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Abstract—The recent increase in attacks against publicly
networked industrial control systems (ICS) has demonstrated a
need for network-based anomaly detection systems, offering real-
time flagging of potentially malicious activity by internal and
external threat actors. Fuzzy hashing, also known as similarity
hashing, has gained popularity in malware analysis and digital
forensics circles as it provides analysts functionality to determine
the similarity of two pieces of data by providing a similarity
score. This work proposes a scheme that utilizes the similarity
score to find variations from a self-establishing baseline in an
ICS network to identify anomalous network traffic sections that
could signify malicious activity.

Index Terms—ICS, SCADA, Fuzzy Hashing, Anomaly Detec-
tion, Operational Technology

I. INTRODUCTION

Recently, there has been an increase in cyber attacks against
networked industrial control systems, negatively impacting
security for many critical infrastructure sectors. We propose
an anomaly detection scheme that utilizes the TLSH fuzzy
hashing algorithm in response to this increased threat.

As the most commonly used networking protocol for op-
erational technology (OT), our system takes advantage of
the MODBUS packet structure and the loosely deterministic
conversations between programmable logic controllers (PLCs)
to establish an observed baseline over time. Despite the advan-
tages, fuzzy hashing with MODBUS proved to be challenging
in many ways. The most significant challenge is that there are
limited amounts of useful information in a single MODBUS
packet, with a total packet size typically being in the range of
43.5 to 255 bytes. MODBUS packets contain only an address,
function code, and some data.

Fuzzy hashing algorithms can be wildly inaccurate at this
small scale. To overcome this issue of scale, our proposed
system uses clusters of packets at a variable size V.
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Fig. 1. Figure 1: Modbus RTU Frame Diagram.

A. Datasets Utilized

The datasets used in this paper were the CIC MODBUS
dataset 2023 dataset [1] and the ICS_PCAPS dataset on
GitHub [2]. This dataset had packet capture files with known
attacks and times.

II. LITERATURE REVIEW

The concept of cryptographic hashes is fundamental in
ensuring file integrity and uniqueness. Even a minor alteration
in the file results in a significantly different hash, effectively
preventing overlap between different files. In contrast, simi-
larity hashes, or fuzzy hashes, are designed to produce only
slight changes in the hash when a file is slightly altered.
This property allows fuzzy hashes to identify similar files.
Prominent fuzzy hashing methods today include TLSH and
NILSIMSA, which both employ locality-sensitive hashing
(LSH) techniques.

The foundational paper on TLSH by Oliver, Cheng, and
Chen provides an in-depth analysis of TLSH, comparing it
with NILSIMSA, SSDEEP, and SDHASH and discussing the
differences between traditional cryptographic hashes like MD5
and SHA-1 versus similarity hashes [3]. Beyond TLSH, other
notable fuzzy hashes include SSDEEP, SDHASH, and Nil-
simsa. SSDEEP computes context-triggered piecewise hashes
(CTPH) by segmenting the file and evaluating a 6-bit hash
value for each segment. Early implementations of SSDEEP
yielded varying results as it was one of the first fuzzy hashing
algorithms. However, it has been refined for specific purposes

274



2024 Cyber Awareness and Research Symposium (CARS)

to improve its results. SDHASH identifies key features of a file
and hashes them using a bloom filter, with similarity scores
calculated via a normalized entropy measure. Nilsimsa utilizes
bit sampling LSH and computes similarity scores based on
the Hamming distance between hashes. TLSH incorporates
concepts from Nilsimsa, such as a sliding window of 5 bytes
and extracting triplets, but enhances accuracy and speed.

A significant advantage of TLSH is its robustness against
adversarial attacks [4]. Through its sliding window and kskip-
ngrams, TLSH considers sequences of bytes in adjacent
chunks with ”skips” between them, offering a defense against
algorithmic file alterations intended to preserve high similarity
scores. This feature makes TLSH less susceptible to noisy
symbols, lowering false positive rates. Kskip-ngrams allow
TLSH to ignore specific noisy symbols, such as checksums,
reducing their impact on the overall similarity score compared
to algorithms using only ngrams.

Third-party validators highlight the benefits of TLSH over
other fuzzy hashing algorithms. The paper” Designing the
Elements of a Fuzzy Hashing Scheme” explores criteria for
fuzzy hashing schemes, focusing primarily on TLSH [4].
Evaluating theoretical configurations based on NIST criteria:
accuracy, compression, performance, and security, the study
found that skip-n-grams provide greater security than ngrams
despite similar accuracy. An optimal configuration was de-
termined to be K=2, N=5 for the best balance of security,
accuracy, and performance. However, higher values for K and
N can increase accuracy at the cost of performance. TLSH was
efficient, fast, and effective with various file types, including
packet capture files (Pcap). Comparatively, LSH methods like
Nilsimsa, despite their similar methodologies, are more time-
consuming.

The paper” Forensic Malware Analysis: The Value of Fuzzy
Hashing Algorithms in Identifying Similarities” [5] provides
a comprehensive evaluation of multiple hashing methods for
malware analysis. It considered various algorithms but found
that the SPH algorithm was most applicable to their malware
research. They concluded that SPH should not be used alone
but as an additional check measure. The paper “Nation-State
Threat Actor Attribution Using Fuzzy Hashing” [6] addresses
the challenge of attributing cyberattacks to nation-state actors.
The proposed framework similarly found that combining fuzzy
hashing with another method provided the best results. In
this case, it was machine learning to classify malware, using
techniques like phonetic alphabets to identify patterns in
malicious files. The paper also compares the efficiency of
various fuzzy hashing algorithms for binary analysis. This
methodology provides insights into using fuzzy hashing for
rapid threat attribution and analysis, which could be applied
to packet inspection in our project. [6].

YARA rules are a well-known detection method, and in
2019, Nitin Naik published papers assessing YARA rules,
Import Hashing, and various fuzzy hashing methods for
malware detection. His paper” Triaging Ransomware using
Fuzzy Hashing, Import Hashing, and YARA Rules” found that
YARA rules outperformed other methods [7]. Fuzzy hashing

was criticized for providing overly vague results in malware
detection, prompting an independent group to develop a new
fuzzy hashing algorithm addressing these shortcomings [8].
Although YARA improved malware analysis over SSDEEP
and SDHASH, it gained little popularity, with newer algo-
rithms like NILSIMSA becoming more popular than YARA.

In his subsequent paper,” Fuzzy Hashing Aided Enhanced
YARA Rules for Malware Triaging,” Naik combined various
algorithms to see if they collectively outperformed YARA
rules alone [9]. The combination yielded superior results,
reaffirming the effectiveness of fuzzy hashing when integrated
with YARA rules. This promising approach mirrors machine
learning techniques and suggests combining methodologies
can enhance malware detection.

The paper” A Stealthy False Command Injection Attack on
MODBUS-based SCADA Systems” [10] explores vulnerabil-
ities in the Modbus protocol, widely used in ICS SCADA
communications for controlling remote devices like PLCs and
monitoring physical systems. Given Modbus’s lack of modern
security features, the paper outlines methods and scenarios for
stealthily injecting packets into the system while concealing
the attack from the operator. The proposed attack consists of
a scouting phase, where the network is scanned, and data is
collected, followed by an attack phase involving methods such
as ARP poisoning and command injection. Modbus is prone
to many attacks, such as spoofing, replay, response injection,
command injection, flooding attacks, and more. During the
scouting phase, the attacker uses tools like Nmap to scan the
network and Wireshark to sniff network traffic. In the attack
phase, methods such as ARP poisoning facilitate man-in-the-
middle (MITM) attacks, while command injection involves
sending forged MODBUS request frames impersonating the
HMI. This research is particularly relevant as it highlights
potential avenues of attack that could be targeted using fuzzy
hashing for detection and mitigation.

In summary, the evolution and application of fuzzy hash-
ing methods like TLSH, SSDEEP, SDHASH, and Nilsimsa
demonstrate their crucial role in file similarity detection and
malware analysis. The advancements in TLSH, particularly
its robustness against adversarial attacks and efficient per-
formance, highlight its superiority in various scenarios. Inte-
grating fuzzy hashing with other detection techniques, such
as YARA rules, can further enhance the effectiveness of
malware detection and file analysis. Furthermore, exploring
the application of fuzzy hashing in different contexts, such
as SCADA systems, malware analysis, and firmware security,
underscores the versatility and potential of these techniques in
improving cybersecurity measures.

III. HASHING ALGORITHMS

Fuzzy hashing or locality-sensitive hashing (LSH) is a
hashing algorithm where the data is divided into chunks and
then combined to form an overall hash where the hashes
between two equally sized data segments will have a similar
hash if they are similar. We conducted a preliminary study
using a variety of fuzzy hashing algorithms, such as TLSH,
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Nilsimsa, and others that were not suited for the task, such as
SSDEEP. Fuzzy hashing was chosen due to its applicability
in malware analysis. Since it can detect structures that are
broadly similar but not quite the same, this might work on
network traffic.
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Fig. 2. Figure 2: LSH function diagram.
A. TLSH

TLSH is a fast, relatively accurate, local sensitivity hash.
According to "TLSH - A Locality Sensitive Hash” [7], TLSH
outperformed Nilsimsa, SDHASH, and SSDEEP in both the
false positive and true positive metrics.

This algorithm works on a scale of 0 to infinity. The
file has the same if it is a score of 0, and anything above
zero indicates the files are somewhat different. Here are the
procured similarities based on testing:

e Very similar: 0 to <50

e Similar: 50 to <70

o Somewhat similar: 70 to < 90

e Somewhat not similar: 90 to < 128
e Not similar: 128 to oo

This algorithm typically has a fast run time to compile
packet capture data. However, with massive amounts of data
it can take a long time and benefits from multi-threading.

B. NILSIMSA

Nilsimsa is a hashing algorithm designed to identify spam
emails. It is a locality-sensitive hashing algorithm (LSH)
where changes to the input of the algorithm result in small
changes in the output. The goal of the technique was to create
hash digests of the messages and then compare the digests
together. While effective at identifying similarities in spam
emails, Nilsimsa is vulnerable to several different techniques
that prevent identification. These techniques include random
addition, thesaurus substitution, perceptive substitution, and
aimed addition [11]. When processing files that are not email-
based, Nilsimsa is excellent at comparing similar files but also
results in many false positives [3].

This algorithm works on a scale of —128 to 128. The file
is the same if it has a score of 128; and anything below
zero means the files are very different. Here are the procured
similarities based on testing:

e Very similar: 90 to < 128

e Similar: 80 to < 90

e Somewhat similar: 70 to < 80

o Somewhat not similar: 50 to < 70
o Not similar: 0 to < 50

This algorithm takes a very long time to compile packet
capture data. It was found that compiling around 10 MB of
data would take 1 minute in time with the program that was
not multi-threaded.

C. SSDEEP

This algorithm uses context-piecewise triggered hashing. It
was one of the first fuzzy hashing algorithms to emerge and
was very effective and fast for the specified purposes. One of
the purposes was to analyze emails for similarity purposes.

When applied to packet captures in most of the considered
approaches, SSDEEP provided exclusively false positives. It
works on a scale of 0 to 100; most the time, it would return
0 or near O results. Once it was shown to be ineffective, it
was not further pursued. However, it was a good algorithm
for consideration as it was the first one that was investigated.

D. Chosen Algorithm

We chose TLSH because it is fast, accurate, and a local
sensitivity hash, which worked best for anomaly detection.
TLSH also has a much higher robustness to attack, meaning
that it is more difficult to detect and evade than other fuzzy
hashing algorithms, making it well suited for the task.

IV. APPROACHES

Throughout the research, four main approaches were at-
tempted, and several data formats were tested, each with a
different level of accuracy.

Average percentage similarity between two similar packets’
hashes over multiple runs:

e String: 91.33%

e Binary: 74.97%

o Hex: 89.13%

e Lexical: 99.17%

Average percentage similarity between two different packets’
hashes over multiple runs:

o String: 4.80%

e Binary: 9.83%

o Hex: 31.03%

o Lexical: 95.43%

The string and hex representations are the most accurate for
similar packets, and the string and binary representations are
the most accurate for dissimilar packets. Generally, the string
representation tends to be the best one. Lexical or just sorting
all of the data by ASCII value is utterly useless as it guarantees
that it will be similar either way due to how it sorts the data.

A. Signature analysis

The first idea was to use a classic signature analysis
with these hashes. This approach was based upon existing
techniques like antivirus programs. If there were some known
malicious hashes, then the hashes taken against a network
capture could be tested against these malicious hashes. This
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comparison of hashes would make it relatively simple to
prevent known attacks from being recreated in the system.

Results: Some issues found with this one were the small
size of the packets and how similar each one was due to
that. Since these are very small packets containing often very
similar information over long periods of time, it is difficult to
analyze packets or groups of packets against known malicious
packets or groupings of packets.

B. Single Packet

Single packet analysis ended up being the worst approach
since MODBUS packets contain very little useful information
to work with. This approach was inspired by deep packet
inspection and determining what useful information could be
gathered from a MODBUS packet. One of the big problems
was that MODBUS packets are small so the data could match
with far more than just a malicious packet and would throw
many false positives. This one aimed to see if traditional
deep packet inspection techniques would work on a machine
blocking access to a secure network.

Results: Unfortunately, this requires a minimum of 50 bytes
of data. This is a big challenge with MODBUS packets since
they tend to have very little data, so this was not a good
approach.

C. Whole file

By hashing the entire file with all the data, a representation
of the data in a hash format can be retrieved. This hash rep-
resents the packet capture and, when compared, was hoped to
identify the attack type based on other attack packet captures.
This approach was based on malware analysis techniques with
fuzzy hashing. Instead of relying on a static cryptography hash
that would completely change with the slightest change, fuzzy
hashing would stay pretty similar regardless of the change. The
thought was to apply this to network traffic analysis to find a
specific attack or anomaly in the network based on other files
from a dataset.

Results: This method was very good at detecting if the
packet capture was taken on the same network but could not
find the intricate details of a network attack, which caused a lot
of false positives initially. After trimming the packet capture
data, like time stamps, there were fewer false positives, but it
still was not able to reliably detect specific attacks.

D. Clustering

The cluster method worked the best out of all of them. This
approach was based on the sliding window technique. The
cluster method would be useful if there was some time period
containing an attack similar to a known attack period. This
result was also similar to the signature analysis, but instead of

a single packet inspection, it involved clusters of packets.
The cluster method also fixed the issue with the size of the
packets as now the goal was to look at whole clusters of them.
This method could find attacks that cause the network traffic
to deviate from the baseline. Depending on the size of the
cluster, it can also be a way to compress network traffic into
hashes and reduce the storage impact.

Results: This gave the best results, as a baseline will form
after a while. This baseline allows for analyzing the data within
the window against the known normal baseline. The cluster
method allowed for detecting changes against that normal.

E. Chosen Method

We chose clustering because it could also provide a rolling
baseline. Clustering would resist minor changes in the network
traffic, such as time and sequence numbers while being sus-
ceptible to large changes to the traffic in a short time period.
Additionally, the rolling baseline could define a network in
terms of this system, making it easy to determine normal from
abnormal traffic since these systems are largely deterministic.
Determinism was a big part of this choice, especially since it
allowed for easier analysis since these systems would likely
be repeating similar commands over and over again, and any
interruptions to that would provide clues.

V. DETECTING ANOMALOUS TRAFFIC

Our proposed system for detecting anomalous traffic relies
on creating and updating a list of fuzzy hashes. By taking
packet clusters and splitting the different conversations seen
between PLCs, we were able to establish a rolling baseline of
hashes that show what network traffic should look like. This
system would require a network capturing device or software
to allow us to create the packet clusters. By funneling these
hashes into the TLSH algorithm, we receive an output of
hashes broken into different files for resulting conversations.
One of the challenges with anomaly detection in ICS systems
is the MODBUS packets (fig. 1) which are very sparse. With
very little data and information based on just register changes
it could be difficult to perform behavior analysis and see such
a difference. To address this problem, we clustered packets
together to gain a meaningful block of data of sufficient size.
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Fig. 3. Process of detecting anomalous traffic.
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Using the native functionality in TLSH to create similarity
scores, we can then create a sliding window where similarity
scores for these hashes can be compared against each other.
By comparing similarity scores within the given window, we
are given an output showing the packet clusters that are least
similar to the rest of the traffic in the given sliding window.
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VI. FUTURE WORK

With our proposed system, there is future work required
to ensure it’s dynamically responsive to a wide variety of
systems. With the wide number of communication protocols
designed for ICS Networks, our system should be tested
to ensure compatibility. Future analysis methods should be
explored to match what is commonly seen in production ICS
networks, such as including system set points to verify the
integrity of network data. Including lexical analysis procedures
through text replacement, similar to methods seen in intrusion
detection systems like snort before the packet clusters are
hashed may also help decrease the number of false positives
within the system.

This system would also likely perform most optimally
as a primary indicator with additional validation built on
top. Several other mechanisms, such as malware analysis [5]
have shown more effective results utilizing fuzzy hashing
alongside other validation techniques. It has also been noted
that fuzzy hashing can work well with machine learning to
attribute attacks between nation-state threat actors [6] and
given the similarity score-focused design, it is highly likely
that machine learning would work well for automatic analysis
in this environment.
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