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A VOLUME = MULTIPLICITY FORMULA FOR p-FAMILIES OF
IDEALS

SUDIPTA DAS

ABSTRACT. In this paper, we work with certain families of ideals called p-
families in rings of prime characteristic. This family of ideals is present in the
theories of tight closure, Hilbert-Kunz multiplicity, and F-signature. For each
p-family of ideals, we attach a Euclidean object called p-body, which is analo-
gous to the Newton Okounkov body associated with a graded family of ideals.
Using the combinatorial properties of p-bodies and algebraic properties of the
Hilbert-Kunz multiplicity, we establish in this paper a Volume = Multiplicity
formula for p-families of mp-primary ideals in a Noetherian local ring R.

1. INTRODUCTION

Let (R, m,K) be a Noetherian local ring of dimension d, with prime characteristic
p >0, I be an m-primary ideal and ¢ = p¢ for some e € N, and 19 = (27 |z e,
the ¢-th Frobenius power of I. We denote the m-adic completion of R by R and
lr(—) denotes the length as an R-module.

The Hilbert-Kunz theory deals with the question of how ¢y (R/ I [‘J]) behaves as
a function on ¢ and how understanding this behavior leads us to have a better
understanding of the singularities of the ring. In his work, Kunz [9] introduced
this study to measure how close the ring R is to be regular. Later P. Monsky [11]
showed that

a
€HK(I, R) = lim w{il[])
e— 00 q

exists for any m-primary ideal I, this positive real number is called the Hilbert-Kunz
Multiplicity of I. Contrary to the Hilbert-Samuel multiplicity of an m-primary ideal
(r(R/IT*)

kd/d!
demonstrates much more complicated behavior [0]

In this paper, we work with certain families of ideals called p-families. A p-
family of ideals is a sequence of ideals o = {I,}2; with I,Ep] C I,q for all g. Given
a p-family of m-primary ideals, we define the following limit as the volume of the
p-family.

I, which is given by e(I, R) = limg_ , the Hilbert-Kunz Multiplicity

lr(R/I
Volg(I,) = lim Cr(R/1y)
q— 00 q
In [7], Jack Jeffries and Daniel J Herndndez showed that Volg(l,) exists as a limit

if and only if dim N(R) < d, where N(R) denotes the nilradical of R. This provides
an alternating proof of the existence of Hilbert Kunz multiplicity and F-signature
for a complete local domain ([7], Corollary 6.1,6.8).
2020 Mathematics Subject Classification. Primary 13A18, 13D40, 13H15.
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This article aims to prove the following general Volume = Multiplicity formula
for p-families of m-primary ideals.

Theorem 5.3. Let (R, m,K) be a d-dimensional local ring of characteristic p > 0.

If dim N (R) < d, then for any p-family of m-primary ideals Is = {I,}72,

(r(R/1y) — 1 enk (I, R)
T =

q e (q)

To prove our main result, we have followed the approach of Cutkosky’s existence
theorem ([2] [3]), which can be outlined as follows:

(1) Reduce to the case of a complete local domain.

(2) Using a suitable valuation on this complete local domain R, we attach to
every p-family of ideals a combinatorial structure, called p-system of ideals (see
Definition 3.11) and associate an Euclidean object called p-body (see Definition
3.12).

(8) To compute the relevant R-module lengths, we prove an approximation The-
orem for p-systems of ideals. Since Lazarsfeld and Mustata in their paper [10,
Proposition 3.1] have proved similar approximation theorem and using it recovered
the Fujita Approximation Theorem [10, Theorem 3.3], we call it Fujita Type Ap-
proximation Theorem for p-systems of ideals (see Theorem 3.18).

Volp(l.) = lim

Although the Hilbert-Kunz multiplicity behaves much differently compared to
the Hilbert-Samuel multiplicity, a parallel analog of Theorem 5.3 for every graded
family Jo = {Jn}nen (i-e., a sequence of ideals J, such that Jy,.J,, C Jpqn) of
m-primary ideals and Hilbert-Samuel multiplicities has been proven for valuation
ideals associated to an Abhyankar valuation in a regular local ring which is essen-
tially of finite type over a field in [5] when R is a local domain which is essentially
of finite type over an algebraically closed field K with R/m = K in [10], it is
proven when R is analytically unramified with perfect residue field in [3]. Finally
in [4] Cutkosky settled this for any d-dimensional Noetherian local ring R with

dim N (R) < d.

2. PRELIMINARIES

This section reviews a few basic notions from semigroup theory, convex geometry,
and valuation theory.

Let U and V be arbitrary subsets of R%. If U is Lebesgue measurable, its measure
Volga(U) is called the volume of U. We define the Minkowski sum of two sets as
U+V:i={u+v|uelveV}.

A conver cone is any subset of R? that is closed under taking an R-linear com-
bination of points with non-negative coefficients. Let Cone(U) C R? be the convex
cone which is the closure of the set of all linear combinations Zi A, with u; € U
and A\; € Ry(. Note that a cone in R? has a non-empty interior if and only if the
real vector space it generates has dimension d. We call such a cone full-dimensional.

A cone C is pointed if it is closed and if there exists a vector a € R? such that
(u,a) >0, for all u € C'\ {0}, where (—, —) is the inner product in R%.

If C is a pointed cone and « is a non-negative real number, we define:

H=H,={ueR"|(u,a)<a}
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a truncating half-space for C.

Remark 2.1. Let C be a pointed cone. If a > 0, then a truncation of C' is defined
as C'N H,. It is a non-empty, bounded subset of C'.

Remark 2.2. If H is any truncating halfspace of a pointed cone C' then so is qH,
for all ¢ > 0.

We define a semigroup to be any subset of Z¢ that contains 0 and it is closed
under addition; e.g. N is the semigroup of non-negative integers. A semigroup S is
finitely generated if there exist a finite subset Sy C S such that every element of S
can be written as an N-linear combination of elements of Sy. A subset T' C S of a
semigroup S, is an ideal of S whenever S + T is contained in 7. A semigroup S is
called pointed if @ € S and —a € S then a is 0.

Remark 2.3. If Cone(S) is pointed, then so is S, but the converse is generally
false. However, it does hold if S is assumed to be finitely generated.

Remark 2.4. For any Z-linear embedding i : Z% < R, there exists some unique
a € R, whose coordinates are linearly independent over Q, such that i(u) = (a,u)
for all u € Z%. We define u <, v whenever (a,u) < (a,v).

Let F* = F\ {0}. Fix, a € RY and fix the embedding Z¢ — R given by
v — (a,v), defined by a. An a-valuation on a field F with value group Z< is a
surjective group homomorphism: 9 : F* — Z? with the property that

V(zy) = d(x) +9(y),
Wz +y) 2o min{d(z), I(y)} .
For any subset N C F, with N* = N \ {0} we define $(N) := J¥(N*), and this is
called the image of N under .
Given a point u € Z%, we define:

Fou:={2€F|¥(x)2qu}U{0} and Fsn:={2eF|d(x)>su }U{0}
The local ring of ¥ is the subring (Vy, my,ky) of F, such that Vy = Fso, and
my = F<o. A local domain (D, m, k) is dominated by (Vy, my, ky), if (D, m, k) is a
local subring of (Vy, my, ky), i.e., m C my.

Remark 2.5. If u € Zd, then both F>,, and Fs,, are modules over Vy (as Vy = Fxg

and J(zy) = ¥(z) + ¥(y)) and Fx,/Fs, is a vector space over ky. Note that, if
w = ¥(f), for some non-zero f € F, then:

dimyg, (Fsw/Fsw) = 1.

Indeed if f is as above then for any g such that 9¥(g) = w, we have g = <%> f

where < ¢ ky because v (2) =0.

f f
Remark 2.6. Let (D, m, k) be a local domain of dimension d with fractional field
F, and let ¥ : F* — Z< be an a-valuation with value group Z%. Note that S = (D)
is a subsemigroup of Z%, and the image of any ideal I in D is a semigroup ideal
of S. Moreover as 1 is surjective, the Minkowski sum S + (—S) is equal to Z¢, as
¥ is surjective. Therefore, the real vector space generated by Cone(S) is RY, i.e.,
Cone(S) is full dimensional.
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Observe that D is dominated by Vy if and only if for all € 9¥(m), we have
T >4 0 and S = 9Y(m) U {0}, i.e., any non-zero u € S, satisfies (a,u) > 0.

Definition 2.7. Following Remark 2.6, if D is dominated by Vy and (a,u) > 0,
for every u € Cone(S) \ {0}, then we say D is strongly dominated by 9.

3. OK-vALUATION, OK-DOMAIN, p-SYSTEMS AND p-BODIES

In this section, we review the constructions of OK-valuation, OK-domain, p-
systems, and p-bodies following the work of Cutkosky ([2],[3]) and Jeffries and
Herndndez [7]. The main result of this section is Theorem 3.18.

Definition 3.1. Let (D, m, k) be a d-dimensional local domain with fractional field
F. Fix the embedding Z¢ < R defined by a € R?.
If an a-valuation
¥ :F* — 7z
with value group Z%, and local ring (Vy,my, kg) satisfies the following conditions:
i. D is strongly dominated by Vy, (see Definition 2.7)
i1. the resulting extension of residue fields k < ky is finite, and
ii. there exists a point v € Z¢ such that:

DﬂF)nv - m", Vn € N
then we say that (Viy, my, ky) is OK-relative to D.

Definition 3.2. Let D be a d-dimensional local domain with fraction field F. If
there exists a valuation 9 on F with value group Z<, and valuation ring (Vy, m.y, kg)
that is OK-relative to D, we say that D is an OK-domain.

Example 3.3. Let R = K[x1, ..., 24] is a power series ring of dimension d, contain-
ing a field K, m = (21, ..., z4) is the maximal ideal and F is the quotient field of R.
Take a1, ..., aq be rationally independent real numbers and without loss of general-
ity assume a; > 0 for all 1 <4 < d. Define an ordering on Z¢ by a = (a1, ..., aq).
Let f € R; then we can write,

_ . it id
f= E Sip,ia Ty Ty

Siq,.ig €K, (11,..0,04) END

Since a has positive entries, this will imply that every subset of N? has a least
element, i.e., there exist a well defined least exponent vector (z,l, ...,ild) among its
terms and we define, 9(f) = (i}, ..., iy)-

We claim that the induced valuation ¥ : F* — Z% is OK relative to R.

Let S = 9(R), therefore from the above definition it is clear that C' = Cone(.S) is
contained in the non-negative octant, then (u, a) > 0 for every nonzero w in C. This
shows that R is strongly dominated by ¢, satisfying condition i. Let (V, my,Ky)
is the valuation ring Fx¢ with it’s maximal ideal Fs g, then clearly Ky = V/my =
R/m =~ K, which satisfies condition 7. Moreover, let a; = max{as, ..., aq}, then we
claim that J(z;) = (0, ..,1,0,..,0) = v is the vector for condition 4. Indeed let,

fE€RNFs0w = I(f) > av = (i1, ...,ia) > (0, ..,a,0,..,0)

= a1 + ... + agiq > aa; = aa; < aji1 + ...+ ajiq(. a; = max{a,...,aq})
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= a<ii+..+ig = RNFyq, Cm®

This finishes the proof that every power series ring containing a field is an OK-
domain.

Example 3.4. [7, Example 3.5]) This immediately implies a regular local ring R
containing a field is an OK-domain.

Example 3.5. [7, Corollary 3.7] An interesting class of OK-domain examples is
excellent local domains containing a field. In particular, a complete local domain
containing a field is an OK-domain.

For the rest of this section, we fix a d-dimensional local domain D of characteristic
p > 0 with residue field k and fraction field F, a Z-linear embedding of Z? into R
induced by a vector @ in R?, and a valuation ¢ : F*X — Z¢ that is OK relative to
D. We use S to denote the semigroup ¥(D) in Z%, and C to denote the closed cone
in R? generated by S. We follow the notation established in Definition 3.1.

Remark 3.6. If M is a D-submodule of F, then the D-module structure on M

MNF
Wﬂi: and by definition this

space is non-zero if and only if there exists an element x € M with J(z) = u.

Definition 3.7. For a D-submodule M of F, we define:

. MNTFs
9P (M) = 7% d —_ %) >
(M) {ue | dimy, MATF., ,

induces a k-vector space structure on the quotient

where 1 < h < [ky : K.
Remark 3.8. Let g € DX, with v = 9(g), and let w € Z%. Let I, = {14}g2q be a
sequence of ideals indexed by ¢ = p©, then the map:
Iq N F)u Iq N F}quv
Ig N Fsy Iy NFs v

D [2] = g2l

is a k-linear injection for all w € Z% and for all I, in that sequence. Therefore using

Definition 3.7, we have 9" (I,) + S C 9 (1,) ,i.e., 9 (I,) is an ideal of S = J(D)

for all 1 < h < [ky : k]

Lemma 3.9. [7, Lemma 3.11] For a D-submodule M of F and v € Z%, we have:
[k k]

(o (M/(MNFs,)) = 3 #0" (M) 0 H)

h=1

where H = {u € R? |(a,u) < (a,v)}.
We now discuss the notions of p-system and p-bodies.

Definition 3.10. A semigroup S is called standard if S — S = Z%, and the full
dimensional cone generated by S in R? is pointed. Following the discussion in
Remark 2.6 and from Definition 3.1 the main example of a standard semigroup in
7% is 9(D) associated to an a-valuation ¥ that is OK relative to some d-dimensional
local domain D.

Definition 3.11. A collection of subsets Ty = {7},}2<; of a semigroup S indexed
by ¢ = p° satisfying
i. Ty is an ideal of S. (T; + S C S) and 4. pT, C T}, is called a p-system.
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Definition 3.12. The p-body associated to a given p-system of ideals T, of a
semigroup in Z< is defined by
A(S,Te) = U,2 1 Ag(S, Ts) where Ay(S,Ty) = %Tq + Cone(S)

Remark 3.13. Although we have defined the notion of p-body for a p-system of
ideals in any semigroup, in our situation, we are mostly concerned with p-system of
ideals in the standard semigroup. Moreover, let ¢; = p®* and g2 = p®* and e; < eg,
then p®2~“1Tpe; C Tpes (using Definition 3.12) this implies ~22- C 222
the p-body associated to a given p-system of ideals is an ascending union of sets.
Example 3.14. [7, Example 4.5] Let T be any subset of S, define T, = T'+ S, for
all ¢ = p°, then:

i. Clearly T, + S C Ty

i pTy = (T +pS) C (pT'+S5) C (T'+ (p— )T+ S) €T + S which is equal to
Thq-

Therefore Ty, is a p-system of ideals for all ¢ = p¢. Moreover, we have A, (S, T,) =
(%T + Cone(S)) and the closure of A(S,T,) equals Cone(.S).

Therefore

Example 3.15. Let D be an OK domain for an OK valuation ¢ and assume
S = ¥(D) is the corresponding semigroup. Take an ideal I in D and define T, =
q¥(I) + S. Following the same argument as in Example 3.14, one can show that
{T,}321 is a p-system of ideals. Moreover A(S,T,) = Ay(S,T,) = V(1) + Cone(S).

In the previous example, one can replace ¥(I) with any arbitrary subset 7" of S,
and the corresponding p-body would be T' + Cone(.S). This shows that p bodies
need not be convex, and in practical applications, mostly, they are not.

Remark 3.16. Following Definition 3.12 one can see that every p-body A is the
union of countably many translates of C' = Cone(S) therefore, it is Lebesgue mea-
surable. If H is a truncating halfspace of C, then the volume of (AN H) is a
well-defined real number.

The following Theorem describes Volga (A N H) for any truncating halfspace H
of Cone(,S). This Theorem is one of the key ingredients in the proof of our main
Theorem.

Theorem 3.17. [7, Theorem 4.10] For a standard semigroup S in Z%, a p-system
T, in S, and a truncating halfspace H for Cone(S), we have:

T,NqH
lim #(qidq) = Volga(A(S, T,) N H)
q—ro0 q
Lazarsfeld and Mustata in their paper [10, Proposition 3.1] have proved an ap-

proximation theorem similar to the following Theorem and using this in a global
setup with D a big divisor on an irreducible projective variety; they have recovered
the Fujita Approximation Theorem [10, Theorem 3.3]. Since our approximation
is similar to a different set of properties on the semigroup, we call it Fujita Type
Approzimation Theorem for p system of ideals.

Theorem 3.18. Let S be a standard semigroup in Z2. If Ty is a p-system of ideals
in S, and let H is any truncating halfspace for Cone(S), then for any given € > 0,
there exists qo such that if ¢ > qo the following inequality hold.
T, qH
i P q+dS?iﬂp qH)
e—00 peq

> Volga (A(S, To) N H) — ¢
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Proof. By Example 3.15 we notice that T, = {p°Ty+ S}22, is a p-system of ideals.
Therefore using Theorem 3.17 and Remark 2.2 we have,

(3.1) lim #((p°Ty + S)Np°qH)

e—»00 ped

= Volra ((T; + Cone(S)) NgH)

Volga (Ty+Cone(5)NgH) _ Volga (2 +Cone(S))NH) and from Remark

Now note that =+

3.13 and Remark 3.16, we know that these are an ascending union of measurable
sets. Therefore,

(32) lim Volga ((Ty; + Cone(S)) NgH)

q—00 qd

= Volga(A(S,To) N H)

We get Equation 3.2 by using the sub-additivity and continuity from below
properties of the Lebesgue measure. Now combining Equation 3.1, Equation 3.2
for a chosen € > 0, we can find ¢y such that for all ¢ > qq
lime o0 ZETLERDNH) > Nolpy (A(S, To) N H) — € O

4. P-FAMILIES AND A BRIEF INTRODUCTION TO HILBERT KUNZ MULTIPLICITY

In this section, all rings will be commutative, Noetherian, and of prime charac-
teristic, p > 0.

Let I be an ideal of a ring R, generated by {z1, ..., .} then p°th Frobenius power
of I denoted by I'P] is generated by {xfc, P

Definition 4.1. A sequence of ideals I, = {I,- }52, is called a p-family whenever
Lgp] C I,,q, where g = p° for some e > 0.

Remark 4.2. We note that if (R, m) is local, then every term in this family is
m-primary if and only if I; is m primary.

e+1]

Example 4.3. Let I, = {JIP"1}2 for some fixed ideal J, then IZ[,Z] = Jlr

Ipe 1, therefore I, is a p-family.

Lemma 4.4. Let (R,m) be a local ring and let Is = {I,}72, be a p-family of m-

primary ideals. Then there exist a ¢ > 0 such that m®? C I, and me e C Lgpe] for
all ¢ a power of p and for all e > 0.

Proof. We know from Remark 4.2 that there exist ¢; such that (m®)d C I, for all
q, a power of p. Let m be generated by b elements then using pigeon-hole principle,
mberr’a C (mer)Pd C ((mer)lahP*] C Lgpﬁ], for all ¢ a power of p and for all e > 0.
So, letting ¢ = bcy we get our desired conclusion. O

We define the Frobenius map F' : R — R by F(r) = r?. This map turns R into
an R-module with a nonstandard action r.x = rPz, and we call this module F,R.
Inductively one can define FR. We define an R-linear map ¢, : FiR — R which
is a set map from R to R such that ¢, is additive and ¢.(zP"y) = z¢(y).

The following is an interesting example of p-families.

Example 4.5. Assume R is reduced and [ is an R-ideal. Define for all ¢ = p©,
J; ={z € R| ¢(z) € I,V¢ € Homr(F¢(R),R)}. Notice that J; is an ideal

for each ¢ = p°. Since R is reduced we can identify F¢(R) as RP%, the ring
of p®-th roots of the elements in R. We claim that this is a p-family of ideals.
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Indeed, let ¢ € Hompr(FEH' R, R) and choose r € J, then z/J(rpLﬁ) € I for all
1

Y € Homg(FfR,R) . Now ¢ ((r”)ﬁ) = ¢ (rr' ) € I, as r € J;. This implies

TP C .

ml"‘

Remark 4.6. If in the previous example we choose I = m, then we get a p-family

of m-primary ideals because ml4 C Jq. Use of this sequence of ideals was present in

the work of Y. Yao [13] as well as F. Enescu and I. Aberbach [1]. Later this sequence

of ideals was used in the work of K. Tucker [12] for proving that F-signature exists.
Let (D, m, k) be a d-dimensional local OK-domain with OK-valuation ¥. Choose

any p family I, of ideals, then

i. ¥(I,) is an ideal of the semigroup ¥(D) = S, and,

ii. p¥(1y) C 19(],51’]) C I(Ipq). Therefore, {(1,)}52, is a p-system of ideals in S.

Remark 4.7. Following Definition 3.7 and Remark 3.8, one can observe that al-
though ¥(")(I,) is an ideal but we need the extra condition that {my,...,my} are
k-linear independent in ¢¥(")(I,) implies {m%,...,m}} are k-linear independent in
I (L,,) but it doesn’t always true unless we assume that k is perfect. In ([7,
Lemma 3.12]) they get around it by uniformly approximating ¥"(1,) with (1,
and proving the following result:

Proposition 4.8. [7, Corollary 5.10] Let D be a d-dimensional local OK-domain
with OK-valuation ¢. For a p-family of ideals I, in D we have:

L 0P (I i)
q—00 qd

where S = ¥(D), C = Cone(S) and H is any truncating halfspace of C.

= Volga(A(S,9(I)) N H)

We will now discuss Hilbert-Kunz Multiplicity and some important properties.

For the rest of this section let (R, m, K) be a d-dimensional local ring and ¢ = p©,
for some e € N.

Definition 4.9. Let I be an m-primary ideal of R. We define Hilbert-Kunz Mul-
i . ¢ (R/11)
tiplicity of I by egr (I, R) = limy oo —
q
Remark 4.10. Let J be an m-primary ideal of R, then ¢ (R/J) is unaffected by
completion. Therefore using the above definition, we have

GHK(J, R) = GHK(JR,R)

Lemma 4.11. Let I be an m-primary ideal of R and M be a finitely generated
R-module. Then there exists a constant o« > 0 such that

M e. dim M
tn (o) < o0

Proof. Since I is m-primary there exist ¢ > 0 such that m® C I. Let b is the minimal
number of generators of I, then mP"b¢ C 1Pt C Jlr°] (using pigeon-hole principle).
Therefore (g (JTM@]) < Ug (%) and the later agrees with a polynomial in p®bc
of degree dim M. If the leading coefficient of this polynomial is a then choose
ap >> a implies 63(%) is bounded above by , ag(bdim M cdim Mpedim M) a1

a = agh®™M dim M wil] finish the proof. O
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Corollary 4.12. Let N be an ideal of R and A = R/N, then for any m-primary
ideal I of R there exist 8 > 0 such that

0< /g (R/I[zf]) _» (A/I[pﬁl) < B dimN

Proof. Take the following exact sequence

0— N/(NNIPY & /TP 5 A/1PTA - 0

Using the length formula, we have

(4.1) In (R/ﬂﬂ) U4 (A/IW]) . (N/(N A 11°] ))

Note that (g (A/IP7) =04 (A/1P") and IPIN C 1?10 N. Now using Lemma
4.11, we have from Equation 4.1, (g (R/IP) — 04 (A/IP) < (g (N/IPIN) <
ﬁpe. dim N O

Definition 4.13. Let f,g : N — R be real valued functions from the set of non-
negative integers. We say f(n) = O(g(n)) if there exists a positive constant C' such

that [ f(n)| < Cg(n) for all n > 0 and we say f(n) = o(g(n)) if lim,_, %n; =0
g(n
Now we will mention some results on Hilbert Kunz Multiplicity without proof;
for a detailed verification, we refer readers to [8].

Proposition 4.14. Let

O—+N—-M-—>K—=0

be a short exact sequence of finitely generated R-modules. Then

(42) e (M/T9M) = tg (N/TIN) + tg (K/T9K) + O(¢" )
Now dividing Equation 4.2 by ¢¢ and taking ¢ — oo we have

GHK(I,M) = GHK(I,K)+6HK(I,N)

Theorem 4.15. Let I be an m-primary ideal of R and M is a finitely generated
R-module. Let T be the set of minimal prime ideals P of R such that dim (R/P) =
dim(R). Then

enr(I, M) = enx (I, R/P){(Mp)
pel’
The main idea to prove this result is to take a prime filtration of M, use the fact
that ey (I, R/Q) = 0 if dim R/Q < dim R and then use Proposition 4.14.

Remark 4.16. In the Theorem 4.15, if we choose M = R and further assume R
is reduced. Then
enx(I,R) =Y enx (I,R/P)
pel
because a reduced local ring with Krull dimension 0 is a field, therefore {(Rp) =1
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5. VOLUME=MULTIPLICITY FORMULA

In this section we prove our main result, a general Volume=Multiplicity formula
for p-families of m-primary ideals. We begin with the following important lemma.

Lemma 5.1. [7, Lemma 5.21] Let (R, m,K) be a d-dimensional reduced local ring
of positive characteristic, and I, be a sequence of ideals of R indexed by the powers
of p such that m®? C I, for some positive integer ¢ and for all ¢ = p®,e € N. Let
Py, ..., P, be the minimal primes of R, then there exists § > 0 such that for all q,

Z Cr, (Ri/1R;) — Cr (R/1g)| < 5.q""

i=1
where R; = R/ P;, for alli € {1,...,n}
Remark 5.2. Suppose (R, m) be a d-dimensional reduced local ring of chracteristic
p > 0 and I is an m-primary ideal. Since R is reduced and I, = {IP1}5° is a p-

family of m primary ideals, using Lemma 5.1, Lemma 4.4 one can give an alternative
proof of Remark 4.16.

The following is the Main Theorem of this paper.

Theorem 5.3. Let (R, m,K) be a d-dimensional local ring of characteristic p > 0.
If the R-module dimension of the nilradical of R is less than d, then for any p-family

of m-primary ideals Is = {1,}5%, we have
1 1
lim KR(R/ q) _ 1im eHK( q,R)
ST e (o)

Proof. Step 1: The case of OK-Domain:

Assume R is an OK-domain and let ¥ : FX — Z< be the valuation that is OK-
relative to R with respect to a Z-linear embedding of Z? into R induced by a vector
a. Let (V,my,Ky) be the associated valuation ring, S = 9J(R) be the corresponding
semigroup in Z? and C' = Cone(S).

Let u € Z%; then we have the following two exact sequences:
1, R R

5.1 0— — — = =0
( ) Iq mFZu Iq ﬂFZu Iq
RNF R R
(5.2) 0— Za AN — -0

Iy Ny Iy NFsy RNEF>y
From Equation 5.1, 5.2, we have

RNFs, R Iq
. 1) = T - I,NFsy
(5.3) lr(R/1g) =R <IqﬂF;u>+£R (RﬁF}u) b <IqﬁF>u>

Let v € S satisfy the last condition in Definition 3.1. Choose the number ¢ > 0
from Lemma 4.4, define w=cv, then RNFyq € m® C I,. Therefore

(5.4) Iy F>gw = ROF> g
Let H be the halfspace {u’ |(a,u') < (a,w)}. Then using Equation 5.3, 5.4 and
Lemma 3.9 we have,

K19 K K@ K

(5.5) r(R/I,) Z #(O"(R)NqH) — Z #(0"(1,) N qH)
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Fix q, a power of p. I do the same calculation with respect to the p-system of ideals
Jo = {I([f,’ ) o2 then using Lemma 4.4 and Lemma 3.9, we have

[Kyo:K] [Kyo:K]

(5.6) e (R/ET) = 30 #@"(R)Npd H) - Z #W"IY ) ptq )
h=1

Note that we can consider J; = R for all ¢ = p°. It is clearly a p-family of ideals.
Therefore using Proposition 4.8 and Equation 5.5, we have

(5.7) lim w

q—r o0 q

= [Ky : K].(Volga (A(S, 19(J;) NH) — Volga(A(S,¥(le) N H))
Slmllarly applying Proposition 4.8 and Equation 5.6 for the p-system of ideals
Je —{I Pl & 4, we have
(5-8)
tn (R/1E)
eoo  ped(q')d
Using Definition 3.12, we have

= [Ky : K].(Volga (A(S, 9(J,) N H) — Volga(A(S,9(Js) N H))

(5.9) A(S,9(J,)) = [j 1%19 (Ig,”e]) + Cone(9).

e=0

Now 9 (Ig/oe]) C (I, ), as {I } is a p-system of ideals and %19 (I[I/De]) C 1%19(1(1/1)6) C

%19(]/ ¢). Therefore (J2Z -= (gz/)ﬁ])+(jone( ) CUZ, 61 V(I ) +Cone(S) C

() 19( q) + Cone(S) = A(S, 9(I,) NH). From this, we conclude

(5.10) Volga (A(S, 9(Ja) N H)) < Volga (A(S, 9(Is) N H))

Moreover p“9(1) + S C 19([5,0 ]). Indeed for s1 € ¥(I,) and sy € S, we have
Y(z) = 81 for some z € I/ and J(y) = s for some y € R. Therefore p®s; + s2 =
I(zlP] x y) = and 2Pl x y € Ig,’e].

Using the observation above ,and Theorem 3.18, we have for any given € > 0,
there exist o such that for all ¢ > qo,

(5.11)

/ ] ~ e,
#(p0(l, ) +5) Np°q H) #(O(I; Np°q H)
Volga (A(S,H(I¢)NH)—e < lim 4 - < lim ___
]Rd( ( ( ) ) 600 ped(q )d 600 ped(q )d

Now using Equation 5.10 and 5.11 in Equation 5.7 and 5.8 we have for all q, > qo,

[p°]
(r(R/I, (r(R/T;)  epg(I/, R (r(R/I
lim r( d/ ) < lim _ ,qd _ HK(lqd )< lim R( d/ ) Te
g0 g e=oo  ped(q’) (q") goe g

Therefore letting q/ — 00, we obtain the result in OK-domain case.
Step 2: Reduction to the OK-domain case:
Since ¢(R/J) is unaffected by completion for any m-primary ideal .J, we may
assume that R is complete.
Using [7, Corollary 5.18] and Corollary 4.12 by choosing R = R and N = N(R)
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with the condition that dim N < d we can therefore assume that R is complete and
reduced.

Now suppose that the minimal primes of the complete reduced ring R are { Py, ..., P, }.
Let R; = R/P; be complete local domain for all 1 < i < n. By Remark 4.16, we
have

enk (Iq, R) " enr (I Ri, R;)
(5.12) =>
(q)? P (q)?
We also have from Lemma 5.1
I - (R;/I,R;
(5.13) lim L(Rd/ ) — $ lim 7€RI(R£ o)
q—00 q 4o q

Since each R; is a complete local domain and therefore an OK-domain by Example
3.5, using Equation 5.12 and 5.13 we have

lim L(Rd/ L) _

q— o0 q

i a(Rs éfqm

hxde el
=1 K q

_ Z lim enk (IgRi, R;)
— q—o0 (q)?

1,
= lim 7@”{( Z’ R)
g—o0  (q)
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