Relational Programming with Foundation Models

Ziyang Li, Jiani Huang, Jason Liu, Felix Zhu, Eric Zhao, William Dodds, Neelay Velingker,
Rajeev Alur, Mayur Naik

University of Pennsylvania
liby99 @seas.upenn.edu, jianih @seas.upenn.edu, jasonhl @seas.upenn.edu, zhufelix @seas.upenn.edu,
zhaoer @seas.upenn.edu, wdodds @sas.upenn.edu, neelay @seas.upenn.edu, alur@seas.upenn.edu, mhnaik @seas.upenn.edu

Abstract

Foundation models have vast potential to enable diverse Al
applications. The powerful yet incomplete nature of these
models has spurred a wide range of mechanisms to augment
them with capabilities such as in-context learning, informa-
tion retrieval, and code interpreting. We propose VIEIRA,
a declarative framework that unifies these mechanisms in a
general solution for programming with foundation models.
VIEIRA follows a probabilistic relational paradigm and treats
foundation models as stateless functions with relational in-
puts and outputs. It supports neuro-symbolic applications by
enabling the seamless combination of such models with logic
programs, as well as complex, multi-modal applications by
streamlining the composition of diverse sub-models. We im-
plement VIEIRA by extending the SCALLOP compiler with a
foreign interface that supports foundation models as plugins.
We implement plugins for 12 foundation models including
GPT, CLIP, and SAM. We evaluate VIEIRA on 9 challeng-
ing tasks that span language, vision, and structured and vector
databases. Our evaluation shows that programs in VIEIRA are
concise, can incorporate modern foundation models, and have
comparable or better accuracy than competitive baselines.

Introduction

Foundation models are deep neural models that are trained
on a very large corpus of data and can be adapted to a wide
range of downstream tasks (Bommasani et al. 2021). Exem-
plars of foundation models include language models (LMs)
like GPT (Bubeck et al. 2023), vision models like Segment
Anything (Kirillov et al. 2023), and multi-modal models like
CLIP (Radford et al. 2021). While foundation models are
a fundamental building block, they are inadequate for pro-
gramming Al applications end-to-end. For example, LMs
hallucinate and produce nonfactual claims or incorrect rea-
soning chains (McKenna et al. 2023). Furthermore, they lack
the ability to reliably incorporate structured data, which is
the dominant form of data in modern databases. Finally,
composing different data modalities in custom or complex
patterns remains an open problem, despite the advent of
multi-modal foundation models such as ViLT (Radford et al.
2021) for visual question answering.

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

egpt('Th _ })
type height(bound x: String, y: i32)

// Retrieving height of mountains
rel mount_height(m, h) = mountain(m) and height(m, h)

(a) Program P1: Extracting knowledge using GPT.

@clip([> D)
type classify(bound img: Tensor, label: String)

// Classify each image as cat or dog
rel cat_or_dog(i, 1) = image(i, m) and classify(m, 1)

(b) Program P2: Classifying images using CLIP.

mountain mount_height image cat_or_dog
name name height id| img prob ||id| label
Everest P1 Everest | 8848 T m Po 0.02 || 1| cat
Fuji Fuji 3776 i g 0.98 || 1| dog
K2 K2 8611 N g 0.99 | 2| cat
Mt.Blanc Mt.Blanc| 4808 2|8 0.011 2 dog

(c) Example input-output relations of the programs.

Figure 1: Programs in VIEIRA using foundation models.

Various mechanisms have been proposed to augment
foundation models to overcome these limitations. For exam-
ple, PAL (Gao et al. 2023), WebGPT (Nakano et al. 2021),
and Toolformer (Schick et al. 2023) connect LMs with
search engines and external tools, expanding their informa-
tion retrieval and structural reasoning capabilities. LMQL
(Beurer-Kellner, Fischer, and Vechev 2022) generalizes pure
text prompting in LMs to incorporate scripting. In the do-
main of computer vision (CV), neuro-symbolic visual rea-
soning frameworks such as VISPROG (Gupta and Kembhavi
2022) compose diverse vision models with LMs and image
processing subroutines. Despite these advances, program-
mers lack a general solution that systematically incorporates
these methods into a single unified framework.

In this paper, we propose VIEIRA, a declarative frame-
work for programming with foundation models. VIEIRA fol-
lows a (probabilistic) relational paradigm due to its theoret-
ical and practical versatility. Structured data is commonly
stored in relational databases. Relations can also represent
structures such as scene graphs in vision and abstract syntax
trees in natural and formal languages. Moreover, extensions

for probabilistic and differentiable reasoning enable the in-
tegration of relational programming with deep learning in
neuro-symbolic frameworks like DeepProbLog (Manhaeve
et al. 2018) and ScALLOP (Li, Huang, and Naik 2023).

In VIEIRA, relations form the abstraction layer for inter-
acting with foundation models. Our key insight is that foun-
dation models are stateless functions with relational inputs
and outputs. Fig. 1la shows a VIEIRA program which in-
vokes GPT to extract the height of mountains whose names
are specified in a structured table. Likewise, the program
in Fig. 1b uses the image-text alignment model CLIP to
classify images into discrete labels such as cat and dog.
Fig. 1c shows relational input-output examples for the two
programs. Notice that the CLIP model also outputs proba-
bilities that allow for probabilistic reasoning.

We implement VIEIRA by extending the SCALLOP com-
piler with a foreign interface that supports foundation mod-
els as plugins. We implement a customizable and extensi-
ble plugin library comprising 12 foundation models includ-
ing GPT, CLIP, and SAM. The resulting unified interface
enables a wide spectrum of applications with benefits such
as reduced hallucination, retrieval augmentation, and multi-
modal compositionality. We evaluate VIEIRA on 9 applica-
tions that span natural language reasoning, information re-
trieval, visual question answering, image generation, and
image editing. For these applications, we explore diverse
methods for programming with foundation models, such as
neuro-symbolic reasoning, combining semantic searching
with question answering, and modularly composing founda-
tion models. We not only observe on-par or superior perfor-
mance of our solutions compared to competitive baselines,
but also demonstrate their succinctness and ease-of-use.

We summarize our contributions as follows: (1) we in-
troduce a new approach based on relational programming
to build applications on top of foundation models; (2) we
implement an extensible plugin library of 12 programmable
foundation models; and (3) we evaluate VIEIRA on 9
benchmark tasks, and demonstrate comparable or better no-
training accuracy than neural-only as well as task-specific
baselines. Our framework, plugin library, and evaluations
are open-source and available at https://github.com/scallop-
lang/scallop.

Related Work

Neuro-symbolic methods. These methods combine the
complementary benefits of neural learning and symbolic rea-
soning. They include domain-specific solutions (Yi et al.
2018; Mao et al. 2019; Li et al. 2020; Wang et al. 2019;
Xu et al. 2022; Chen et al. 2020; Minervini et al. 2020)
as well as general programming frameworks, such as Deep-
ProbLog (Manhaeve et al. 2018) and SCALLOP (Li, Huang,
and Naik 2023). These methods typically concern training
or fine-tuning neural models in the presence of logical pro-
grams, whereas we target building applications atop foun-
dation models with zero-shot or few-shot examples. An-
other recent work, the STAR framework (Rajasekharan et al.
2023) also connects a language model (neural) to an an-
swer set programming reasoner (symbolic). It is conceptu-

ally similar to VIEIRA but only focuses on natural language
understanding and does not support probabilistic reasoning.

Foundation models. These models target different modal-
ities and domains (Touvron et al. 2023; OpenAl 2023; Rad-
ford et al. 2021; Kirillov et al. 2023; Radford et al. 2021).
Their reasoning capabilities continue to improve with larger
context sizes (Ratner et al. 2023), smarter data selection
(Adadi 2021), and the discovery of new prompting meth-
ods, such as chain-of-thought (Wei et al. 2023; Kojima et al.
2022), self-consistency (Wang et al. 2023), and ReAct (Yao
et al. 2023). VIEIRA is orthogonal to these techniques and
stands to further enhance the robustness and reliability of
foundation models in end-to-end Al applications.

Tools aiding language models. There are many efforts
that seek to improve the reasoning abilities of language
models (LMs) by incorporating external programs and
tools (Gao et al. 2023; Schick et al. 2023; Nakano et al.
2021; Davis and Aaronson 2023). For instance, AutoGPT
(Richards 2023) and TaskMatrix.Al (Liang et al. 2023) al-
lows black-box LMs to control symbolic reasoning by in-
voking commands or calling APIs. On the other hand, many
works attempt to extract structured information from LMs
for downstream tasks (Gupta and Kembhavi 2022; Beurer-
Kellner, Fischer, and Vechev 2022). VIEIRA unifies these
two strategies for augmenting model capabilities, and ex-
tends them into a glue language for composing multi-modal
foundation models.

Language
VIEIRA employs a declarative logic programming language
based on Datalog (Abiteboul, Hull, and Vianu 1994). In this
section, we present the core language and its foreign inter-
face for incorporating diverse foundation models.

Core Language

Relations and data types. The fundamental data type
in VIEIRA is set-valued relations comprising tuples of
statically-typed primitive values. Besides the standard prim-
itive types such as integers (e.g. 132) and string (String),
VIEIRA introduces two additional types for seamless inte-
gration of foundation models: Tensor and Algebraic Data
Types (ADTs). For example, we can declare a relation named
image to store tuples of image IDs and image Tensors:

type image(img_id: 132, img: Tensor)

The contents of this relation can be specified via a set of
tuples using the built-in foreign function $1load_image:

rel image = {(0, $load_image("cat.png")), ...}

ADTs in VIEIRA enable the specification of domain spe-
cific languages (DSLs) to bridge structured and unstructured
data. For example, the following DSL for visual question an-
swering (VQA) describes queries to retrieve scene objects,
count objects, and check the existence of objects:

type Query = Scene() | Filter(Query, String)
| Count(Query) | Exists(Query) |
// How many balls are there?
const MY_QUERY = Count(Filter(Scene(), "ball"))

Logical reasoning. Being based on Datalog, VIEIRA sup-
ports defining Horn rules, thereby allowing logical reason-
ing constructs such as conjunction, disjunction, recursion,
stratified negation, and aggregation. Recursion is particu-
larly useful for inductively defining the semantics of a DSL.
For example, a (partial) semantics for the above DSL is de-
fined as follows, where eval_o and eval_n are recursively
defined to evaluate objects and numbers, respectively:
// Scene returns all objects
rel eval_o(e, o) = case e is Scene() and obj(o)
// Filter applies filter using attributes
rel eval_o(e, 0) = case e is Filter(f, a)
and eval_o(f, o) and attr(o, a)
// Count returns the number of evaluated objects
rel eval_n(e, n) = n := count(o: eval_o(el, o)
where el: case e is Count(el))
. // other cases of ‘e’

Note that the case-1is operator matches patterns of the ADT
and the count aggregator counts the number of entities.
When combined with foundation models, principled reason-
ing semantics in this style can compensate for individual
foundation models’ lack of reasoning capability.

Probabilistic soft logic. Tuples can be tagged with proba-
bilities. The example below shows hard-coded probabilities,
suggesting that the entity is more likely a dog than a cat:

rel animal = {0.1::(1,"cat"), 0.9::(1,"dog")}

Soft-logic operations produce probabilities as well. For in-
stance, the soft-eq operator () on Tensors derives cosine-
similarity between tensors, enabling features like soft-join
and applications like semantic search. In the following ex-
ample, we compute similarity scores between distinct docu-
ments by performing soft-join on their embeddings:

type doc(id: i32, embed: Tensor) // embed docs

rel sim(i, j) = doc(i, v) and doc(j, v) and 1i!=j

// equiv: sim(i, j) = doc(i, vl) and doc(j, v2)

and i!=j and v1l~=v2

Notice that in the above rule, a join on a tensor value v is de-
sugared into a soft-eq on two individual variables (denoted
v1 and v2). Internally, with the provenance framework pro-
vided by SCALLOP (Li, Huang, and Naik 2023), we use the
top-k-proofs semiring (Huang et al. 2021) for scalable prob-
abilistic reasoning, thus enabling features such as ranking
and uncertainty estimation.

Foreign Interface

In order to incorporate foundation models, we design a
foreign interface with two main programming constructs,
called foreign predicate and foreign attribute. They can be
defined externally in languages like Python and imported
into VIEIRA for application.

Foreign Predicate (FP). Foreign predicates can be used in
rules just like other relations. However, instead of grounding
relational facts from a table, FPs ground facts by invoking
external functions. The syntax for defining FPs is as follows:

extern type PRED([bound|free]? ARG: TYPE, ...)

In addition to the type, each argument is specified either as
a bounded argument (using the keyword bound) or a free

@foreign_attribute

def clip(pred: Predicate, labels: List[str]):
Sanity checks for predicate and labels...
assert pred.args[0].ty == Tensor and ...

@foreign_predicate(name=pred.name)
def run_clip(img: Tensor) -> Facts[str]:
Invoke CLIP to classify image into labels
probs = clip_model(img, labels)
Each result is tagged by a probability
for (prob, label) 1in zip(probs, labels):
yield (prob, (label,)) # prob::(label,)

return run_clip

Figure 2: Snippet of Python implementation of the foreign
attribute c'1ip which uses the CLIP model for image classi-
fication. Notice that the FA c11p returns the FP run_clip.

argument (using free or omitted for brevity). Semantically,
FPs are functions that take in a tuple of bounded arguments
and return a list of tuples of free arguments. The runtime
of VIEIRA performs memoization on FP results to avoid re-
dundant computation. Optionally, FPs can tag a probability
to each returned tuple for further probabilistic reasoning.

Foreign Attribute (FA). In VIEIRA, attributes can be used
to decorate declarations of predicates. They are higher-order
functions that take in the provided arguments and the dec-
orated predicate to return a new predicate. The syntax for
using an attribute to decorate a predicate is:

@ATTR(POS_ARG, ..., KEY=KW_ARG, ...)

type PRED([bound|free]l? ARG: TYPE, ...)
The attribute is applied prior to the compilation of VIEIRA
programs. For interfacing with foundation models, the po-
sitional and keyword arguments are particularly helpful in
configuring the underlying model, hiding low-level details.
Fig. 2 illustrates one succinct implementation of the FA that
enables the use of the CLIP model shown in Fig. 1b.

Foundation Models

VIEIRA provides an extensible plugin framework that adapts
to the evolving landscape of foundation models. In this
work, we have implemented 7 plugins, covering 12 foun-
dation models, all through the foreign interface. Our design
principle for the interface is three-fold: simplicity, config-
urability, and compositionality. In this section, we present
several representative predicates and attributes which sub-
stantially support the applicability of VIEIRA to diverse ma-
chine learning tasks.

Text completion. In VIEIRA, language models like GPT
(OpenAlI 2023) and LLaMA (Touvron et al. 2023) can be
used as basic foreign predicates for text completion:

extern type gpt(bound p: String, a: String)

rel ans(a) = gpt("population of NY 1is", a)
In this case, gpt is an arity-2 FP that takes in a String
as the prompt and produces a String as the response. It
uses the model gpt-3.5-turbo by default. To make the
interface more relational and structural, we provide an FA:

@gpt("the population of {{loc}} 1is {{num}}",
examples=[("NY", 8468000), ...])
type population(bound loc: String, num: u32)

Here, we declare a relation named population which pro-
duces a population number (num) given a location (loc) as
input. Notice that structured few-shot examples are provided
through the argument examples.

Semantic parsing. One can directly configure language
models to perform semantic parsing. For instance, the se-
mantic parser for the simple Query DSL (partially defined
in the Language section) can be declared as follows:

@gpt_semantic_parse(

"Please semantically parse questions...",
examples=[("How many red things are there?",
"Count(Filter(Scene(), ’red’))"), ...]1)

type parse_query(bound x: String, y: Query)

Internally, the language model is expected to generate a fully
structured Query in its string form. Then, VIEIRA attempts
to parse the string to construct actual ADT values. In prac-
tice, the success of semantic parsing depends heavily on
the design of the DSL, involving factors like intuitiveness
(e.g., names and arguments of ADT variants) and complex-
ity (e.g., number of possible ADT variants).

Relational data extraction. Structural relational knowl-
edge available in free-form textual data can be extracted
by language models. We introduce a foreign attribute
@gpt_extract_relation for this purpose. For instance,
the following declared predicate takes in a context and pro-
duces (subject, object, relation) triplets:
@gpt_extract_relation(
"Extract the dimplied kinship relations",
examples=[("Alice and her son Bob went to...",
[("alice", "bob", "son"), ...1)1)
type extract_kinship(bound ctx: String,
sub: String, obj: String, rela: String)
This attribute differs from the text completion attribute in
that it can extract an arbitrary number of facts. The under-
lying implementation prompts LMs to respond with JSON-
formatted strings, allowing structured facts to be parsed.

Language models for textual embedding. Textual em-
beddings are useful in performing tasks such as information
retrieval. The following example declares an FP encapsulat-
ing a cross-encoder (Nogueira and Cho 2019):
@cross_encoder ("nli-deberta-v3-xsmall")

type enc(bound input: String, embed: Tensor)
rel sim() = enc("cat", e) and enc("neko", e)

In the last line, we compute the cosine-similarity of the en-
coded embeddings using a soft-join on the variable e. As
a result, we obtain a probabilistic fact like ©0.9::sim()
whose probability encodes the cosine-similarity between the
textual embeddings of "cat'" and "neko".

Image classification models. Image-text alignment mod-
els, such as CLIP (Radford et al. 2021), can naturally be
used as zero-shot image classification models. Fig. 1b shows
an example usage of the @clip attribute. We also note that
dynamically-generated classification labels can be provided
to CLIP via a bounded argument in the predicate.

Image segmentation models. OWL-ViT (Minderer et al.
2022), Segment Anything Model (SAM) (Kirillov et al.
2023), and DSFD (Li et al. 2018) are included in VIEIRA as
image segmentation (IS) and object localization (LOC)
models. IS and LOC models can provide many outputs, such
as bounding boxes, classified labels, masks, and cropped im-
ages. For instance, the OWL-ViT model can be used and
configured as follows:

@owl_vit(["human face", "rocket"])

type find_obj(bound img: Tensor,

id: u32, label: String, cropped_image: Tensor)

Here, the find_obj predicate takes in an image, and finds
image segments containing “human face” or “rocket”. Ac-
cording to the names of the arguments, the model extracts
3 values per segment: ID, label, and cropped image. Note
that each produced fact will be associated with a probability,
representing the confidence from the model.

Image generation models. Visual generative models such
as Stable Diffusion (Rombach et al. 2022) and DALL-
E (Ramesh et al. 2021) can be regarded as relations as
well. The following example shows the declaration of
the gen_image predicate, which encapsulates a diffusion
model:

@stable_diffusion("stable-diffusion-v1i-4")

type gen_image(bound txt: String, img: Tensor)
As can be seen from the signature, it takes in a String text
as input and produces a Tensor image as output. Optional
arguments such as the desired image resolution and the num-
ber of inference steps can be supplied to dictate the granu-
larity of the generated image.

Tasks and Solutions

We apply VIEIRA to solve 9 benchmark tasks depicted in
Fig. 3. Table 1 summarizes the datasets, evaluation metrics,
and the foundation models used in our solutions. We elabo-
rate upon the evaluation settings and our solutions below.

Date reasoning (DR). In this task adapted from BIG-
bench (Srivastava et al. 2023), the model is given a context
and asked to compute a date. The questions test the model’s
temporal and numerical reasoning skills, as well as its grasp
of common knowledge. Unlike BIG-bench where multiple-
choice answers are given, we require the model to directly
produce its answer in MM/DD/YYYY form.

Our solution leverages GPT-4 (5-shot!) for extracting 3
relations: mentioned dates, duration between date labels, and
the target date label. From here, our relational program iter-
ates through durations to compute dates for all date labels.
Lastly, the date of the target label is returned as the output.

Tracking shuffled objects (TSO). In this task from BIG-
bench, a textual description of pairwise object swaps among
people is given, and the model needs to track and derive
which object is in a specified person’s possession at the end.

'In this work, k in “k-shot” means the number of examples pro-
vided to the LM component within the full solution. Each example
is a ground-truth input-output pair for the LM.

Claire has a blue ball. Alice and Bob swap balls.
Then, Bob and Claire swap balls. Alice has the .

Date Reasoning BIG-bench GPT QA HotpotQA GPT (GPT-Enc Product Search @tuErA0iBolel GPT | Cross-Enc
Question: Documents: Products:
May 6, 1992 is like yesterday to Jane, but that is ! h ! ! h
N Y Y > The 2015 Steven Several || payid Gene [1] [2] [2] [4] [s]
actually ten years ago. What is the date one week LostAlone || piamond Battelle, || currentand . . 2pK
) wore e e = Parker, RamPro 10 (sator) || [Maxhuto2 P
from today in MM/DD/YYYY? BTk || Classicwas || Wilamson, || membersof || ncknarmed At | || rssavama ||| 19000 || P St ||| 13552
= o B e ra .. oulan Tire: ur X5-¢
Answel‘: 03/1 3/2002 an Tires/Wheel | Tire Spoon
. Founding B N PR Query: lawnmower tires without rims
. . an members i Chavano : . . . #4
Tracking Shuffled Objects @:LERI00W) (GPT Amenican Adem | |rocnen | (A e Product Ranking: 1st: #2, 2nd: #6, 3rd: #4, ...
_ alternative Gardner, began.. Hieldisa Lol
Question: rock band Ryan Babamian, || -29Y° : GSMSK GPT
! . ier,... Baseball.. Math Reasoning
Alice has an orange ball, Bob has a white ball, and - "
Question: Question:

‘Which team does the player named 2015 Diamond
Head Classic’s MVP play for?

Alice is required to submit a 15-page paper. She finished
writing 1/3 of the paper. How many pages are left to write?

Rich's daughter Kelly made dinner for her sister
Kim. Dorothy went to her brother Rich's birthday
party. Anne went shopping with her sister Kim. How
is Dorothy related to Anne?

Answer: niece

Answer: white ball Answer: Sacramento Kings Answer: 10
Kinship Reasoning [OAUVTE (GPT) || Compositional VQA CLEVR GPT | VILT [OWL-ViT(CLIP
Question: Question: Question:

Is the tray on top of the table
black or light brown?

Answer:
light brown

How many objects are
red in this image?
Answer:

3

Obj Tagging GPT CLIP(DSFD

Image Generation and Editing IGP20 GPT (_Stable-Diffusion

Input Image

Tagged Image
Instruction: Tag "microsoft ceos.jpg"

Input Image

Berset with crying_cat.

Edited Image
Instruction: Hide Walter Thurnherr
with smiling_face_with_halo and Alain

Replace the bowl with

Replace the apple with
=> other containers

Input
other fruits

A bowl full of apples
Prompts

A plate full of apples A plate full of oranges

Output
Images

-

Figure 3: Benchmark tasks. The top of each box lists the dataset(s) and the foundation models used in our solutions.

There are three difficulty levels depending on the number of
objects to track, denoted by n € {3,5, 7}.

Our solution for tracking shuffled objects relies on GPT-4
(1-shot) to extract 3 relations: initial possessions, swaps, and
the target person whose final possessed object is expected
as the answer. Our reasoning program iterates through all
the swaps starting from the initial state and retrieves the last
possessed object associated with the target.

Kinship reasoning (KR). CLUTRR (Sinha et al. 2019) is
a kinship reasoning dataset of stories which indicate the kin-
ship between characters, and requires the model to infer the
relationship between two specified characters. The questions
have different difficulty levels based on the length of the rea-
soning chain, denoted by k € {2...10}.

Our solution for kinship reasoning invokes GPT-4 (2-
shot) to extract the kinship graph from the context. We also
provide an external common-sense knowledge base for rules
like “mother’s mother is grandmother”. Our program then
uses the rules to derive other kinship relations. Lastly, we
retrieve the kinship between the specified pair of people.

Math reasoning (MR). This task is drawn from the
GSMSK dataset of arithmetic word problems (Cobbe et al.
2021). The questions involve grade school math word prob-
lems created by human problem writers, and the model is
asked to produce a number as the result. Since the output
can be fractional, we allow a small delta when comparing

the derived result with the ground truth.

Our solution to this task prompts GPT-4 (2-shot) to pro-
duce step-by-step expressions, which can contain constants,
variables, and simple arithmetic operations. We evaluate all
the expressions through a DSL, and the result associated
with the goal variable is returned. By focusing the LM’s re-
sponsibility solely on semantic parsing, our relational pro-
gram can then achieve faithful numerical computation via
DSL evaluation.

Question answering with information retrieval (QA).
We choose HotpotQA (Yang et al. 2018), a Wikipedia-based
question answering (QA) dataset under the “distractor” set-
ting. Here, the model takes in 2 parts of inputs: 1) a question,
and 2) 10 Wikipedia paragraphs as the context for answering
the question. Among the 10 Wikipedia pages, at most 2 are
relevant to the answer, while the others are distractors.

Our solution is an adaptation of FE2H (L1, Lei, and Yang
2022), which is a 2-stage procedure. First, we turn the 10
documents into a vector database by embedding each docu-
ment. We then use the embedding of the question to retrieve
the 2 most related documents, which are then fed to a lan-
guage model to do QA. In this case, the QA model does not
have to process all 10 documents, leading to less distraction.

Product search (PS). We use Amazon’s ESCI Product
Search dataset (Reddy et al. 2022). The model is provided
with a natural language (NL) query and a list of products (23

#Test . Foundation
Task Dataset Samples Metric Models Used
DR DR 369 EM GPT-4
TSO TSO 150 EM GPT-4
KR CLUTRR 1146 EM GPT-4
MR GSMSK 1319 EM GPT-4
GPT4
QA Hotpot QA 1000 EM —ada002
Amazon GPT-4
PS ESCI 1000 nDCG —da00r
GPT-4
VoA CLEVR 480 | Recall@ 1| OWL-IT
GOQA 500 Recall@3 VilT
CLIP
OWL-ViIT
VQAR 100 VilT
VOT MI GPT4
DSFD
OFCP 50 CLID
OFCP 50 DESD
CLIP
IGE ML —Gprg—
1GP20 20 " Diffusion

Table 1: Characteristics of benchmark tasks including the
dataset used, its size, and evaluation metrics. Metrics include
exact match (EM), normalized discounted cumulative gain
(nDCG), and manual inspection (MI). We also denote the
foundation models used in our solution for each task.

products on average). The goal is to rank the products that
best match the query. In the dataset, for each pair of query
and product, a label among F (exact match), .S (substitute),
C (complementary), and I (irrelevant) is provided. The met-
ric we use to evaluate the performance is nDCG. The gains
are set to be 1.0 for £, 0.1 for S, 0.01 for C, and 0.0 for I.
One challenge of this dataset is that many queries contain
negative statements. For example, in the query “#1 treadmill
without remote”, the “remote” is undesirable. Therefore, in-
stead of computing the embedding of the full query, we de-
compose the query into positive and negative parts. We then
perform semantic search by maximizing the similarity of the
positive part while minimizing that of the negative part.

Compositional visual question answering (VQA). We
choose two compositional VQA datasets, GQA (Hudson
and Manning 2019) and CLEVR (Johnson et al. 2016).
In this task, the model is given an image and a question,
and needs to answer the question. For GQA, the majority
of questions expect yes/no answers, while CLEVR’s ques-
tions demand features like counting and spatial reasoning.
We uniformly sample 500 and 480 examples from GQA
and CLEVR datasets respectively. Following VQA conven-
tions (Kim, Son, and Kim 2021), we use Recall@k where
k € {1, 3} as the evaluation metrics.

Our solution for GQA is an adaptation of VISPROG
(Gupta and Kembhavi 2022). We create a DSL for invok-
ing vision modules such as ViLT and OWL-ViT, and use
GPT-4 for converting questions into programs in this DSL.

Our solution for CLEVR is similar, directly replicating the
DSL provided by the original work. OWL-ViT and CLIP are
used to detect objects and infer attributes, while the spatial
relations are directly computed using the bounding box data.

Visual object tagging (VOT). We evaluate on two
datasets, VQAR (Huang et al. 2021) and OFCP. For VQAR,
the model is given an image and a programmatic query, and
is asked to produce bounding boxes of the queried objects
in the image. Our solution composes a relational knowledge
base, defining entity names and relationships, with object re-
trieval (OWL-ViT) and visual QA (ViLT) models.

Online Faces of Celebrities and Politicians (OFCP) is a
self-curated dataset of images from Wikimedia Commons
among other sources. For this dataset, the model is given
an image with a descriptive NL filename, and needs to de-
tect faces relevant to the description and tag them with their
names. Our solution obtains a set of possible names from
GPT-4 and candidate faces from DSFD. These are provided
to CLIP for object classification, after which probabilistic
reasoning filters the most relevant face-name pairs.

Language-guided image generation and editing (IGE).
We adopt the task of image editing from (Gupta and Kem-
bhavi 2022). In this task, the instruction for image editing
is provided through NL, and can invoke operations such as
blurring background, popping color, and overlaying emojis.
Due to the absence of an existing dataset, we repurpose the
OFCP dataset by introducing 50 NL image editing prompts.
Our solution for this task is centered around a DSL for image
editing. We incorporate GPT-4 for semantic parsing, DSFD
for face detection, and CLIP for entity classification. Mod-
ules for image editing operations are implemented as indi-
vidual foreign functions.

For free-form generation and editing of images, we cu-
rate IGP20, a set of 20 prompts for image generation and
editing. Instead of using the full prompt, we employ an LM
to decompose complex NL instructions into simpler steps.
We define a DSL with high-level operators such as generate,
reweight, refine, replace, and negate. We use a combination
of GPT-4, Prompt-to-Prompt (Hertz et al. 2022), and diffu-
sion model (Rombach et al. 2022) to implement the seman-
tics of our DSL. We highlight our capability of grounding
positive terms from negative phrases, which enables han-
dling prompts like “replace apple with other fruits” (Fig. 3).

Experiments and Analysis
We aim to answer the following research questions:
RQ1. Is VIEIRA programmable enough to be applicable to
a diverse range of applications with minimal effort?

RQ2. How do solutions using VIEIRA compare to other
baseline methods in the no-training setting?

RQ1: Programmability
While a user study for VIEIRA’s programmability is out of
scope in this paper, we qualitatively evaluate its programma-

bility on three aspects. First, we summarize the lines-of-code
(LoC) for each of our solutions in Table 2. The programs

Prompt Prompt
Dataset LoC LoC Dataset LoC LoC
DR 69 48 CLEVR 178 45
TSO 34 16 GQA 82 36
CLUTRR 61 45 VQAR 53 11

GSM8K 47 28 OFCP (VOT) 33 2
HotpotQA 47 24 OFCP (IGE) 117 44
ESCI 32 7 I1GP20 50 12

Table 2: The lines-of-code (LoC) numbers of our solutions
for each dataset. The LoC includes empty lines, comments,
natural language prompts, and DSL definitions. We note
specifically the LoC of prompts in the table.

Method DR TSO CLUTRR GSMSK
71.00 30.00 43.10 87.10
GPT-4 (O-shot) (O-shot) (3-shot) (O-shot)
87.26 84.00 24.17 92.00
GPT-4 (CoT) (0-shot) (0-shot) (3-shot) (5-shot)
Ours 92.41 100.00 72.50 90.60

Table 3: The performance on the natural language reasoning
datasets. Numbers are in percentage (%).

HotpotQA | Amazon ESCI
Method Fine-tuned EM ‘ Method Fine-tuned nDCG
C2FM v 72.07% | BERT v 0.830
FE2H v 71.89% | CE-MPNet v 0.857
— — — | MIPS X 0.797
Ours X 67.3% | Ours X 0.798

Table 4: The performance on the HotpotQA and Amazon
ESCI. We also include performance numbers from methods
which are fine-tuned on the corresponding dataset.

are concise, as most are under 100 lines. Notably, natural
language prompts (including few-shot examples) take up a
significant portion of each solution. Secondly, 8 out of 10
solutions are coded by undergraduate students with no back-
ground in logic and relational programming, providing fur-
ther evidence of VIEIRA’s user-friendliness. Last but not
least, our solutions are interpretable and thus offer debug-
gability. Specifically, all the intermediate relations are avail-
able for inspection, allowing systematic error analysis.

RQ2: Baselines and Comparisons

We compare the performance of our solutions to existing
baselines under the no-training setting. In particular, our so-
lutions achieve better performance than comparable base-
lines on 6 out of 8 studied datasets with baselines. Below,
we classify the tasks into 4 categories and discuss the re-
spective performance and comparisons.

Natural language reasoning. For the tasks of DR, TSO,
CLUTRR, and GSMS8K, we pick a generic baseline of GPT-

DR (Date Reasoning)

Question Today's meeting is rescheduled to 11 am tomorrow, 10/16/1924.
What is the date one year ago from today in MM/DD/YYYY?

mentioned_date: {(s)}

VIEIRA relationship: {(, N)

Extracted

Relations
goal: {()}

GPT-4 Let's think step by step. First, we need to subtract one year from
Response the given date, 10/16/1924. When we do this, we get 10/16/1923.

10/16/1923 ¥

CLUTRR (Kinship Reasoning)

Context & Myrna and her husband Christopher went on a cruise. They had
a wonderful time. Christopher and his daughter Lucille took a
day off school to go to the zoo. Who is Lucille to Myrna?

Question

VIEIRA
Extracted
Relations

Lucille is Myrna's stepdaughter. In the given scenario,
GPT-4 Christopher is Myrna's husband, and Christopher is also the
Response father of Lucille. This makes Lucille the daughter of Myrna's
husband, which means she is Myrna's stepdaughter.

stepdaughter)¢

GSMS8K (Math Reasoning)

. It takes 3 kangaroos traveling at the same speed a total of 18
Question hours to travel across a highway. How many hours will it take 4
turtles, each traveling at half the speed of a kangaroo, to do so?

steps: {
(o, s)
VIEIRA (1)
Extracted ’ ’ ’
. (2, s)
Relations
@3, s)}
goal: {()}
CRIRA
Answer 48

Let's think step by step. First, we know that the total time it takes for 3 kangaroos
to travel across the highway is 18 hours. This means that one kangaroo takes 18
hours to travel across the highway. Then, we know that a turtle travels at half the
GPT-4 speed of a kangaroo, which means it takes twice as long for a turtle to travel the

RespOl‘lse same distance. So, one turtle would take 18 hours * 2 = 36 hours to travel across
the highway. However, we have four turtles traveling together at the same speed,
so they would still take 36 hours to travel across the highway, because they are
traveling simultaneously.

Figure 4: Illustrative comparisons between our solution and
GPT-4 (zero-shot CoT) on selected questions from DR,
CLUTRR, and GSMS8K datasets. We also include the ex-
tracted relations used for subsequent reasoning.

4 under zero-shot, few-shot, and chain-of-thought (CoT) set-
tings. All our solutions also rely on GPT-4 (few-shot), but
we note that our shots only include extracted facts, and not
the final answer or any reasoning chains. The data in Ta-

Ours = = = GPT-4 GPT-4 (CoT)

—_
=3
=}
T
|

-
o
T
-
|
<
o
T
|

w
o
T

7
|

N
338
T
|

Accuracy (%)
[SA)
S
I
\
AY
rd
|
Accuracy (%)

[\
928
T

2 4 6 8 10 3 5 7

k, length of reasoning chain n, number of objects

(a) CLUTRR (b) TSO

Figure 5: Systematic generalizability comparisons on the
CLUTRR and TSO datasets.

Method GQA CLEVR
Recall@]l Recall@3 Recall@]l Recall@3
VIiLT-VQA 0.049 0.462 0.241 0.523
PNP-VQA 0.419 — — —
Ours 0.579 0.665 0.463 0.638

Table 5: Quantitative results on the VQA datasets.

ble 3 indicates that our method can significantly enhance
reasoning performance and reduce hallucination, exempli-
fied by achieving a flawless 100% accuracy on the TSO
dataset. Note that on GSM8K, our method scores slightly
lower than the baseline; we conjecture that our solution de-
mands more from GPT-4 itself to extract structured compu-
tation steps. On CLUTRR, our solution even outperforms
fCoT (Lyu et al. 2023), a special prompting technique with
external tool use, by 0.6%. In Fig. 5 we illustrate the system-
atic generalizability of our methods. The performance of our
solutions remains relatively consistent even when the prob-
lems become harder. We provide illustrative examples in
Fig. 4 showing comparisons between our method and GPT-4
(zero-shot CoT).

Retrieval augmentation and semantic search. For the
HotpotQA dataset, our solution is an adaptation of FE2H
(Li, Lei, and Yang 2022), a retrieval-augmented question an-
swering approach. As seen in Table 4, with no fine-tuning,
our method scores only a few percentages lower than fine-
tuned methods C2FM (Yin et al. 2022) and FE2H. For
the Amazon ESCI dataset, our solution performs seman-
tic search for product ranking. While performing slightly
lower than the fine-tuned methods (Reddy et al. 2022; Song
et al. 2020), our solution outperforms maximum inner prod-
uct search (MIPS) based on GPT text encoder (text-
embedding-ada-002).

Compositional multi-modal reasoning. For VQA, we
pick ViILT-VQA (Kim, Son, and Kim 2021) (a pre-trained
foundation model) and PNP-VQA (Tiong et al. 2022) (a
zero-shot VQA method) as baselines. As shown in Table 5,
our method significantly outperforms the baseline model on
both datasets. Compared to the neural-only baseline, our ap-
proach that combines DSL and logical reasoning more ef-
fectively handles intricate logical operations such as count-
ing and numerical comparisons. On GQA, out method out-

X

InstructPix2Pix

Original Ours

Instruction: Replace the bowl with something
else, and change the apples to other fruits.

Figure 6: Qualitative comparison of image editing. Com-
pared to InstructPix2Pix, our image editing method follows
the instructed edits better, as it successfully changed the
bowl into plate and apples to oranges.

Method Visual Object Tagging Image Editing
VQAR OFCP OFCP
Ours 67.61% 60.82% 74.00%

Table 6: Quantitative results on object tagging and image
editing tasks. We manually evaluate the tagged entities and
the edited images for semantic correctness rates.

performs previous zero-shot state-of-the-art, PNP-VQA, by
0.16 (0.42 to 0.58). For object and face tagging, without
training or fine-tuning, our method achieves 67.61% and
60.82% semantic correctness rates (Table 6).

Image generation and editing. For image generation and
editing, we apply our technique to the OFCP and 1GP20
datasets. We rely on manual inspection for evaluating our
performance on the OFCP dataset, and we observe 37 cor-
rectly edited images out of the 50 evaluated ones, resulting
in a 74% semantic correctness rate (Table 6). For IGP20, we
choose as the baseline a diffusion model, InstructPix2Pix
(Brooks, Holynski, and Efros 2023), which also combines
GPT-3 with image editing. We show one example baseline
comparison illustrated in Figure 6.

Conclusion

We introduced VIEIRA, a declarative framework designed
for relational programming with foundation models. VIEIRA
brings together foundation models from diverse domains,
providing a unified interface for composition and the abil-
ity to perform probabilistic logical reasoning. This results in
solutions with comparable and often superior performance
than neural-based baselines. In the future, we aim to extend
the capabilities of VIEIRA beyond the current in-context
learning settings to weakly-supervised training and fine-
tuning of foundation models in an end-to-end manner.

Acknowledgements

We thank the anonymous reviewers for useful feedback.
This research was supported by NSF grant #2313010 and
DARPA grant #FA8750-23-C-0080. Ziyang Li was sup-
ported by an Amazon Fellowship.

References

Abiteboul, S.; Hull, R.; and Vianu, V. 1994. Foundations of
Databases: The Logical Level. Pearson, 1st edition.

Adadi, A.2021. A survey on data-efficient algorithms in big
data era. Journal of Big Data, 8(1): 24.

Beurer-Kellner, L.; Fischer, M.; and Vechev, M. 2022.
Prompting Is Programming: A Query Language For Large
Language Models. In PLDI.

Bommasani, R.; Hudson, D. A.; Adeli, E.; Altman, R. B.;
Arora, S.; von Arx, S.; Bernstein, M. S.; Bohg, J.; Bosselut,
A.; Brunskill, E.; and et al. 2021. On the Opportunities and
Risks of Foundation Models. arXiv:2108.07258.

Brooks, T.; Holynski, A.; and Efros, A. A. 2023. Instruct-
Pix2Pix: Learning to Follow Image Editing Instructions.
arXiv:2211.09800.

Bubeck, S.; Chandrasekaran, V.; Eldan, R.; Gehrke, J.;
Horvitz, E.; Kamar, E.; Lee, P.; Lee, Y. T.; Li, Y.; Lundberg,
S.; etal. 2023. Sparks of artificial general intelligence: Early
experiments with GPT-4. arXiv:2303.12712.

Chen, X.; Liang, C.; Yu, A. W.; Zhou, D.; Song, D.; and
Le, Q. V. 2020. Neural Symbolic Reader: Scalable Integra-
tion of Distributed and Symbolic Representations for Read-
ing Comprehension. In ICLR.

Cobbe, K.; Kosaraju, V.; Bavarian, M.; Chen, M.; Jun, H.;
Kaiser, L.; Plappert, M.; Tworek, J.; Hilton, J.; Nakano, R.;
Hesse, C.; and Schulman, J. 2021. Training Verifiers to
Solve Math Word Problems. arXiv:2110.14168.

Davis, E.; and Aaronson, S. 2023. Testing GPT-4 with Wol-
fram Alpha and Code Interpreter plug-ins on math and sci-
ence problems. arXiv:2308.05713.

Gao, L.; Madaan, A.; Zhou, S.; Alon, U.; Liu, P; Yang, Y;
Callan, J.; and Neubig, G. 2023. PAL: Program-aided Lan-
guage Models. arXiv:2211.10435.

Gupta, T.; and Kembhavi, A. 2022. Visual Program-
ming: Compositional visual reasoning without training.
arXiv:2211.11559.

Hertz, A.; Mokady, R.; Tenenbaum, J.; Aberman, K.; Pritch,
Y.; and Cohen-Or, D. 2022. Prompt-to-Prompt Image Edit-
ing with Cross Attention Control. arXiv:2208.01626.
Huang, J.; Li, Z.; Chen, B.; Samel, K.; Naik, M.; Song,
L.; and Si, X. 2021. Scallop: From Probabilistic Deduc-
tive Databases to Scalable Differentiable Reasoning. In
NeurIPS.

Hudson, D. A.; and Manning, C. D. 2019. GQA: a new
dataset for compositional question answering over real-
world images. arXiv:1902.09506.

Johnson, J.; Hariharan, B.; van der Maaten, L.; Fei-Fei, L.;
Zitnick, C. L.; and Girshick, R. B. 2016. CLEVR: A Diag-
nostic Dataset for Compositional Language and Elementary
Visual Reasoning. arXiv:1612.06890.

Kim, W.; Son, B.; and Kim, I. 2021. ViLT: Vision-and-
Language Transformer Without Convolution or Region Su-
pervision. arXiv:2102.03334.

Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.;
Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A. C.; Lo, W.-
Y.; et al. 2023. Segment Anything. arXiv:2304.02643.

Kojima, T.; Gu, S. S.; Reid, M.; Matsuo, Y.; and Iwasawa,
Y. 2022. Large language models are zero-shot reasoners. In
NeurlPS.

Li, J.; Wang, Y.; Wang, C.; Tai, Y.; Qian, J.; Yang, J.; Wang,
C.; Li, J.; and Huang, F. 2018. DSFD: Dual Shot Face De-
tector. arXiv:1810.10220.

Li, Q.; Huang, S.; Hong, Y.; Chen, Y.; Wu, Y. N.; and Zhu,
S.-C. 2020. Closed Loop Neural-Symbolic Learning via
Integrating Neural Perception, Grammar Parsing, and Sym-
bolic Reasoning. In ICML.

Li, X.-Y.; Lei, W.-J.; and Yang, Y.-B. 2022. From Easy to
Hard: Two-stage Selector and Reader for Multi-hop Ques-
tion Answering. arXiv:2205.11729.

Li, Z.; Huang, J.; and Naik, M. 2023. Scallop: A Language
for Neurosymbolic Programming. In PLDI.

Liang, Y.; Wu, C.; Song, T.; Wu, W,; Xia, Y.; Liu, Y;
Ou, Y.; Lu, S.; Ji, L.; Mao, S.; Wang, Y.; Shou, L.; Gong,
M.; and Duan, N. 2023. TaskMatrix.Al: Completing Tasks
by Connecting Foundation Models with Millions of APIs.
arXiv:2303.16434.

Lyu, Q.; Havaldar, S.; Stein, A.; Zhang, L.; Rao, D.; Wong,
E.; Apidianaki, M.; and Callison-Burch, C. 2023. Faithful
Chain-of-Thought Reasoning. arXiv:2301.13379.

Manhaeve, R.; Dumancic, S.; Kimmig, A.; Demeester, T.;
and Raedt, L. D. 2018. DeepProbLog: Neural Probabilistic
Logic Programming. arXiv:1805.10872.

Mao, J.; Gan, C.; Kohli, P.; Tenenbaum, J. B.; and Wu, J.
2019. The Neuro-Symbolic Concept Learner: Interpreting
Scenes, Words, and Sentences From Natural Supervision.
arXiv:1904.12584.

McKenna, N.; Li, T.; Cheng, L.; Hosseini, M. J.; John-
son, M.; and Steedman, M. 2023. Sources of Hallu-
cination by Large Language Models on Inference Tasks.
arXiv:2305.14552.

Minderer, M.; Gritsenko, A.; Stone, A.; Neumann, M.;
Weissenborn, D.; Dosovitskiy, A.; Mahendran, A.; Arnab,
A.; Dehghani, M.; Shen, Z.; Wang, X.; Zhai, X.; Kipf, T.;
and Houlsby, N. 2022. Simple Open-Vocabulary Object De-
tection with Vision Transformers. arXiv:2205.06230.

Minervini, P.; Riedel, S.; Stenetorp, P.; Grefenstette, E.; and
Rocktidschel, T. 2020. Learning Reasoning Strategies in
End-to-End Differentiable Proving. In ICML.

Nakano, R.; Hilton, J.; Balaji, S.; Wu, J.; Ouyang, L.;
Kim, C.; Hesse, C.; Jain, S.; Kosaraju, V.; Saunders, W.;
Jiang, X.; Cobbe, K.; Eloundou, T.; Krueger, G.; Button, K.;
Knight, M.; Chess, B.; and Schulman, J. 2021. WebGPT:
Browser-assisted question-answering with human feedback.
arXiv:2112.09332.

Nogueira, R.; and Cho, K. 2019. Passage Re-ranking with
BERT. arXiv:1901.04085.

OpenAl. 2023. GPT-4 Technical Report. arXiv:2303.08774.
Radford, A.; Kim, J. W.; Hallacy, C.; Ramesh, A.; Goh, G.;
Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.;
Krueger, G.; and Sutskever, I. 2021. Learning Transfer-

able Visual Models From Natural Language Supervision.
arXiv:2103.00020.

Rajasekharan, A.; Zeng, Y.; Padalkar, P.; and Gupta, G.
2023. Reliable Natural Language Understanding with Large
Language Models and Answer Set Programming. In Inter-
national Conference on Logic Programming.

Ramesh, A.; Pavlov, M.; Goh, G.; Gray, S.; Voss, C.; Rad-
ford, A.; Chen, M.; and Sutskever, 1. 2021. Zero-shot text-
to-image generation. In ICML.

Ratner, N.; Levine, Y.; Belinkov, Y.; Ram, O.; Magar, L;
Abend, O.; Karpas, E.; Shashua, A.; Leyton-Brown, K.; and
Shoham, Y. 2023. Parallel Context Windows for Large Lan-
guage Models. In Proceedings of the ACL.

Reddy, C. K.; Marquez, L.; Valero, F.; Rao, N.; Zaragoza,
H.; Bandyopadhyay, S.; Biswas, A.; Xing, A.; and Sub-
bian, K. 2022. Shopping Queries Dataset: A Large-
Scale ESCI Benchmark for Improving Product Search.
arXiv:2206.06588.

Richards, T. B. 2023. AutoGPT. https://github.com/
Significant-Gravitas/AutoGPT. Accessed: 2024-02-12.

Rombach, R.; Blattmann, A.; Lorenz, D.; Esser, P.; and Om-
mer, B. 2022. High-Resolution Image Synthesis With Latent
Diffusion Models. In CVPR.

Schick, T.; Dwivedi-Yu, J.; Dessi, R.; Raileanu, R.; Lomeli,
M.; Zettlemoyer, L.; Cancedda, N.; and Scialom, T. 2023.
Toolformer: Language Models Can Teach Themselves to
Use Tools. arXiv:2302.04761.

Sinha, K.; Sodhani, S.; Dong, J.; Pineau, J.; and Hamilton,
W. L. 2019. CLUTRR: A Diagnostic Benchmark for Induc-
tive Reasoning from Text. arXiv:1908.06177.

Song, K.; Tan, X.; Qin, T.; Lu, J.; and Liu, T.-Y. 2020. MP-
Net: Masked and Permuted Pre-training for Language Un-
derstanding. arXiv:2004.09297.

Srivastava, A.; Rastogi, A.; Rao, A.; Shoeb, A. A. M.; Abid,
A.; Fisch, A.; Brown, A. R.; Santoro, A.; Gupta, A.; Garriga-
Alonso, A.; and et al. 2023. Beyond the Imitation Game:
Quantifying and extrapolating the capabilities of language
models. arXiv:2206.04615.

Tiong, A. M. H.; Li, J.; Li, B.; Savarese, S.; and Hoi, S. C.
2022. Plug-and-Play VQA: Zero-shot VQA by Conjoining
Large Pretrained Models with Zero Training. In Goldberg,
Y.; Kozareva, Z.; and Zhang, Y., eds., Findings of the ACL:
EMNLP.

Touvron, H.; Martin, L.; Stone, K.; Albert, P.; Almahairi, A.;
Babaei, Y.; Bashlykov, N.; Batra, S.; Bhargava, P.; Bhosale,
S.; et al. 2023. Llama 2: Open Foundation and Fine-Tuned
Chat Models. arXiv:2307.09288.

Wang, P.-W.; Donti, P. L.; Wilder, B.; and Kolter, Z. 2019.
SATNet: Bridging Deep Learning and Logical Reasoning
Using a Differentiable Satisfiability Solver. In ICML.
Wang, X.; Wei, J.; Schuurmans, D.; Le, Q.; Chi, E.; Narang,
S.; Chowdhery, A.; and Zhou, D. 2023. Self-Consistency
Improves Chain of Thought Reasoning in Language Models.
arXiv:2203.11171.

Wei, J.; Wang, X.; Schuurmans, D.; Bosma, M.; Ichter, B.;
Xia, F.; Chi, E.; Le, Q.; and Zhou, D. 2023. Chain-of-
Thought Prompting Elicits Reasoning in Large Language
Models. arXiv:2201.11903.

Xu, Z.; Rawat, Y. S.; Wong, Y.; Kankanhalli, M.; and Shah,
M. 2022. Don’t Pour Cereal into Coffee: Differentiable
Temporal Logic for Temporal Action Segmentation. In
NeurlPS.

Yang, Z.; Qi, P.; Zhang, S.; Bengio, Y.; Cohen, W. W;
Salakhutdinov, R.; and Manning, C. D. 2018. HotpotQA: A
dataset for diverse, explainable multi-hop question answer-
ing. arXiv:1809.09600.

Yao, S.; Zhao, J.; Yu, D.; Du, N.; Shafran, I.; Narasimhan,
K.; and Cao, Y. 2023. ReAct: Synergizing Reasoning and
Acting in Language Models. arXiv:2210.03629.

Yi, K.; Wu, J.; Gan, C.; Torralba, A.; Kohli, P.; and Tenen-
baum, J. 2018. Neural-Symbolic VQA: Disentangling
Reasoning from Vision and Language Understanding. In
NeurlPS.

Yin, Z.; Wang, Y.; Wu, Y.; Yan, H.; Hu, X.; Zhang, X.; Cao,
Z.; Huang, X.; and Qiu, X. 2022. Rethinking Label Smooth-
ing on Multi-hop Question Answering. arXiv:2212.09512.

