A VOLUME = MULTIPLICITY FORMULA FOR p-FAMILIES OF IDEALS

SUDIPTA DAS

ABSTRACT. In this paper, we work with certain families of ideals called p-families in rings of prime characteristic. This family of ideals is present in the theories of tight closure, Hilbert-Kunz multiplicity, and F-signature. For each p-family of ideals, we attach a Euclidean object called p-body, which is analogous to the Newton Okounkov body associated with a graded family of ideals. Using the combinatorial properties of p-bodies and algebraic properties of the Hilbert-Kunz multiplicity, we establish in this paper a Volume = Multiplicity formula for p-families of \mathfrak{m}_{R} -primary ideals in a Noetherian local ring R.

1. Introduction

Let $(R, \mathfrak{m}, \mathbb{K})$ be a Noetherian local ring of dimension d, with prime characteristic p > 0, I be an \mathfrak{m} -primary ideal and $q = p^e$ for some $e \in \mathbb{N}$, and $I^{[q]} = (x^q \mid x \in I)$, the q-th Frobenius power of I. We denote the \mathfrak{m} -adic completion of R by \hat{R} and $\ell_R(-)$ denotes the length as an R-module.

The Hilbert-Kunz theory deals with the question of how $\ell_R\left(R/I^{[q]}\right)$ behaves as a function on q and how understanding this behavior leads us to have a better understanding of the singularities of the ring. In his work, Kunz [9] introduced this study to measure how close the ring R is to be regular. Later P. Monsky [11] showed that

$$e_{HK}(I,R) = \lim_{e \to \infty} \frac{\ell_R(R/I^{[q]})}{q^d}$$

exists for any \mathfrak{m} -primary ideal I, this positive real number is called the Hilbert-Kunz Multiplicity of I. Contrary to the Hilbert-Samuel multiplicity of an \mathfrak{m} -primary ideal

I, which is given by $e(I,R) = \lim_{k\to\infty} \frac{\ell_R(R/I^k)}{k^d/d!}$, the Hilbert-Kunz Multiplicity demonstrates much more complicated behavior [6]

In this paper, we work with certain families of ideals called p-families. A p-family of ideals is a sequence of ideals $I_{\bullet} = \{I_q\}_{q=1}^{\infty}$ with $I_q^{[p]} \subseteq I_{pq}$ for all q. Given a p-family of \mathfrak{m} -primary ideals, we define the following limit as the *volume* of the p-family.

$$\operatorname{Vol}_R(I_{\bullet}) = \lim_{q \to \infty} \frac{\ell_R(R/I_q)}{q^d}$$

In [7], Jack Jeffries and Daniel J Hernández showed that $\operatorname{Vol}_R(I_{\bullet})$ exists as a limit if and only if $\dim N(\hat{R}) < d$, where $N(\hat{R})$ denotes the nilradical of \hat{R} . This provides an alternating proof of the existence of Hilbert Kunz multiplicity and F-signature for a complete local domain ([7], Corollary 6.1,6.8).

This article aims to prove the following general Volume = Multiplicity formula for p-families of \mathfrak{m} -primary ideals.

Theorem 5.3. Let $(R, \mathfrak{m}, \mathbb{K})$ be a d-dimensional local ring of characteristic p > 0. If dim $N(\hat{R}) < d$, then for any p-family of \mathfrak{m} -primary ideals $I_{\bullet} = \{I_q\}_{q=1}^{\infty}$

$$\operatorname{Vol}_R(I_{\bullet}) = \lim_{q \to \infty} \frac{\ell_R(R/I_q)}{q^d} = \lim_{q \to \infty} \frac{e_{HK}(I_q, R)}{(q)^d}$$

To prove our main result, we have followed the approach of Cutkosky's existence theorem ([2] [3]), which can be outlined as follows:

- (1) Reduce to the case of a complete local domain.
- (2) Using a suitable valuation on this complete local domain R, we attach to every p-family of ideals a combinatorial structure, called p-system of ideals (see Definition 3.11) and associate an Euclidean object called p-body (see Definition 3.12).
- (3) To compute the relevant R-module lengths, we prove an approximation Theorem for p-systems of ideals. Since Lazarsfeld and Mustață in their paper [10, Proposition 3.1] have proved similar approximation theorem and using it recovered the Fujita Approximation Theorem [10, Theorem 3.3], we call it Fujita Type Approximation Theorem for p-systems of ideals (see Theorem 3.18).

Although the Hilbert-Kunz multiplicity behaves much differently compared to the Hilbert-Samuel multiplicity, a parallel analog of Theorem 5.3 for every graded family $J_{\bullet} = \{J_n\}_{n \in \mathbb{N}}$ (i.e., a sequence of ideals J_{\bullet} such that $J_m.J_n \subseteq J_{m+n}$) of \mathfrak{m} -primary ideals and Hilbert-Samuel multiplicities has been proven for valuation ideals associated to an Abhyankar valuation in a regular local ring which is essentially of finite type over a field in [5] when R is a local domain which is essentially of finite type over an algebraically closed field \mathbb{K} with $R/\mathfrak{m} = \mathbb{K}$ in [10], it is proven when R is analytically unramified with perfect residue field in [3]. Finally in [4] Cutkosky settled this for any d-dimensional Noetherian local ring R with $\dim N(\hat{R}) < d$.

2. Preliminaries

This section reviews a few basic notions from semigroup theory, convex geometry, and valuation theory.

Let U and V be arbitrary subsets of \mathbb{R}^d . If U is Lebesgue measurable, its measure $\operatorname{Vol}_{\mathbb{R}^d}(U)$ is called the *volume* of U. We define the Minkowski sum of two sets as $U+V:=\{\ \boldsymbol{u}+\boldsymbol{v}\mid \boldsymbol{u}\in U, \boldsymbol{v}\in V\}$.

A convex cone is any subset of \mathbb{R}^d that is closed under taking an \mathbb{R} -linear combination of points with non-negative coefficients. Let $Cone(U) \subseteq \mathbb{R}^d$ be the convex cone which is the closure of the set of all linear combinations $\sum_i \lambda_i u_i$, with $u_i \in U$ and $\lambda_i \in \mathbb{R}_{\geq 0}$. Note that a cone in \mathbb{R}^d has a non-empty interior if and only if the real vector space it generates has dimension d. We call such a cone full-dimensional.

A cone C is *pointed* if it is closed and if there exists a vector $\mathbf{a} \in \mathbb{R}^d$ such that $(\mathbf{u}, \mathbf{a}) > 0$, for all $\mathbf{u} \in C \setminus \{\mathbf{0}\}$, where (-, -) is the inner product in \mathbb{R}^d .

If C is a pointed cone and α is a non-negative real number, we define:

$$H = H_{\alpha} := \{ \boldsymbol{u} \in \mathbb{R}^d \mid (\boldsymbol{u}, \boldsymbol{a}) < \alpha \}$$

a truncating half-space for C.

Remark 2.1. Let C be a pointed cone. If $\alpha > 0$, then a truncation of C is defined as $C \cap H_{\alpha}$. It is a non-empty, bounded subset of C.

Remark 2.2. If H is any truncating halfspace of a pointed cone C then so is qH, for all q > 0.

We define a semigroup to be any subset of \mathbb{Z}^d that contains $\mathbf{0}$ and it is closed under addition; e.g. \mathbb{N} is the semigroup of non-negative integers. A semigroup S is finitely generated if there exist a finite subset $S_0 \subseteq S$ such that every element of S can be written as an \mathbb{N} -linear combination of elements of S_0 . A subset $T \subseteq S$ of a semigroup S, is an ideal of S whenever S + T is contained in T. A semigroup S is called pointed if $\mathbf{a} \in S$ and $-\mathbf{a} \in S$ then \mathbf{a} is $\mathbf{0}$.

Remark 2.3. If Cone(S) is pointed, then so is S, but the converse is generally false. However, it does hold if S is assumed to be finitely generated.

Remark 2.4. For any \mathbb{Z} -linear embedding $i : \mathbb{Z}^d \hookrightarrow \mathbb{R}$, there exists some unique $a \in \mathbb{R}^d$, whose coordinates are linearly independent over \mathbb{Q} , such that i(u) = (a, u) for all $u \in \mathbb{Z}^d$. We define $u \leq_a v$ whenever $(a, u) \leq (a, v)$.

Let $\mathbb{F}^{\times} = \mathbb{F} \setminus \{0\}$. Fix, $\boldsymbol{a} \in \mathbb{R}^d$, and fix the embedding $\mathbb{Z}^d \hookrightarrow \mathbb{R}$ given by $\boldsymbol{v} \to (\boldsymbol{a}, \boldsymbol{v})$, defined by \boldsymbol{a} . An \boldsymbol{a} -valuation on a field \mathbb{F} with value group \mathbb{Z}^d is a surjective group homomorphism: $\vartheta : \mathbb{F}^{\times} \to \mathbb{Z}^d$ with the property that

$$\begin{split} \vartheta(xy) &= \vartheta(x) + \vartheta(y), \\ \vartheta(x+y) \geqslant_{\pmb{a}} \min \left\{ \vartheta(x), \vartheta(y) \right\}. \end{split}$$

For any subset $N \subseteq \mathbb{F}$, with $N^{\times} = N \setminus \{0\}$ we define $\vartheta(N) := \vartheta(N^{\times})$, and this is called the *image* of N under ϑ . Given a point $\boldsymbol{u} \in \mathbb{Z}^d$, we define:

$$\mathbb{F}_{\geq \boldsymbol{u}} := \{ x \in \mathbb{F} \mid \vartheta(x) \geqslant_{\boldsymbol{a}} \boldsymbol{u} \} \cup \{0\} \quad \text{and} \quad \mathbb{F}_{>\boldsymbol{u}} := \{ x \in \mathbb{F} \mid \vartheta(x) >_{\boldsymbol{a}} \boldsymbol{u} \} \cup \{0\}$$

The local ring of ϑ is the subring $(V_{\vartheta}, m_{\vartheta}, k_{\vartheta})$ of \mathbb{F} , such that $V_{\vartheta} = \mathbb{F}_{\geq 0}$, and $m_{\vartheta} = \mathbb{F}_{> 0}$. A local domain (D, m, k) is dominated by $(V_{\vartheta}, m_{\vartheta}, k_{\vartheta})$, if (D, m, k) is a local subring of $(V_{\vartheta}, m_{\vartheta}, k_{\vartheta})$, i.e., $\mathfrak{m} \subseteq \mathfrak{m}_{\vartheta}$.

Remark 2.5. If $\mathbf{u} \in \mathbb{Z}^d$, then both $\mathbb{F}_{\geqslant \mathbf{u}}$ and $\mathbb{F}_{>\mathbf{u}}$ are modules over V_{ϑ} (as $V_{\vartheta} = \mathbb{F}_{\geqslant 0}$ and $\vartheta(xy) = \vartheta(x) + \vartheta(y)$) and $\mathbb{F}_{\geqslant \mathbf{u}}/\mathbb{F}_{>\mathbf{u}}$ is a vector space over k_{ϑ} . Note that, if $\mathbf{w} = \vartheta(f)$, for some non-zero $f \in \mathbb{F}$, then:

$$\dim_{k_{\vartheta}} (\mathbb{F}_{>\boldsymbol{w}}/\mathbb{F}_{>\boldsymbol{w}}) = 1.$$

Indeed if f is as above then for any g such that $\vartheta(g) = \boldsymbol{w}$, we have $g = \left(\frac{g}{f}\right) \cdot f$,

where
$$\frac{g}{f} \in k_{\vartheta}$$
 because $\vartheta\left(\frac{g}{f}\right) = 0$.

Remark 2.6. Let (D, m, k) be a local domain of dimension d with fractional field \mathbb{F} , and let $\vartheta : \mathbb{F}^{\times} \to \mathbb{Z}^d$ be an a-valuation with value group \mathbb{Z}^d . Note that $S = \vartheta(D)$ is a subsemigroup of \mathbb{Z}^d , and the image of any ideal I in D is a semigroup ideal of S. Moreover as ϑ is surjective, the Minkowski sum S + (-S) is equal to \mathbb{Z}^d , as ϑ is surjective. Therefore, the real vector space generated by $\operatorname{Cone}(S)$ is \mathbb{R}^d , i.e., $\operatorname{Cone}(S)$ is full dimensional.

Observe that D is dominated by V_{ϑ} if and only if for all $\boldsymbol{x} \in \vartheta(m)$, we have $\boldsymbol{x} >_{\boldsymbol{a}} \boldsymbol{0}$ and $S = \vartheta(m) \cup \{\boldsymbol{0}\}$, i.e., any non-zero $\boldsymbol{u} \in S$, satisfies $(\boldsymbol{a}, \boldsymbol{u}) > 0$.

Definition 2.7. Following Remark 2.6, if D is dominated by V_{ϑ} and $(\boldsymbol{a}, \boldsymbol{u}) > 0$, for every $\boldsymbol{u} \in \text{Cone}(S) \setminus \{\boldsymbol{0}\}$, then we say D is strongly dominated by ϑ .

3. OK-VALUATION, OK-DOMAIN, p-SYSTEMS AND p-BODIES

In this section, we review the constructions of OK-valuation, OK-domain, p-systems, and p-bodies following the work of Cutkosky ([2],[3]) and Jeffries and Hernández [7]. The main result of this section is Theorem 3.18.

Definition 3.1. Let (D, m, k) be a d-dimensional local domain with fractional field \mathbb{F} . Fix the embedding $\mathbb{Z}^d \hookrightarrow \mathbb{R}$ defined by $\boldsymbol{a} \in \mathbb{R}^d$. If an \boldsymbol{a} -valuation

$$\vartheta: \mathbb{F}^{\times} \to \mathbb{Z}^d$$

with value group \mathbb{Z}^d , and local ring $(V_{\vartheta}, m_{\vartheta}, k_{\vartheta})$ satisfies the following conditions: $i.\ D$ is strongly dominated by V_{ϑ} , (see Definition 2.7)

ii. the resulting extension of residue fields $k \hookrightarrow k_{\vartheta}$ is finite, and *iii.* there exists a point $\mathbf{v} \in \mathbb{Z}^d$ such that:

$$D \cap \mathbb{F}_{\geq n\boldsymbol{v}} \subseteq m^n, \ \forall n \in \mathbb{N}$$

then we say that $(V_{\vartheta}, m_{\vartheta}, k_{\vartheta})$ is OK-relative to D.

Definition 3.2. Let D be a d-dimensional local domain with fraction field \mathbb{F} . If there exists a valuation ϑ on \mathbb{F} with value group \mathbb{Z}^d , and valuation ring $(V_{\vartheta}, m_{\vartheta}, k_{\vartheta})$ that is OK-relative to D, we say that D is an OK-domain.

Example 3.3. Let $R = \mathbb{K}[x_1, ..., x_d]$ is a power series ring of dimension d, containing a field \mathbb{K} , $\mathfrak{m} = (x_1, ..., x_d)$ is the maximal ideal and \mathbb{F} is the quotient field of R. Take $a_1, ..., a_d$ be rationally independent real numbers and without loss of generality assume $a_i > 0$ for all $1 \le i \le d$. Define an ordering on \mathbb{Z}^d by $\mathbf{a} = (a_1, ..., a_d)$. Let $f \in R$; then we can write,

$$f = \sum_{s_{i_1,...,i_d} \in \mathbb{K}, (i_1,...,i_d) \in \mathbb{N}^d} s_{i_1,...,i_d} x_1^{i_1} \dots x_d^{i_d}.$$

Since a has positive entries, this will imply that every subset of \mathbb{N}^d has a least element, i.e., there exist a well defined least exponent vector $(i_1^{'},...,i_d^{'})$ among its terms and we define, $\vartheta(f)=(i_1^{'},...,i_d^{'})$.

We claim that the induced valuation $\vartheta : \mathbb{F}^{\times} \to \mathbb{Z}^d$ is OK relative to R.

Let $S = \vartheta(R)$, therefore from the above definition it is clear that $C = \operatorname{Cone}(S)$ is contained in the non-negative octant, then $(\boldsymbol{u}, \boldsymbol{a}) > 0$ for every nonzero \boldsymbol{u} in C. This shows that R is strongly dominated by ϑ , satisfying condition i. Let $(V, \mathfrak{m}_{\vartheta}, \mathbb{K}_{\vartheta})$ is the valuation ring $\mathbb{F}_{\geqslant 0}$ with it's maximal ideal $\mathbb{F}_{>0}$, then clearly $\mathbb{K}_{\vartheta} = V/\mathfrak{m}_{\vartheta} \cong R/\mathfrak{m} \cong \mathbb{K}$, which satisfies condition ii. Moreover, let $a_j = \max\{a_1, ..., a_d\}$, then we claim that $\vartheta(x_j) = (0, ..., 1, 0, ..., 0) = \boldsymbol{v}$ is the vector for condition iii. Indeed let,

$$f \in R \cap \mathbb{F}_{\geqslant av} \implies \vartheta(f) \geqslant av \implies (i_1, ..., i_d) \geqslant (0, ..., a, 0, ..., 0)$$

$$\implies a_1i_1 + ... + a_di_d \geqslant aa_i \implies aa_i \leqslant a_ii_1 + ... + a_ii_d (\because a_i = \max\{a_1, ..., a_d\})$$

$$\implies a \leqslant i_1 + ... + i_d \implies R \cap \mathbb{F}_{\geqslant av} \subseteq \mathfrak{m}^a$$

This finishes the proof that every power series ring containing a field is an OK-domain.

Example 3.4. [7, Example 3.5]) This immediately implies a regular local ring R containing a field is an OK-domain.

Example 3.5. [7, Corollary 3.7] An interesting class of OK-domain examples is excellent local domains containing a field. In particular, a complete local domain containing a field is an OK-domain.

For the rest of this section, we fix a d-dimensional local domain D of characteristic p>0 with residue field k and fraction field \mathbb{F} , a \mathbb{Z} -linear embedding of \mathbb{Z}^d into \mathbb{R} induced by a vector \boldsymbol{a} in \mathbb{R}^d , and a valuation $\vartheta: \mathbb{F}^\times \to \mathbb{Z}^d$ that is OK relative to D. We use S to denote the semigroup $\vartheta(D)$ in \mathbb{Z}^d , and C to denote the closed cone in \mathbb{R}^d generated by S. We follow the notation established in Definition 3.1.

Remark 3.6. If M is a D-submodule of \mathbb{F} , then the D-module structure on M induces a k-vector space structure on the quotient $\frac{M \cap \mathbb{F}_{\geq u}}{M \cap \mathbb{F}_{> u}}$ and by definition this space is non-zero if and only if there exists an element $x \in M$ with $\vartheta(x) = u$.

Definition 3.7. For a *D*-submodule M of \mathbb{F} , we define:

$$\vartheta^{(h)}(M) = \left\{ \boldsymbol{u} \in \mathbb{Z}^d \mid \dim_k \left(\frac{M \cap \mathbb{F}_{\geqslant \boldsymbol{u}}}{M \cap \mathbb{F}_{> \boldsymbol{u}}} \right) \geqslant h \right\},\,$$

where $1 \leqslant h \leqslant [k_{\vartheta}:k]$.

Remark 3.8. Let $g \in D^{\times}$, with $\mathbf{v} = \vartheta(g)$, and let $\mathbf{u} \in \mathbb{Z}^d$. Let $I_{\bullet} = \{I_q\}_{q=1}^{\infty}$ be a sequence of ideals indexed by $q = p^e$, then the map:

$$\frac{I_q \cap \mathbb{F}_{\geqslant \boldsymbol{u}}}{I_q \cap \mathbb{F}_{> \boldsymbol{u}}} \to \frac{I_q \cap \mathbb{F}_{\geqslant \boldsymbol{u} + \boldsymbol{v}}}{I_q \cap \mathbb{F}_{> \boldsymbol{u} + \boldsymbol{v}}} \ : \ [x] \mapsto [gx]$$

is a k-linear injection for all $u \in \mathbb{Z}^d$ and for all I_q in that sequence. Therefore using Definition 3.7, we have $\vartheta^{(h)}(I_q) + S \subseteq \vartheta^{(h)}(I_q)$, i.e., $\vartheta^{(h)}(I_q)$ is an ideal of $S = \vartheta(D)$ for all $1 \leq h \leq [k_{\vartheta} : k]$.

Lemma 3.9. [7, Lemma 3.11] For a D-submodule M of \mathbb{F} and $\mathbf{v} \in \mathbb{Z}^d$, we have:

$$\ell_D\left(M/(M\cap\mathbb{F}_{\geqslant v})\right) = \sum_{h=1}^{[k_\vartheta:k]} \#(\vartheta^{(h)}(M)\cap H)$$

where $H = \left\{ oldsymbol{u} \in \mathbb{R}^d \mid (oldsymbol{a}, oldsymbol{u}) < (oldsymbol{a}, oldsymbol{v})
ight\}$.

We now discuss the notions of p-system and p-bodies.

Definition 3.10. A semigroup S is called standard if $S - S = \mathbb{Z}^d$, and the full dimensional cone generated by S in \mathbb{R}^d is pointed. Following the discussion in Remark 2.6 and from Definition 3.1 the main example of a standard semigroup in \mathbb{Z}^d is $\vartheta(D)$ associated to an \boldsymbol{a} -valuation ϑ that is OK relative to some d-dimensional local domain D.

Definition 3.11. A collection of subsets $T_{\bullet} = \{T_q\}_{q=1}^{\infty}$ of a semigroup S indexed by $q = p^e$ satisfying

i. T_q is an ideal of S. $(T_q + S \subseteq S)$ and ii. $pT_q \subseteq T_{pq}$ is called a p-system.

Definition 3.12. The p-body associated to a given p-system of ideals T_{\bullet} of a semigroup in \mathbb{Z}^d is defined by

$$\Delta(S, T_{\bullet}) = \bigcup_{q=1}^{\infty} \Delta_q(S, T_{\bullet}) \text{ where } \Delta_q(S, T_{\bullet}) = \frac{1}{q}T_q + \text{Cone}(S)$$

Remark 3.13. Although we have defined the notion of p-body for a p-system of ideals in any semigroup, in our situation, we are mostly concerned with p-system of ideals in the standard semigroup. Moreover, let $q_1=p^{e_1}$ and $q_2=p^{e_2}$ and $e_1\leqslant e_2$, then $p^{e_2-e_1}T_{p^{e_1}}\subseteq T_{p^{e_2}}$ (using Definition 3.12) this implies $\frac{T_{p^{e_1}}}{p^{e_1}}\subseteq \frac{T_{p^{e_2}}}{p^{e_2}}$. Therefore the p-body associated to a given p-system of ideals is an ascending union of sets.

Example 3.14. [7, Example 4.5] Let T be any subset of S, define $T_q = T + S$, for all $q = p^e$, then:

i. Clearly $T_q + S \subseteq T_q$ ii. $pT_q = (pT + pS) \subseteq (pT + S) \subseteq (T + (p-1)T + S) \subseteq T + S$ which is equal to

Therefore T_q is a p-system of ideals for all $q = p^e$. Moreover, we have $\Delta_q(S, T_{\bullet}) = \left(\frac{1}{q}T + \operatorname{Cone}(S)\right)$ and the closure of $\Delta(S, T_{\bullet})$ equals $\operatorname{Cone}(S)$.

Example 3.15. Let D be an OK domain for an OK valuation ϑ and assume $S = \vartheta(D)$ is the corresponding semigroup. Take an ideal I in D and define $T_q =$ $q\vartheta(I) + S$. Following the same argument as in Example 3.14, one can show that $\{T_q\}_{q=1}^{\infty}$ is a p-system of ideals. Moreover $\Delta(S, T_{\bullet}) = \Delta_q(S, T_{\bullet}) = \vartheta(I) + \operatorname{Cone}(S)$.

In the previous example, one can replace $\vartheta(I)$ with any arbitrary subset T of S, and the corresponding p-body would be T + Cone(S). This shows that p bodies need not be convex, and in practical applications, mostly, they are not.

Remark 3.16. Following Definition 3.12 one can see that every p-body Δ is the union of countably many translates of C = Cone(S) therefore, it is Lebesgue measurable. If H is a truncating halfspace of C, then the volume of $(\Delta \cap H)$ is a well-defined real number.

The following Theorem describes $\operatorname{Vol}_{\mathbb{R}^d}(\Delta \cap H)$ for any truncating halfspace H of Cone(S). This Theorem is one of the key ingredients in the proof of our main Theorem.

Theorem 3.17. [7, Theorem 4.10] For a standard semigroup S in \mathbb{Z}^d , a p-system T_{\bullet} in S, and a truncating halfspace H for Cone(S), we have:

$$\lim_{q \to \infty} \frac{\#(T_q \cap qH)}{q^d} = \operatorname{Vol}_{\mathbb{R}^d}(\Delta(S, T_{\bullet}) \cap H)$$

Lazarsfeld and Mustată in their paper [10, Proposition 3.1] have proved an approximation theorem similar to the following Theorem and using this in a global setup with D a big divisor on an irreducible projective variety; they have recovered the Fujita Approximation Theorem [10, Theorem 3.3]. Since our approximation is similar to a different set of properties on the semigroup, we call it Fujita Type Approximation Theorem for p system of ideals.

Theorem 3.18. Let S be a standard semigroup in \mathbb{Z}^d . If T_{\bullet} is a p-system of ideals in S, and let H is any truncating halfspace for Cone(S), then for any given $\epsilon > 0$, there exists q_0 such that if $q \ge q_0$ the following inequality hold.

$$\lim_{e\to\infty}\frac{\#((p^eT_q+S)\cap p^eqH)}{p^{ed}q^d}\geqslant \operatorname{Vol}_{\mathbb{R}^d}(\Delta(S,T_\bullet)\cap H)-\epsilon$$

Proof. By Example 3.15 we notice that $T_{\bullet}' = \{p^e T_q + S\}_{e=1}^{\infty}$ is a *p*-system of ideals. Therefore using Theorem 3.17 and Remark 2.2 we have,

(3.1)
$$\lim_{e \to \infty} \frac{\#((p^e T_q + S) \cap p^e q H)}{p^{ed}} = \operatorname{Vol}_{\mathbb{R}^d}((T_q + \operatorname{Cone}(S)) \cap q H)$$

Now note that $\frac{\operatorname{Vol}_{\mathbb{R}^d}((T_q+\operatorname{Cone}(S)\cap qH)}{q^d}=\operatorname{Vol}_{\mathbb{R}^d}((\frac{T_q}{q}+\operatorname{Cone}(S))\cap H)$ and from Remark 3.13 and Remark 3.16, we know that these are an ascending union of measurable sets. Therefore,

(3.2)
$$\lim_{q \to \infty} \frac{\operatorname{Vol}_{\mathbb{R}^d}((T_q + \operatorname{Cone}(S)) \cap qH)}{q^d} = \operatorname{Vol}_{\mathbb{R}^d}(\Delta(S, T_{\bullet}) \cap H)$$

We get Equation 3.2 by using the sub-additivity and continuity from below properties of the Lebesgue measure. Now combining Equation 3.1, Equation 3.2 for a chosen $\epsilon > 0$, we can find q_0 such that for all $q \geqslant q_0$ $\lim_{e \to \infty} \frac{\#((p^e T_q + S) \cap p^e q H)}{p^{ed} q^d} \geqslant \operatorname{Vol}_{\mathbb{R}^d}(\Delta(S, T_{\bullet}) \cap H) - \epsilon \qquad \square$

4. P-FAMILIES AND A BRIEF INTRODUCTION TO HILBERT KUNZ MULTIPLICITY

In this section, all rings will be commutative, Noetherian, and of prime characteristic, p > 0.

Let I be an ideal of a ring R, generated by $\{x_1, ..., x_r\}$ then p^e th Frobenius power of I denoted by $I^{[p^e]}$ is generated by $\{x_1^{p^e}, ..., x_r^{p^e}\}$.

Definition 4.1. A sequence of ideals $I_{\bullet} = \{I_{p^e}\}_{e=0}^{\infty}$ is called a *p*-family whenever $I_q^{[p]} \subseteq I_{pq}$, where $q = p^e$ for some $e \ge 0$.

Remark 4.2. We note that if (R, \mathfrak{m}) is local, then every term in this family is \mathfrak{m} -primary if and only if I_1 is \mathfrak{m} primary.

Example 4.3. Let $I_{\bullet} = \{J^{[p^e]}\}_{e=0}^{\infty}$ for some fixed ideal J, then $I_{p^e}^{[p]} = J^{[p^{e+1}]} = I_{p^{e+1}}$, therefore I_{\bullet} is a p-family.

Lemma 4.4. Let (R, \mathfrak{m}) be a local ring and let $I_{\bullet} = \{I_q\}_{q=1}^{\infty}$ be a p-family of \mathfrak{m} -primary ideals. Then there exist a c > 0 such that $\mathfrak{m}^{cq} \subseteq I_q$ and $\mathfrak{m}^{cp^eq} \subseteq I_q^{[p^e]}$ for all q a power of p and for all $e \geqslant 0$.

Proof. We know from Remark 4.2 that there exist c_1 such that $(\mathfrak{m}^{c_1})^{[q]} \subseteq I_q$ for all q, a power of p. Let \mathfrak{m} be generated by b elements then using pigeon-hole principle, $\mathfrak{m}^{bc_1p^eq} \subseteq (\mathfrak{m}^{c_1})^{[p^eq]} \subseteq ((\mathfrak{m}^{c_1})^{[q]})^{[p^e]} \subseteq I_q^{[p^e]}$, for all q a power of p and for all $e \geqslant 0$. So, letting $c = bc_1$ we get our desired conclusion.

We define the Frobenius map $F:R\to R$ by $F(r)=r^p$. This map turns R into an R-module with a nonstandard action $r.x=r^px$, and we call this module F_*R . Inductively one can define F_*^eR . We define an R-linear map $\phi_e:F_*^eR\to R$ which is a set map from R to R such that ϕ_e is additive and $\phi_e(x^{p^e}y)=x\phi(y)$. The following is an interesting example of p-families.

Example 4.5. Assume R is reduced and I is an R-ideal. Define for all $q = p^e$, $J_q = \{x \in R \mid \phi(x) \in I, \forall \phi \in Hom_R(F_*^e(R), R)\}$. Notice that J_q is an ideal for each $q = p^e$. Since R is reduced we can identify $F_*^e(R)$ as $R^{\frac{1}{p^e}}$, the ring of p^e -th roots of the elements in R. We claim that this is a p-family of ideals.

Indeed, let $\phi \in Hom_R(F_*^{e+1}R, R)$ and choose $r \in J_q$ then $\psi(r^{\frac{1}{p^e}}) \in I$ for all $\psi \in Hom_R(F_*^eR, R)$. Now $\phi\left((r^p)^{\frac{1}{p^e+1}}\right) = \phi_e\left(r^{\frac{1}{p^e}}\right) \in I$, as $r \in J_q$. This implies $J_q^{[p]} \subseteq J_{pq}$.

Remark 4.6. If in the previous example we choose $I = \mathfrak{m}$, then we get a p-family of m-primary ideals because $\mathfrak{m}^{[q]} \subseteq J_q$. Use of this sequence of ideals was present in the work of Y. Yao [13] as well as F. Enescu and I. Aberbach [1]. Later this sequence of ideals was used in the work of K. Tucker [12] for proving that F-signature exists.

Let (D, m, k) be a d-dimensional local OK-domain with OK-valuation ϑ . Choose any p family I_{\bullet} of ideals, then

i. $\vartheta(I_q)$ is an ideal of the semigroup $\vartheta(D) = S$, and,

ii. $p\vartheta(I_q)\subseteq\vartheta(I_q^{[p]})\subseteq\vartheta(I_{pq})$. Therefore, $\{\vartheta(I_q)\}_{q=1}^{\infty}$ is a p-system of ideals in S.

Remark 4.7. Following Definition 3.7 and Remark 3.8, one can observe that although $\vartheta^{(h)}(I_q)$ is an ideal but we need the extra condition that $\{m_1,...,m_h\}$ are k-linear independent in $\vartheta^{(h)}(I_q)$ implies $\{m_1^p,...,m_h^p\}$ are k-linear independent in $\vartheta^{(h)}(I_{pq})$ but it doesn't always true unless we assume that k is perfect. In ([7, Lemma 3.12]) they get around it by uniformly approximating $\vartheta^h(I_q)$ with $\vartheta(I_q)$ and proving the following result:

Proposition 4.8. [7, Corollary 5.10] Let D be a d-dimensional local OK-domain with OK-valuation ϑ . For a p-family of ideals I_{\bullet} in D we have:

$$\lim_{q\to\infty}\frac{(\vartheta^{(h)}(I_q)\cap qH)}{q^d}=\operatorname{Vol}_{\mathbb{R}^d}(\Delta(S,\vartheta(I_\bullet))\cap H)$$

where $S = \vartheta(D)$, C = Cone(S) and H is any truncating halfspace of C.

We will now discuss Hilbert-Kunz Multiplicity and some important properties.

For the rest of this section let $(R, \mathfrak{m}, \mathbb{K})$ be a d-dimensional local ring and $q = p^e$, for some $e \in \mathbb{N}$.

Definition 4.9. Let I be an \mathfrak{m} -primary ideal of R. We define Hilbert-Kunz Multiplicity of I by $e_{HK}(I,R) = \lim_{q \to \infty} \frac{\ell\left(R/I^{[q]}\right)}{q^d}$

Remark 4.10. Let J be an \mathfrak{m} -primary ideal of R, then $\ell(R/J)$ is unaffected by completion. Therefore using the above definition, we have

$$e_{HK}(J,R) = e_{HK}(J\hat{R},\hat{R})$$

Lemma 4.11. Let I be an \mathfrak{m} -primary ideal of R and M be a finitely generated R-module. Then there exists a constant $\alpha > 0$ such that

$$\ell_R\left(\frac{M}{I^{[p^e]}M}\right) \leqslant \alpha p^{e\cdot\dim M}$$

Proof. Since I is \mathfrak{m} -primary there exist c>0 such that $\mathfrak{m}^c\subseteq I$. Let b is the minimal number of generators of I, then $\mathfrak{m}^{p^ebc}\subseteq I^{p^eb}\subseteq I^{[p^e]}$ (using pigeon-hole principle). Therefore $\ell_R\left(\frac{M}{I^{[p^e]}}\right)\leqslant \ell_R\left(\frac{M}{\mathfrak{m}^{p^ebc}}\right)$ and the later agrees with a polynomial in p^ebc of degree dim M. If the leading coefficient of this polynomial is a then choose $a_0>>a$ implies $\ell_R(\frac{M}{\mathfrak{m}^{p^ebc}})$ is bounded above by , $a_0(b^{\dim M}c^{\dim M}p^{e\dim M})$ taking $\alpha=a_0b^{\dim M}c^{\dim M}$ will finish the proof.

Corollary 4.12. Let N be an ideal of R and A = R/N, then for any m-primary ideal I of R there exist $\beta > 0$ such that

$$0 \leqslant \ell_R \left(R/I^{[p^e]} \right) - \ell_A \left(A/I^{[p^e]} \right) \leqslant \beta.p^{e.\,\dim N}$$

Proof. Take the following exact sequence

$$0 \to N/(N \cap I^{[p^e]}) \to R/I^{[p^e]} \to A/I^{[p^e]}A \to 0$$

Using the length formula, we have

(4.1)
$$\ell_R\left(R/I^{[p^e]}\right) - \ell_A\left(A/I^{[p^e]}\right) = \ell_R\left(N/(N \cap I^{[p^e]})\right)$$

Note that $\ell_R\left(A/I^{[p^e]}\right) = \ell_A\left(A/I^{[p^e]}\right)$ and $I^{[p^e]}N \subseteq I^{[p^e]} \cap N$. Now using Lemma 4.11, we have from Equation 4.1, $\ell_R\left(R/I^{[p^e]}\right) - \ell_A\left(A/I^{[p^e]}\right) \leqslant \ell_R\left(N/I^{[p^e]}N\right) \leqslant \beta p^{e.\,\dim N}$

Definition 4.13. Let $f, g : \mathbb{N} \to \mathbb{R}$ be real valued functions from the set of non-negative integers. We say f(n) = O(g(n)) if there exists a positive constant C such that $|f(n)| \leq Cg(n)$ for all $n \gg 0$ and we say f(n) = o(g(n)) if $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

Now we will mention some results on Hilbert Kunz Multiplicity without proof; for a detailed verification, we refer readers to [8].

Proposition 4.14. Let

$$0 \to N \to M \to K \to 0$$

be a short exact sequence of finitely generated R-modules. Then

$$(4.2) \qquad \ell_R\left(M/I^{[q]}M\right) = \ell_R\left(N/I^{[q]}N\right) + \ell_R\left(K/I^{[q]}K\right) + O(q^{d-1})$$

Now dividing Equation 4.2 by q^d and taking $q \to \infty$ we have

$$e_{HK}(I,M) = e_{HK}(I,K) + e_{HK}(I,N)$$

Theorem 4.15. Let I be an \mathfrak{m} -primary ideal of R and M is a finitely generated R-module. Let Γ be the set of minimal prime ideals P of R such that $\dim(R/P) = \dim(R)$. Then

$$e_{HK}(I,M) = \sum_{p \in \Gamma} e_{HK}(I,R/P) \ell(M_P)$$

The main idea to prove this result is to take a prime filtration of M, use the fact that $e_{HK}(I, R/Q) = 0$ if dim $R/Q < \dim R$ and then use Proposition 4.14.

Remark 4.16. In the Theorem 4.15, if we choose M=R and further assume R is reduced. Then

$$e_{HK}(I,R) = \sum_{n \in \Gamma} e_{HK}(I,R/P)$$

because a reduced local ring with Krull dimension 0 is a field, therefore $\ell(R_P) = 1$

5. Volume=Multiplicity Formula

In this section we prove our main result, a general Volume=Multiplicity formula for p-families of \mathfrak{m} -primary ideals. We begin with the following important lemma.

Lemma 5.1. [7, Lemma 5.21] Let $(R, \mathfrak{m}, \mathbb{K})$ be a d-dimensional reduced local ring of positive characteristic, and I_{\bullet} be a sequence of ideals of R indexed by the powers of p such that $\mathfrak{m}^{cq} \subseteq I_q$ for some positive integer c and for all $q = p^e, e \in \mathbb{N}$. Let $P_1, ..., P_n$ be the minimal primes of R, then there exists $\delta > 0$ such that for all q,

$$\left| \sum_{i=1}^{n} \ell_{R_i} \left(R_i / I_q R_i \right) - \ell_R \left(R / I_q \right) \right| \leqslant \delta . q^{d-1}$$

where $R_i = R/P_i$, for all $i \in \{1, ..., n\}$

Remark 5.2. Suppose (R, \mathfrak{m}) be a d-dimensional reduced local ring of chracteristic p > 0 and I is an \mathfrak{m} -primary ideal. Since R is reduced and $I_{\bullet} = \{I^{[p^e]}\}_{e=0}^{\infty}$ is a p-family of \mathfrak{m} primary ideals, using Lemma 5.1, Lemma 4.4 one can give an alternative proof of Remark 4.16.

The following is the Main Theorem of this paper.

Theorem 5.3. Let $(R, \mathfrak{m}, \mathbb{K})$ be a d-dimensional local ring of characteristic p > 0. If the R-module dimension of the nilradical of \hat{R} is less than d, then for any p-family of \mathfrak{m} -primary ideals $I_{\bullet} = \{I_q\}_{q=1}^{\infty}$, we have

$$\lim_{q \to \infty} \frac{\ell_R(R/I_q)}{q^d} = \lim_{q \to \infty} \frac{e_{HK}(I_q, R)}{(q)^d}$$

Proof. Step 1: The case of OK-Domain:

Assume R is an OK-domain and let $\vartheta: \mathbb{F}^{\times} \to \mathbb{Z}^d$ be the valuation that is OK-relative to R with respect to a \mathbb{Z} -linear embedding of \mathbb{Z}^d into \mathbb{R} induced by a vector a. Let $(V, \mathfrak{m}_{\vartheta}, \mathbb{K}_{\vartheta})$ be the associated valuation ring, $S = \vartheta(R)$ be the corresponding semigroup in \mathbb{Z}^d and $C = \operatorname{Cone}(S)$.

Let $\overset{\smile}{\boldsymbol{u}}\in\overset{\smile}{\mathbb{Z}}{}^d;$ then we have the following two exact sequences:

$$(5.1) 0 \to \frac{I_q}{I_q \cap \mathbb{F}_{>u}} \to \frac{R}{I_q \cap \mathbb{F}_{>u}} \to \frac{R}{I_q} \to 0$$

$$(5.2) 0 \to \frac{R \cap \mathbb{F}_{\geqslant u}}{I_q \cap \mathbb{F}_{\geqslant u}} \to \frac{R}{I_q \cap \mathbb{F}_{\geqslant u}} \to \frac{R}{R \cap \mathbb{F}_{\geqslant u}} \to 0$$

From Equation 5.1, 5.2, we have

(5.3)
$$\ell_R(R/I_q) = \ell_R\left(\frac{R \cap \mathbb{F}_{\geqslant u}}{I_q \cap \mathbb{F}_{\geqslant u}}\right) + \ell_R\left(\frac{R}{R \cap \mathbb{F}_{\geqslant u}}\right) - \ell_R\left(\frac{I_q}{I_q \cap \mathbb{F}_{\geqslant u}}\right)$$

Let $v \in S$ satisfy the last condition in Definition 3.1. Choose the number c > 0 from Lemma 4.4, define w = cv, then $R \cap \mathbb{F}_{\geqslant qw} \subseteq \mathfrak{m}^{cq} \subseteq I_q$. Therefore

$$(5.4) I_q \cap \mathbb{F}_{\geqslant qw} = R \cap \mathbb{F}_{\geqslant qw}$$

Let H be the halfspace $\{u^{'} | (a, u^{'}) < (a, w)\}$. Then using Equation 5.3, 5.4 and Lemma 3.9 we have,

(5.5)
$$\ell_R(R/I_q) = \sum_{h=1}^{[\mathbb{K}_{\vartheta}:\mathbb{K}]} \#(\vartheta^h(R) \cap qH) - \sum_{h=1}^{[\mathbb{K}_{\vartheta}:\mathbb{K}]} \#(\vartheta^h(I_q) \cap qH)$$

Fix q' a power of p. I do the same calculation with respect to the p-system of ideals $J_{\bullet} = \{I_{n'}^{[p^e]}\}_{e=0}^{\infty}$ then using Lemma 4.4 and Lemma 3.9, we have

$$(5.6) \qquad \ell_{R}\left(R/I_{q'}^{[p^{e}]}\right) = \sum_{h=1}^{[\mathbb{K}_{\vartheta}:\mathbb{K}]} \#(\vartheta^{h}(R) \cap p^{e}q'H) - \sum_{h=1}^{[\mathbb{K}_{\vartheta}:\mathbb{K}]} \#(\vartheta^{h}(I_{q'}^{[p^{e}]}) \cap p^{e}q'H)$$

Note that we can consider $J_q' = R$ for all $q = p^e$. It is clearly a p-family of ideals. Therefore using Proposition 4.8 and Equation 5.5, we have

$$(5.7) \lim_{q \to \infty} \frac{\ell_R(R/I_q)}{q^d} = [\mathbb{K}_{\vartheta} : \mathbb{K}].(\operatorname{Vol}_{\mathbb{R}^d}(\Delta(S, \vartheta(J_{\bullet}') \cap H) - \operatorname{Vol}_{\mathbb{R}^d}(\Delta(S, \vartheta(I_{\bullet}) \cap H)))$$

Similarly applying Proposition 4.8 and Equation 5.6 for the *p*-system of ideals $J_{\bullet}=\{I_{q'}^{[p^e]}\}_{e=0}^{\infty}$, we have

(5.8)

$$\lim_{e \to \infty} \frac{\ell_R\left(R/I_{q'}^{[p^e]}\right)}{p^{ed}(q')^d} = [\mathbb{K}_{\vartheta} : \mathbb{K}].(\operatorname{Vol}_{\mathbb{R}^d}(\Delta(S, \vartheta(J_{\bullet}') \cap H) - \operatorname{Vol}_{\mathbb{R}^d}(\Delta(S, \vartheta(J_{\bullet}) \cap H)))$$

Using Definition 3.12, we have

(5.9)
$$\Delta(S, \vartheta(J_{\bullet})) = \bigcup_{e=0}^{\infty} \frac{1}{p^{e}} \vartheta\left(I_{q'}^{[p^{e}]}\right) + \operatorname{Cone}(S).$$

Now $\vartheta\left(I_{q'}^{[p^e]}\right)\subseteq \vartheta(I_{q'p^e})$, as $\{I_q\}$ is a p-system of ideals and $\frac{1}{p^e}\vartheta\left(I_{q'p^e}^{[p^e]}\right)\subseteq \frac{1}{p^e}\vartheta(I_{q'p^e})\subseteq \frac{1}{p^e}\vartheta(I_{q'p^e})$. Therefore $\bigcup_{e=0}^{\infty}\frac{1}{p^e}\vartheta\left(I_{q'}^{[p^e]}\right)+\operatorname{Cone}(S)\subseteq\bigcup_{e=0}^{\infty}\frac{1}{p^eq'}\vartheta(I_{q'p^e})+\operatorname{Cone}(S)\subseteq\bigcup_{q=1}^{\infty}\frac{1}{q}\vartheta(I_q)+\operatorname{Cone}(S)=\Delta(S,\vartheta(I_{\bullet})\cap\mathbb{H})$. From this, we conclude

$$(5.10) \operatorname{Vol}_{\mathbb{R}^d}(\Delta(S, \vartheta(J_{\bullet}) \cap H)) \leqslant \operatorname{Vol}_{\mathbb{R}^d}(\Delta(S, \vartheta(I_{\bullet}) \cap H))$$

Moreover $p^e \vartheta(I_{q'}) + S \subseteq \vartheta(I_{q'}^{[p^e]})$. Indeed for $s_1 \in \vartheta(I_{q'})$ and $s_2 \in S$, we have $\vartheta(x) = s_1$ for some $x \in I_{q'}$ and $\vartheta(y) = s_2$ for some $y \in R$. Therefore $p^e s_1 + s_2 = \vartheta(x^{[p^e]} \times y) = \text{and } x^{[p^e]} \times y \in I_{q'}^{[p^e]}$.

Using the observation above and Theorem 3.18, we have for any given $\epsilon > 0$, there exist q_0 such that for all $q' \ge q_0$,

(5.11)

$$\operatorname{Vol}_{\mathbb{R}^d}(\Delta(S, \vartheta(I_{\bullet}) \cap H) - \epsilon \leqslant \lim_{e \to \infty} \frac{\#(p^e \vartheta(I_{q'}) + S) \cap p^e q'H)}{p^{ed}(q')^d} \leqslant \lim_{e \to \infty} \frac{\#(\vartheta(I_{q'}^{[p^e]} \cap p^e q'H)}{p^{ed}(q')^d}$$

Now using Equation 5.10 and 5.11 in Equation 5.7 and 5.8 we have for all $q' \geqslant q_0$,

$$\lim_{q\to\infty}\frac{\ell_R(R/I_q)}{q^d}\leqslant \lim_{e\to\infty}\frac{\ell_R(R/I_{q'}^{[p^e]})}{p^{ed}(q')^d}=\frac{e_{HK}(I_{q'},R)}{(q')^d}\leqslant \lim_{q\to\infty}\frac{\ell_R(R/I_q)}{q^d}+\epsilon$$

Therefore letting $q' \to \infty$, we obtain the result in OK-domain case.

Step 2: Reduction to the OK-domain case:

Since $\ell(R/J)$ is unaffected by completion for any \mathfrak{m} -primary ideal J, we may assume that R is complete.

Using [7, Corollary 5.18] and Corollary 4.12 by choosing $R = \hat{R}$ and $N = N(\hat{R})$

with the condition that dim N < d we can therefore assume that R is complete and reduced.

Now suppose that the minimal primes of the complete reduced ring R are $\{P_1, ..., P_n\}$. Let $R_i = R/P_i$ be complete local domain for all $1 \le i \le n$. By Remark 4.16, we have

(5.12)
$$\frac{e_{HK}(I_q, R)}{(q)^d} = \sum_{i=1}^n \frac{e_{HK}(I_q R_i, R_i)}{(q)^d}$$

We also have from Lemma 5.1

(5.13)
$$\lim_{q \to \infty} \frac{\ell_R(R/I_q)}{q^d} = \sum_{i=1}^n \lim_{q \to \infty} \frac{\ell_{R_i}(R_i/I_qR_i)}{q^d}$$

Since each R_i is a complete local domain and therefore an OK-domain by Example 3.5, using Equation 5.12 and 5.13 we have

$$\lim_{q \to \infty} \frac{\ell_R(R/I_q)}{q^d} = \sum_{i=1}^n \lim_{q \to \infty} \frac{\ell_{R_i}(R_i/I_qR_i)}{q^d}$$

$$= \sum_{i=1}^n \lim_{q \to \infty} \frac{e_{HK}(I_qR_i, R_i)}{(q)^d}$$

$$= \lim_{q \to \infty} \frac{e_{HK}(I_q, R)}{(q)^d}$$

6. Acknowledgement

I would like to thank my advisor Dr. Jonathan Montaño, for constant encouragement and many helpful suggestions; specifically, our Starbucks discussions made this a journey to remember. The author was partially supported by NSF Grant DMS #2001645.

References

- [1] Ian M Aberbach and Florian Enescu. The structure of f-pure rings. Mathematische Zeitschrift, 250(4):791–806, 2005.
- [2] Steven Cutkosky. Multiplicities associated to graded families of ideals. Algebra & Number Theory, 7(9):2059–2083, 2013.
- [3] Steven Dale Cutkosky. Asymptotic multiplicities of graded families of ideals and linear series. Advances in Mathematics, 264:55–113, 2014.
- [4] Steven Dale Cutkosky. A general volume= multiplicity formula. Acta Mathematica Vietnamica, 40(1):139–147, 2015.
- [5] Lawrence Ein, Robert Lazarsfeld, and Karen E Smith. Uniform approximation of abhyankar valuation ideals in smooth function fields. American Journal of Mathematics, 125(2):409–440, 2003
- [6] Chungsim Han and Paul Monsky. Some surprising hilbert-kunz functions. Mathematische Zeitschrift, 214(1):119–135, 1993.
- [7] Daniel J Hernández and Jack Jeffries. Local okounkov bodies and limits in prime characteristic. Mathematische Annalen, 372(1):139–178, 2018.
- [8] Craig Huneke. Hilbert-kunz multiplicity and the f-signature. In Commutative algebra, pages 485–525. Springer, 2013.
- [9] Ernst Kunz. On noetherian rings of characteristic p. American Journal of Mathematics, 98(4):999-1013, 1976.

- [10] Robert Lazarsfeld and Mircea Mustață. Convex bodies associated to linear series. In Annales scientifiques de l'École normale supérieure, volume 42, pages 783–835, 2009.
- [11] Paul Monsky. The hilbert-kunz function. Mathematische Annalen, 263(1):43–49, 1983.
- [12] Kevin Tucker. F-signature exists. Inventiones mathematicae, 190(3):743–765, 2012.
- [13] Yongwei Yao. Observations on the f-signature of local rings of characteristic p. *Journal of Algebra*, 299(1):198–218, 2006.

 $1290~\mathrm{Frenger}$ Mall, Las Cruces, New Mexico 88003-8001

 $Email\ address{:}\ \mathtt{sudiptad@nmsu.edu}$