the tunneling matrix.
It is assumed that the two states located at the left and right
sides satisfy {cL,k′,σ ′ , cR,k,σ } = {cL,k′,σ ′ , c†R,k,σ

} = 0. Although
the above correlation function is derived from first-order per-
turbation theory, it corresponds to a second-order process in
Tσ,σ ′ , which can be regarded as the tunneling of a Cooper pair.

We evaluate the corresponding correlation func-
tion in imaginary frequency space, �(iω, φ) =

− ∫ β

0 eiωτdτ 〈TτA(τ )A(0)〉 and expand with Wick’s theorem:

�(iω, φ) = −
∑
k,k′

∑
σ,σ ′,ρ,ρ ′

Tσ,σ ′ (k,k′)Tρ,ρ ′ (−k,−k′)

× 1

β

∑
ipn

F†
R,σ,ρ (k, ipn)FL,σ ′,ρ ′ (k′, ipn − iω).

(A3)

Above, pn = π (2n + 1)/β with n ∈ Z are the fermion
Matsubara frequencies, and FL,σ ′,ρ ′ (k, ipn − iω) and
F†

R,σ,ρ (k, ipn) are the Fourier transforms of the anomalous
Green’s functions, FL,σ ′,ρ ′ (k, τ ) = 〈Tτ cL,−k,ρ ′ (τ )cL,k,σ ′ (0)〉
and F†

R,σ,ρ (k, τ ) = 〈Tτ c
†
R,k,σ

(τ )c†R,−k,ρ
(0)〉, with Tτ being the

time-ordering operator. It follows that the correlation function
can be expressed as [31]

�(iω, φ) = − 1

β

∑
ipn

∑
k,k′

Tr[FL(k, ipn − iω)

× T T(−k,−k′)F∗
R (k, ipn)T (k,k′)], (A4)

in which the trace is taken over any internal degrees of free-
dom (spin, orbital, etc.).

Following Eq. (2), we consider the following mean-field
BdG Hamiltonian in (cα,k, c

†
α,−k ) Nambu basis,

HBdG,α (k) =
(

Hkin,α (k) �α (k)eiφα

�†
α (k)e

−iφα −HT
kin,α (−k)

)
, (A5)

with α = L(R) corresponding to the left (right) side. Here,
Hkin,α (k) is the band Hamiltonian, �α (k) is the pairing ma-
trix, and φα is the overall U(1) superconducting phase, taken
to be uniform. The anomalous Green’s functions can generally
be expressed as [47]

Fα (k, ipn) = −Gkin,α (k, ipn)�α (k)eiφα

× [1 + GT
kin,α (−k,−ipn)�

†
α (k)

× Gkin,α (k, ipn)�α (k)
]−1GT

kin,α (−k,−ipn)
(A6)

in which Gkin,α (k, ipn) = [ipn − Hkin(k)]−1 is the single-
particle Green’s function of the band Hamiltonian in the
absence of superconductivity. We work in the weak-coupling
regime and consider one of the two following scenarios, under
which the anomalous Green’s functions greatly simplify.

In the first scenario, the band Hamiltonian is spin-
independent and thus the Green’s functions Gkin,α are diagonal
in spin space. For simplicity, we consider the case in which
the Hamiltonian is in the spin-1/2 representation; though,
generalization to systems with other internal degrees of free-
dom is straightforward. Consider the pairing matrix given
by �α (k) = (dα,0(k)σ0 + dα (k) · σ )iσy, in which dα,0 is the
spin singlet pairing and dα is the d-vector corresponding to
spin triplet pairing. In this scenario, the anomalous Green’s
functions simplify as

Fα (k, ipn) = −[ fα,0(k, ipn) + fα (k, ipn) · σ](iσy)[
p2n + ξ 2

α,k + 1
2Tr(�

†
α�α )

]2 − [(d∗
α · d∗

α )
2(d2

α,0) + 2|dα|2|dα,0|2 + (d∗
α,0)

2(dα · dα ) + |dα × d∗
α|2]

, (A7)
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in which

fα,0(k, ipn) ≡ dα,0
[
p2n + ξ 2

α,k + 1
2Tr(�

†
α�α )

]− [|d|2dα,0 + (dα · dα )d
∗
α,0], (A8a)

fα (k, ipn) ≡ [p2n + ξ 2
α,k + 1

2Tr(�
†
α�α )

]
dα − [d2

α,0d
∗
α + |dα,0|2dα + dα × (dα × d∗

α )
]

(A8b)

include corrections from nonunitary pairing orders. Above, ξα,k = ξα,−k is the band energy dispersion at the left (α = L) and
right (α = R) side of the junction. dα,0 and dα are both functions of k, which we have dropped for convenience of notation.
When the pairing is unitary (�†

α�α ∝ σ0), the anomalous Green’s functions take a simpler form,

Fα (k, ipn) = −eiφα�α (k)
p2n + E2

α,k

, (A9)

in which Eα,k =
√

ξ 2
α,k + Tr[�†

α (k)�α (k)]/2 is the unperturbed dispersion of the BdG quasiparticle.
In the second scenario, there are spin-dependent terms in the band Hamiltonian. Working in the weak-coupling regime, we

transform to a band-diagonal representation and then project to the states at the Fermi surface (see Appendix B). Then, the
anomalous Green’s functions take an analogous form:

F (bp)
α (k, ipn) = −G (bp)

kin,α (k, ipn)�
(bp)
α (k)eiφα

[
1 + G (b)T

kin,α (−k,−ipn)�
(b)†
α (k)G (bp)

kin,α (k, ipn)�
(bp)
α (k)

]−1G (b)T
kin,α (−k,−ipn)

= −eiφα�
(bp)
α (k)

p2n + E (bp)2
α,k

. (A10)

Here, G (bp)
kin,α (k, ipn) = P(b)

+ (ipn − �(k))−1P(b)
+ is the Green’s function for the band Hamiltonian evaluated in the band-diagonal

representation and projected to the Fermi level, with P(b)
+ being the projection operator and �(k) the diagonal matrix of

eigenvalues. �
(bp)
α (k) is the projected effective pairing matrix in the band-diagonal representation, as shown in Eq. (B4)

of Appendix B, and E (bp)
α,k =

√
ξ
(bp)2
k + Tr[�(bp)†

α (k)�(bp)
α (k)] is the energy of the BdG quasiparticle after projection, with

ξ
(bp)
α,k = ξ

(bp)
α,−k being the band dispersion of the eigenstate at the Fermi level. The above form is justified in the weak-coupling

regime, as pairing only occurs between states near the Fermi surface.
Under the outlined scenarios, the correlation function can simply be expressed as

�(iω, φ) = −e−iφ
∑
k,k′

w(EL,k′ ,ER,k;β, iω)F(k,k′), (A11)

as shown in Eq. (6). As described in Sec. II, the above correlation function can be considered in three distinct parts as follows:
(i) The first term, e−iφ , includes superconducting phase difference, φ = φR − φL, and corresponds to the first-order 2π -

periodic Josephson current. For higher-order contributions to the Josephson current, it is necessary to consider terms arising
from multiple scatterings at the junction interface.

(ii) The second term is the function, w(k,k′;β, iω), which encodes the density of states and thermal weighting. After
performing the Matsubara frequency summation over fermion frequencies ipn, the function is given by

w(EL,k′ ,ER,k;β, iω) = 1

4ER,kEL,k′

[
(nF (EL,k′ ) − nF (ER,k ))

(
1

EL,k′ − ER,k − iω
+ 1

EL,k′ − ER,k + iω

)

+ (1 − nF (EL,k′ ) − nF (ER,k ))

(
1

EL,k′ + ER,k + iω
+ 1

EL,k′ + ER,k − iω

)]
, (A12)

in which nF is the Fermi-Dirac distribution. The final expression for the retarded correlation function is obtained via analytic
continuation, iω → eV + iδ as δ → 0+.

(iii) The last and most essential term is the form factor, F(k,k′) = Tr[�L(k′)T T(−k,−k′)�∗
R(k)T (k,k′)], which encodes

the symmetry of the order parameters in addition to the microscopic tunneling processes. For a two-band basis, the pairing orders
can be expressed as �L(R)(k) = (dL(R),0(k) + dL(R)(k) · σ )iσy, and the tunneling matrix as T (k,k′) = T0(k,k′)σ0 + T(k,k′) · σ.
The form factor evaluates to

1
2F(k,k′) = − dL,0(k′)T0(−k,−k′)d∗

R,0(k)T0(k,k′) + [dL(k′) · T(−k,−k′)]d∗
R,0(k)T0(k,k′)

+ dL,0(k′)T0(−k,−k′)[d∗
R(k) · T(k,k′)] + dL,0(k′)d∗

R,0(k)[T(−k,−k′) · T(k,k′)]

− dL,0(k′)T0(k,k′)[T(−k,−k′) · d∗
R(k)] − T0(−k,−k′)d∗

R,0(k)[dL(k
′) · T(k,k′)]

+ T0(−k,−k′)T0(k,k′)[dL(k′) · d∗
R(k)]+idL,0(k′)d∗

R(k) · [T(−k,−k′) × T(k,k′)]
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+ iT0(−k,−k′)T(k,k′) · [dL(k′) × d∗
R(k)] + id∗

R,0(k)dL(k
′) · [T(−k,−k′) × T(k,k′)]

+ iT0(k,k′)T(−k,−k′) · [dL(k′) × d∗
R(k)] + [dL(k′) · d∗

R(k)][T(−k,−k′) · T(k,k′)]

− [dL(k′) · T(−k,−k′)][d∗
R(k) · T(k,k′)] − [dL(k′) · T(k,k′)][T(−k,−k′) · d∗

R(k)], (A13)

which is independent of the choice of representation of the tunneling or pairing matrices.

2. Effective spin-dependent tunneling in the presence of bulk spin-orbit coupling

We derive the tunneling matrix in the band representation, as introduced in Sec. II in the main text. The effective spin-orbit
interaction arises from the tunneling of band eigenstates, Hlink =∑k,s;k′,s′ T

(b)
s,s′ (k,k′)ψ†

R,k,sψL,k′,s′ + H.c. in Eq. (11). Here,

ψL(R),k,s =∑σ=↑,↓[U
†
L(R)(k)]s,σ cL(R),k,σ are the band eigenstates of the left (right) side in the absence of superconductivity, in

which UL(R)(k) = uL(R),0(k)σ0 + uL(R)(k) · σ is the unitary transformation to the band-diagonal representation. The tunneling
matrix in the band-diagonal representation is expressed as T (b)(k,k′) = T (b)

0 (k,k′) + T(b)(k,k′) · σ, in which

T (b)
0 (k,k′) = u∗

R,0(k)T0(k,k′)uL,0(k′) + u∗
R,0(k)[T(k,k′) · uL(k′)] + T0(k,k′)[u∗

R(k) · uL(k′)]

+ uL,0(k′)[u∗
R(k) · T(k,k′)] + iu∗

R(k) · [T(k,k′) × uL(k′)], (A14a)

T(b)(k,k′) = u∗
R,0(k)T0(k,k′)uL(k′) + u∗

R,0(k)uL,0(k′)T(k,k′) + T0(k,k′)uL,0(k′)u∗
R(k)

+ i{u∗
R,0(k)[T(k,k′) × uL(k′)] + T0(k,k′)[u∗

R(k) × uL(k′)] + uL,0(k′)[u∗
R(k) × T(k,k′)]}

− [u∗
R(k) · uL(k′)]T(k,k′) + [T(k,k′) · uL(k′)]u∗

R(k) + [T(k,k′) · u∗
R(k)]uL(k

′). (A14b)

In the weak-pairing regime, upon projecting the pairing order to the Fermi surfaces participating in Cooper pairing, the above
tunneling amplitudes account for the effective spin-dependent tunneling inherited from bulk interactions.

APPENDIX B: EFFECTIVE PAIRING IN PRESENCE
OF BULK SPIN-ORBIT COUPLING

We derive the effective monopole pairing order in the
weak-coupling regime. Consider the general Hamiltonian of
a monopole superconductor, given in Eq. (13):

HBdG(k) =
(
Hkin,1(k) �inter (k)

�
†
inter (k) −HT

kin,2(−k)

)
, (B1)

with �inter (k) describing the inter-Fermi surface pairing be-
tween Fermi surfaces FS1 and FS2. Here, we treat the
inter-Fermi surface pairing potential perturbatively. Suppose
that band Hamiltonians Hkin,1 and Hkin,2 are diagonalized
by the unitary transformations U1(k) and U2(k) respectively.
Without loss of generality, we define projection to the band
eigenstates at the Fermi level in the band-diagonal repre-
sentation by the idempotent matrix P(b)

+ = diag(1, 0, 0, . . . ).
The inter-Fermi surface pairing matrix written in the band-
diagonal representation is given by

�
(b)
inter (k) = U †

1 (k)�inter (k)U ∗
2 (−k). (B2)

In the weak-coupling regime, we project to the helical states
at the Fermi surface, so that the band projected pairing matrix
is given by

�
(bp)
inter (k) = P(b)

+ �(b)P(b)
+ . (B3)

Upon transforming back to the original representation in
Eq. (B1), the projected effective pairing order reads

�
(p)
inter (k) = U1(k)�

(bp)
inter (k)U

T
2 (−k) ≡ P1(k)�inter (k)PT

2 (−k),
(B4)

in which Pi=1,2(k) ≡ Ui(k)P
(b)
+ U †

i (k). For example, consider
a (pseudo)spin-↑, ↓ basis and suppose that band eigen-
states at the Fermi surface FSi=1,2 are given by |χi,+(k)〉 =
(ui(k), vi(k))T. It follows that the projection operator in the
spin-↑,↓ representation is

Pi=1,2(k) =
(

|ui(k)|2 ui(k)v∗
i (k)

u∗
i (k)vi(k) |vi(k)|2

)
. (B5)

As an example, we show the effective spin triplet pairing
channels in the �

(qp=−1,lz=0)
MSC monopole superconducting order

described in the main text in Sec. III. To recap, we consider
a system with Fermi surfaces FS1 and FS2, surrounding Weyl
nodes +K0 and −K0 respectively, which are related by parity,
Hkin,1(k) = σzHkin,2(−k)σz. The respective unitary transfor-
mations which diagonalize the band Hamiltonians are given
by

U1(k) =
√
2π

(
Y+ 1

2 ;
1
2 ,− 1

2
(�k̃ ) Y− 1

2 ;
1
2 ,− 1

2
(�k̃ )

−Y+ 1
2 ;

1
2 ,+ 1

2
(�k̃ ) −Y− 1

2 ;
1
2 ,+ 1

2
(�k̃ )

)

(B6a)

U2(−k) =
√
2π

(
Y+ 1

2 ;
1
2 ,− 1

2
(�k̃ ) Y− 1

2 ;
1
2 ,− 1

2
(�k̃ )

Y+ 1
2 ;

1
2 ,+ 1

2
(�k̃ ) Y− 1

2 ;
1
2 ,+ 1

2
(�k̃ )

)
(B6b)

in which �k̃ is the spherical coordinate, with k̃ = k − K0.
The expressions for the half-integer monopole harmonics are
given in Appendix C. When there is inter-Fermi surface s-
wave pairing �inter (k) = �0iσy, the projected pairing order in
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the spin-↑,↓ representation is given by

�
(p)
inter (k) = 8π2�0

(−|Y+ 1
2 ;

1
2 ,− 1

2
(�k̃ )|2Y+ 1

2 ;
1
2 ,− 1

2
(�k̃ )Y− 1

2 ;
1
2 ,− 1

2
(�k̃ ) |Y+ 1

2 ;
1
2 ,− 1

2
(�k̃ )Y+ 1

2 ;
1
2 ,+ 1

2
(�k̃ )|2

−|Y+ 1
2 ;

1
2 ,− 1

2
(�k̃ )Y+ 1

2 ;
1
2 ,+ 1

2
(�k̃ )|2 −|Y+ 1

2 ;
1
2 ,+ 1

2
(�k̃ )|2Y+ 1

2 ;
1
2 ,+ 1

2
(�k̃ )Y− 1

2 ;
1
2 ,+ 1

2
(�k̃ )

)

= �0

⎛
⎝− cos2 θk̃

2 sin θk̃e
−iϕk̃ 1

2 sin
2 θk̃

− 1
2 sin

2 θk̃ − sin2 θk̃
2 sin θk̃e

+iϕk̃

⎞
⎠. (B7)

Here, due to the nontrivial spin texture from the Weyl spin or-
bit coupling in the band Hamiltonians, there are contributions
from the sz = ±1 spin triplet channels. Specifically, there is
nonvanishing (px + ipy)|↓↓〉 and (px − ipy)|↑↑〉 pairing for
which the effective pairing amplitude varies over the Fermi
surface. Near the north pole, the (px − ipy)|↓↓〉 pairing is
more heavily weighted and the (px − ipy)|↓↓〉 pairing is sup-
pressed, while the opposite holds true near the south pole.
The spin singlet channel survives but likewise varies over
the Fermi surface, reaching its maximum near the equator.
Moreover, the total angular momentum jz = lz + sz = 0 is
conserved. This description is consistent with the effective
pairing in the helical band basis, �

(qp=−1,lz=0)
MSC , which glob-

ally transforms according to conserved angular momentum
lz,glob = 0 but locally has features of a chiral p-wave super-
conductor, with lz,loc = ±1, which arise from the induced spin
triplet channels.

The effective pairing channels likewise can be seen in, for
example, the tight-binding results discussed in Sec. IVA2 for
a Josephson junction along the z direction between an s-wave
superconductor and �

(qp=−1,lz=0)
MSC monopole superconductor.

In the Josephson energy phase relation shown in Fig. 3(b),
states with momentum k‖ = k‖,5 near k̃F have significant con-
tributions to the first-order Josephson tunneling, analogous to
a junction between two s-wave superconductors. Similarly,
the spin-singlet channel in the projected pairing order in
Eq. (B7) has maximal amplitude at the equator. In contrast, for
states with momentum k‖ = k‖,2 near the gap nodes, the first-
order Josephson current is suppressed while the second-order
π -periodic Josephson current is more significant. This can be
attributed to the effective spin triplet channels in Eq. (B7),
which are more weighted relative to the spin singlet channel
near the poles of the Weyl Fermi surface. Similar to a junction
between a spin singlet and spin triplet superconductor with
spin-independent tunneling at the junction link, this leads to
higher order contributions to the Josephson current.

APPENDIX C: MONOPOLE HARMONIC FUNCTIONS

Monopole harmonics are eigenfunctions of angular mo-
mentum operator in the presence of a magnetic monopole
[11,37]. Due to the magnetic monopole, the vector potential
A must have singularities, corresponding to a Dirac string. To
avoid these singularities, one partitions the unit sphere into
two regions covering the north and south poles. For a magnetic
monopole of strength g, the vector potential is given by

A(λ)(θ, ϕ) = g

r

(− cos θ − λ

sin θ

)
ϕ̂, (C1)

in which the superscript λ = ±1 corresponds to a gauge in
which the vector potential is well-defined, with the Dirac
string located at θ = (λ − 1)π/2. For a particle of electric
charge e moving in the presence of a magnetic monopole, let
q = ge/(h̄c) = n/2 for n ∈ Z denote the monopole charge.

Monopole harmonics satisfy

L̃2Yq;l,lz (θ, ϕ) = h̄2l (l + 1)Yq;l,lz (θ, ϕ), (C2a)

L̃zYq;l,lz (θ, ϕ) = h̄lzYq;l,lz (θ, ϕ), (C2b)

where q is the corresponding monopole charge, which sets
the lower bound for the partial wave channels, l � q. Above,
L̃ = r × (p + |e|A(λ)/h̄c) − λh̄qr̂ and L̃z = −ih̄∂ϕ − λh̄q =
L(λ)
z − λh̄q. Due to the nontrivial monopole charge, functions

defined in the λ = +1 and λ = −1 patch are related by a U(1)
transformation,

Y (λ=+1)
q;l,lz

(θ, ϕ) = ei2qϕY (λ=−1)
q;l,lz

(θ, ϕ), (C3)

in which the superscript corresponds to a gauge
choice consistent with Eq. (C1). In the following, the
monopole harmonics are normalized to the convention∫ −1
0 d (cos θ )

∫ 2π
0 dϕ|Yq,l,lz (θ, ϕ)|2 = 1.

The general form of the monopole harmonic Yq;l,lz is given
by [11]

Y (λ)
q;l,lz

(θ, ϕ) = Mq,l,lz (1 − x)
α
2 (1 + x)

β

2 Pα,β
n (x)ei(lz+λq)ϕ,

(C4)
in which α = −q − lz, β = q − lz, n =
j + lz, x = cos θ , Mq,l,lz = 2lz

√
(2l + 1)/4π√

(l − lz )!(l + lz )!/(l − q)!(l + q)!, and Pα,β
n are Jacobi

polynomials,

Pα,β
n (x) = (−1)n

2nn!
(1 − x)−α (1 + x)−β

× dn

dxn
[(1 − x)α+n(1 + x)β+n]. (C5)

The local phase winding about the north or south pole, cor-
responding to λ = +1 and λ = −1 respectively, is given by

lz,loc = lz + λq, (C6)

which differs from the global angular momentum lz = lz,glob
by the monopole charge, q. When the local phase winding is
nonzero, there is always a point node at the corresponding
pole. Similarly, when the local phase winding is zero about
the north pole (south pole), or equivalently α = 0 (β = 0), the
monopole harmonic functions are nonvanishing at the pole,
corresponding to a locally gapped pairing in the context of
monopole superconducting order.
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Monopole harmonics of opposite charges are related by Yq;l,lz (θ, ϕ) = (−1)q+lzY∗
−q;l,−lz

(θ, ϕ). The product of two monopole
harmonics can be expressed as [37]

Yq1;l1,l1,zYq2;l2,l2,z =
∑
l3

(−1)l1+l2+l3−q3−l3,z

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3
l1,z l2,z −l3,z

)(
l1 l2 l3
q1 q2 −q3

)
Yq3;l3,l3,z ,

(C7)
in which q3 = q1 + q2 and l3,z = l1,z + l2,z, and the round brackets are the Wigner 3 j symbols. In other words, the product of
two monopole harmonics can be expressed as a superposition of monopole harmonics, all which belong in the same topological
sector q3 and have global angular momentum l3,z, but may reside in different partial wave channels.

Below, we list the explicit forms for the monopole harmonics, Yq; j,lz (θ, ϕ), used in the main text. For q = −1/2, the monopole
harmonics in the l = 1/2 partial wave channel are as follows:

q = − 1
2 l = 1

2

lz = − 1
2

√
1
2π sin θ

2 e
−i(λ+1)ϕ/2

lz = 1
2

√
1
2π cos θ

2 e
i(−λ+1)ϕ/2

For q = −1, the monopole harmonics in the l = 1, 2 partial wave channel read

q = −1 l = 1 l = 2

lz = −2
√

5
4π sin2 θ

2 sin θe−i(λ+2)ϕ

lz = −1
√

3
4π sin2 θ

2 e
−i(λ+1)ϕ

√
5
4π sin2 θ

2 (1 + 2 cos θ )e−i(λ+1)ϕ

lz = 0
√

3
8π sin θe−iλϕ

√
15
8π cos θ sin θe−iλϕ

lz = 1
√

3
4π cos2 θ

2 e
i(−λ+1)ϕ

√
5
4π cos2 θ

2 (−1 + 2 cos θ )ei(−λ+1)ϕ

lz = 2
√

5
4π cos2 θ

2 sin θei(−λ+2)ϕ

For q = −3, the monopole harmonics in the l = 3 partial wave channel are

q = −3 l = 3

lz = −3
√

7
4π sin6 θ

2 e
−i(3λ+3)ϕ

lz = −2
√

21
8π sin4 θ

2 sin θe−i(3λ+2)ϕ

lz = −1
√

105
64π sin2 θ

2 sin
2 θe−i(3λ+1)ϕ

lz = 0
√

35
64π sin3 θ

2 e
−i3λϕ

lz = 1
√

105
64π cos2 θ

2 sin
2 θei(−3λ+1)ϕ

lz = 2
√

21
8π cos4 θ

2 sin θei(−3λ+2)ϕ

lz = 3
√

7
4π cos6 θ

2 e
i(−3λ+3)ϕ

APPENDIX D: TIGHT-BINDING MODEL OF JOSEPHSON JUNCTION

We describe the tight-binding model used to model a Josephson junction, as used in Sec. IVA2, V, and VII. For the following
analysis, we consider a junction along the x direction without loss of generality. We take periodic boundary conditions in the y
and z directions, with transverse momenta ky and kz being conserved across the junction barrier. For given conserved momenta
ky and kz, we treat the junction as a pseudo-1D junction in the x direction with 2Nx sites, in which the barrier is located between
nx = Nx and nx = Nx + 1. We consider the Hamiltonian of a Josephson junction, HJJ(ky, kz ) = HBdG,L(ky, kz ) + Hlink (ky, kz ) +
HBdG,R(ky, kz ) in Eq. (1). The bulk superconductors at the left (right) side are given by

HBdG,L(R)(ky, kz ) =
∑
nx,n′

x

∑
σ,σ ′=↑,↓

c†ky,kz ;σ,nx
[Hkin,L(R)(ky, kz )]σ,nx ;σ ′,n′

x
cky,kz ;σ ′,n′

x

+
∑
nx,n′

x

∑
σ,σ ′=↑,↓

(c†ky,kz ;σ,nx
[eiϕL(R)�L(R)(ky, kz )]σ,nx ;σ ′,n′

x
c†−ky,−kz ;σ ′,n′

x
+ H.c.) (D1)
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in which sum over nx runs from 1 to Nx for the left supercon-
ductor (Nx + 1 to 2Nx for the right superconductor). Above,
Hkin,L(R)(ky, kz ) is the kinetic Hamiltonian, �L(R)(ky, kz ) is the
superconducting pairing order parameter, and φL(R) is the U(1)
superconducting phase, taken to be uniform in the respective
superconductor. cky,kz ;σ,nx is the annihilation operator for an
electron at site nx with spin σ and conserved momentum
kyŷ + kzẑ.

The tight-binding analog of the tunneling Hamiltonian for
the Josephson junction in Eq. (3) is given by

Hlink (ky, kz )=
∑

σ,σ ′=↑,↓
c†ky,kz ;σ,Nx+1[t̂ (ky, kz )]σ,σ ′cky,kz ;σ ′,Nx+H.c.,

(D2)
in which t̂ (ky, kz ) = t0(ky, kz )σ0 + t(ky, kz ) · σ describes spin-
independent and spin-dependent hopping across the junction
barrier. Here, we consider only one site at the barrier for
simplicity. Including more sites will increase the amount of
in-gap Andreev states but not affect the overall qualitative
features of the Josephson current, e.g., its periodicity.

APPENDIX E: TIGHT-BINDING MODELS OF MONOPOLE
SUPERCONDUCTORS

In this section, we outline the tight-binding model of
the monopole superconductor described in Eq. (13) used for
numerical calculations of monopole superconductors. The
general Hamiltonian of a monopole superconductor reads

HMSC =
∑

n,σ ;n′,σ ′
c†n,σ [Hkin]n,σ ;n′,σ ′cn′,σ ′

+
∑

n,σ ;n′,σ ′
(c†n,σ [�inter]n,σ ;n′,σ ′c†n′,σ ′ + H.c.) (E1)

in which Hkin and �inter are respectively the kinetic and
inter-Fermi-surface pairing kernels of the BdG Hamiltonian.
Above, cn,σ annihilates a single-particle state at lattice site n
and with spin σ =↑, ↓. We take the following convention for
the tensor product basis, with the two-dimensional spin basis
indexed by σ nested under lattice site basis indexed by n.

1. Tight-binding model of qp = −1 monopole superconductor

For the completeness of the manuscript, we reproduce the
tight-binding model of the monopole superconductor with
pair monopole charge qp = −1 [48] which corresponds to the
continuum model in Eq. (18). The Fourier transform of the
tight-binding model of the magnetic doped Weyl semimetal
band Hamiltonian on a cubic lattice is given by

HWSM
kin (k) = tz(cosK0,z − cos kz )σz

+ m(cos kx + cos ky − 2)σz

+ tx sin kxσx + ty sin kyσy − μσ0, (E2)

in which μ is the chemical potential and ti=x,y,z are the hop-
ping amplitudes along the ith direction (we take tx = ty =
tz sinK0,z = vF to compare to Eq. (19)). At appropriate dop-
ing, the system gives rise to two disjoint Fermi surfaces
surrounding Weyl nodes at ±K0 = (0, 0,±K0,z )T. The pa-
rameter m is chosen satisfying m/tz � −2 so that the sign of

FIG. 9. (a) Fermi surface FS1 of the tight binding modelHWSM
kin in

Appendix E 1 (black, solid) at k̃x = 0. Three dashed lines correspond
to three values of relative momenta, k̃z = −0.20, 0.00, and 0.17.
(b)-(d) The bulk (gray) and surface (colored) BdG spectra of the
�

(qp=−1,lz=0)
MSC monopole superconductor with boundary at x = 0 and

at the three values of k̃z shown in (a). The color scheme indicates
the charge of the surface BdG quasiparticles states, with particle-like
(hole-like) states corresponding to red (blue). We use parame-
ters tx = ty = tz sinK0 = −0.5, K0 = 1.0, μ = −0.1, m = 1.0, and
�0 = 0.02.

the σz-term in momentum space only changes between the two
Weyl nodes at ±K0.

Nonvanishing elements of the tight-binding model in the
real-space representation are as follows:

[HWSM
kin ]n;n = (tz cosK0,z − 2m)σz − μσ0,[

HWSM
kin

]
n;n+δx

= [HWSM
kin ]†n+δx ;n

= 1
2 (mσz − itxσx ),[

HWSM
kin

]
n;n+δy

= [HWSM
kin ]†n+δy;n

= 1
2 (mσz − ityσy),[

HWSM
kin

]
n;n+δz

= [HWSM
kin ]†n+δz ;n

= − 1
2 tzσz. (E3)

Above, δx = (1, 0, 0)T, δy = (0, 1, 0)T, and δz = (0, 0, 1)T

are lattice unit vectors along the crystalline axes. The s-wave
pairing in Eq. (E1) is defined locally on-site as

[�inter]n;n = i�0σy, (E4)

in which �0 is the pairing amplitude.
Under open boundary conditions, the system exhibits heli-

cal surface states. Consider the partial Fourier-transform of
the above tight-binding model, for given conserved k̃z, the
�

(qp=−1,lz=0)
MSC monopole pairing order can be regarded as an

effective two-dimensional chiral pairing order characterized
by local angular momentum lz,loc = ±1. Away from FS1, the
chiral surface modes result from the Weyl Fermi arcs; how-
ever, between the gap nodes at the poles of FS1 and FS2, a
single surface mode appears within the gap. The single surface
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FIG. 10. The magnitude [(a) and (b)] and phase winding [(c) and
(d)] of the monopole pairing order �

(qp=−1,lz=0)
MSC based on the tight

binding model in Appendix E 1. The left and right columns respec-
tively correspond to the north and south pole views of the pairing
order at FS1. (c) and (d) are plotted under the gauge that the pairing
phase is well-defined at the north and south pole respectively. Here,
we use the same parameters as those for Fig. 9.

mode appearing between the gap nodes is a result of the
effective local chiral p-wave pairing, as described in Sec. V.
As k̃z varies from the south to north pole, corresponding to
Figs. 9(b)–9(d), though the topology of the pairing order,
which is given by pair monopole charge qp = −1, does not
change, the sign of the in-gap states’ group velocity changes.
The change in the group velocity is due to the shift in the
local angular momentum, in agreement to the effective pairing
order in Eq. (24).

The bulk monopole pairing order of the tight-binding
model is shown in Fig. 10. The pairing between two helical
Fermi surfaces FS1 and FS2, as introduced in Sec. III A, is de-
fined as�

(qp)
MSC(k̃) = 〈χ1,+(k̃)|�inter (k)|χ∗

2,+(−k̃)〉 in Eq. (16).
Here, |χ1(2),+(k̃)〉 is the helical eigenstate of FS1(2). The mag-
nitude of the effective pairing is shown in Figs. 10(a) and
10(b), in which there are two gap nodes pinned to the north
and south pole of FS1. The phase winding, chosen in a gauge
in which the pairing is analytic at the north and south poles,
is shown in Figs. 10(c) and 10(d), respectively. Near the south
pole, consistent with the group velocity of the surface modes
in Fig. 9(b), the monopole pairing order behaves locally as a
px + ipy chiral pairing order. In contrast, near the north pole,
the effective pairing order behaves locally as a px − ipy chiral
pairing order. The shift in local angular momentum lz,loc = ±1
from the global angular momentum, lz,glob = 0, is indicative of
the nontrivial pair monopole charge, qp = −1. For the tight-

binding model, the �
(qp=−1,lz=0)
MSC monopole superconducting

pairing order can be expressed as a superposition of monopole
harmonics, all which have pair monopole charge qp = −1
and global angular momentum lz = 2, but reside in different
partial wave channels (l � |qp|) due to the lattice symmetry.

2. Tight-binding model of qp = 3 monopole superconductor

We construct a tight binding model for the monopole
superconducting order having pair monopole charge qp =
3, as introduced in Sec. IVC. Here, the band Hamiltonian
describes a magnetic doped triple Weyl semimetal. As C6

symmetry is needed to stabilize the triple Weyl nodes, the
tight-binding model is defined on a three-dimensional hexag-
onal lattice with D6h symmetry, which consists of AA stacked
two-dimensional triangular lattices.

We consider the following tight-binding mean-field BCS
Hamiltonian,

H
(qp=3,lz=0)
MSC =

∑
k

∑
σ,σ ′=↑,↓

c†k,σ

[
HTWSM

kin (k)
]
σ,σ ′ck,σ ′

+
∑
k

∑
σ,σ ′=↑,↓

(c†k,σ [�inter (k)]σ,σ ′c†−k,σ ′ + H.c.),

(E5)

with �inter (k) being the inter-Fermi surface pairing. Above,
the Fourier transform of the band Hamiltonian kernel for the
triple Weyl semimetal is

HTWSM
kin (k) = g(k) · σ − μ, (E6)

in which gx(k) = 2t1(sin k1 − sin k2 + sin k3), gy(k) =
(−2t2/3

√
3)[sin(k1 + k2) − sin(k2 + k3) + sin(k3 − k1)], and

gz(k) = 2tz(cosK0,z − cos kz ) + 2m(3 − cos k1 − cos k2 −
cos k3). The above system hosts two triple Weyl nodes pinned
along the kz axis at ±K0 = (0, 0,±K0,z ) with opposite
winding numbers ∓3. In the low-energy regime, the above
tight-binding model of the band Hamiltonian reduces to
that of the continuum model given in Eq. (36). Nearest and
next-nearest neighbor hopping amplitudes are denoted by t1
and t2 respectively which, for simplicity, we choose to be
t1 = t2 = 8tz sinK0,z to compare to the continuum model.

Above, ki ≡ δi · k, where δ1 = (1, 0, 0), δ2 = ( 12 ,
√
3
2 , 0),

and δ3 = (− 1
2 ,

√
3
2 , 0) are the lattice vectors connecting

neighboring sites in the ab plane, and the lattice constant
has been set to unity. At appropriate doping, the above
system realizes two disjoint Fermi surfaces, FS1 and FS2,
situated about triple Weyl nodes at ±K0 and related by parity,
H(ν=−3)

kin,1 (k) = σzH(ν=+3)
kin,2 (−k)σz.

The nonzero matrix elements, which feature nearest- and
next-nearest-neighbor hopping, read[

HTWSM
kin

]
n;n = (2tz cosK0,z + 6m)σz − μσ0,[

HTWSM
kin

]
n;n+δ1

= [HTWSM
kin

]†
n+δ1;n

= −mσz − it1σx[
HTWSM

kin

]
n;n+δ2

= [HTWSM
kin

]†
n+δ2;n

= −mσz + it1σx[
HTWSM

kin

]
n;n+δ3

= [HTWSM
kin

]†
n+δ3;n

= −mσz − it1σx[
HTWSM

kin

]
n;n+δ1+δ2

= [HTWSM
kin

]†
n+δ1+δ2;n

= − it2ν

3
√
3
σy

[
HTWSM

kin

]
n;n+δ2+δ3

= [HTWSM
kin

]†
n+δ2+δ3;n

= it2ν

3
√
3
σy

[
HTWSM

kin

]
n;n+δ3−δ1

= [HTWSM
kin

]†
n+δ3−δ1;n

= − it2ν

3
√
3
σy

[
HWSM

kin

]
n;n+δz

= [HWSM
kin

]†
n+δz ;n

= −tzσz (E7)
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FIG. 11. Magnitude [(a) and (b)] and phase winding [(c) and (d)]
of the �

(qp=3,lz=0)
MSC monopole superconducting pairing order based on

the tight-binding model in Appendix E 2. The left and right columns
respectively correspond to the north and south pole views of the
pairing order at FS1. (c) and (d) are computed in a gauge in which the
pairing phase is well-defined at the north and south pole respectively.
Parameters are chosen as μ = 0.1, K0 = π/3, txy = tz sinK0/8 =
−1, and m = 0.05.

with δi=1,2,3 and δz = (0, 0, 1) being the lattice vectors con-
necting nearest neighbors. When there is inter-Fermi surface
s-wave pairing, as in Eq. (E4), the system gives rise to
the monopole superconducting order �

(qp=3,lz=0)
MSC confined to

the topological sector qp = 3 and with global angular mo-
mentum lz,glob = 0, as described in Sec. IVC in the main
text.

We further examine the effective monopole pairing or-
der �

(qp=3,lz=0)
MSC in Fig. 11. Here, we have computed the

band-projected pairing gap function in Eq. (16), using the
tight-binding model given in Eq. (E5) and projecting onto
FS1 of the band Hamiltonian in Eq. (E6). As depicted in
Figs. 11(a) and 11(b), the magnitude of the gap function
reaches its maximum near the equator and vanishes at the
poles, consistent with the effective pairing gap function in
Eq. (37), calculated for the related continuum model. There
are two gap nodes located at the north and south pole, which
each display a local effective chiral- f wave symmetry but
with opposite chirality. Figures 11(a) and 11(c) are computed
in the “north pole gauge” in which the Dirac string pierces
the Fermi surface at θk̃ = π . In this gauge, the �

(qp=3,lz=0)
MSC

shows a local f + i f pairing, as evident by the winding in
Fig. 11(c). In contrast, Figs. 11(b) and 11(d) are computed in
the “south pole gauge,” with the Dirac string piercing through
θk̃ = 0. In this gauge, the �

(qp=3,lz=0)
MSC is described by a local

f − i f pairing, as shown in Fig. 11(d). The U(1) topological
obstruction due to the nonvanishing pair monopole charge
qp = 3 leads to nonvanishing net vorticity, given by twice the
pair monopole charge 2qp = 6. The global angular momen-
tum, which is a conserved quantity, is given by lz,glob = 0.

Moreover, the system with �
(qp=3,lz=0)
MSC pairing order exhibits

FIG. 12. (a) Josephson junction along the z direction between
a �

(qp−1,lz=2)
MSC monopole superconductor and a dx2−y2 + idxy-wave

superconductor. (b) Josephson current phase relation between the
�

(qp−1,lz=2)
MSC monopole superconductor and dx2−y2 + idxy-wave su-

perconductor (red, solid), which shows nonvanishing first-order
coupling. In contrast, the first-order Josephson current phase relation
for a junction with an s-wave SC (black, dashed), is zero.

three chiral surface modes in the ab plane under open bound-
ary conditions. Although the local angular momentum lz,loc
of the pairing order changes as kz is varied between the gap
nodes, as shown in the projection of the pairing gap function
in Fig. 11, the leading term in the surface state dispersion
is of order O(k2) and consequently overshadows terms of
order O(k3) which encode the shift in local angular mo-
mentum. Nonetheless, the three surface modes are analogous
to those that would arise in a system with chiral f -wave
pairing.

APPENDIX F: JOSEPHSON CURRENT FOR A z
DIRECTION JUNCTION BETWEEN A �

(qp=−1,lz=2)
MSC

MONOPOLE SUPERCONDUCTOR AND A
dx2−y2 + idxy-WAVE SUPERCONDUCTOR

We demonstrate the nonvanishing first-order Joseph-
son critical current for a junction between a �

(qp=−1,lz=2)
MSC

monopole superconductor and a dx2−y2 + idxy-wave supercon-
ductor, as detailed in Sec. IVB. We consider a junction along
the z direction, shown schematically in Fig. 12(a) and com-
pute the Josephson current using a tight-binding model of
the Josephson junction with spin-independent hopping at the
junction link, analogous to that described in Sec. IVA2. The
Josephson current phase relation is shown in red in Fig. 12(b).
For the same symmetry reasons as discussed in Sec. IVB,
there is nonvanishing first-order Josephson current between
a �

(qp=−1,lz=2)
MSC monopole superconductor and dx2−y2 + idxy

superconductor, i.e., because both pairing orders transform
under rotation Rz according to global angular momentum
lz = 2, there is nonvanishing first-order Josephson coupling.
The magnitude of the Josephson current is largely suppressed
due to the gap nodes along the kz axis for both the chiral
d-wave and monopole pairing orders. Nonetheless, the 2π -
periodic first-order Josephson current persists, indicative of
the global angular momentum of the monopole superconduct-
ing pairing order, lz = 2. This is in contrast to, for example, a
junction with a junction between an �

(qp=−1,lz=2)
MSC monopole

superconductor and s-wave superconductor, for which the
total Josephson current would cancel upon summing the
contributions from states with different conserved transverse
momentum k‖.
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