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Abstract

We study when blowup algebras are ý-split or strongly

ý-regular. Our main focus is on algebras given by

symbolic and ordinary powers of ideals of minors of

a generic matrix, a symmetric matrix, and a Hankel

matrix. We also study ideals of Pfaffians of a skew-

symmetricmatrix.We use these results to obtain bounds

on the degrees of the defining equations for these alge-

bras. We also prove that the limit of the normalized

regularity of the symbolic powers of these ideals exists

and that their depth stabilizes. Finally, we show that, for

determinantal ideals, there exists a monomial order for

which taking initial ideals commutes with taking sym-

bolic powers. To obtain these results, we develop the

notion of ý-split filtrations and symbolic ý-split ideals.
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1 INTRODUCTION

Let ý be a Noetherian ring. A filtration ý = {ýÿ}ÿ∈ℤ⩾0 is a sequence of ideals such that ý0 = ý,
ýÿ+1 ⊆ ýÿ for every ÿ ∈ ℤ⩾0, and ýÿýÿ ⊆ ýÿ+ÿ for every ÿ,ÿ ∈ ℤ⩾0. Classical examples of filtra-
tions include ordinary and symbolic powers. By taking the initial ideals of a filtration under a
monomial order, one obtains a filtration of monomial ideals. Given a filtration, one can con-
struct its Rees algebraℛ(ý) and associated algebra gr(ý). Notably, the Rees algebra of the ordinary
powers of an ideal ý gives the coordinate ring of the blowup of Spec(ý) along the variety defined
by ý.
In this paper, we provide several results regarding ordinary and symbolic powers of determinan-

tal ideals, and their Rees and associated graded algebras. Specifically, we study ideals of minors
of generic, symmetric, and Hankel matrices of variables. We also study ideals of Pfaffians of a
skew-symmetric matrix of variables. These objects have been intensively studied together with
the varieties that they define, and they have connections with other areas of mathematics. For
more information on this topic, we refer the interested reader to Bruns and Vetter’s book [14], and
to the more recent book of Bruns, Conca, Raicu, and Varbaro [11].
In what follows, ýý(−) denotes the ideal generated by ý-minors, and ÿ2ý(−) the ideal generated

by 2ý-Pfaffians. In our first set of results, we show that the Rees and associated graded algebras of
determinantal ideals have mild singularities from the perspective of Frobenius [48–51]. In partic-
ular, we show that several of them are strongly ý-regular, or at least ý-split. These singularities
are regarded as the characteristic ý analog of log-terminal and log-canonical singularities [39, 40,
68, 88–90] (see also [80]). We recall that strongly ý-regular rings are Cohen–Macaulay and nor-
mal [48]. They are also simple as modules over their ring of differential operators [87]. We point
out that the local cohomology modules of ý-split rings satisfy desirable vanishing theorems [28,
54] and their defining ideals satisfy Harbourne’s conjecture on symbolic powers [3, 36, 41]. In the
following result, we denote by ℛ(ý) the Rees algebra corresponding to the ordinary powers of
the ideal ý, and byℛý(ý) and grý(ý) the Rees and associated graded algebras corresponding to the
symbolic powers of the ideal ý.

Theorem A. Let ÿ be an ý-finite field of prime characteristic ý > 0. Let ÿ be a generic matrix, ý

be a generic symmetric matrix, ý be a generic skew-symmetric matrix, andÿ be a generic Hankel

matrix. For an integer ý > 0, we have the following:

(1) ℛý(ýý(ÿ)) and gr
ý(ýý(ÿ)) are strongly ý-regular (Theorem 6.7).

(2) If ý ≫ 0, thenℛ(ýý(ÿ)) is ý-split (Theorem 6.8).

(3) ℛý(ýý(ý)) and gr
ý(ýý(ý)) are ý-split (Theorem 6.13).

(4) If ý ≫ 0, thenℛ(ýý(ý)) is ý-split (Theorem 6.17).

(5) ℛý(ÿ2ý(ý)) and gr
ý(ÿ2ý(ý)) are strongly ý-regular (Theorem 6.25).

(6) If ý ≫ 0, thenℛ(ÿý(ý)) is ý-split (Theorem 6.26).

(7) ℛý(ýý(ÿ)) and grý(ýý(ÿ)) are ý-split (Theorem 6.33).

(8) ℛ(ýý(ÿ)) is ý-split (Theorem 6.35).
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The wide variety of determinantal objects that we are able to cover in Theorem A highlights
the fact that our techniques have a broad range of applications.
Note that, sinceÿ[ÿ]∕ýý(ÿ) andÿ[ý]∕ÿý(ý) are direct summands of gr

ý(ýý(ÿ)) and gr
ý(ÿ2ý(ý)),

respectively, Theorem A(1) and (5) imply the known results that ÿ[ÿ]∕ýý(ÿ) and ÿ[ý]∕ÿý(ý) are
stronglyý-regular. In fact, the proofs of TheoremA(1) and (5) can be specialized to give alternative
proofs for the strong ý-regularity of ÿ[ÿ]∕ýý(ÿ) and ÿ[ý]∕ÿý(ý).
Although it was already known that ℛý(ýý(ÿ)) is ý-rational [8], hence Cohen–Macaulay and

normal, ý-rationality does not imply that the ring is ý-split. Therefore, Theorem A(1) improves
this result, as strong ý-regularity implies that the ring is both ý-rational and ý-split. Cohen–
Macaulayness was also known for symbolic Rees algebras of ideals of Pfaffians of a generic
skew-symmetric matrix [2], and this is now also a consequence of Theorem A(5). We point out
that the new techniques we use to study ý-singularities of blowup algebras are neither based on
the theory of Sagbi bases [16, 63, 78] nor on that of straightening laws [8, 29]. We only invoke
known results that use Sagbi bases in order to have that some blowup algebras we consider are
Noetherian. Our strategy uses the new notion of ý-split filtrations (Definition 4.2), classical meth-
ods in tight closure theory [48], and the choice of certain polynomials inspired by Seccia’s work
on Knutson ideals [81, 82].
Since all the Rees and associated graded algebras in Theorem A are ý-split, their ÿ-invariants

are not positive [54]. As a consequence, we obtain bounds for the Castelnuovo–Mumford regular-
ity and the degrees of the defining equations of such algebras; see Theorems 6.9, 6.10, 6.18, 6.19,
6.27, 6.28, 6.36, and 6.37. We point out that, even for monomial ideals, it was generally not known
how to bound the degrees of the defining equations of these Rees algebras in terms of the genera-
tors of the ideal. Significant work has been done over the years in order to find such equations via
different methods [34, 38, 55, 56, 64, 67, 70–72, 83, 84, 93, 96].
A related question is whether the limit of normalized Castelnuovo–Mumford regularities,

lim
ÿ→∞

reg(ý∕ý(ÿ))

ÿ
, always exists [45]. See also the work of Cutkosky on the subject [20]. Several

authors have approached this question in a variety of cases; however, it remains widely open in
general. Some classes of ideals for which this limit is known to exist are square-free monomial
ideals [46] and ideals of small dimension [45]. We obtain this property for determinantal ideals in
prime characteristic.

Theorem B. Let ÿ be an ý-finite field of prime characteristic. Let ÿ be a generic matrix, ý be a

generic symmetric matrix,ý be a generic skew-symmetric matrix, andÿ be a generic Hankel matrix.

For an integer ý > 0, we have the following:

(1) lim
ÿ→∞

reg(ÿ[ÿ]∕ýý(ÿ)
(ÿ))

ÿ
exists (Theorem 6.6).

(2) lim
ÿ→∞

reg(ÿ[ý]∕ýý(ý)
(ÿ))

ÿ
exists (Theorem 6.15).

(3) lim
ÿ→∞

reg(ÿ[ý]∕ÿ2ý(ý)
(ÿ))

ÿ
exists (Theorem 6.24).

(4) lim
ÿ→∞

reg(ÿ[ÿ]∕ýý(ÿ)(ÿ))

ÿ
exists (Theorem 6.34).

If the ground field is the field of complex numbers, there are linear formulas for reg(ý∕ý(ÿ))
when ý is the ideal of ý-minors of a genericmatrix [76] or 2ý-Pfaffians of a generic skew-symmetric
matrix [75]. These results were obtained using representation theory in characteristic zero. The
case of ideals of ý-minors of a generic matrix was recently further extended to fields of any
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characteristic [11]. It is worth mentioning that, in general, the function reg(ý∕ý(ÿ)) is not even-
tually linear, not even for square-free monomial ideals [30]. In particular, this linearity may fail
even if the symbolic Rees algebra,ℛý(ý), is Noetherian.
We also obtain that the depth of symbolic powers of determinantal ideals stabilizes, and in some

cases, we obtain the stable value. Our approach shows that the stable value equals the minimum
of the depths among all the symbolic powers. This minimum value was already computed [14];
however, to the best of our knowledge, it was not shown that the stable and minimum values
coincide.

Theorem C. Let ÿ be an ý-finite field of prime characteristic. Let ÿ be a generic matrix, ý be a

generic symmetric matrix,ý be a generic skew-symmetric matrix, andÿ be a generic Hankel matrix.

For an integer ý > 0, we have the following:

(1) lim
ÿ→∞

depth(ÿ[ÿ]∕ýý(ÿ)
(ÿ)) = ý2 − 1 (Theorem 6.6).

(2) depth(ÿ[ý]∕ýý(ý)
(ÿ)) stabilizes for ÿ ≫ 0 (Theorem 6.15).

(3) lim
ÿ→∞

depth(ÿ[ý]∕ÿ2ý(ý)
(ÿ)) = ý(2ý − 1) − 1 (Theorem 6.24).

(4) depth(ÿ[ÿ]∕ýý(ÿ)(ÿ)) stabilizes for ÿ ≫ 0 (Theorem 6.34).

It is known that the initial ideals of the determinantal ideals treated in thiswork are radical with
respect certain monomial orders (see Section 6.1). Then, it is natural to compare the initial ideal
of their symbolic powers and the symbolic powers of their initial ideals. Sullivant showed that
in<(ý

(ÿ)) ⊆ in<(ý)
(ÿ) if ÿ is algebraically closed and in<(ý) is radical [92]. In the case of ideals of

minors of genericmatrices [10], and ofHankelmatrices of variables [15], not only the containment,
but in fact equality is known to hold. As a consequence of the techniques introduced in this paper,
we recover these results, and we also obtain equality in the case of Pfaffians.

TheoremD. Letÿ be a perfect field of prime characteristic. Letÿ be a generic matrix,ý be a generic

skew-symmetricmatrix, andÿ be a genericHankelmatrix. In each case, let< be themonomial order

introduced in Section 6.1. For an integer ý > 0, we have that

(1) gr
(
{in<

(
ýý(ÿ)

(ÿ)
)
}ÿ∈ℤ⩾0

)
is ý-split, therefore

in<

(
ýý(ÿ)

(ÿ)
)
= in<(ýý(ÿ))

(ÿ)

for every ÿ ∈ ℤ⩾0 (Theorem 7.16).

(2) gr
(
{in<

(
ÿ2ý(ý)

(ÿ)
)
}ÿ∈ℤ⩾0

)
is ý-split, therefore

in<

(
ÿ2ý(ý)

(ÿ)
)
= in<(ÿ2ý(ý))

(ÿ)

for every ÿ ∈ ℤ⩾0 (Theorem 7.18).

(3) gr
(
{in<

(
ýý(ÿ)(ÿ)

)
}ÿ∈ℤ⩾0

)
is ý-split, therefore

in<

(
ýý(ÿ)(ÿ)

)
= in<(ýý(ÿ))(ÿ)

for every ÿ ∈ ℤ⩾0 (Theorem 7.20).
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If ÿ is a field of characteristic zero, then we obtain the equalities in<(ýý(ÿ)
(ÿ)) = in<(ýý(ÿ))

(ÿ),
in<(ÿ2ý(ý)

(ÿ)) = in<(ÿ2ý(ý))
(ÿ), and in<(ýý(ÿ)(ÿ)) = in<(ýý(ÿ))(ÿ) for every ÿ ∈ ℤ⩾0 (see Corol-

laries 7.17, 7.19, and 7.21), via reduction to prime characteristic. We point out that we do not obtain
analogous results for generic symmetric matrices ý because we do not know whether the Rees
algebra associated to the filtration {in<(ýý(ý)

(ÿ))}ÿ∈ℤ⩾0 is Noetherian.
TheoremDallows us to find bounds for numerical invariants of determinantal ideals in terms of

their initial ideals (see Remarks 7.23 and 7.24). We also obtain that the regularity and depth of the
initial ideals of such determinantal ideals satisfy desirable properties (see Corollary 7.25). In this
context, we provide new examples of existence of limits of normalized Castelnuovo–Mumford
regularities for filtrations given by initial ideals. This is closely related to questions previously
asked by Herzog, Hoa, and Trung [45].
We stress that our strategy to show Theorem D makes no use of the standard techniques

employed before to obtain results about initial ideals of determinantal rings and their ordinary
and symbolic powers [2, 10, 17, 24, 25, 91]. In particular, we use neither the straightening laws
[29] nor the Knuth–Robinson–Schensted correspondence. Indeed, our techniques to prove Theo-
remD rely onmethods in prime characteristic, and a test for the equality in<(ý

(ÿ)) = in<(ý)
(ÿ) (see

Theorem 7.9 and Corollary 7.10) inspired by the work of Huneke, Simis, and Vasconcelos [57].
Our main tool in this paper is our new notion of ý-split filtration (Definition 4.2). If the ý-split

filtration is given by symbolic powers of an ideal, we say that the ideal is symbolic ý-split (Defini-
tion 5.2). Ideals that are symbolic ý-split produce symbolic Rees algebras and symbolic associated
graded algebras that are ý-split (see Theorem 4.7). As for the classical notion of ý-purity, there
exists a criterion that allows us to test when an ideal is symbolic ý-split (see Theorem 5.8), which
resembles the one given by Fedder [33]. We note that if an ideal is symbolic ý-split, then its
quotient ring is ý-split. However, the converse is not true: In Example 5.13, we show that even
strong ý-regularity does not imply that the ideal is symbolic ý-split. Examples of symbolic ý-split
ideals include square-freemonomial ideals (see Example 5.11) and determinantal ideals (see Theo-
rems 6.5, 6.13, 6.23, and 6.33). We refer to Corollary 5.10 and Example 5.16 for additional examples.
Using these ideas, we are able to answer a question raised by Huneke† regarding ý-König ide-
als (see Example 5.18), which arose in connection to the Conforti–Cornuéjols conjecture [18]. We
also show that ÿ-invariants and depths of symbolic ý-split ideals have good behavior (see Propo-
sition 4.9). In addition, there is a finite test to verify that their symbolic and ordinary powers
coincide (see Theorem 5.7).

2 NOTATIONS AND PRELIMINARIES

Throughout this paper, all rings are commutative with identity. We begin this section by recalling
some notation and preliminary results that we use in the paper.

2.1 Graded algebras

Aℤ⩾0-graded ring is a ringý, which admits a direct sum decompositioný =
⨁

ÿ⩾0ýÿ of Abelian
groups, with ýÿ ⋅ ýÿ ⊆ ýÿ+ÿ for all ÿ and ÿ.

† BIRS-CMO workshop on Ordinary and Symbolic Powers of Ideals Summer of 2017, Casa Matemática Oaxaca, Mexico.
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6 of 50 DE STEFANI et al.

Assume that ý is a ℤ⩾0-graded algebra over a Noetherian ring ý0 and letý =
⨁

ÿ∈ℤýÿ and
ý =

⨁
ÿ∈ℤýÿ be gradedý-modules. Aný-homomorphism ÿ ∶ ý → ý is called homogeneous of

degree ý ifÿ(ýÿ) ⊆ ýÿ+ý for allÿ ∈ ℤ. The set of all graded homomorphismsý → ý of all degrees
form a graded submodule of Homý(ý,ý). In general, these two modules are not the same, but
they coincide whený is finitely generated [12].
Given a Noetherian ℤ⩾0-graded algebra ý, there exist ÿ1, … , ÿÿ ∈ ý homogeneous elements

such that ý = ý0[ÿ1, … , ÿÿ], which is equivalent to ⊕ÿ>0ýÿ = (ÿ1, … , ÿÿ) [12, Proposition 1.5.4].
Therefore, if ý0 is local, or ℤ⩾0-graded over a field, there is a minimal set of integers ý1, … , ýÿ
such that there exist such ÿ1, … , ÿÿ of degree ý1, … , ýÿ, respectively. We call these numbers the
generating degrees of ý as ý0-algebra.
Let ÿ = ý0[ÿ1, … , ÿÿ] be a polynomial ring over ý0 with deg(ÿÿ) = ýÿ for 1 ⩽ ÿ ⩽ ÿ, and let ÿ ∶

ÿ → ý be an ý0-algebra homomorphism defined by ÿ(ÿÿ) = ÿÿ for 1 ⩽ ÿ ⩽ ÿ. Consider the ideal
ℐ = Ker(ÿ). We call any minimal set of homogeneous generators ofℐ the defining equations of
ý over ý0.

2.2 Methods in prime characteristic

In this subsection, we assume that ý is reduced and that it has prime characteristic ý > 0. For
ÿ ∈ ℤ⩾0, let ý

ÿ ∶ ý → ý denote the ÿ-th iteration of the Frobenius endomorphism on ý. If ý1∕ýÿ

denotes the ring of ýÿ-th roots of ý taken in the total field of fractions of ý, we can identify ýÿ

with the natural inclusion ÿ ∶ ý ↪ ý1∕ýÿ . Throughout this paper, any ý-linear map ÿ ∶ ý1∕ýÿ →

ý such that ÿ◦ÿ = idý is called a splitting of Frobenius, or just a splitting.
Given an ý-module ý, we let ý1∕ýÿ denote the ý-module, which has the same additive

structure as ý and scalar multiplication defined by ÿ ⋅ÿ1∕ýÿ ∶= (ÿý
ÿ
ÿ)1∕ý

ÿ
, for all ÿ ∈ ý and

ÿ1∕ýÿ ∈ ý1∕ýÿ .
For an ideal ý generated by {ÿ1, … , ÿÿ}, we denote by ý

[ýÿ] the ideal generated by {ÿý
ÿ

1
, … , ÿ

ýÿ

ÿ }.

We note that ýý1∕ýÿ = (ý[ý
ÿ])1∕ý

ÿ
.

In the case in which ý = ⊕ÿ⩾0ýÿ is ℤ⩾0-graded, we can view ý1∕ýÿ as a 1

ýÿ
ℤ⩾0-graded mod-

ule in the following way: We write ÿ ∈ ý as ÿ = ÿý1 +⋯ + ÿýÿ , with ÿýÿ ∈ ýýÿ
. Then, ÿ1∕ý

ÿ
=

ÿ
1∕ýÿ

ý1
+⋯ + ÿ

1∕ýÿ

ýÿ
, where eachÿ1∕ý

ÿ

ýÿ
has degree ýÿ∕ý

ÿ. Similarly, ifý is aℤ-gradedý-module, we

have thatý1∕ýÿ is a 1

ýÿ
ℤ-graded ý-module. As a submodule of ý1∕ýÿ , ý inherits a natural 1

ýÿ
ℤ⩾0

grading, which is compatible with its original grading. In other words, if ÿ ∈ ý is homogeneous
of degree ý with respect to its original grading, then it has degree ý = ýýÿ∕ýÿ with respect to the
inherited 1

ýÿ
ℤ⩾0 grading.

Definition 2.1. Let ý be a Noetherian ring of positive characteristic ý. We say that ý is ý-finite
if it is a finitely generated ý-module via the action induced by the Frobenius endomorphism ý ∶

ý → ý or, equivalently, if ý1∕ý is a finitely generated ý-module. If (ý,ÿ,ÿ) is a ℤ⩾0-graded ÿ-
algebra, thený isý-finite if and only ifÿ isý-finite, that is, if and only if [ÿ ∶ ÿý] < ∞. A ringý is
called ý-pure if ý is a pure homomorphism, that is, if and only if the mapý⊗ý ý → ý1∕ý ⊗ý ý

induced by the inclusion ÿ is injective for all ý-modulesý. A ring ý is called ý-split if ý is a split
monomorphism. Finally, aný-finite ringý is called stronglyý-regular if for every ý ∈ ý not in any
minimal prime, the map ý → ý1∕ýÿ sending 1 ↦ ý1∕ý

ÿ
splits for some (equivalently, all) ÿ ≫ 0.

 1
4

6
9

7
7

5
0

, 2
0

2
4

, 2
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://lo
n

d
m

ath
so

c.o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

1
1

2
/jlm

s.1
2

9
6

9
 b

y
 A

rizo
n

a S
tate U

n
iv

ersity
 A

cq
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

6
/1

1
/2

0
2

4
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n

 W
iley

 O
n

lin
e L

ib
rary

 fo
r ru

les o
f u

se; O
A

 articles are g
o

v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



BLOWUP ALGEBRAS OF DETERMINANTAL IDEALS IN PRIME CHARACTERISTIC 7 of 50

Remark 2.2. We have that ý is ý-split if and only if ý is a direct summand of ý1∕ý. If ý is an
ý-finite ring, then ý is ý-pure if and only if ý is ý-split [54, Corollary 5.3].

Remark 2.3. Assumeý is an ý-finite regular local ring, or a polynomial ring over an ý-finite field,
then Homý(ý

1∕ýÿ , ý) is a free ý1∕ýÿ -module [33, Lemma 1.6]. If Φ is a generator (homogeneous
in the graded case) of this module as an ý1∕ýÿ -module, then for ideals ý, ý ⊂ ý we have that the
mapÿ ∶= ÿ1∕ý

ÿ
⋅ Φ = Φ(ÿ1∕ý

ÿ
−) satisfiesÿ

(
ý1∕ý

ÿ)
⊆ ý if and only ifÿ1∕ý

ÿ
∈

(
ýý1∕ýÿ ∶ý1∕ýÿ ý

1∕ýÿ
)

or, equivalently, ÿ ∈
(
ý[ý

ÿ] ∶ý ý
)
[33, Proposition 1.6]. In particular, ÿ is surjective if and only if

ÿ1∕ý
ÿ
∉ ÿý1∕ýÿ , that is, ÿ ∉ ÿ[ýÿ].

Now, assume ý = ÿ[ý1, … , ýý] is a polynomial ring and ÿ ∶ ÿ
1∕ýÿ → ÿ is a splitting. Let Φ ∶

ý1∕ýÿ → ý be the ý-linear map defined by

Φ
(
ý1∕ý

ÿ
ý
ÿ1∕ý

ÿ

1
⋯ý

ÿý∕ý
ÿ

ý

)
=

{
ÿ
(
ý1∕ý

ÿ)
ý
(ÿ1−ý

ÿ+1)∕ýÿ

1
⋯ý

(ÿý−ý
ÿ+1)∕ýÿ

ý
if ýÿ|(ÿÿ − ýÿ + 1) ∀ÿ,

0 otherwise.

We have thatΦ is a generator ofHomý(ý
1∕ýÿ , ý) as aný1∕ýÿ -module [6, p. 22]. ThemapΦ is often

called the trace map ofý. We point out that, if ÿ is not perfect,Φ depends on ÿ, but this is usually
omitted from the notation.

2.3 Local cohomology and Castelnuovo–Mumford regularity

For an ideal ý ⊆ ý, we define the ÿ-th local cohomology of ý with support in ý as ÿÿ
ý
(ý) ∶=

ÿÿ(Č∙(ÿ; ý) ⊗ý ý), where Č∙(ÿ; ý) is the Čech complex on a set of generators ÿ = ÿ1, … , ÿý
of ý. We note that ÿÿ

ý
(ý) does not depend on the choice of generators of ý. Moreover, it

only depends on the radical of ý. We recall that the ÿ-th local cohomology functor ÿÿ
ý
(−) can

also be defined as the ÿ-th right derived functor of Γý(−), where Γý(ý) = {ÿ ∈ ý ∣ ýÿÿ = 0

for some ÿ ∈ ℤ⩾0}. If ý = ÿ is a maximal ideal and ý is finitely generated, then ÿÿ
ÿ(ý) is

Artinian.
If ý =

⨁
ÿ
ýÿ
∈ 1
ýÿ
ℤ
ý ÿ

ýÿ
is a 1

ýÿ
ℤ⩾0-graded ý-module, and we let ý+ =

⨁
ÿ>0ýÿ, then ÿ

ÿ
ý+
(ý)

is a 1

ýÿ
ℤ-graded ý-module. Moreover, [ÿÿ

ý+
(ý)] ÿ

ýÿ
is a finitely generated ý0-module for every

ÿ ∈ ℤ, and ÿÿ
ý+
(ý) ÿ

ýÿ
= 0 for ÿ ≫ 0 [7, Theorem 16.1.5]. We define the ÿÿ-invariant of ý

as

ÿÿ(ý) = max

{
ÿ

ýÿ
|||| [ÿ

ÿ
ý+
(ý)] ÿ

ýÿ
b 0

}

ifÿÿ
ý+
(ý) b 0, and ÿÿ(ý) = −∞ otherwise.

Remark 2.4. Given a finitely generatedℤ-gradedý-moduleý, we have ÿÿ(ý
1∕ýÿ ) = ÿÿ(ý)∕ýÿ for

all ÿ ∈ ℤ⩾0. In fact,ÿ
ÿ
ý+
(ý1∕ýÿ ) ≅ ÿÿ

ý+
(ý)1∕ý

ÿ
since the functor (−)1∕ý

ÿ
is exact.

Remark 2.5. If ý is an ý-split ℤ⩾0-graded ring, then ÿÿ(ý) ⩽ 0 for all ÿ ∈ ℤ [54, Lemma 2.3].
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8 of 50 DE STEFANI et al.

Given a finitely generated ℤ-graded ý-module, the Castelnuovo–Mumford regularity of ý is
defined as

reg(ý) = max{ÿÿ(ý) + ÿ ∣ ÿ ∈ ℤ⩾0}.

Remark 2.6. If ý = ý0[ý1, … , ýÿ] is a polynomial ring over ý0, such that ýÿ has degree ýÿ > 0 for
every 1 ⩽ ÿ ⩽ ÿ, then reg(ý) = ÿ −

∑ÿ
ÿ=1 ýÿ .

2.4 Filtrations and blowup algebras

Let ý be a commutative ring.We say that a sequence of ideals {ýÿ}ÿ∈ℤ⩾0 of ý is a filtration if ý0 = ý,
ýÿ+1 ⊆ ýÿ for every ÿ ∈ ℤ⩾0, and ýÿýÿ ⊆ ýÿ+ÿ for every ÿ,ÿ ∈ ℤ⩾0.

Definition 2.7. Let ý be a ring. Consider the following graded algebras associated to a filtration
ý = {ýÿ}ÿ∈ℤ⩾0 :

(i) The the Rees algebra of ý:ℛ(ý) =
⨁

ÿ∈ℤ⩾0
ýÿÿ

ÿ ⊆ ý[ÿ], where ÿ is a variable.

(ii) The associated graded algebra of ý: gr(ý) =
⨁

ÿ∈ℤ⩾0
ýÿ∕ýÿ+1.

We generally refer to the above as the blowup algebras associated to the filtration ý [97].
If the Rees algebra is Noetherian, we can compute the dimensions of the blowup algebras. We

show this in the next proposition.

Proposition 2.8. Assume that the ideal ý1 has positive height and thatℛ(ý) is finitely generated as

an ý-algebra. Then, dim(ℛ(ý)) = dim(ý) + 1 and dim(gr(ý)) = dim(ý).

Proof. Consider the extended Rees algebra ý ∶= ý[ýÿ, ÿ−1] = ⊕ÿ∈ℤýÿÿ
ÿ, where ýÿ = ý for ÿ ⩽ 0.

Sinceℛ(ý) is Noetherian, there exists ý ∈ ℤ>0 such that

ýÿ+ý = ýýýÿ for every ÿ ⩾ ý [77, Remark 2.4.3]. (2.4.1)

Thus, ý is an integral extension of ý[ýýÿ, ÿ
−1] = ⊕ÿ∈ℤý

ÿ
ý
ÿÿ, andℛ(ý) is an integral extension of

ý[ýýÿ] = ⊕ÿ∈ℤý
ÿ
ý
ÿÿ, and hence they both have dimension dim(ý) + 1 [58, Theorem 2.2.5, The-

orem 5.1.4(1)(2)]. Now, ÿ−1 is a homogeneous regular element of ý, thus ý∕(ÿ−1) ≅ gr(ý) has
dimension dim(ý), finishing the proof. □

3 GENERATORS OF DEFINING EQUATIONS OF ý-SPLIT BLOWUP
ALGEBRAS

This section is devoted to find bounds for the degrees of the defining equations of the alge-
bras introduced in Definition 2.7 when they are ý-split. The main results of this section are
Theorems 3.3 and 3.4.
Letý = ⊕ÿ⩾0ýÿ be aℤ⩾0-graded Noetherian ring. Given a finitely generated gradedý-module

ý = ⊕ÿ∈ℤýÿ, we let

ÿý(ý) = inf {ÿ ∣ ý = ý ⋅ (⊕ÿ⩽ÿýÿ)},
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BLOWUP ALGEBRAS OF DETERMINANTAL IDEALS IN PRIME CHARACTERISTIC 9 of 50

that is, the largest degree of a minimal homogeneous generator ofý. The following lemma states
an upper bound on ÿý(ý) in terms of the Castelnuovo–Mumford regularity. This statement can
be found in the literature when ý is generated as an algebra in degree one [7, Theorem 16.3.1], or
whený0 is a field [22, Theorem 3.5] [21, Theorem 2.2]. While the same result in our setup may be
well known to experts, we could not find a reference in the literature. We include its proof here
for the sake of completeness.

Proposition 3.1. Let ý = ⊕ÿ⩾0ýÿ be a ℤ⩾0-graded Noetherian ring. Let ý1, … , ýÿ > 0 be the gen-

erating degrees of ý as an ý0-algebra. Let ý be a finitely generated ℤ-graded ý-module. Then,

ÿý(ý) ⩽ reg(ý) +
∑ÿ

ÿ=1(ýÿ − 1).

Proof. Let ÿ1, … , ÿÿ be homogeneous generators ofý as aný0-algebra of degree ý1, … , ýÿ, respec-
tively. Without loss of generality, we may assume 1 ⩽ ý1 ⩽ … ⩽ ýÿ. Observe ý+ =

⨁
ÿ>0ýÿ =

(ÿ1, … , ÿÿ).
We now proceed by induction on

∑ÿ
ÿ=1 ýÿ ⩾ ÿ. The base case ýÿ = 1 for all 1 ⩽ ÿ ⩽ ÿ is known [7,

Theorem 16.3.1]. Let ý′ = ý[ÿ], where deg(ÿ) = 1 andý′ = ý ⊗ý ý
′. Since ÿ is regular oný′,

a standard argument via the long exact sequence of local cohomology of

0 → ý′(−1)
ÿ
U→ ý′ → ý′∕ÿý ≅ ý → 0

shows reg(ý) = reg(ý′), where the regularity ofý′ is computed with respect to the ideal ý+
′ =

⊕ÿ>0ý
′
ÿ. We observe that ÿ = ÿÿ − ÿýÿ is a homogeneous element of degree ýÿ, which is regular

oný′. The short exact sequence

0 → ý′(−ýÿ)
ÿ
U→ ý′ → ý′∕ÿý′ → 0

gives reg(ý′∕ÿý′) ⩽ max{reg(ý′) + ýÿ − 1, reg(ý′)} = reg(ý′) + ýÿ − 1 ⩽ reg(ý) + ýÿ − 1.
Note that ý′∕ÿý′ is an ý′∕ÿý′-module and that ý′∕ÿý′ ≅ ý0[ÿ1, … , ÿÿ−1, ÿ]. Since∑ÿ−1

ÿ=1 ýÿ + 1 <
∑ÿ

ÿ=1 ýÿ , by induction, we have

ÿý′∕ÿý′(ý
′∕ÿý′) ⩽ reg(ý′∕ÿý′) +

ÿ−1∑
ÿ=1

(ýÿ − 1) ⩽ reg(ý) +

ÿ∑
ÿ=1

(ýÿ − 1).

Let ý be the ý′-submodule of ý′ generated by elements of degree at most reg(ý) +
∑ÿ

ÿ=1(ýÿ −

1). We have just shown that ý′ = ý + ÿý′, and therefore ý′ = ý +ÿ′ý′, where ÿ′ = ÿ0 +

ý+
′. Thus, from the graded Nakayama’s lemma, it follows thatý′ = ý. In particular, ÿý′(ý

′) ⩽

reg(ý) +
∑ÿ

ÿ=1(ýÿ − 1). Since ÿý′(ý
′) = ÿý(ý), the proof is complete. □

We need one more lemma before stating the main result of this section.

Lemma 3.2. Letý = ⊕ÿ⩾0ýÿ be a Noetherian ý-finite and ý-split graded ring. Let ý1, … , ýÿ be the

generating degrees of ý as an ý0-algebra. Then the defining equations of ý over ý0 have degree at

most

dim(ý) +

ÿ∑
ÿ=1

ýÿ −max{dim(ý), ÿ}.
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10 of 50 DE STEFANI et al.

Proof. Let ÿ1, … , ÿÿ be homogeneous generators ofý as aný0-algebra of degree ý1, … , ýÿ, respec-
tively. Let ÿ = ý0[ÿ1, … , ÿÿ] be a polynomial ring over ý0 with deg(ÿÿ) = ýÿ for 1 ⩽ ÿ ⩽ ÿ, and
let ÿ ∶ ÿ → ý be the graded ý0-algebra homomorphism defined by ÿ(ÿÿ) = ÿÿ for 1 ⩽ ÿ ⩽ ÿ. Let
ℐ = Ker(ÿ).
Set ÿ+ = (ÿ1, … , ÿÿ) ⊆ ÿ and consider the homogeneous short exact sequence:

0 → ℐ → ÿ → ý → 0.

From the long exact sequence of local cohomology modules with support in ÿ+, we obtain
ÿÿ
ÿ+
(ý) ≅ ÿÿ+1

ÿ+
(ℐ) for ÿ ⩽ ÿ − 2, and an exact sequence

0 → ÿÿ−1
ÿ (ý) → ÿÿ

ÿ+
(ℐ) → ÿÿ

ÿ+
(ÿ) → ÿÿ

ÿ+
(ý) → 0.

Since ÿÿ(ý) ⩽ 0 for every ÿ ∈ ℤ⩾0 by Remark 2.5, and ÿÿ(ÿ) = −
∑ÿ

ÿ=1 ýÿ by Remark 2.6, we have
ÿÿ(ℐ) ⩽ 0 for every ÿ ∈ ℤ⩾0. Thus,

reg(ℐ) = max{ÿÿ(ℐ) + ÿ} ⩽ min{ÿ, dim(ý)},

as ÿÿ(ℐ) = −∞ for ÿ > min{ÿ, dim(ý)} [7, Theorems 3.3.1 and 6.1.2]. The result now follows by
Proposition 3.1, after performing some easy calculations. □

The following is the main theorem of this section, as it provides bounds for the degrees of
generators of defining equations of ý-split blowup algebras.

Theorem 3.3. Let ý be a Noetherian ý-finite and ý-split ring of characteristic ý > 0. Let ý =

{ýÿ}ÿ∈ℤ⩾0 be a filtration such thatℛ(ý) is a finitely generated ý-split ý-algebra. Let ÿ1, … , ÿý be the

generating degrees ofℛ(ý) as an ý-algebra, that is,ℛ(ý) = ý[ýÿ1ÿ
ÿ1 , … , ýÿýÿ

ÿý ], and let ÿ1, … , ÿý be

the number of generators of ý1, … , ýý , respectively. Further assume that ý1 has positive height. The

defining equations ofℛ(ý) =
⨁

ÿ⩾0 ýÿÿ
ÿ over ý have degree at most

dim(ý) + 1 +

ý∑
ÿ=1

ÿÿÿÿ −max

{
dim(ý) + 1,

ý∑
ÿ=1

ÿÿ

}
.

Moreover, if gr(ý) is ý-split, then the defining equations of gr(ý) =
⨁

ÿ⩾0 ýÿ∕ýÿ+1 over ý∕ý1 have

degree at most

dim(ý) +

ý∑
ÿ=1

ÿÿÿÿ −max

{
dim(ý),

ý∑
ÿ=1

ÿÿ

}
.

Proof. This follows from Lemma 3.2 and Proposition 2.8. □

Theorem 3.4. Let ÿ be an ý-finite field, and ý be an ý-split graded ÿ-algebra, generated over ÿ

by ÿ elements of degree one. Let ý = {ýÿ}ÿ∈ℤ⩾0 be a filtration such that ℛ(ý) is a finitely generated

ý-split ý-algebra. Let ÿ1, … , ÿý be the generating degrees of ℛ(ý) as an ý-algebra, that is, ℛ(ý) =

ý[ýÿ1ÿ
ÿ1 , … , ýÿýÿ

ÿý ]. Set ýÿ = ÿý(ýÿÿ ) for 1 ⩽ ÿ ⩽ ý and let ÿ1, … , ÿý be the number of generators of
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ý1, … , ýý , respectively. Further assume that ý1 has positive height. The defining equations ofℛ(ý) over

ÿ have total degree at most

dim(ý) + 1 + ÿ +

ý∑
ÿ=1

ÿÿ(ýÿ + ÿÿ) − max

{
dim(ý) + 1, ÿ +

ý∑
ÿ=1

ÿÿ

}
.

Moreover, if gr(ý) is ý-split, then the defining equations of gr(ý) over ÿ have total degree at most

dim(ý) + ÿ +

ý∑
ÿ=1

ÿÿ(ýÿ + ÿÿ) − max

{
dim(ý), ÿ +

ý∑
ÿ=1

ÿÿ

}
.

Proof. Both parts of the result follow from Lemma 3.2 and Proposition 2.8. □

4 ý-SPLIT FILTRATIONS

Throughout this section, we assume the following setup.

Setup 4.1. Let ý be a Noetherian ý-finite and ý-split ring of characteristic ý > 0, which is either
local or ℤ⩾0-graded. In the local case, we letÿ denote its unique maximal ideal, and ÿ = ý∕ÿ

its residue field. In the graded case, we assume ý =
⨁

ÿ⩾0 ý0 is a finitely generated ý0-algebra,
where (ý0,ÿ0) is a local ring. We let ý+ =

⨁
ÿ>0 ýÿ andÿ = ÿ0 + ý+. We further assume that

ý is generated in degree one, that is, ý = ý0[ý1]. In the graded case, every object we consider is
homogeneous with respect to the given grading.

4.1 ý-split filtrations of ideals

We introduce the main object of study of this paper: ý-split filtrations. For a related notion in the
case of ordinary powers, see [65].

Definition 4.2. Assume Setup 4.1. We say that a sequence of ý-ideals ý = {ýÿ}ÿ∈ℤ⩾0 is an ý-split
filtration if ý0 = ý, ýÿ+1 ⊆ ýÿ for every ÿ ∈ ℤ⩾0, ýÿýÿ ⊆ ýÿ+ÿ for every ÿ,ÿ ∈ ℤ⩾0, and there exists
a splitting ÿ ∶ ý1∕ý → ý such that ÿ

(
(ýÿý+1)

1∕ý
)
⊆ ýÿ+1 for every ÿ ∈ ℤ⩾0.

We now study properties regarding ý-splittings, depth, and regularity for ideals appearing in
these filtrations (see Theorem 4.7 and Theorem 4.10). In particular, we will show that ý-split
filtrations yield ý-split blowup algebras.

Remark 4.3. Suppose ÿ ∶ ý1∕ý → ý is a surjective map such that ÿ
(
(ýÿý+1)

1∕ý
)
⊆ ýÿ+1 for

every ÿ ∈ ℤ⩾0. Let g ∈ ý such that ÿ(g1∕ý) = 1. Then, ÿ(−) = ÿ(g1∕ý−) induces a splitting such
that ÿ

(
(ýÿý+1)

1∕ý
)
⊆ ýÿ+1 for every ÿ ∈ ℤ⩾0. Then, it suffices to assume that ÿ is surjective in

Definition 4.2.

Remark 4.4. We observe that if ý = {ýÿ}ÿ∈ℤ⩾0 is an ý-split filtration, then ý∕ý1 is ý-split. In fact,

by considering ÿ = 0 in Definition 4.2, one gets an induced splitting ÿ ∶ (ý∕ý1)
1∕ý → ý∕ý1. In

particular, ý1 is a radical ideal.
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Proposition 4.5. Assume Setup 4.1 and let ý = {ýÿ}ÿ∈ℤ⩾0 be a filtration. The following statements

are equivalent:

(1) ý is an ý-split filtration.

(2) There exists a splitting ÿÿ ∶ ý
1∕ýÿ → ý such that ÿÿ

(
(ýÿýÿ+ý)

1∕ýÿ
)
= ýÿ+1 for every ÿ ∈ ℤ>0, ÿ ∈

ℤ⩾0, and ý ∈ ℤ such that 1 ⩽ ý ⩽ ýÿ.

(3) There exists a splitting ÿÿ ∶ ý
1∕ýÿ → ý such that ÿÿ

(
(ýÿýÿ+1)

1∕ýÿ
)
⊆ ýÿ+1 for some ÿ ∈ ℤ>0 and

every ÿ ∈ ℤ⩾0.

Proof. We consider the implication (1) ⇒ (2). Let ÿ be as in Definition 4.2. For every ÿ > 0,
we consider the ý-linear map ÿÿ ∶ ý

1∕ýÿ → ý1∕ý
ÿ−1

defined as ÿÿ(ÿ
1∕ýÿ ) = (ÿ(ÿ1∕ý))1∕ý

ÿ−1
. We

observe that ÿÿ
(
(ýÿýÿ+ý)

1∕ýÿ
)
⊆ ÿÿ

(
(ýÿýÿ+1)

1∕ýÿ
)
⊆ (ýÿýÿ−1+1)

1∕ýÿ−1 for every ÿ ∈ ℤ⩾0 and ÿ, ý ∈
ℤ>0. Then, we have

ÿ1◦ÿ2◦⋯◦ÿÿ

(
(ýÿýÿ+ý)

1∕ýÿ
)
⊆ ýÿ+1

for every ÿ > 0, ÿ ⩾ 0, and ý > 0. Set ÿÿ ∶= ÿ1◦ÿ2◦⋯◦ÿÿ. It remains to show ýÿ+1 ⊆

ÿÿ
(
(ýÿýÿ+ý)

1∕ýÿ
)
for ý ⩽ ýÿ. But this inclusion follows by noticing that

ýÿ+1 ⊆ ÿÿ

(
ýÿ+1ý

1∕ýÿ
)
⊆ ÿÿ

(
(ýÿýÿ+ý)

1∕ýÿ
)

for ý ⩽ ýÿ.
Since (2) ⇒ (3) is clear, it remains to show the implication (3) ⇒ (1). We consider the natu-

ral inclusion ÿ ∶ ý1∕ý → ý1∕ý
ÿ
and set ÿ ∶= ÿÿ◦ÿ. We note that, ÿ

(
(ýÿý+1)

1∕ý
)
⊆ (ýÿýÿ+ýÿ−1)

1∕ýÿ ⊆

(ýÿýÿ+1)
1∕ýÿ . As a consequence, we have

ÿ
(
(ýÿý+1)

1∕ý
)
⊆ ÿÿ

(
(ýÿýÿ+1)

1∕ýÿ
)
⊆ ýÿ+1

for every ÿ ∈ ℤ⩾0, and the result follows. □

For ideals in a regular ring ý, we state an effective criterion for ý-split filtrations analogous to
the classical one by Fedder [33].

Proposition 4.6. Assume Setup 4.1 with ý regular. In the graded case, we further assume that ý0 is

a field, so thatÿ = ý+. We have that ý = {ýÿ}ÿ∈ℤ⩾0 is an ý-split filtration if and only

⋂
ÿ∈ℤ⩾0

(
(ýÿ+1)

[ý] ∶ý ýÿý+1

)
⊈ ÿ[ý].

Proof. Since ý is regular, we can pick the trace Φ, which is a generator ofHomý(ý
1∕ý, ý) as a free

ý1∕ý-module described, see Remark 2.3. Then, for ÿ ∈ ý and ÿ ∶= ÿ1∕ý ⋅ Φ = Φ(ÿ1∕ý−), we have
ÿ
(
(ýÿý+1)

1∕ý
)
⊆ ýÿ+1 for every ÿ ∈ ℤ⩾0 if and only if

ÿ ∈
⋂

ÿ∈ℤ⩾0

(
(ýÿ+1)

[ý] ∶ý ýÿý+1

)
,

by Remark 2.3. In addition, ÿ is surjective if and only if ÿ ∉ ÿ[ý], and the result follows. □
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4.2 ý-split blowup algebras

In this subsection, we obtain the first significant property for ý-split filtrations. In the following
theorem, we prove that if ý is an ý-split filtration, then the algebras in Definition 2.7 are ý-split.
This is one of the main motivations for introducing ý-split filtrations.

Theorem 4.7. Assume Setup 4.1. If ý is an ý-split filtration, thenℛ(ý) and gr(ý) are ý-split.

Proof. Let ÿ be such that ý is ý-split with respect to ÿ, see Definition 4.2. We note that ℛ(ý)

is reduced. Then, we can consider the ring of ý-th roots ℛ(ý)1∕ý =
⨁

ÿ∈ℤ⩾0
(ýÿ)

1∕ýÿÿ∕ý. We

define ÿ ∶ ℛ(ý)1∕ý → ℛ(ý) as the homogeneous homomorphism of ℛ(ý)-modules induced by
ÿ(ÿ1∕ýÿÿ∕ý) = ÿ(ÿ1∕ý)ÿÿ∕ý if ý divides ÿ, and ÿ(ÿ1∕ýÿÿ∕ý) = 0 otherwise. The map ÿ is well
defined because

ÿ
(
(ý(ÿ+1)ý)

1∕ý
)
⊆ ÿ

(
(ýÿý+1)

1∕ý
)
⊆ ýÿ+1

for every ÿ ∈ ℤ⩾0, and it isℛ(ý)-linear since ÿ is ý-linear. If ÿ ∈ ýÿ ⊆ (ýÿý)
1∕ý, then ÿ(ÿýÿý∕ý) =

ÿ(ÿ)ÿÿ = ÿÿÿ because ÿ is a splitting. We conclude that ÿ is a splitting of the inclusion ℛ(ý) →

ℛ(ý)1∕ý, and henceℛ(ý) is ý-split.
Consider the idealý =

⨁
ÿ∈ℤ⩾0

ýÿ+1ÿ
ÿ ⊆ ℛ(ý). Since ÿ

(
(ýÿý+1)

1∕ý
)
⊆ ýÿ+1 for every ÿ ∈ ℤ⩾0,

we obtain ÿ
(
(ýÿý+1)

1∕ýÿÿý∕ý
)
⊆ ýÿ+1ÿ

ÿ for every ÿ ∈ ℤ⩾0. Therefore, ÿ(ý
1∕ý) ⊆ ý. This induces

a splitting ÿ ∶ (ℛ(ý)∕ý)1∕ý → ℛ(ý)∕ý and thenℛ(ý)∕ý ≅ gr(ý) is also ý-split. □

Remark 4.8. We remark that in order to prove thatℛ(ý) is ý-split, we only need a splitting ÿ′ ∶
ý1∕ý → ý such that ÿ′

(
(ý(ÿ+1)ý)

1∕ý
)
⊆ ýÿ+1 for every ÿ ∈ ℤ⩾0. The stronger requirement in the

definition of ý-split filtrations is to ensure that gr(ý) is ý-split as well.

4.3 Depth and regularity of ý-split filtrations

In this subsection, we study the asymptotic behavior of the depth and Castelnuovo–Mumford
regularity of ý-split filtrations. We assume Setup 4.1. In the graded case, by depth of a graded ý-
module we mean its grade with respect to the maximal idealÿ, that is, the length of a maximal
regular sequence forý insideÿ0 + ý+. On the other hand, by Castelnuovo–Mumford regularity,
we mean the regularity computed with respect to the ideal ý+.

In Theorem 4.10, we show that the sequences {depth(ýÿ)}ÿ∈ℤ⩾0 and {
reg(ýÿ)

ÿ
}ÿ∈ℤ⩾0 converge to a

limit under mild assumptions. We begin with the following technical result.

Proposition 4.9. Assume Setup 4.1, and let ý = {ýÿ}ÿ∈ℤ⩾0 be an ý-split filtration. Then,

(1) depth(ýÿ) ⩽ depth(ý+ ÿ
ýÿ

,) for every ÿ, ÿ ∈ ℤ⩾0;

(2) if ý is graded, then ÿÿ(ýÿ) ⩾ ýÿÿÿ(ý+ ÿ
ýÿ

,) for every ÿ, ÿ ∈ ℤ⩾0 and 0 ⩽ ÿ ⩽ dim(ý∕ý1).

Proof. By Proposition 4.5, the natural map ÿ ∶ ýÿ+1 → (ýÿýÿ+ý)
1∕ýÿ splits for every ÿ, ÿ ∈ ℤ⩾0

and 1 ⩽ ý ⩽ ýÿ via a splitting ÿÿ. Therefore, the module H
ÿ
ÿ

(
ýÿ+1

)
is a direct summand of
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Hÿ
ÿ

(
(ýÿýÿ+ý)

1∕ýÿ
)
for every 1 ⩽ ÿ ⩽ dim(ý∕ý1). We note that

Hÿ
ÿ

(
(ýÿýÿ+ý)

1∕ýÿ
)
=

(
Hÿ
ÿ

(
ýÿýÿ+ý

))1∕ýÿ
.

Thus,Hÿ
ÿ

(
ýÿýÿ+ý

)
= 0 impliesHÿ

ÿ

(
(ýÿýÿ+ý)

1∕ýÿ
)
= 0, and henceHÿ

ÿ

(
ý∕ýÿ+1

)
= 0. Therefore, we

have depth(ýÿ+1) ⩾ depth(ýÿýÿ+ý), which proves the first part.

We note that Hÿ
ý+

(
ýÿ+1

)
is also a direct summand of Hÿ

ý+

(
(ýÿýÿ+ý)

1∕ýÿ
)
and

Hÿ
ý+

(
(ýÿýÿ+ý)

1∕ýÿ
)
=

(
Hÿ
ý+

(
ýÿýÿ+ÿ

))1∕ýÿ
,

thus we obtain

ÿÿ(ýÿ+1) ⩽ ÿÿ

(
(ýÿýÿ+ý)

1∕ýÿ
)
=

1

ýÿ
ÿÿ
(
ýÿýÿ+ý

)
,

and the second part follows. □

The following is the main result of this section.

Theorem 4.10. Assume Setup 4.1, and let ý be an ý-split filtration such that ℛ(ý) is Noetherian.

Then,

(1) depth(ýÿ) stabilizes and the stable value is equal tomin{depth(ýÿ)},

(2) if ý is graded, then lim
ÿ→∞

reg(ýÿ)

ÿ
exists. As a consequence, if ý is regular, then lim

ÿ→∞

reg(ý∕ýÿ)

ÿ

exists.

Proof. We begin with (1). Since ℛ(ý) is Noetherian, there exists ý ∈ ℤ>0 such that ýÿ+ý = ýýýÿ
for every ÿ ⩾ ý [77, Remark 2.4.3]. Hence, for every ÿ = 0,… ,ý − 1, there exist ýÿ ,ýÿ ∈ ℤ⩾0 such
that

depth(ý(ÿ+1)ý+ÿ) = depth((ýý)
ÿýý+ÿ) = ýÿ ,

for ÿ ⩾ ýÿ [42, Theorem 1.1].
Let ÿ = min{depth(ýÿ)}ÿ∈ℤ⩾0 and fix ý ∈ ℤ>0 such that ÿ = depth(ýý). Let ÿ = ýÿ be such

that ÿ > ý, and ÿ(ý − 1) > (ýÿ + 1)ý for every ÿ = 0,… ,ý − 1. From Proposition 4.9, it follows
that

depth(ýÿ(ý−1)+ÿ) ⩽ depth(ýý)

for every ÿ = 1, … , ÿ. By our choice for ÿ, for each ÿ = 0,… ,ý − 1, there exist natural numbers
ÿ ⩾ ýÿ + 1 and 1 ⩽ ÿ ⩽ ÿ such that ÿ(ý − 1) + ÿ = ÿý + ÿ. Then,

ÿ = depth(ýý) ⩾ depth(ýÿ(ý−1)+ÿ)

= depth(ýÿý+ÿ) = ýÿ .
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We conclude that ÿ = ýÿ for every ÿ = 0,… ,ý − 1 because ÿ is the minimum depth. Then,

depth(ýÿ) = ÿ, for ÿ ≫ 0.

We proceed to prove (2). Sinceℛ(ý) is Noetherian and by Equation (2.4.1), the sequence reg(ýÿ)
eventually agrees with a linear quasi-polynomial [94, Theorem 3.2]. Then, there exists ý ∈ ℤ⩾0

and ý1, … , ýý, ÿ1, … , ÿý ∈ ℤ⩾0 such that reg(ýÿ) = ýÿÿ + ÿÿ for ÿ c ÿ (mod ý) and ÿ ≫ 0. We
want to show ý1 = ⋯ = ýý. Set ÿÿ = max{ÿÿ(ýÿ)} and notice that ÿÿ b −∞ for every ÿ ∈ ℤ⩾0. We
have

lim
ÿ→∞

ÿýÿ+ÿ

ýÿ + ÿ
= ýÿ

for every ÿ = 0,… ,ý − 1. We fix ÿ, ÿ ∈ {1, … ,ý}, and ÿ ∈ ℤ⩾0 such that ÿ = ýÿ > ý. Fix ÿ ∈

ℝ>0 and let ÿ ∈ ℤ⩾0 be such that ýÿ −
ÿýÿ+ÿ

ýÿ+ÿ
< ÿ for every ÿ ⩾ ÿ. From Proposition 4.9, we

obtain

ÿýÿ+ÿ ⩽
ÿÿÿ(ýÿ+ÿ−1)+ÿ

ÿÿ

for every ÿ ∈ ℤ⩾0 and ÿ = 1,… , ÿÿ . Then,

ýÿ − ÿ ⩽
ÿýÿ+ÿ

ýÿ + ÿ
⩽
ÿÿÿ(ýÿ+ÿ−1)+ÿ

ÿÿ(ýÿ + ÿ)
⩽

ÿÿÿ(ýÿ+ÿ−1)+ÿ

ÿÿ(ýÿ + ÿ − 1) + ÿ
.

Since this inequality holds for every ÿ = 1,… , ÿÿ and since ý < ÿÿ, there exist infinitely many
pairs ÿ, ÿ such that ÿÿ(ýÿ + ÿ − 1) + ÿ ≅ ÿ (mod ý). We conclude that ýÿ − ÿ ⩽ ýÿ for every ÿ, and
then ýÿ ⩽ ýÿ . Since ÿ, ÿ were chosen arbitrarily, we conclude that ý1 = ⋯ = ýý. □

Under some extra assumptions, we can say more about the stable value lim
ÿ→∞

depth(ýÿ).

Corollary 4.11. Assume Setup 4.1, and let ý be an ý-split filtration such thatℛ(ý) is a Noetherian

Cohen–Macaulay algebra. Then,

lim
ÿ→∞

depth(ýÿ) = dim(ý) − dim(ℛ(ý)∕ÿℛ(ý)) + 1.

Proof. There exists ý ∈ ℤ>0 such thatℛ(ý) is generated in degree one as an algebra [77, 2.4.4]. If
ℛ = ℛ(ý) is Cohen–Macaulay, then so isℛ(ý) =

∑
ÿ∈ℤ⩾0

ýÿýÿ
ÿ as it is a direct summand ofℛ.

Therefore,

lim
ÿ→∞

depth(ýÿ) = dim(ℛ(ý)) − dim(ℛ(ý)∕ÿℛ(ý)) [42, Theorem 1.1]

= dim(ý) − dim(ℛ(ý)∕ÿℛ(ý)) + 1

= dim(ý) − dim(ℛ∕ÿℛ) + 1. □
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5 SYMBOLIC ý-SPLIT IDEALS AND SYMBOLIC POWERS

We now focus on ý-split filtrations that are given by symbolic powers. We recall that, given a ring
ý and an ideal ý ⊆ ý, for ÿ ∈ ℤ⩾0 the ÿ-th symbolic power of ý is defined as ý

(ÿ) = ýÿýÿ , whereÿ
is the complement of the union of the minimal primes of ý.
Throughout this section, we assume Setup 4.1 with ý regular. In the graded case, we further

assume that ý0 is a field, that is, ý is standard graded. We recall it here more explicitly for future
reference:

Setup 5.1. Let (ý,ÿ,ÿ) be an ý-finite regular ring of characteristic ý > 0, which is either local, or
ý =

⨁
ÿ⩾0 ýÿ = ÿ[ý1] is a standard graded polynomial ring over the field ÿ, with homogeneous

maximal idealÿ =
⨁

ÿ>0 ýÿ. We denote by

ℛý(ý) =
⨁
ÿ∈ℤ⩾0

ý(ÿ)ÿÿ and grý(ý) =
⨁
ÿ∈ℤ⩾0

ý(ÿ)∕ý(ÿ+1)

the symbolic Rees algebra and symbolic associated graded algebra of ý, respectively. We also let

ℛ(ý) =
⨁
ÿ∈ℤ⩾0

ýÿÿÿ and gr(ý) =
⨁
ÿ∈ℤ⩾0

ýÿ∕ýÿ+1

be the Rees algebra and associated graded algebra of ý, respectively.

The interest in symbolic blowups has significantly increased, even in recent years [37, 79].

Definition 5.2. We say that an ideal ý is symbolic ý-split if ý = {ý(ÿ)}ÿ∈ℤ⩾0 is an ý-split filtration.

We start by studying equality between ordinary and symbolic powers for symbolicý-split ideals.
We use the following remark to study symbolic powers.

Remark 5.3. Assume Setup 5.1.We note that gr(ý) is torsion free over ý∕ý if and only if ýÿ = ý(ÿ) for
every ÿ ∈ ℤ⩾0. In fact, if gr(ý) is torsion free over ý∕ý, then Assý(ý

ÿ∕ýÿ+1) ⊆ Assý(ý∕ý) for every
ÿ ∈ ℤ⩾0. From 0 → ýÿ∕ýÿ+1 → ý∕ýÿ+1 → ý∕ýÿ → 0, we obtain Assý(ý∕ý

ÿ+1) ⊆ Assý(ý
ÿ∕ýÿ+1) ∪

Assý(ý∕ý
ÿ). Therefore, proceeding by induction on ÿ, we obtain Assý(ý∕ý

ÿ+1) ⊆ Assý(ý∕ý)

for every ÿ ∈ ℤ⩾0, which implies ýÿ = ý(ÿ) for every ÿ ∈ ℤ⩾0. Conversely, if ý
ÿ = ý(ÿ) for

every ÿ ∈ ℤ⩾0, then Assý(ý
ÿ∕ýÿ+1) ⊆ Assý(ý∕ý

ÿ+1) = Assý(ý∕ý) for every ÿ ∈ ℤ⩾0. This implies
Assý(gr(ý)) ⊆ Assý(ý∕ý), that is, gr(ý) is torsion free over ý∕ý.

We can now rephrase a result due to Huneke, Simis, and Vasconcelos as follows:

Lemma 5.4 [57, Corollary 1.10]. Assume Setup 5.1. Let ý ⊆ ý be a radical ideal. Then, ýÿ = ý(ÿ) for

every ÿ ∈ ℤ⩾0 if and only if the associated graded algebra gr(ý) is reduced.

Proposition 5.5. Assume Setup 5.1. Let ý ⊆ ý be a symbolic ý-split ideal. Then, ýÿ = ý(ÿ) for every

ÿ ∈ ℤ⩾0 if and only if gr(ý) is an ý-split ring.
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Proof. If ýÿ = ý(ÿ) for every ÿ ∈ ℤ⩾0, then gr(ý) = grý
ý
(ý). Hence, gr(ý) is ý-split by Theorem 4.7.

Conversely, if gr(ý) is ý-split, then it is reduced. Therefore, ýÿ = ý(ÿ) for every ÿ ∈ ℤ⩾0 by
Lemma 5.4. □

For the proof of Theorem 5.7, we need the following well-known lemma. Here, we denote by
ÿ(ý) the minimal number of (homogeneous) generators of ý.

Lemma 5.6. Assume Setup 5.1. Let ý ⊆ ý be any ideal. If ÿ ⩾ ÿ(ý)(ý − 1) + 1, then ýÿ = ýÿ−ýý[ý].

Proof. Let ÿ = ÿ(ý) and ÿ1, … , ÿÿ a minimal set of generators of ý. Let ÿ1, … , ÿÿ ∈ ℤ⩾0 be
such that ÿ1 +⋯ + ÿÿ = ÿ, then by assumption, there must exist ÿÿ such that ÿÿ ⩾ ý. There-
fore, ÿ

ÿ1
1

⋯ÿ
ÿÿ
ÿ = ÿ

ÿ1
1

⋯ÿ
ÿÿ−ý

ÿ
ÿ
ÿÿ
ÿ ⋅ ÿ

ý
ÿ
∈ ýÿ−ýý[ý]. This shows ýÿ ⊆ ýÿ−ýý[ý]. To obtain the other

containment, we observe that ý[ý] ⊆ ýý. □

The following result gives a finite test to verify whether all the symbolic and ordinary powers
of a symbolic ý-split ideal coincide.

Theorem 5.7. Assume Setup 5.1. Let ý ⊆ ý be a symbolic ý-split ideal. If ýÿ = ý(ÿ) for every ÿ ⩽

+ÿ(ý)(ý−1)
ý

,, then ýÿ = ý(ÿ) for every ÿ ∈ ℤ⩾0.

Proof. By Proposition 5.5, it suffices to show gr(ý) is ý-split. Let ÿ be such that ý is symbolic ý-
split with respect to ÿ. Proceeding as in Theorem 4.7, it suffices to prove ÿ

(
(ýÿý+1)1∕ý

)
⊆ ýÿ+1 for

every ÿ ∈ ℤ⩾0. By assumption, this inclusion holds for ÿ < +ÿ(ý)(ý−1)
ý

,, as for these values ý(ÿ+1) =
ýÿ+1. We fix ÿ ⩾ +ÿ(ý)(ý−1)

ý
,. Then, ýÿý+1 = ý(ÿ−1)ý+1ý[ý] by Lemma 5.6. The latter is equivalent to

(ýÿý+1)1∕ý = (ý(ÿ−1)ý+1)1∕ýý. Therefore, by induction on ÿ,

ÿ
(
(ýÿý+1)1∕ý

)
= ÿ

(
(ý(ÿ−1)ý+1)1∕ýý

)
= ÿ

(
(ý(ÿ−1)ý+1)1∕ý

)
ý ⊆ ýÿý = ýÿ+1. □

We continue with a version of Fedder’s Criterion for symbolic ý-split ideals. This improves
Proposition 4.6 as it only requires to verify that a finite intersection of colon ideals is not contained
inÿ[ý]. We recall that the big height of an ideal ý, denoted by bigheight(ý), is the largest height of
a minimal prime of ý.

Theorem 5.8. Assume Setup 5.1. Let ý ⊆ ý be a radical ideal and set ÿ = bigheight(ý). Let ÿ = 1

if ý ⩽ ÿ and ÿ = 0 otherwise. Then, ý is symbolic ý-split if and only if

max{0,ÿ−1−ÿ}⋂
ÿ=0

(
(ý(ÿ+1))[ý] ∶ý ý

(ÿý+1)
)
⊈ ÿ[ý].

Proof. By Proposition 4.6, it suffices to show

⋂
ÿ∈ℤ⩾0

(
(ý(ÿ+1))[ý] ∶ý ý

(ÿý+1)
)
=

max{0,ÿ−1−ÿ}⋂
ÿ=0

(
(ý(ÿ+1))[ý] ∶ý ý

(ÿý+1)
)
.
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We note that if ÿ = 0, then ý = 0 and the result follows. If ÿ = 1, then ý is a principal ideal.
Therefore,

(ý(ÿ+1))[ý] ∶ý ý
(ÿý+1) = ýÿý+ý ∶ý ý

ÿý+1 = ýý−1 = ý[ý] ∶ý ý

and the result follows. Hence, for the rest of the proof, we may assume ÿ ⩾ 2. Let ý be the

ideal (ý(ÿ−ÿ))[ý] ∶ý ý
((ÿ−1−ÿ)ý+1).We claim that ý ⊆

(
ý(ÿ+1)

)[ý]
∶ý ý

(ÿý+1) for everyÿ ⩾ ÿ − 1 − ÿ.
We proceed by induction on ÿ. The base of induction follows from the definition of ý. Sup-
pose ý ⊆ (ý(ÿ+1))[ý] ∶ý ý

(ÿý+1), we need to show ýý((ÿ+1)ý+1) ⊆ (ý(ÿ+2))[ý], and it suffices to show

this containment locally at every prime ideal inAssý(ý∕ý
(ÿ+2)[ý]) = Assý(ý∕ý

(ÿ+2)) = Assý(ý∕ý),
where the first equality holds by flatness of Frobenius. Let ý ∈ Assý(ý∕ý) and set ý̃ = ýýý.
We observe that since ÿ + 1 ⩾ ÿ − ÿ, we have (ÿ + 1)ý + 1 ⩾ ÿý − ÿý + 1 ⩾ ÿ(ý − 1) + 1. Then,
Lemma 5.6 implies

(
ý̃ÿ+2

)[ý]
∶ý ý̃

(ÿ+1)ý+1 = ý̃[ý]
(
ý̃ÿ+1

)[ý]
∶ý ý̃

[ý]ý̃(ÿý+1) ⊇
(
ý̃ÿ+1

)[ý]
∶ý ý̃

(ÿý+1).

Since ýýý ⊆ (ý̃ÿ+1)[ý] ∶ý ý̃
(ÿý+1) by induction hypothesis, the proof of our claim follows. We

conclude that

⋂
ÿ∈ℤ⩾0

(
(ý(ÿ+1))[ý] ∶ý ý

(ÿý+1)
)
=

ÿ−1−ÿ⋂
ÿ=0

(
(ý(ÿ+1))[ý] ∶ý ý

(ÿý+1)
)
,

and the result follows. □

Remark 5.9. The correction given by ÿ = 0 in the case ý > ÿ of Theorem 5.8 is needed. Indeed, if
we could always use ÿ = 1, that is, if the condition

max{0,ÿ−2}⋂
ÿ=0

(
(ý(ÿ+1))[ý] ∶ý ý

(ÿý+1)
)
⊈ ÿ[ý]

implies that ý is symbolic ý-split, then every ý-split ideal ý such that bigheight(ý) = 2 would be
symbolic ý-split. This is not the case, as we show in Example 5.13.

Corollary 5.10. Assume Setup 5.1. Let ý ⊆ ý be a radical ideal and set ÿ = bigheight(ý). If

ý(ÿ(ý−1)) ⊈ ÿ[ý], then ý is symbolic ý-split.

Proof. For every ÿ ∈ ℤ⩾0, we have ý
(ÿ(ý−1))ý(ÿý+1) ⊆ ý(ÿ(ý−1)+ÿý+1) ⊆ (ý(ÿ+1))[ý] [36, Lemma 2.6].

Therefore, ý(ÿ(ý−1)) ⊆ (ý(ÿ+1))[ý] ∶ý ý
(ÿý+1). The result now follows from Theorem 5.8. □

Example 5.11. Let ý be a square-free monomial ideal in a polynomial ring ÿ[ý1, … , ýÿ]. We
observe that

(ý1⋯ýÿ)
ý−1 ∈

(
ÿ⋂

ÿ=0

(
(ý(ÿ+1))[ý] ∶ý ý

(ÿý+1)
))

⧵ ÿ[ý].
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Then, by Theorem 5.8, ý is symbolic ý-split. This can also be proven via monomial valuations (see
Example 7.3(2)).

We also obtain the following sufficient condition forℛý(ý) to be ý-split.

Proposition 5.12. Assume Setup 5.1. Let ý ⊆ ý be a radical ideal and set ÿ = bigheight(ý). Let

ÿ′ = 1 if ý ⩽ ÿ − 1 and ÿ′ = 0 otherwise. If

ÿ−2−ÿ′⋂
ÿ=0

(
(ý(ÿ+1))[ý] ∶ý ý

((ÿ+1)ý)
)
⊈ ÿ[ý],

thenℛý(ý) is ý-split. In particular,ℛý(ý) is ý-split if ý((ÿ−1)(ý−1)) ⊈ ÿ[ý].

Proof. We note thatℛý(ý) is ý-split if there is a splitting ÿ′ ∶ ý1∕ý → ý for which the inclusion

ÿ′
(
(ý((ÿ+1)ý))1∕ý

)
⊆ ý(ÿ+1)

holds for every ÿ ∈ ℤ⩾0 (see Remark 4.8). Let ÿ
′ = 1 if ý ⩽ ÿ − 1 and ÿ′ = 0 otherwise. We can

adapt Lemma 4.6 and the proof of Theorem 5.8 to obtain that

ÿ−2−ÿ′⋂
ÿ=0

(
(ý(ÿ+1))[ý] ∶ý ý

((ÿ+1)ý)
)
⊈ ÿ[ý]

implies thatℛý(ý) is ý-split.
For the last statement, we can proceed as in Corollary 5.10 to obtain

ý((ÿ−1)(ý−1)) ⊆
(
(ý(ÿ+1))[ý] ∶ý ý

((ÿ+1)ý)
)
,

whence the conclusion follows. □

Since every symbolic ý-split ideal is ý-split, one may ask whether these two conditions are
equivalent. The following example shows that this is not the case.

Example 5.13. Let ý = ÿ[ÿ, ÿ, ý, ý] be a polynomial ring and char ý ⩾ 3. Consider the following
matrix:

ý =

[
ÿ2 ÿ ý

ý ÿ2 ÿ − ý

]
.

Let ý = ý2(ý) be the ideal generated by the 2 × 2 minors of ý. The ring ý∕ý is ý-split, in
fact strongly ý-regular [86, Proposition 4.3]. The ideal ý is prime of height 2. Moreover,
the symbolic and ordinary powers of ý coincide [36, Corollary 4.4]. Considering ý = 3, we
verify with Macaulay2 [35] that (ý2)[3] ∶ý ý

4 ⊆ ÿ[3]. Therefore, ý is not symbolic ý-split by
Theorem 5.8.
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The following definition due to Huneke provides a sufficient condition for an ideal to be
symbolic ý-split.

Definition 5.14 (Huneke). Assume Setup 5.1. Let ý ⊆ ý be a radical ideal of height ℎ. We say that
ý is ý-König if there exists a regular sequence ÿ1, … , ÿℎ ∈ ý such that ý∕(ÿ1, … , ÿℎ) is ý-split.
In particular, if ý is an ideal generated by a regular sequence and such that ý∕ý is F-pure, then

ý is ý-König.

Proposition 5.15. Assume Setup 5.1. If ý ⊆ ý is equidimensional and ý-König, then it is symbolic

ý-split.

Proof. Let ℎ = ht(ý) and ÿ1, … , ÿℎ ∈ ý a regular sequence such that ý∕(ÿ1, … , ÿℎ) is ý-split. We
consider ý = (ÿ1, … , ÿℎ). Since ý is ý-split, we have ÿ

ý−1
1

⋯ÿ
ý−1
ℎ

∈ ýℎ(ý−1) ⧵ ÿ[ý] [33, Proposition

2.1]. The result now follows from Corollary 5.10 since ýℎ(ý−1) ⊆ ý(ℎ(ý−1)). □

Example 5.16. Let ý and ý be two generic matrices of size ÿ × ÿ with entries in disjoint sets of
variables. Let ý be the ideal generated by the entries of ýý − ýý and ý the ideal generated by the
off-diagonal entries of this matrix. Then if ÿ = 2, or 3, the ideals ý and ý are ý-König [62], and
hence symbolic ý-split.

We nowmention and answer a question that was raised byHuneke at the BIRS-CMOworkshop
onOrdinary and Symbolic Powers of Ideals during the summer of 2017 at CasaMatemáticaOaxaca,
which arose in connection with the Conforti–Cornuéjols conjecture [18].

Question 5.17 (Huneke). Let ý ⊆ ý be a prime ideal such that ý∕ý is ý-split, and ý(ÿ) = ýÿ for
every ÿ ∈ ℤ⩾0. Is ý ý-König?

The following example shows that the answer to this question is negative.

Example 5.18. Let ý and ý be as in Example 5.13 with ý ⩾ 3. Then, ý is a prime ideal of height 2.
As noted before, ý(ÿ) = ýÿ for every ÿ ∈ ℤ⩾0; however, ý is notý-König. Indeed, by Proposition 5.15
and its proof, it suffices to show ý(2(ý−1)) = ý2(ý−1) ⊆ ÿ[ý]. Assume that the variable ÿ has degree 1
and that the variables ÿ, ý, and, ý have degree 2. Hence, ý is generated in degree 4 and then ý2(ý−1)

is generated in degree 8(ý − 1). On the other hand, if ÿ ∶= ÿÿ1ÿÿ2ýÿ3ýÿ4 ∉ ÿ[ý], we must have
ÿÿ ⩽ ý − 1 for each ÿ. Therefore, such an ÿ has degree at most 7(ý − 1).

6 SYMBOLIC AND ORDINARY POWERS OF DETERMINANTAL
IDEALS

In this section, we prove our main results on symbolic powers of several types of determinan-
tal ideals. A key point in our proofs is the construction of specific polynomials that allow us to
directly apply Fedder’s Criterion for an ideal to be symbolicý-split, Theorem 5.8; this construction
is inspired by the work of Seccia in the context of Knutson ideals [81, 82].

Notation 6.1. Let ý be an ÿ × ý matrix, and ÿ, ÿ, ý,ý ∈ ℤ be such that 1 ⩽ ÿ ⩽ ý ⩽ ÿ and 1 ⩽ ÿ ⩽

ý ⩽ ý. We denote byý[ÿ,ý]
[ÿ,ý]

the submatrix ofýwith row indices ÿ, … , ý and column indices ÿ, … ,ý.
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In the next subsections, we repeatedly use the following lemma.

Lemma 6.2. Let ý be aℤ⩾0-graded polynomial ring over aný-finite fieldÿ, and letÿ be the homo-

geneous maximal ideal of ý. Let ý be a radical homogeneous ideal with ÿ = bigheight(ý). Assume

that there exist a homogeneous polynomialÿ ∈ ý andamonomial order< such that in<(ÿ) is square

free.

(1) If ÿ ∈ ý(ÿ), then ý is symbolic ý-split.

(2) If ÿý−1 ∈ (ýÿ)[ý] ∶ ýÿý for every ÿ ∈ ℤ⩾0, then the Rees algebraℛ(ý) is ý-split.

Proof. We first prove (1). The assumption that in<(ÿ) is a square-free monomial implies ÿ
ý−1 ∉

ÿ[ý]. Since ÿý−1 ∈ (ý(ÿ))ý−1 ⊆ ý(ÿ(ý−1)), we conclude by Corollary 5.10 that ý is symbolic ý-split.
In order to prove (2),we letΦ be the tracemap (seeRemark 2.3), andwe considerÿ = Φ(ÿý−1−).

Because of our assumptions, the map ÿ induces an ℛ(ý)-linear map Ψ ∶ (ℛ(ý))1∕ý → ℛ(ý). As
above, we have ÿý−1 ∉ ÿ[ý], and therefore Ψ is surjective. It follows thatℛ(ý) is ý-split. □

6.1 Ideals of minors of a generic matrix

In this subsection, we use the following setup.

Setup 6.3. Let ÿ, ý ∈ ℤ>0 be such that ÿ ⩽ ý. Let ÿ = (ýÿ,ÿ) be a generic ÿ × ýmatrix of variables, ÿ
be an ý-finite field of characteristic ý > 0, ý = ÿ[ÿ], andÿ = (ýÿ,ÿ). For ý ∈ ℤ>0 such that ý ⩽ ÿ,
we let ýý(ÿ) be the ideal generated by the ý × ý minors of ÿ. We let

ÿÿ(ÿ) =

(
ÿ−1∏
ý=ÿ

det
(
ÿ[ÿ−ý+1,ÿ]
[1,ý]

)
det

(
ÿ[1,ý]
[ý−ý+1,ý]

))
⋅

(
ý−ÿ+1∏
ý=1

det
(
ÿ[1,ÿ]
[ý,ÿ+ý−1]

))
,

for ÿ ⩽ ÿ. We consider the lexicographical monomial order on ý induced by

ý1,1 > ý1,2 > … > ý1,ý > ý2,1 > ý2,2 > ⋯ > ýÿ,ý−1 > ýÿ,ý.

Remark 6.4. For any ý ∈ ℤ⩾0, we note that the initial form in<(ÿý(ÿ)) is a square-free monomial.

We begin by showing that generic determinantal ideals are symbolic ý-split.

Theorem 6.5. Assuming Setup 6.3, the ideal ýý(ÿ) is symbolic ý-split.

Proof. Let ℎ = (ý − ý + 1)(ÿ − ý + 1) = ht(ýý(ÿ)). Let ÿ = ÿý(ÿ), and note that

ÿ ∈

(
ÿ−1∏
ý=ý

ýý(ÿ)

)2

ýÿ(ÿ)
ý−ÿ+1

⊆

(
ÿ−1∏
ý=ý

ýý(ÿ)
(ý−ý+1)

)2(
ýý(ÿ)

(ÿ−ý+1)
)ý−ÿ+1

[14, Proposition 10.2]
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⊆ ýý(ÿ)
((ÿ−ý)(ÿ−ý+1))ýý(ÿ)

((ÿ−ý+1)(ý−ÿ+1))

⊆ ýý(ÿ)
(ý−ý+1)(ÿ−ý+1) = ýý(ÿ)

(ℎ).

The conclusion follows from Remark 6.4 and Lemma 6.2(1). □

From the previous proposition, we obtain the following consequences.

Theorem 6.6. Assuming Setup 6.3, the limit

lim
ÿ→∞

reg
(
ý∕ýý(ÿ)

(ÿ)
)

ÿ

exists and

depth
(
ý∕ýý(ÿ)

(ÿ)
)

stabilizes for ÿ ≫ 0. Furthermore, if 1 ⩽ ý ⩽ min{ÿ, ÿ}, then

lim
ÿ→∞

depth
(
ý∕ýý(ÿ)

(ÿ)
)
= dim(ý) − dim (ℛý(ýý(ÿ))∕ÿℛý(ýý(ÿ))) = ý2 − 1.

Proof. We know that ℛý (ýý(ÿ)) is Noetherian [14, Proposition 10.2, Theorem 10.4]. Hence, the
result follows by combining Theorem 6.5 and Theorem 4.10. Sinceℛý (ýý(ÿ)) is Cohen–Macaulay
[9, Corollary 3.3], we have

lim
ÿ→∞

depth
(
ý∕ýý(ÿ)

(ÿ)
)
= dim(ý) − dim (ℛý(ýý(ÿ))∕ÿℛý(ýý(ÿ))) by Corollary 4.11,

= min{depth
(
ý∕ýý(ÿ)

(ÿ)
)
} by Theorem 4.10,

= grade (ÿgrý(ýý(ÿ))) [14, Proposition 9.23],

= ý2 − 1 [14, Proposition 10.8]. □

We now show that ℛý(ýý(ÿ)) and gr
ý(ýý(ÿ)) are strongly ý-regular. This strengthens a result

of Bruns and Conca [8] showing thatℛý(ýý(ÿ)) is ý-rational using techniques from the theory of
Sagbi bases [16].

Theorem 6.7. Assuming Setup 6.3, the algebrasℛý(ýý(ÿ)) and gr
ý(ýý(ÿ)) are strongly ý-regular.

Proof. We know that ℛý(ýý(ÿ)) and gr
ý(ýý(ÿ)) are Noetherian [14, Proposition 10.2, Theorem

10.4]. We proceed by induction on ý. If ý = 1, then the result follows because ý1(ÿ) = ÿ. We now
assume the result is true for (ý − 1) × (ý − 1)-minors of a generic matrix. If we let ÿ = ÿý(ÿ),
then in<(ÿ) is a square-free monomial, which is not divisible by ýÿ,1, because ý ⩾ 2. Let g =
∏

ÿ,ÿ ýÿ,ÿ

ýÿ,1 in<(ÿ)
. We note that in<(ÿ

ý−1
g
ý−1) =

∏
ÿ,ÿ ý

ý−1
ÿ,ÿ

ý
ý−1
ÿ,1

, and as a consequence ÿý−1gý−1 ∉ ÿ[ý]. Let

ÿ = Φ
(
ÿ(ý−1)∕ýg (ý−1)∕ý−

)
, whereΦ ∶ ý1∕ý → ý denotes the tracemap introduced inRemark 2.3.

We note that ÿ
(
ý
(ý−1)∕ý
ÿ,1

)
= 1.
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We have ÿ ∈ ýý(ÿ)
(ht(ýý(ÿ)) as shown in the proof of Theorem 6.5. It follows that ÿý−1 ∈(

ýý(ÿ)
(ÿ+1)

)[ý]
∶ ýý(ÿ)

(ÿý+1) for every ÿ ∈ ℤ⩾0 [36, Lemma 2.6] (see also proof of Corollary 5.10).

As a consequence, ÿ induces maps Ψ ∶ ℛý(ýý(ÿ))
1∕ý → ℛý(ýý(ÿ)) and Ψ ∶ grý(ýý(ÿ))

1∕ý →

grý(ýý(ÿ)), which satisfy

Ψ
(
ý
(ý−1)∕ý
ÿ,1

)
= 1 and Ψ

(
ýÿ,1

(ý−1)∕ý
)
= 1. (6.1.1)

Let ý = ÿ[ý], where ý = (ÿÿ,ÿ)1⩽ÿ⩽ÿ−1,
2⩽ÿ⩽ý

is a generic matrix of size (ÿ − 1) × (ý − 1), and let

ÿ = ý[ý1,1, … , ýÿ−1,1, ýÿ,1, … , ýÿ,ý].

We have an isomorphism ÿ ∶ ý[ý−1
ÿ,1
] → ÿ[ý−1

ÿ,1
] defined by ýÿ,ÿ ↦ ÿÿ,ÿ + ýÿ,ÿýÿ,1ý

−1
ÿ,1
, ýÿ,1 ↦ ýÿ,1,

and ýÿ,ÿ ↦ ýÿ,ÿ for ÿ ⩽ ÿ − 1 and ÿ ⩾ 2. Furthermore, we have ÿ
(
ýý(ÿ)ý[ý

−1
ÿ,1
]
)
= ýý−1(ý)ÿ[ý

−1
ÿ,1
],

and then ÿ(ýý(ÿ)
(ÿ)ý[ý−1

ÿ,1
]) = ýý−1(ý)

(ÿ)ÿ[ý−1
ÿ,1
] for every ÿ ∈ ℤ⩾0 [14, Lemma 10.1]. By the

induction hypothesis, ℛý(ýý−1(ý)) and grý(ýý−1(ý)) are strongly ý-regular. It follows that
ℛý(ýý−1(ý)) ⊗ý ÿ[ý

−1
ÿ,1
] and grý(ýý−1(ý)) ⊗ý ÿ[ý

−1
ÿ,1
] are strongly ý-regular, because strong ý-

regularity is preserved by adding variables and localizing. Therefore, thanks to the isomorphism
ÿ, the rings ℛý(ýý(ÿ)) ⊗ý ý[ý

−1
ÿ,1
] and grý(ýý(ÿ)) ⊗ý ý[ý

−1
ÿ,1
] are also strongly ý-regular. From

this and Equation (6.1.1), we conclude that ℛý(ýý(ÿ)) and gr
ý(ýý(ÿ)) are strongly ý-regular [48,

Theorem 3.3]. □

Wenow show that the ordinary Rees algebra of a generic determinantal ideal isý-split.We note
that it was already known thatℛ(ýý(ÿ)) is ý-rational [8]. However, ý-rationality does not imply
that the ring is ý-split.

Theorem 6.8. In addition to assuming Setup 6.3, suppose ý > min{ý, ÿ − ý}. Then the Rees algebra

ℛ(ýý(ÿ)) is ý-split.

Proof. Let ÿ = ÿ1(ÿ), and note that ÿ ∈ ýý(ÿ)
(ht(ýý(ÿ)) for every ý ⩽ ÿ, as shown in the proof of

Theorem 6.5. It follows that ÿý−1 ∈
(
ýý(ÿ))

(ÿ+1)
)[ý]

∶ ýý(ÿ)
(ÿý+1) for every ý ⩽ ÿ and ÿ ∈ ℤ⩾0

[36, Lemma 2.6] (cf. proof of Corollary 5.10). Thus,

ÿý−1ýý(ÿ)
((ÿ+1)ý) ⊆ ÿý−1ýý(ÿ)

(ÿý+1) ⊆
(
ýý(ÿ)

(ÿ+1)
)[ý]

for every ý ⩽ ÿ and ÿ ∈ ℤ⩾0. Then,

ÿý−1ýý(ÿ)
ÿý = ÿý−1

(
ý⋂

ý=1

ýý(ÿ)
((ý−ý+1)ÿý)

)
[14, Corollary 10.13]

⊆

ý⋂
ý=1

ÿý−1
(
ýý(ÿ)

((ý−ý+1)ÿý)
)

⊆

ý⋂
ý=1

(
ýý(ÿ)

((ý−ý+1)ÿ)
)[ý]

 1
4

6
9

7
7

5
0

, 2
0

2
4

, 2
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://lo
n

d
m

ath
so

c.o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

1
1

2
/jlm

s.1
2

9
6

9
 b

y
 A

rizo
n

a S
tate U

n
iv

ersity
 A

cq
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

6
/1

1
/2

0
2

4
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n

 W
iley

 O
n

lin
e L

ib
rary

 fo
r ru

les o
f u

se; O
A

 articles are g
o

v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



24 of 50 DE STEFANI et al.

=

(
ý⋂

ý=1

ýý(ÿ)
((ý−ý+1)ÿ)

)[ý]

= (ýý(ÿ)
ÿ)
[ý] [14, Corollary 10.13].

The conclusion follows from Remarks 6.4 and Lemma 6.2(2). □

We end this subsection with the following results, which provide bounds for the degrees of
the defining equations of symbolic and ordinary Rees algebras and associated graded algebra of
determinantal ideals of generic matrices.

Theorem 6.9. Assume Setup 6.3. Set ÿ =
(ÿ
ý

)(ý
ý

)
.

(1) Suppose deg(ýÿ,ÿ) = 0 for every ÿ, ÿ, then the defining equations ofℛ(ýý(ÿ)) over ý have degree

at mostmin{ÿý + 1, ÿ}.

(2) Suppose deg(ýÿ,ÿ) = 1 for every ÿ, ÿ, then the defining equations of ℛ(ýý(ÿ)) over ÿ have total

degree at most ÿý + ÿ(ý + 1).

Proof. The result follows from Theorems 6.8 and 3.3, and Proposition 2.8. □

Theorem 6.10. Assume Setup 6.3 and that ý < ÿ. For ÿ = ý, … , ÿ, set ÿÿ =
(ÿ
ÿ

)(ý
ÿ

)
.

(1) Suppose deg(ýÿ,ÿ) = 0 for every ÿ, ÿ, then the defining equations ofℛý(ýý(ÿ)) over ý have degree

at most min{ÿý + 1 +
∑ÿ

ÿ=ý+1 ÿÿ(ÿ − ý),
∑ÿ

ÿ=ý ÿÿ(ÿ − ý + 1)}, and of grý(ýý(ÿ)) over ý∕ýý(ÿ),

have degree at mostmin{ÿý +
∑ÿ

ÿ=ý+1 ÿÿ(ÿ − ý),
∑ÿ

ÿ=ý ÿÿ(ÿ − ý + 1)}.

(2) Suppose deg(ýÿ,ÿ) = 1 for every ÿ, ÿ, then the defining equations ofℛý(ýý(ÿ)) and gr
ý(ýý(ÿ)) over

ÿ have total degree at most ÿý +
∑ÿ

ÿ=ý ÿÿ(2ÿ − ý + 1).

Proof. By Theorem 6.5 and Theorem 4.7, the algebrasℛý(ýý(ÿ)) and gr
ý(ýý(ÿ)) are ý-split. Both

parts of the result now follow from Theorem 3.4, Proposition 2.8, and the equality

ℛý(ýý(ÿ)) = ý[ýý(ÿ)ÿ, ýý+1(ÿ)ÿ
2, … , ýÿ(ÿ)ÿ

ÿ−ý+1] [14, Proposition 10.2, Theorem 10.4]. □

6.2 Ideals of minors of a symmetric matrix

In this subsection, we use the following setup.

Setup 6.11. Let ÿ ∈ ℤ>0, and ý = (ÿÿ,ÿ) be a generic symmetric matrix of size ÿ × ÿ. Let ÿ be an
ý-finite field of characteristic ý > 0, ý = ÿ[ý], andÿ = (ÿÿ,ÿ). For ý ∈ ℤ>0 with ý ⩽ ÿ, we let ýý(ý)
be ideal generated by the ý × ý minors of ý. We let

ÿÿ(ý) =

ÿ∏
ý=ÿ

det
(
ý[1,ý]
[ÿ−ý+1,ÿ]

)
,
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for ÿ ⩽ ÿ. We consider the lexicographical monomial order on ý induced by

ÿ1,1 > ÿ1,2 > … > ÿ1,ÿ > ÿ2,2 > … > ÿÿ,ÿ.

Remark 6.12. For any ý ∈ ℤ⩾0, we note that the initial form in<(ÿý(ý)) is a square-free monomial.

We now show that ideals of minors of a generic symmetric matrix is symbolic ý-split.

Theorem 6.13. Assuming Setup 6.11, the ideal ýý(ý) is symbolic ý-split. In particular, the rings

ℛý(ýý(ý)) and gr
ý(ýý(ý)) are ý-split.

Proof. Let ℎ = (ÿ−ý+1)(ÿ−ý+2)

2
= ht(ýý(ý)) [60, Corollary 2.4]. Let ÿ = ÿý(ý), and note that

ÿ ∈

ÿ∏
ý=ý

ýý(ý)

⊆

ÿ∏
ý=ý

(ýý(ý))
(ý−ý+1) [59, Theorem 4.4]

⊆ ýý(ý)
(ℎ).

The first statement now follows from Remark 6.12 and Lemma 6.2(1), and the second statement
from Theorem 4.7. □

Lemma 6.14. Assuming Setup 6.11, the ringsℛý(ýý(ý)) and gr
ý(ýý(ý)) are Noetherian. Moreover,

ℛý (ýý(ý)) = ý[ýý(ý)ÿ, ýý+1(ý)ÿ
2, … , ýÿ(ý)ÿ

ÿ−ý+1].

Proof. We have ýý+ÿ−1(ý) ⊆ ýý(ý)
(ÿ) for every ÿ ⩾ 1 [59, Theorem 4.4]. Moreover, we have

ýý(ý)
(ÿ) =

∑
ýý+ÿ1−1(ý)⋯ ýý+ÿý−1(ý), where the sum ranges over the integers ÿ1, … , ÿý ⩾ 1, such

that ý ⩽ ÿ and ÿ1 +⋯ + ÿý ⩾ ÿ [59, Proposition 4.3]. The conclusion clearly follows. □

We obtain the following homological consequences.

Theorem 6.15. Assuming Setup 6.11, the limit

lim
ÿ→∞

reg(ý∕ýý(ý)
(ÿ))

ÿ

exists and

depth(ý∕ýý(ý)
(ÿ))

stabilizes for ÿ ≫ 0.

Proof. Since ℛý (ýý(ý)) is Noetherian by Lemma 6.14, the result follows by combining
Theorems 6.13 and 4.10. □
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We now show that the symbolic Rees algebra of a determinantal ideal of a generic symmetric
matrix is strongly ý-regular.

Theorem 6.16. Assuming Setup 6.11,ℛý(ýý(ý)) is strongly ý-regular.

Proof. We set ℎ = ht(ýý(ý)). We know thatℛý(ýý(ý)) Noetherian by Lemma 6.14.
If ý = ÿ, then ýý(ý) is principal, and so, ℛý(ýý(ý)) = ý[det(ý)ÿ], which is isomorphic to a

polynomial ring over ÿ. Then,ℛý(ýý(ý)) is strongly ý-regular.
We proceed by induction on ý. If ý = 1, then the result follows because ý1(ý) = ÿ. We now

assume the result is true for (ý − 1) × (ý − 1)-minors of a generic symmetric matrix. If we
let

ÿ = det
(
ý[2,ÿ]
[2,ÿ]

)
⋅

ÿ−1∏
ý=1

det
(
ý[1,ý]
[ÿ−ý+1,ÿ]

)
,

as in the proof of Theorem 6.13, we have that ÿ ∈ ýý(ý)
(ℎ−1). In addition, then in<(ÿ) is a

square-free monomial, which is not divisible by ÿ1,1, because ý ⩾ 2. We have ÿý−1 ∉ ÿ[ý]. Let
ÿ = Φ

(
ÿ(ý−1)∕ý−

)
, where Φ ∶ ý1∕ý → ý denotes the trace map introduced in Remark 2.3. We

note that ÿ
(
ÿ
(ý−1)∕ý
1,1

)
= 1. It follows that ÿý−1 ∈

(
ýý(ý)

(ÿ+1)
)[ý]

∶ ýý(ý)
((ÿ+1)ý) for every ÿ ∈ ℤ⩾0

by Proposition 5.12.
As a consequence, ÿ induces maps Ψ ∶ ℛý(ýý(ÿ))

1∕ý → ℛý(ýý(ÿ)), which satisfy

Ψ
(
ÿ
(ý−1)∕ý
1,1

)
= 1 and Ψ

(
ÿ1,1

(ý−1)∕ý
)
= 1. (6.2.1)

Let ý = ÿ[ý], where ý = (ÿÿ,ÿ)2⩽ÿ⩽ÿ−1,
2⩽ÿ⩽ÿ

is a generic symmetric matrix of size (ÿ − 1) × (ÿ − 1),

and let

ÿ = ý[ÿ1,1, … , ÿ2,1, … , ÿÿ,1].

Wehave an isomorphism ÿ ∶ ý[ÿ−1
1,1
] → ÿ[ÿ−1

ÿ,1
] defined by ÿÿ,ÿ ↦ ÿÿ,ÿ + ÿ1,ÿýÿ,1ÿ

−1
1,1
, ÿÿ,1 ↦ ÿÿ,1, and

ÿ1,ÿ ↦ ÿ1,ÿ for ÿ ⩾ 2 [69] (see also [60, Lemma 1.1].

Furthermore, we have ÿ
(
ýý(ý)ý[ÿ

−1
1,1
]
)
= ýý−1(ý)ÿ[ÿ

−1
1,1
], and then ÿ(ýý(ý)

(ÿ)ý[ý−1
1,1
]) =

ýý−1(ý)
(ÿ)ÿ[ÿ−1

1,1
] for every ÿ ∈ ℤ⩾0 [14, Lemma 10.1]. By the induction hypothesis, ℛ

ý(ýý−1(ý))

and grý(ýý−1(ý)) are strongly ý-regular. It follows that ℛ
ý(ýý−1(ý)) ⊗ý ÿ[ÿ

−1
1,1
] is strongly ý-

regular, because strong ý-regularity is preserved by adding variables and localizing. Therefore,
thanks to the isomorphism ÿ, the ringℛý(ýý(ý)) ⊗ý ý[ÿ

−1
1,1
] is also strongly ý-regular. From this

and Equation (6.2.1), we conclude thatℛý(ýý(ý)) is strongly ý-regular [48, Theorem 3.3]. □

We now show that the ordinary Rees algebra of a generic symmetric determinantal ideal is
ý-split.

Theorem6.17. In addition to Setup 6.11, supposeý > min{ý, ÿ − ý}. Then, the Rees algebraℛ(ýý(ý))

is ý-split.
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Proof. Let ÿ = ÿ1(ý), and note that ÿ ∈ ýý(ý)
(ht(ýý(ý)) for every ý ⩽ ÿ, as shown in the proof of

Theorem 6.13. It follows that ÿý−1 ∈
(
ýý(ý))

(ÿ+1)
)[ý]

∶ ýý(ý)
(ÿý+1) for every ý ⩽ ÿ and ÿ ∈ ℤ⩾0

[36, Lemma 2.6] (cf. proof of Corollary 5.10). Thus,

ÿý−1ýý(ý)
((ÿ+1)ý) ⊆ ÿý−1ýý(ý)

(ÿý+1) ⊆
(
ýý(ý)

(ÿ+1)
)[ý]

for ÿ ∈ ℤ⩾0. Then,

ÿý−1ýý(ý)
ÿý = ÿý−1

(
ý⋂

ý=1

ýý(ý)
((ý−ý+1)ÿý)

)
[59, Theorem 4.4]

⊆

ý⋂
ý=1

ÿý−1
(
ýý(ý)

((ý−ý+1)ÿý)
)

⊆

ý⋂
ý=1

(
ýý(ý)

((ý−ý+1)ÿ)
)[ý]

=

(
ý⋂

ý=1

ýý(ý)
((ý−ý+1)ÿ)

)[ý]

= (ýý(ý)
ÿ)
[ý] [59, Theorem 4.4].

The result follows from Remark 6.12 and Lemma 6.2(2). □

We end with the following results about degrees of defining equations for ordinary Rees and
associated graded algebras in the case of generic symmetric matrices.

Theorem 6.18. Assume Setup 6.11. Set ÿ = 1

2

(ÿ
ý

)2
.

(1) Suppose deg(ÿÿ,ÿ) = 0 for every ÿ, ÿ, then the defining equations ofℛ(ýý(ý) over ý have degree at

mostmin{
(ÿ+1
2

)
+ 1, ÿ}.

(2) Suppose deg(ÿÿ,ÿ) = 1 for every ÿ, ÿ, then the defining equations of ℛ(ýý(ý)) over ÿ have total

degree at most
(ÿ+1
2

)
+ ÿ(ý + 1).

Proof. The result follows from Theorems 6.17 and 3.3, and Proposition 2.8. □

Theorem 6.19. Assume Setup 6.11. For ÿ = ý, … , ÿ, set ÿÿ =
1

2

(ÿ
ÿ

)2
.

(1) Suppose deg(ÿÿ,ÿ) = 0 for every ÿ, ÿ, then the defining equations ofℛý(ýý(ý)) over ý have degree

at mostmin{
(ÿ+1
2

)
+ 1 +

∑ÿ
ÿ=ý+1 ÿÿ(ÿ − ý),

∑ÿ
ÿ=ý ÿÿ(ÿ − ý + 1)}, and of grý(ýý(ý)) over ý∕ýý(ý),

have degree at mostmin{
(ÿ+1
2

)
+

∑ÿ
ÿ=ý+1 ÿÿ(ÿ − ý),

∑ÿ
ÿ=ý ÿÿ(ÿ − ý + 1)}.

(2) Suppose deg(ÿÿ,ÿ) = 1 for every ÿ, ÿ, then the defining equations ofℛý(ýý(ý)) and gr
ý(ýý(ý)) over

ÿ have total degree at most
(ÿ+1
2

)
+

∑ÿ
ÿ=ý ÿÿ(2ÿ − ý + 1).

Proof. The result follows from Theorem 6.13, Theorem 3.4, Proposition 2.8, and Lemma 6.14. □
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6.3 Ideals of Pfaffians of a skew-symmetric matrix

For the convenience of the reader, we recall the definition of Pfaffians.

Definition 6.20. Let ý = (ÿÿ,ÿ) be a generic ÿ × ÿ skew-symmetric matrix, that is, ÿÿ,ÿ = −ÿÿ,ÿ for

every 1 ⩽ ÿ < ÿ ⩽ ÿ, and ÿÿ,ÿ = 0 for every 1 ⩽ ÿ ⩽ ÿ. A minor of the form det
(
ý
[ÿ1,…,ÿ2ý]

[ÿ1,…,ÿ2ý]

)
is the

square of a polynomial pf
(
ý[ÿ1,…,ÿ2ý]

)
∈ ý = ÿ[ý]. Such a polynomial is called a 2ý-Pfaffian of ý.

In this subsection, we use the following setup.

Setup 6.21. Let ÿ ∈ ℤ>0, and ý = (ÿÿ,ÿ) be a generic skew-symmetric matrix of size ÿ × ÿ. Let ÿ be
an ý-finite field of characteristic ý > 0, ý = ÿ[ý], and ÿ = (ÿÿ,ÿ). For ý ∈ ℤ>0 such that 2ý ⩽ ÿ,
we let ÿ2ý(ý) be the ideal generated by the 2ý-Pfaffians of ý. If ÿ is odd, we set ÿ = +ÿ∕2,, and we
let

ÿ2ÿ(ý) =

(
ÿ−1∏
ý=ÿ

pf
(
ý[1,…,2ý]

)
pf

(
ý[1,…,ý,ý+2,…,2ý+1]

)
pf

(
ý[ÿ+1−2ý,…,ÿ]

)
pf

(
ý[ÿ−2ý,…,ÿ−ý−1,ÿ−ý+1,…,ÿ]

))
⋅

(
pf

(
ý[1,…,ÿ−1]

)
pf

(
ý[2,…,ÿ]

)
pf

(
ý[1,…,ÿ,ÿ+2,…,ÿ]

))
,

for ÿ ⩽ ÿ∕2. If ÿ is even, we set ÿ = ÿ∕2, and we let

ÿ2ÿ(ý) =

(
ÿ−1∏
ý=ÿ

pf
(
ý[1,…,2ý]

)
pf

(
ý[1,…,ý,ý+2,…,2ý+1]

)
pf

(
ý[ÿ+1−2ý,…,ÿ]

)
pf

(
ý[ÿ−2ý…,ÿ−ý−1,ÿ−ý+1…,ÿ]

))
pf (ý),

for ÿ ⩽ ÿ∕2. We consider the lexicographical monomial order on ý induced by

ÿ1,ÿ > ÿ1,ÿ−1 > … > ÿ1,2 > ÿ2,ÿ > … > ÿÿ−1,ÿ.

Remark 6.22. For any ý ∈ ℤ⩾0, we note that the initial form in<(ÿ2ý(ý)) is a square-freemonomial.

In the following result, we show ideals of Pfaffians are symbolic ý-split.

Theorem 6.23. Assuming Setup 6.21, the ideal ÿ2ý(ý) is symbolic ý-split.

Proof. We set ℎ = (ÿ−2ý+1)(ÿ−2ý+2)

2
= ht(ÿ2ý(ý)) [61, Theorem 2.3]. Let ÿ = +ÿ∕2,, and ÿ = ÿ2ý(ý).

If ÿ is odd, we have

ÿ ∈

(
ÿ−1∏
ý=ý

ÿ2ý(ý)

)4

⋅ ÿ2ÿ(ý)
3
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⊆

(
ÿ−1∏
ý=ý

ÿ2ý(ý)
(ý−ý+1)

)4

⋅

(
ÿ2ý(ý)

(ÿ−ý+1)
)3

[59, Theorem 4.6]

=

(
ÿ−ý∏
ÿ=1

ÿ2ý(ý)
(ÿ)

)4

⋅

(
ÿ2ý(ý)

(ÿ−ý+1)
)3

⊆ ÿ2ý(ý)
(2(ÿ−ý)(ÿ−ý+1)) ⋅ ÿ2ý(ý)

(3(ÿ−ý+1))

⊆ ÿ2ý(ý)
(2(ÿ−ý)(ÿ−ý+1)+3(ÿ−ý+1))

= ÿ2ý(ý)
(ℎ).

On the other hand, if ÿ is even, we have

ÿ ∈

(
ÿ−1∏
ý=ý

ÿ2ý(ý)

)4

⋅ ÿÿ(ý)

⊆

(
ÿ−1∏
ý=ý

ÿ2ý(ý)
(ý−ý+1)

)4

⋅ ÿ2ý(ý)
(ÿ−ý+1) [59, Theorem 4.6]

=

(
ÿ−ý∏
ÿ=1

ÿ2ý(ý)
(ÿ)

)4

⋅ ÿ2ý(ý)
(ÿ−ý+1)

⊆ ÿ2ý(ý)
(2(ÿ−ý)(ÿ−ý+1)) ⋅ ÿ2ý(ý)

(ÿ−ý+1)

⊆ ÿ2ý(ý)
(2(ÿ−ý)(ÿ−ý+1)+(ÿ−ý+1))

= ÿ2ý(ý)
(ℎ).

The conclusion follows from Remarks 6.22 and Lemma 6.2(2). □

The previous result leads to the following homological consequences.

Theorem 6.24. Assuming Setup 6.21, the limit

lim
ÿ→∞

reg(ý∕ÿ2ý(ý)
(ÿ))

ÿ

exists and

depth(ý∕ÿ2ý(ý)
(ÿ))

stabilizes for ÿ ≫ 0, Furthermore,

lim
ÿ→∞

depth(ý∕ÿ2ý(ý)
(ÿ)) = dim(ý) − dim (ℛý(ÿ2ý(ý))∕ÿℛý(ÿ2ý(ý))) = ý(2ý − 1) − 1.
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Proof. We recall thatℛý (ÿ2ý(ý)) is Noetherian [1] (see also [2, Section 3]). Hence, the result fol-
lows by combining Theorem 6.23 and Theorem 4.10. Since ℛý (ÿ2ý(ý)) is Cohen–Macaulay [2,
Corollary 3.2], we have

lim
ÿ→∞

depth
(
ý∕ÿ2ý(ý)

(ÿ)
)
= dim(ý) − dim (ℛý(ÿ2ý(ý))∕ÿℛý(ÿ2ý(ý))) by Remark 4.11,

= min
{
depth

(
ý∕ÿ2ý(ý)

(ÿ)
)}

by Theorem 4.10,

= grade (ÿgrý(ÿ2ý(ý))) [14, Proposition 9.23].

It remains to show grade
(
ÿgrý(ÿ2ý(ý))

)
= ý(2ý − 1) − 1. This computation is already known in

the generic case in arbitrary characteristic [14, Proposition 10.8], we adapt the proof for ideals of
Pfaffians. We let ÿ be the poset of all the Pfaffians of ý, and consider the partial order induced
by

pf
(
ý[ÿ1,…,ÿ2ÿ]

)
⩽ pf

(
ý[ÿ1,…,ÿ2ÿ]

)
⟺ÿ ⩾ ÿ and ÿý ⩽ ÿý for all 1 ⩽ ý ⩽ 2ÿ.

We letΩ be the subposet ofÿ consisting of the 2ý-Pfaffians with ý ⩾ ý. We note thatΩ is also given
by

Ω = {ÿ ∈ ÿ ∣ ÿ ⩽ [ÿ − 2ý + 1,… , ÿ]}.

Sinceℛý(ÿ2ý(ý)) is Cohen–Macaulay, then so is gr
ý(ÿ2ý(ý)) [95, Proof of Proposition 2.4]. Then,

we have grade
(
ÿgrý(ÿ2ý(ý))

)
= rk(ÿ) − rk(Ω) [14, Proof of Proposition 10.8], where the rank of

a poset ÿ is defined as

rk(ÿ) = max{ÿ ∣ there exists a chain ý1 < ý2 < ⋯ < ýÿ of elements of ÿ}.

We note that every maximal chain of ÿ has length rk(ÿ) = dim(ý) =
(ÿ
2

)
[14, Lemma 5.13(d)

and Proposition 5.10]. We also note that a maximal chain of Ω can be extended to a maxi-
mal chain of ÿ by adjoining a maximal chain of Pfaffians of the submatrix of ý with rows

{ÿ − ý + 1,… , ÿ} and columns {ÿ − ý + 1,… , ÿ}. Then, rk(ÿ) − rk(Ω) =
(ÿ
2

)
−

((ÿ
2

)
−

(2ý
2

)
+ 1

)
=

ý(2ý − 1) − 1, finishing the proof. □

We now show thatℛý(ÿ2ý(ý)) and gr
ý(ÿ2ý(ý)) are strongly ý-regular.

Theorem 6.25. Assuming Setup 6.21, the ringsℛý(ÿ2ý(ý)) and gr
ý(ÿ2ý(ý)) are strongly ý-regular.

Proof. We know thatℛý(ÿ2ý(ý)) and gr
ý(ÿ2ý(ý)) are Noetherian [1] (see also [2, Section 3]). We

proceed by induction on ý. If ý = 1, then the result follows because ÿ2ý(ý) = ÿ. We now assume
the result is true for the ideal of (2ý − 2)-Pfaffians.
Let ÿ = ÿ2ý(ý), and note that in<(ÿ) is a square-free monomial, which is not divisi-

ble by ÿ1,2, because ý ⩾ 2. Let g =
∏

ÿ<ÿ ÿÿ,ÿ

ÿ1,2 in<(ÿ)
. We note that in(ÿý−1gý−1) =

∏
ÿ<ÿ ÿ

ý−1
ÿ,ÿ

ÿ
ý−1
1,2

, and so,
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ÿý−1gý−1 ∉ ÿ[ý]. Let ÿ = Φ(ÿ(ý−1)∕ýg (ý−1)∕ý−), where Φ ∶ ý1∕ý → ý denotes the trace map

introduced in Remark 2.3. We note ÿ(ÿ(ý−1)∕ý
1,2

) = 1.

We have ÿ ∈ ÿ2ý(ý)
(ht(ÿ2ý(ý)), as shown in the proof of Theorem 6.23. We therefore have ÿý−1 ∈(

ÿ2ý(ý)
(ÿ+1)

)[ý]
∶ ÿ2ý(ý)

(ÿý+1) for everyÿ ∈ ℤ⩾0 [36, Lemma 2.6] (see also proof of Corollary 5.10).

Thus, ÿ induces maps Ψ ∶ ℛý(ÿ2ý(ý))
1∕ý → ℛý(ÿ2ý(ý)) and Ψ ∶ grý(ÿ2ý(ý))

1∕ý → grý(ÿ2ý(ý)),
which satisfy

Ψ
(
ÿ
(ý−1)∕ý
1,2

)
= 1 and Ψ

(
ÿ1,2

(ý−1)∕ý
)
= 1. (6.3.1)

Let ý = ÿ[ý], where ý = (ÿÿ,ÿ)3⩽ÿ<ÿ⩽⩽ÿ be a generic skew-symmetric matrix of size (ÿ − 2) ×

(ÿ − 2), and let ÿ = ý[ÿ1,3, … , ÿ1,ÿ, ÿ2,3, … , ÿ2,ÿ]. We have an isomorphism ÿ ∶ ý[ÿ−1
1,2
] → ÿ[ÿ−1

1,2
]

defined by ÿÿ,ÿ ↦ ÿÿ,ÿ − ÿ1,ÿÿ2,ÿÿ
−1
1,2
+ ÿ1,ÿÿ2,ÿÿ

−1
1,2
for 3 ⩽ ÿ < ÿ ⩽⩽ ÿ, ÿ1,ÿ ↦ ÿ1,ÿ for ÿ ⩾ 2, and ÿ2,ÿ ↦

ÿ2,ÿ for ÿ ⩾ 3. Furthermore, ÿ(ÿ2ý(ý))ý[ÿ
−1
1,2
]) = ÿ2ý−2(ý)ÿ[ÿ

−1
1,2
], and then ÿ(ÿ2ý(ý))

(ÿ)ý[ÿ−1
1,2
]) =

Ψ(ÿ2ý−2(ý))
(ÿ)ÿ[ÿ−1

1,2
]) for every ÿ ∈ ℤ⩾0 [61, Lemma 1.2] (see also [14, Lemma 10.1]). By the induc-

tion hypothesis, the ringsℛý(ÿ2ý−2(ý)) and gr
ý(ÿ2ý−2(ý)) are strongly ý-regular. It follows that

ℛý(ÿ2ý−2(ý)) ⊗ý ÿ[ÿ
−1
1,2
] and grý(ÿ2ý−2(ý)) ⊗ý ÿ[ÿ

−1
1,2
] are strongly ý-regular, because strong ý-

regularity is preserved by adding variables and localizing. Therefore, thanks to the isomorphism
ÿ, the rings ℛý(ÿ2ý(ý)) ⊗ý ý[ÿ

−1
1,2
] and grý(ÿ2ý(ý)) ⊗ý ý[ÿ

−1
1,2
] are also strongly ý-regular. From

this and Equation (6.3.1), we conclude thatℛý(ÿ2ý(ý)) and gr
ý(ÿ2ý(ý)) are strongly ý-regular [48,

Theorem 3.3]. □

In the following result, we show that ordinary Rees algebras of ideals of Pfaffians are also
ý-split.

Theorem 6.26. In addition to assuming Setup 6.21, suppose ý > min{2ý, ÿ − 2ý}. Then the Rees

algebraℛ(ÿ2ý(ý)) is ý-split.

Proof. Let ÿ = ÿ2(ý), and note ÿ ∈ ÿ2ý(ý)
ht(ÿ2ý(ý)), as shown in the proof of Theorem 6.23. It

follows that ÿý−1 ∈
(
ÿ2ý(ý)

(ÿ+1)
)[ý]

∶ ÿ2ý(ý)
(ÿý+1) for every ý ⩽ ÿ∕2 and ÿ ∈ ℤ⩾0 [36, Lemma

2.6] (cf. proof of Corollary 5.10). Thus,

ÿý−1ÿ2ý(ý)
((ÿ+1)ý) ⊆ ÿý−1ýý(ÿ)

(ÿý+1) ⊆
(
ÿ2ý(ý)

(ÿ+1)
)[ý]

for every ý ⩽ ÿ∕2 and ÿ ∈ ℤ⩾0. We then get

ÿý−1ÿ2ý(ý)
ÿý = ÿý−1

(
ý⋂

ý=1

ÿ2ý(ý)
((ý−ý+1)ÿý)

)
[26, Proposition 2.6]

⊆

ý⋂
ý=1

ÿý−1
(
ÿ2ý(ý)

((ý−ý+1)ÿý)
)

⊆

ý⋂
ý=1

(
ÿ2ý(ý)

((ý−ý+1)ÿ)
)[ý]
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⊆

(
ý⋂

ý=1

ÿ2ý(ý)
((ý−ý+1)ÿ)

)[ý]

= (ÿ2ý(ý)
ÿ)
[ý] [26, Proposition 2.6].

The result follows from Remark 6.22 and Lemma 6.2(2). □

As in the previous subsections, we end with the following results about degrees of defining
equations for ordinary blowup algebras for ideals of Pfaffians of generic skew-symmetricmatrices.

Theorem 6.27. Assume Setup 6.21. Set ÿ =
( ÿ
2ý

)
.

(1) Suppose deg(ÿÿ,ÿ) = 0 for every ÿ, ÿ, then the defining equations ofℛ(ÿ2ý(ý)) over ý have degree

at mostmin{
(ÿ
2

)
+ 1, ÿ}.

(2) Suppose deg(ÿÿ,ÿ) = 1 for every ÿ, ÿ, then the defining equations ofℛ(ÿ2ý(ý)) over ÿ have total

degree at most
(ÿ
2

)
+ ÿ(ý + 1).

Proof. The result follows from Theorems 6.26 and 3.3, and Proposition 2.8. □

Theorem 6.28. Assume Setup 6.21. For ÿ = ý, … , +ÿ,, set ÿÿ =
( ÿ
2ÿ

)
.

(1) Suppose deg(ÿÿ,ÿ) = 0 for every ÿ, ÿ, then the defining equations ofℛý(ÿ2ý(ý)) over ý have degree

at mostmin{
(ÿ
2

)
+ 1 +

∑ÿ
ÿ=ý+1 ÿÿ(ÿ − ý),

∑ÿ
ÿ=ý ÿÿ(ÿ − ý + 1)}, and of grý(ÿ2ý(ý)) over ý∕ÿ2ý(ý),

have degree at mostmin{
(ÿ
2

)
+

∑+ÿ∕2,
ÿ=ý+1

ÿÿ(ÿ − ý),
∑+ÿ∕2,

ÿ=ý
ÿÿ(ÿ − ý + 1)}.

(2) Suppose deg(ÿÿ,ÿ) = 1 for every ÿ, ÿ, then the defining equations ofℛý(ÿ2ý(ý)) and gr
ý(ÿ2ý(ý))

over ÿ have total degree at most
(ÿ
2

)
+

∑+ÿ∕2,
ÿ=ý

ÿÿ(2ÿ − ý + 1).

Proof. By Theorem 6.23 and Theorem 4.7, the algebras ℛý(ÿ2ý(ý)) and gr
ý(ÿ2ý(ý)) are ý-split.

Both parts of the result now follow from Theorem 3.4, Proposition 2.8, and the equality

ℛý(ÿ2ý(ý)) = ý[ÿ2ý(ý)ÿ, ÿ2ý+2(ý)ÿ
2, … , ÿ2+ÿ∕2,(ý)ÿ+ÿ∕2,] [1] (see also [2, Section 3]). □

6.4 Ideals of minors of a Hankel matrix

We first recall the definition of Hankel matrix.

Definition 6.29. Let ÿ, ý ∈ ℤ>0, with ÿ ⩽ ý. Let ý1, … , ýý be variables. We denote by ÿ
ý
ÿ
the

ÿ × (ý + 1 − ÿ) Hankel matrix, which has the following entries

ÿý
ÿ =

»
¼¼¼¼¼½

ý1 ý2 ⋯ ýý+1−ÿ

ý2 ý3 ⋯ ⋯

ý3 ⋯ ⋯ ⋯

⋮ ⋮ ⋮ ⋮

ýÿ ⋯ ⋯ ýý

¾
¿¿¿¿¿À

.
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Setup 6.30. Let ÿ, ý ∈ ℤ>0, with ÿ ⩽ ý, and ÿý
ÿ
be the ÿ × (ý + 1 − ÿ) Hankel matrix. Let ÿ be

an ý-finite field of characteristic ý > 0, ý = ÿ[ÿý
ÿ
], and ÿ = (ý1, … , ýý). For ý ∈ ℤ>0 with ý ⩽

min{ÿ, ý + 1 − ÿ}, we denote by ýý(ÿ
ý
ÿ
) the ideal generated by the minors of size ý of ÿý

ÿ
. If ý is

odd, we setÿ = ý+1

2
, and we let

ÿodd(ÿ
ý
ÿ) = det

(
ÿý

ÿ

)
det

(
(ÿý

ÿ)
[2,ÿ]
[1,ÿ−1]

)
.

If ý is even, we setÿ = ý

2
, and we let

ÿeven(ÿ
ý
ÿ) = det

(
(ÿý

ÿ)
[1,ÿ]
[1,ÿ]

)
det

(
(ÿý

ÿ)
[1,ÿ]
[2,ÿ+1]

)
.

Consider the lexicographical monomial order on ý induced by

ý1 > ý3 > … > ýý > ý2 > ý4 > … > ýý−1.

Remark 6.31. We note that the initial forms in<(ÿodd(ÿ
ý
ÿ
)) and in<(ÿeven(ÿ

ý
ÿ
)) are square-

free monomials.

Remark 6.32. It is well known that ýý(ÿ
ý
ÿ
) only depends on ý and ý, that is, ýý(ÿ

ý
ÿ
) = ýý(ÿ

ý
ý ) for

every ý ⩽ min{ÿ, ý + 1 − ÿ}.

Theorem 6.33. Assuming Setup 6.30, the ideal ýý(ÿ
ý
ÿ
) is symbolic ý-split for every ý ⩽ min{ÿ, ý +

1 − ÿ}. In particular, the ringsℛý(ýý(ÿ
ý
ÿ
)) and grý(ýý(ÿ

ý
ÿ
)) are ý-split.

Proof. Let ÿ = + ý+1
2

,, and observe that ý ⩽ ÿ. Moreover, we have ýý(ÿ
ý
ÿ
) = ýý(ÿ

ý
ÿ) by

Remark 6.32.
If ý is odd, let ÿ = ÿodd(ÿ

ý
ÿ
), and observe ℎ = ht(ýý(ÿ

ý
ÿ
)) = ý − 2ý + 2 = 2ÿ − 2ý + 1. We then

have

ÿ ∈ ýÿ(ÿ
ý
ÿ)ýÿ−1(ÿ

ý
ÿ)

⊆ ýý(ÿ
ý
ÿ)

(ÿ−ý+1)ýý(ÿ
ý
ÿ)

(ÿ−ý) [15, Theorem 3.16 (a)]

⊆ ýý(ÿ
ý
ÿ)

(2ÿ−2ý+1) = ýý(ÿ
ý
ÿ)

(ℎ).

If ý is even, we letÿ = ÿeven(ÿ
ý
ÿ
), andwe observe thatℎ = ht(ýý(ÿ

ý
ÿ
)) = ý − 2ý + 2 = 2ÿ − 2ý + 2.

In this case, we have

ÿ ∈ ýÿ(ÿ
ý
ÿ)ýÿ(ÿ

ý
ÿ)

⊆ ýý(ÿ
ý
ÿ)

(ÿ−ý+1)ýý(ÿ
ý
ÿ)

(ÿ−ý+1) [15, Theorem 3.16(a)]

⊆ ýý(ÿ
ý
ÿ)

(2ÿ−2ý+2) = ýý(ÿ
ý
ÿ)

(ℎ).

In both cases, we have shown that ÿ ∈ ýý(ÿ
ý
ÿ)

(ℎ). The first statement now follows from
Remark 6.31 and Lemma 6.2(1), and the second statement from Theorem 4.7. □
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We obtain the following homological consequences.

Theorem 6.34. Assuming Setup 6.11, the limit

lim
ÿ→∞

reg(ý∕ýý(ÿ
ý
ÿ
)(ÿ))

ÿ

exists and

depth(ý∕ýý(ÿ
ý
ÿ)
(ÿ))

stabilizes for ÿ ≫ 0.

Proof. Since ℛý
(
ýý(ÿ

ý
ÿ
)
)
is Noetherian [15, Theorem 4.1], the result follows by combining

Theorems 6.33 and 4.10. □

We now show that ordinary Rees algebras of a determinantal ideals of Hankel matrices are
ý-split.

Theorem 6.35. Assume Setup 6.30. Then, the Rees algebraℛ(ýý(ÿ
ý
ÿ
)) is ý-split.

Proof. Let ÿ = + ý+1
2

,, and observe that ý ⩽ ÿ. We have ýý(ÿ
ý
ÿ
) = ýý(ÿ

ý
ÿ) for every ý ⩽ ÿ by

Remark 6.32. If ý is odd, we set ÿ = ÿodd(ÿ
ý
ÿ
), otherwise we set ÿ = ÿeven(ÿ

ý
ÿ
). From the proof

of Theorem 6.33, we see that ÿ ∈ ýý(ÿ
ý
ÿ)

(ht(ýý(ÿ
ý
ÿ))) for every ý ⩽ ÿ. It follows that ÿý−1 ∈(

ýý(ÿ
ý
ÿ)

(ÿ+1)
)[ý]

∶
(
ýý(ÿ

ý
ÿ)

)(ÿý+1)
for every ý ⩽ ÿ and ÿ ∈ ℤ⩾0 [36, Lemma 2.6] (cf. proof of

Corollary 5.10). Thus,

ÿý−1ýý(ÿ
ý
ÿ)

((ÿ+1)ý) ⊆ ÿý−1ýý(ÿ
ý
ÿ)

(ÿý+1) ⊆
(
ýý(ÿ

ý
ÿ)

(ÿ+1)
)[ý]

for all ý ⩽ ÿ and ÿ ∈ ℤ⩾0. Then,

ÿý−1ýý(ÿ
ý
ÿ)

ÿý = ÿý−1

(
ý⋂

ý=1

ýý(ÿ
ý
ÿ)

(ÿý(ý+1−ý))

)
[15, Theorem 3.16 (a)]

⊆

ý⋂
ý=1

(
ÿý−1ýý(ÿ

ý
ÿ)

(ÿý(ý+1−ý))
)

⊆

ý⋂
ý=1

(
ýý(ÿ

ý
ÿ)

(ÿ(ý+1−ý))
)[ý]

=

(
ý⋂

ý=1

ýý(ÿ
ý
ÿ)

(ÿ(ý+1−ý))

)[ý]

=
(
ýý(ÿ

ý
ÿ)

ÿ
)[ý]

[15, Theorem 3.16(a)].

The conclusion follows from Remarks 6.31 and Lemma 6.2(2). □
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Finally, we prove the following results about degrees of defining equations for ordinary Rees
and associated graded algebra for ideals of minors of generic Hankel matrices.

Theorem 6.36. Assume Setup 6.30. Set ÿ =
(ý+1−ý

ý

)
.

(1) Suppose deg(ýÿ) = 0 for every ÿ, then the defining equations ofℛ(ýý(ÿ
ý
ÿ
)) over ý have degree at

mostmin{ý, ÿ}.

(2) Suppose deg(ýÿ) = 1 for every ÿ, then the defining equations of ℛ(ýý(ÿ
ý
ÿ
)) over ÿ have total

degree at most ý + ÿ(ý + 1).

Proof. The result follows from Theorems 6.35 and 3.3, and Proposition 2.8. □

Theorem 6.37. Assume Setup 6.30. For ÿ = ý, … ,ÿ, set ÿÿ =
(ý+1−ÿ

ÿ

)
.

(1) Supposedeg(ýÿ) = 0 for every ÿ. The defining equations ofℛý(ýý(ÿ
ý
ÿ
)) overý have degree atmost

min{ý + 1 +
∑ÿ

ÿ=ý+1 ÿÿ(ÿ − ý),
∑ÿ

ÿ=ý ÿÿ(ÿ − ý + 1)}, and the defining equations of grý(ýý(ÿ
ý
ÿ
))

over ý∕ýý(ÿ
ý
ÿ
) have degree at mostmin{ý +

∑ÿ
ÿ=ý+1 ÿÿ(ÿ − ý),

∑ÿ
ÿ=ý ÿÿ(ÿ − ý + 1)}.

(2) Suppose deg(ýÿ) = 1 for every ÿ, then the defining equations ofℛý(ýý(ÿ
ý
ÿ
)) and grý(ýý(ÿ

ý
ÿ
)) over

ÿ have total degree at most ý +
∑ÿ

ÿ=ý ÿÿ(2ÿ − ý + 1).

Proof. The result follows from Theorem 6.33, Theorem 3.4, Proposition 2.8, and the equality

ℛý
(
ýý(ÿ

ý
ÿ)
)
= ý[ýý(ÿ

ý
ÿ)ÿ, ýý+1(ÿ

ý
ÿ)ÿ

2, … , ýÿ(ÿ
ý
ÿ)ÿ

ÿ−ý+1] [15, Proposition 4.1]. □

6.5 Binomial edge ideals

We now give another example of symbolic ý-split ideals, the binomial edge ideals, which are
generated by minors of certain matrices related to graphs.

Definition 6.38 [43, 74]. Let ÿ = (ý(ÿ), ý(ÿ)) be a simple graph such that ý(ÿ) = [ÿ] =

{1, 2, … , ÿ}. Letÿ be a field and ÿ = ÿ[ý1, … , ýÿ, ÿ1, … , ÿÿ] the ring of polynomials in 2ÿ variables.
The binomial edge ideal,ýÿ , of ÿ is defined by

ýÿ =
(
ýÿÿÿ − ýÿÿÿ | for {ÿ, ÿ} ∈ ý(ÿ)

)
.

Definition 6.39 [43]. A graph ÿ on [ÿ] is closed if ÿ has a labeling of the vertices such that for
all edges {ÿ, ÿ} and {ý, ý} with ÿ < ÿ and ý < ý, one has {ÿ, ý} ∈ ý(ÿ) if ÿ = ý, and {ÿ, ý} ∈ ý(ÿ) if
ÿ = ý.

The binomial ideals of closed graphs class of graphs can be characterized via Gröbner bases for
binomial edge ideals [43]. This class of binomial edge ideals has been studied in several works [19,
31, 32, 43]. For example, it is known that, for closed graphs, a binomial edge ideal is equidimen-
sional if and only if it is Cohen–Macaulay [32, Theorem 3.1]. Since their initial ideals correspond
to a bipartite graphs, we have that the ordinary and symbolic powers of closed binomial edge
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ideals coincide [31, Corollary 3.4]. This follows from the analogous result formonomial edge ideals
of bipartite graphs [85, Theorem 5.9].

Proposition 6.40. Let ÿ be a closed connected graph such thatýÿ is equidimensional. Then,ýÿ is

symbolic ý-split. In particular, the ringsℛý(ýÿ) and gr
ý(ýÿ) are ý-split.

Proof. Since ÿ is connected and ÿ∕ýÿ is equidimensional, we have bigheight(ýÿ) = ÿ − 1 ([32,

Theorem 3.1], [43, Corollary 3.4]). We also haveý(ÿ)
ÿ

= ýÿ
ÿ
[31, Corollary 3.4]. Now, since a closed

graph is a proper interval graph, it contains aHamiltonian graph [4, 19].We assumewith out loss of
generality that this path is given by 1, … , ÿ, in this order. We set ÿ =

∏ÿ−1
ÿ=1 (ýÿÿÿ+1 − ýÿ+1ÿÿ). Then,

ÿý−1 ∈ ý((ÿ−1)(ý−1)) ⧵ (ý
ý
1
, … , ý

ý
ÿ , ÿ

ý
1
, … , ÿ

ý
ÿ ). Therefore, ýÿ is symbolic ý-split by Corollary 5.10.

The second statement follows from Theorem 4.7. □

7 EXAMPLES OFMONOMIAL ý-SPLIT FILTRATIONS

In this section, we present several classes of filtrations of monomial ideals that are ý-split. The list
of examples include symbolic powers and rational powers of squarefreemonomial ideals, and ini-
tial ideals of symbolic and ordinary powers of determinantal ideals of generic andHankelmatrices
of variables, and of Pfaffians of generic skew-symmetric matrices.
Throughout this section, we assume the following setup.

Setup 7.1. Let ý be a standard graded polynomial ring ý = ÿ[ý1, … , ýý] over an ý-finite field ÿ of
characteristic ý > 0. For a vector ÿ = (ÿ1, … , ÿý) ∈ ℤý

⩾0
, we set ýÿ = ý

ÿ1
1

⋯ý
ÿý
ý
.

7.1 ý-split filtrations obtained frommonomial valuations

Assuming Setup 7.1, let ÿ = (ÿ1, … , ÿý) ∈ ℤý
⩾0
and consider the following function on the set of

monomials in ý ∶

ÿ(ýÿ) = ÿ ⋅ ÿ.

We extend ÿ to the entire ý by setting

ÿ(ÿ) = ÿ
(∑

ýÿý
ÿÿ
)
∶= min {ÿ(ýÿÿ )}

for a polynomial ÿ =
∑
ýÿý

ÿÿ ∈ ýwith 0 b ýÿ ∈ ÿ. Such a function is called amonomial valuation
of ý [58, Definition 6.1.4].
The following is the main result of this subsection.

Theorem 7.2. Assuming Setup 7.1, let ÿ1, … , ÿÿ be monomial valuations of ý. For each ÿ ∈ ℤ⩾0, we

set

ýÿ = {ÿ ∈ ý ∣ ÿÿ(ÿ) ⩾ ÿ, for every 1 ⩽ ÿ ⩽ ÿ}.
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(1) The sequence ý = {ýÿ}ÿ∈ℤ⩾0 is an ý-split filtration of monomial ideals.

(2) ℛ(ý) is Noetherian and strongly ý-regular.

Proof. We begin with the proof of (1). We note that each ýÿ is a monomial ideal by the definition of
valuation [58, Definition 6.1.1]. Let ÿ ∶ ÿ1∕ý → ÿ be a splitting. Let ÿ ∶ ý1∕ý → ý be the ÿ-linear
map defined on the monomials of ý as:

ÿ
(
(ýýÿ)

1∕ý
)
= ÿ

(
ý1∕ý

(
ý
ÿ1
1

⋯ý
ÿý
ý

)1∕ý)

=

{
ÿ(ý1∕ý)ý

ÿ1∕ý
1

⋯ý
ÿý∕ý

ý
, if ÿ1 c ⋯ c ÿý c 0 (mod ý),

0 otherwise.

In particular, ÿ(ý1∕ý(ýÿ)1∕ý) = ÿ(ý1∕ý)ÿ((ýÿ)1∕ý). If ý̃, ý ∈ ÿ and ýÿ̃, ýÿ ∈ ý are monomial, then

ÿ((ý̃ýÿ̃)ý1∕ýýÿ∕ý) = ÿ(ý̃ý1∕ý)ÿ(ýÿ̃ýÿ∕ý) = ý̃ÿ(ý1∕ý)ýÿ̃ÿ(ýÿ∕ý) = ý̃ýÿ̃ÿ(ý1∕ýýÿ∕ý).

Then,

ÿ
(
ÿ
(
g
1∕ý

))
= ÿÿ

(
g
1∕ý

)
for every ÿ, g ∈ ý. (7.1.1)

We have that ÿ is an ý-homomorphism and thus a splitting of the natural inclusion ý ↪ ý1∕ý.
Now, let ÿ ∈ ℤ⩾0 be arbitrary and ýÿ = ý

ÿ1
1

⋯ý
ÿý
ý
∈ ýÿý+1 be such that ÿ((ýÿ)1∕ý) b 0.

Therefore, ý|ÿÿ for every ÿ = 1, … , ý and then

ÿÿ

(
ÿ((ýÿ)1∕ý)

)
=

ý∑
ÿ=1

ÿÿ

ý
ÿÿ(ýÿ) ⩾

+
ÿý + 1

ý

,
= ÿ + 1,

for every 1 ⩽ ÿ ⩽ ÿ. It follows that ÿ((ýÿ)1∕ý) ∈ ýÿ+1. Therefore, ÿ((ýÿý+1)
1∕ý) ∈ ýÿ+1 for every ÿ ∈

ℤ⩾0, which implies ý is an ý-split filtration.
We continue with the proof of (2). Let ÿÿ = (ÿÿ(ý1), … , ÿÿ(ýý)) ∈ ℤý

⩾0
and let ℳÿ be the affine

semigroup

ℳÿ =
{
(ÿ, ÿ) ∈ ℤý+1

⩾0
∣ (ÿÿ , −1) ⋅ (ÿ, ÿ) ⩾ 0

}
⊆ ℤý+1

⩾0

for every 1 ⩽ ÿ ⩽ ÿ. Then, ℳ = ℳ1 ∩ … ∩ℳÿ is a finitely generated affine semigroup [44, The-
orem 1.1 and Corollary 1.2]. We note that ℛ(ý) = ÿ[ℳ], and so, ℛ(ý) is a finitely generated
ÿ-algebra.
Since ℛ(ý) = ÿ[ℳ] is ý-split regardless of the characteristic of the field by part (1), we have

thatℳ is a normal monoid [13, Corollary 6.3]. As a consequence,ℛ(ý) is a strongly ý-regular ring
[47, Theorem 1], finishing the proof. □

In the following example, we include several well-studied filtrations of monomial ideals
covered by Theorem 7.2.
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Example 7.3. Some examples of ý-split filtrations of monomial ideals.

(1) (Rational powers of monomial ideals) Let ý be a monomial ideal and ÿ1, … , ÿÿ its Rees valua-
tions, which in this setting are alsomonomial valuations (see [58, Proposition 10.3.4]). For each
ÿ, set ÿÿ(ý) = min{ÿÿ(ÿ) ∣ ÿ ∈ ý} and let ÿ = mcm(ÿ1(ý), … , ÿÿ(ý)). For each 1 ⩽ ÿ ⩽, ÿ, consider
the monomial valuation ÿÿ =

ÿ

ÿÿ(ý)
ÿÿ . Then, the monomial ideal

ýÿ = {ÿ ∈ ý ∣ ÿÿ(ÿ) ⩾ ÿ, for every 1 ⩽ ÿ ⩽ ÿ}

is the ÿ

ÿ
-rational power of ý (see [58, Proposition 10.5.5], [66]). Therefore, by Theorem 7.2(1),

ý = {ýÿ}ÿ∈ℤ⩾0 is an ý-split filtration. Thus,ℛ(ý) is Noetherian and strongly ý-regular by The-
orem 7.2(2) and gr(ý) are ý-split by Theorem 4.7. Since these algebras are Noetherian, the
conclusions of Theorem 4.10 hold for ý.
The sequence of integral closure powers {ýÿ}ÿ∈ℤ⩾0 is a subsequence of the rational powers.

Indeed, one has ýÿ = ýÿÿ [58, Proposition 10.5.2 (5)]. Thus, the conclusions of Theorem 4.10
hold for {ýÿ}ÿ∈ℤ⩾0 and, since direct summands of strongly ý-regular rings are strongly

ý-regular, the normal Rees algebraℛ(ý) =
⨁

ÿ∈ℤ⩾0
ýÿÿÿ is also strongly ý-regular.

(2) (Symbolic powers of squarefree monomial ideals) Let ý be a square-free monomial ideal
and ý1, … , ýÿ be its minimal primes. The functions ÿÿ(ÿ) = max{ÿ ∣ ÿ ∈ ýÿ

ÿ
} are monomial

valuations, therefore, the symbolic powers of ý

ý(ÿ) = {g ∈ ý ∣ ÿÿ(g) ⩾ ÿ, for every 1 ⩽ ÿ ⩽ ÿ}

form an ý-split filtration.

7.2 ý-split filtrations obtained from initial ideals

Setup 7.4. Assume Setup 7.1 and suppose that ý is equipped with a monomial order <. If ý is a
filtration, then in<(ý) = {in(ýÿ)}ÿ∈ℤ⩾0 is also a filtration.

In the following proposition,we provide sufficient conditions for certain filtrations and algebras
obtained from initial ideals to be ý-split.

Proposition 7.5. Assuming Setup 7.4, let ý ⊆ ý be a homogeneous equidimensional radical ideal

of height ℎ such that in<(ý) is radical.

(1) If there existsÿ ∈ ý(ℎ) such that in<(ÿ) is square free, then the filtration {in<(ý
(ÿ))}ÿ∈ℤ⩾0 isý-split.

(2) If there exists ÿ ∈
⋂

ÿ∈ℤ⩾0
(ýÿ)[ý] ∶ ýÿý such that in<(ÿ) is square free, thenℛ({in<(ý

ÿ)}) is ý-

split.

Proof. We begin with (1). Since ÿ ∈ ý(ℎ), we have ÿý−1 ∈
(
ý(ÿ+1)

)[ý]
∶ ý(ÿý+1) for every ÿ ∈ ℤ⩾0

[36, Lemma 2.6] (cf. proof of Corollary 5.10). Thus,

in<
(
ÿý−1

)
in<

(
ý(ÿý+1))

)
= in<

(
ÿý−1ý(ÿý+1)

)

 1
4

6
9

7
7

5
0

, 2
0

2
4

, 2
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://lo
n

d
m

ath
so

c.o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

1
1

2
/jlm

s.1
2

9
6

9
 b

y
 A

rizo
n

a S
tate U

n
iv

ersity
 A

cq
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

6
/1

1
/2

0
2

4
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n

 W
iley

 O
n

lin
e L

ib
rary

 fo
r ru

les o
f u

se; O
A

 articles are g
o

v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



BLOWUP ALGEBRAS OF DETERMINANTAL IDEALS IN PRIME CHARACTERISTIC 39 of 50

⊆ in<

((
ý(ÿ+1)

)[ý])

= in<

(
ý(ÿ+1)

)[ý]
.

Then, in<(ÿ
ý−1) ∉ ÿ[ý] and in<(ÿ

ý−1) ∈
(
in<(ý

(ÿ+1))
)[ý]

∶ in<(ý
(ÿý+1)) for every ÿ ∈ ℤ⩾0. It

follows that {in<(ý
(ÿ))}ÿ∈ℤ⩾0 is an ý-split filtration by Proposition 4.6.

We continue with (2). The assumptions of this part guarantee that

in<
(
ÿý−1

)
in< (ý

ÿý) = in<
(
ÿý−1ýÿý

)

⊆ in<

((
ý(ÿ)

)[ý])

= in< (ý
ÿ)
[ý].

Then, in<(ÿ
ý−1) ∉ ÿ[ý] and in<(ÿ

ý−1) ∈
(
in<(ý

ÿ)
)[ý]

∶ in<(ý
ÿý) for every ÿ ∈ ℤ⩾0. We conclude

thatℛ({in<(ý
ÿ)}) is ý-split proceeding as in the proof of Lemma 6.2(2). □

Our next goal is to prove a technical result, Theorem 7.9, which is crucially used in the rest of
this section. First we need two lemmas.

Lemma 7.6. Assume Setup 7.4 withÿ a perfect field. Let ÿ ⊆ ý be a homogeneous prime ideal such

that in<(ÿ) is radical, and letý = (ý1, … , ýℎ). Suppose that in<(ÿ) ⊆ ý. Let {ýÿ1ÿÿ1 , … , ýÿÿÿÿÿ } be

a set of generators of ÿ =
⨁

ÿ⩾0 in<(ÿ
(ÿ))ÿÿ as an ý-algebra. Write ÿÿ = (ÿÿ,1 … , ÿÿ,ý) for each 1 ⩽

ÿ ⩽ ÿ and suppose ý ⩾ max{ÿÿ,ÿ , ÿÿ}1⩽ÿ⩽ÿ, 1⩽ÿ⩽ý . Then, in<(ÿ
(ÿ+1)) ⊆ ý in<(ÿ

(ÿ)) for every ÿ ∈ ℤ⩾0.

Proof. Setý ∶=
⨁

ÿ⩾0 in<(ÿ
(ÿ+1))ÿÿ ⊆ ÿ. We have thatý ∶= {ýÿ1ÿÿ1−1, … , ýÿÿÿÿÿ−1} generates

ý as an ÿ-ideal. Fix ýÿÿÿÿÿ−1 ∈ ý. We claim that there exists 1 ⩽ ÿ ⩽ ℎ such that ÿÿ,ÿ ⩾ 1. If not,

we would get that ýÿÿÿÿÿ−1ýý = ýý, and therefore in<(ÿ
(ÿÿ)) ⊈ ý. However, this contradicts the

assumption in<(ÿ) ⊆ ý. It follows from this claim and by the assumption oný that ÿÿ(ý
ÿÿÿÿÿ−1) b

0. Let g ∈ ÿ(ÿÿ) be such that in<(g) = ýÿÿ , and set ÿÿ =
ÿ

ÿýÿ
. We have

0 b ÿÿ(ý
ÿÿÿÿÿ−1) = ÿÿ(in<(g)ÿ

ÿÿ−1) = in<(ÿÿ(g))ÿ
ÿÿ−1 ∈ in<(ÿ

(ÿÿ−1))ÿÿÿ−1

by the characterization of symbolic powers in terms of differential operators [23, 27, 73, 98]. Hence,

ýÿÿÿÿÿ−1 ∈ ýÿ in<

(
ÿ(ÿÿ−1)

)
ÿÿÿ−1 ⊆ ý in<

(
ÿ(ÿÿ−1)

)
ÿÿÿ−1 ⊆ ý ⋅ ÿ.

We haveý ⊆ ý ⋅ ÿ, and therefore in<(ÿ
(ÿ+1)) ⊆ ý in<(ÿ

(ÿ)) for every ÿ ∈ ℤ⩾0. □

Lemma 7.7. Let (ÿ, ÿ) be a universally catenary local domain. Let ý be a filtration of nonzero

ÿ-ideals, such that the Rees algebra ℛ(ý) is finitely generated as ÿ-algebra. Then, gr(ý) is

equidimensional of dimension dim(ÿ).

 1
4

6
9

7
7

5
0

, 2
0

2
4

, 2
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://lo
n

d
m

ath
so

c.o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

1
1

2
/jlm

s.1
2

9
6

9
 b

y
 A

rizo
n

a S
tate U

n
iv

ersity
 A

cq
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

6
/1

1
/2

0
2

4
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n

 W
iley

 O
n

lin
e L

ib
rary

 fo
r ru

les o
f u

se; O
A

 articles are g
o

v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



40 of 50 DE STEFANI et al.

Proof. Consider the extended Rees algebra ý ∶= ÿ[ýÿ, ÿ−1] = ⊕ÿ∈ℤýÿÿ
ÿ where ýÿ = ÿ for ÿ ⩽ 0.

Thus, there exists ý ∈ ℤ>0 such that ý is an integral extension of ÿ[ýýÿ, ÿ
−1] = ⊕ÿ∈ℤý

ÿ
ý
ÿÿ; see

Equation (2.4.1). Therefore, ý has dimension dim(ÿ) + 1 [58, Theorem 2.2.5, Theorem 5.1.4(1)].
Now, ÿ−1 is a homogeneous nonzero element of ý and then every minimal prime of (ý−1) has
height one. We also have that ý∕(ÿ−1) ≅ gr(ý). The result now follows by noticing that ý is a
catenary graded domain, which has a unique homogeneous maximal ideal ⊕ÿ<0ýÿý

ÿ ⊕ÿ⊕ÿ>0

ýÿý
ÿ, and thus for any homogeneous idealý ⊆ ý, one has dim(ý∕ý) + ht(ý) = dim(ý). □

Remark 7.8. Assuming Setup 7.4 withÿ algebraically closed, Sullivant proved that for all ÿ ∈ ℤ⩾0

and all radical ideals ý such that in<(ý) is radical, one has in<(ý
(ÿ)) ⊆ in<(ý)

(ÿ) [92]. We point out
that his proof works, more generally, if ÿ is just any perfect field.

We are now ready to present the technical theorem (cf. [57, Theorem 1.2]).

Theorem7.9. Assume Setup 7.4withÿ a perfect field. Letÿ ⊆ ý be a homogeneous prime ideal such

that in<(ÿ) is radical. Let ÿ =
⨁

ÿ⩾0 in<(ÿ
(ÿ))ÿÿ, ý =

⨁
ÿ⩾0 in<(ÿ

(ÿ+1))ÿÿ ⊆ ÿ, and ÿ = ÿ∕ý.

Assume that ÿ is Noetherian and let ÿ1, … , ÿÿ be the generating degrees of ÿ and an ý-algebra.

Assume ý > lcm(ÿ1, … , ÿÿ) and that ÿ is reduced. Then, there is a one-to-one correspondence

between primes of ý minimal over in<(ÿ) and minimal primes of ÿ.

More specifically, if ÿ ∈ Spec(ý) is minimal over in<(ÿ), then ý = ker(ÿ → ÿ ⊗ý ýÿ) is a

minimal prime of ÿ such that ý ∩ ý = ÿ, and every minimal prime of ÿ is of this form.

Proof. For allÿ ⩾ 1, set ýÿ = in<(ÿ
(ÿ)).Without loss of generality,wemay assume thatÿ is infinite.

For all ÿ ⩾ 1, we have ýÿ
1
⊆ ýÿ, and by Remark 7.8, we also have ýÿ ⊆ ý(ÿ)

1
. Let ÿ ∈ Spec(ý) bemin-

imal over ý1. After localizing at ÿ, the above inclusions all become equalities. Moreover, since ý1
is radical, we have ý1ýÿ = ÿýÿ, and therefore ýÿýÿ = (ÿýÿ)

ÿ. It follows that ÿ ⊗ý ýÿ ≅ grÿýÿ(ýÿ),

and since ýÿ is regular, this associated graded ring is a domain. If we let ý = ker(ÿ → ÿ ⊗ý ýÿ),
then ÿ∕ý is a subring of a domain, hence a domain itself. It follows that ý is a prime ideal of
ÿ, and it is easy to see that ý ∩ ý = ker(ý∕ý1 → ýÿ∕ÿýÿ) = ÿ. Finally, the map ÿ → ÿ ⊗ý ýÿ
becomes an isomorphism when localized at ý. Therefore, ýÿý = 0, that is, ý is a minimal prime
of ÿ.
Now let ý be a minimal prime of ÿ. Let ý be a lift of ý to ÿ, so that ý is a prime of ÿ,

which is minimal over ý. Let ÿ = ý ∩ ý, which is a monomial ideal. Hence, ÿ generated by
variables, say ý1, … , ýℎ. Consider the multiplicative system ÿ = ÿ[ýℎ+1, … , ýý] ⧵ {0} ⊆ ý, let
ÿ′ = ÿ(ýℎ+1, … , ýý) = ÿ−1ÿ[ýℎ+1, … , ýý] andý

′ = ÿ−1ý = ÿ′[ý1, … , ýℎ]. In addition,ÿ
−1ÿ =

ÿ−1ý′ ∩ÿ−1ý = (ý1, … , ýℎ)ý
′. We replace ÿ by ÿ′, and may assume ý ∩ ý = ÿ = (ý1, … , ýℎ).

By Lemma 7.7, we have dim(ÿ∕ý) = dim(ÿ) = ý. We want to show thatÿ is minimal over ý1.
First, we want to show that, in our current setup, the monomial ideal ý1 is generated by vari-

ables. If not, after possibly relabeling the indeterminates, we may find integers 1 ⩽ ý1 ⩽ ý2 ⩽ ý,
a square-free monomial ideal ý ⊆ (ý1, … , ýý1)

2, and an ideal ÿ = (ýý1+1, … , ýý2) generated by
variables such that ý1 = ý + ÿ.
By Lemma 7.6, we have that ýÿ+1 ⊆ ÿýÿ for all ÿ ⩾ 0, and thus ý ⊆ ÿÿ ⊆ ý. Since ÿ = ÿ∕ý

is reduced, and ý is a minimal prime of ý, we have ýÿý = ýÿý, and thus ýÿý = ÿÿý. In par-
ticular, there exist ÿ ⩾ 0 and ÿÿÿ ∈ ÿ ⧵ ý such that ÿÿÿ(ÿÿ) ⊆ ý. Thus, ÿ ∈ ýÿ is an element
such that ÿÿ ⊆ ýÿ+1, and ÿÿ

ÿ ∉ ý. In our assumptions, if ý = lcm(ÿ1, … , ÿÿ), then we can find
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homogeneous elements ÿ1ÿ
ý, … , ÿýÿ

ý, which form a full system of parameters for the finitely gen-
erated graded ÿ-algebra ÿ∕ÿÿ. In particular, notice that ÿÿÿ

ý ∉ ý for all ÿ, since ý is a minimal
prime ofÿÿ.
First, we claim that ÿÿ ∉ ÿý+1 for all ÿ = 1, … , ý, that is, each ÿÿ has degree at most ý. By way of

contradiction, assume ÿÿ ∈ ÿý+1 for some ÿ. We have

ÿÿÿ
ý(ÿÿÿ)ý+1 ⊆ (ÿÿ)ý+1ÿ(ÿ+1)(ý+1)−1 ⊆ ý(ÿ+1)(ý+1)ÿ

(ÿ+1)(ý+1)−1 ⊆ ý ⊆ ý,

which contradicts the fact that ÿÿÿ
ý and ÿÿÿ do not belong to ý.

We now claim that ý(ý)
1
= (ý + ÿ)(ý) ⊆ (ý1, … , ýý1)

ý+1 + ÿ. Let ý1 = ÿ[ý1, … , ýý1], ÿ1 =

(ý1, … , ýý1)ý1 andý = ý ∩ ý1. Sincewe have (ý + ÿ)(ý) ⊆ ý(ý) + ÿ, it suffices to showý(ý) ⊆ ÿý+1
1

in ý1. Since ý = char(ÿ) > ý, every ÿ-linear differential operator ÿ of ý′ of order at most ý can
be written as ÿýÿ◦ÿ

′ for some ÿ-linear differential operator ÿ′ of order at most ý − 1, and some
1 ⩽ ÿ ⩽ ý1. We have

ÿ(ý(ý)) = ÿýÿ (ÿ
′(ý(ý))) ⊆ ÿýÿ (ý) ⊆ ÿýÿ (ÿ

2
1) ⊆ ÿ1 (for instance, [23, Proposition 2.14]).

Therefore, we have ý(ý) ⊆ ÿ(ý+1)
1

= ÿý+1
1

[23, Proposition 2.14]. At this point, we have shown

that (ÿ1, … , ÿý) ⊆ ýý ⊆ ý(ý)
1
⊆ (ý1, … , ýý1)

ý+1 + ÿ. Since each ÿÿ is homogeneous, and has degree
at most ý, we must have (ÿ1, … , ÿý) ⊆ ÿ.

Finally, let ý = (ÿ1, … , ÿý); we claim that
√
ý = ý1. Once we have shown this, we have ý1 =√

ý ⊆ ÿ ⊆ ý1, which implies ý1 = ÿ is generated by variables. Since ÿ1ÿ
ý, … , ÿýÿ

ý are a full
system of parameters for ÿ∕ÿÿ, we can find an integer ý ≫ 0 such that (ýýý ÿ

ýý)ÿ∕ÿÿ ⊆

(ÿ1ÿ
ý, … , ÿýÿ

ý)ÿ∕ÿÿ, so that ýýÿ
ýý ⊆ (ÿ1ÿ

ý, … , ÿýÿ
ý)ýýý−ýÿ

ýý + (ÿÿ)ýýÿ
ýý. In particular, we

have a containment ýýý ⊆ (ÿ1, … , ÿý) + ÿýýý. Because ÿ is generated in degree at most ý, we have
ýýý = ýýý , and we conclude that ýýý ⊆ (ÿ1, … , ÿý) + ÿýýý. It follows from graded Nakayama’s

Lemma that ýýý ⊆ (ÿ1, … , ÿý), and since ý
ýý
1

⊆ ýýý, we conclude that ý1 ⊆
√
ý. Since ý ⊆ ý1, the

other inclusion is trivial.
To conclude the proof, observe that since ý1 is generated by variables, we have ý

ÿ
1
= ý(ÿ)

1
for all

ÿ. It follows that ÿ =
⨁

ÿ⩾0 ýÿ∕ýÿ+1 =
⨁

ÿ⩾0 ý
ÿ
1
∕ýÿ+1

1
= grý1(ý) is reduced. Then,ÿ is a minimal

prime over ý1, by the one-to-one correspondence between minimal primes of ÿ and ý∕ý1 already
established in this case [57, Theorem 1.2]. □

From the previous theorem, we obtain the following useful corollary.

Corollary 7.10. Assume Setup 7.4 with ÿ a perfect field. Let ÿ ⊆ ý be a homogeneous prime

ideal such that in<(ÿ) is radical. Let ÿ =
⨁

ÿ⩾0 in<(ÿ
(ÿ))ÿÿ, ý =

⨁
ÿ⩾0 in<(ÿ

(ÿ+1))ÿÿ ⊆ ÿ, and

ÿ = ÿ∕ý. Assume ÿ is Noetherian and let ÿ1, … , ÿÿ be the generating degrees of ÿ and an ý-algebra.

Assume ý > lcm(ÿ1, … , ÿÿ) and that ÿ is reduced. Then, in<(ÿ
(ÿ)) = in<(ÿ)

(ÿ) for all ÿ ⩾ 1.

Proof. For all ÿ ⩾ 1, set ýÿ = in<(ÿ
(ÿ)). By Theorem 7.9, we have that ÿ =

⨁
ÿ⩾0 ýÿ∕ýÿ+1 is a

torsion-free ý∕ý1-module. The same argument used in Remark 5.3 shows Assý(ý∕ýÿ) ⊆ Min(ý1)

for all ÿ ⩾ 1. Thus, since ýÿ contains ýÿ
1
, it must in fact contain ý(ÿ)

1
. Finally, because the

containment ýÿ ⊆ ý(ÿ)
1

always holds, we obtained the desired equality. □
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The following observation shows how close is the equality in<(ÿ
(ÿ)) = in<(ÿ)

(ÿ), for every ÿ ∈
ℤ⩾0, to ý being symbolic ý-split.

Remark 7.11. Assume Setup 7.4 with ÿ a perfect field. Let ÿ ⊆ ý be a homogeneous prime ideal
such that in<(ÿ) is radical and in<(ÿ

(ÿ)) = in<(ÿ)
(ÿ) for all ÿ ⩾ 1. Then, ý1⋯ýý ∈ in<(ÿ)

(ℎ) =

in<(ÿ
(ℎ)), where ℎ = height(ÿ). Let ÿ ∈ ÿ(ℎ) be a homogeneous polynomial such that in<(ÿ) =

ý1⋯ýý. Thus, ÿ ∉ ÿ[ý], and so, ÿ is symbolic ý-split by Corollary 5.10.

7.3 Results in characteristic zero

Let ý ⊆ ý = ℚ[ý1, … , ýý], and let ý = ℤ[ý1, … , ýý]. Let ýý = ý ∩ ý, and let ÿ1, … , ÿý ∈ ý be gen-
erators of ýý. Note that (ÿ1, … , ÿý)ý = ý. For every prime ý ∈ ℤ, we let ý(ý) = ýý ⋅ ý(ý), where
ý(ý) = ℤ∕(ý)[ý1, … , ýý]. Note that, if ý∕ýý is flat over ý, then ýý ⊗ℤ ℤ∕(ý) can be identified
with the ideal ý(ý) of ý(ý) ≅ ý ⊗ℤ ℤ∕(ý).

Lemma 7.12. Given an integer ÿ ∈ ℤ⩾0 and an ideal ý ⊆ ý = ℚ[ý1, … , ýý], we have (ý(ý))
(ÿ) =

((ýý)
(ÿ))(ý) for all primes ý ≫ 0.

Proof. Consider a minimal primary decomposition (ýý)
ÿ = ý1 ∩ … ∩ ýý in ý. We collect the pri-

mary components and write (ýý)
ÿ = (ýý)

(ÿ) ∩ ý, where (ýý)
(ÿ) = ý1 ∩ … ∩ ýý is the ÿ-th symbolic

power of ýý in ý. Let ÿÿ =
√
ýÿ . By generic freeness [53, Lemma 8.1], there exists an element

ÿ ∈ ℤ such that all the modules (ý∕ýÿ)ÿ, (ý∕ý
ÿ
ý
)ÿ, (ý∕ý

(ÿ)
ý
)ÿ, and (ý∕ýý)ÿ are free over ℤÿ. Since

we are seeking to get the equality (ý(ý))(ÿ) = ((ýý)
(ÿ))(ý) only for ý ≫ 0, without loss of gener-

ality, we directly assume that all the above modules are free over ℤ. By flatness, we have ýÿ
ý
⊗ℤ

ℤ∕(ý) ≅ ýÿ
ý
(ý) = (ý(ý))ÿ = ý1(ý) ∩ … ∩ ýý(ý) as ideals of ý(ý) and, in particular, ((ýý)

(ÿ))(ý) =

ý1(ý) ∩ … ýý(ý). It is left to show ý1(ý) ∩ … ∩ ýý(ý) = (ý(ý))(ÿ). Since (ýý)
(ÿ) ⊗ℤ ℚ ≅ ý(ÿ), we have

that for ý ≫ 0 there is no associated prime of ý1(ý) ∩ … ∩ ýý(ý), which is embedded [52, Theorem
2.3.9], and the desired equality follows. □

Remark 7.13. Assume that < is a monomial order on ý = ℚ[ý1, … , ýý], and let ý ⊆ ý be an
ideal. We have that in<(ýý)(ý) = in<(ý(ý)) for all ý ≫ 0 [81, Lemma 2.3]. Moreover, any mini-
mal monomial generating set of in<(ý) is a minimal monomial generating set of in<(ý(ý)) for
ý ≫ 0.

Remark 7.14. If ý ⊆ ý are two ideals of ý = ℚ[ý1, … , ýý] such that ý(ý) = ý(ý) for all ý ≫ 0, then
ý = ý. In fact, after localizing at a nonzero element ÿ ∈ ℤ, we may assume that (ýý∕ýý)ÿ is a
free ℤÿ-module, by generic freeness. Our assumptions guarantee that there is a sufficiently large
prime integer ý such that (ýý∕ýý)ÿ ⊗ℤÿ

ℤÿ∕(ý) ≅ ýý∕ýý ⊗ℤ ℤ∕(ý) ≅ ý(ý)∕ý(ý) = 0, and since
(ýý∕ýý)ÿ is free over ℤÿ, this implies (ýý)ÿ = (ýý)ÿ. In particular, ý = ý.

Theorem 7.15. Let ý = ℚ[ý1, … , ýý] be equipped with a monomial order <. Let ÿ1, … , ÿý ∈

ý = ℤ[ý1, … , ýý] be homogeneous elements, and ý = (ÿ1, … , ÿý)ý. Assume that ý is prime,

and that in<(ý) is radical. For a prime integer ý, we let ÿ(ý) =
⨁

ÿ⩾0 in<(ý(ý)
(ÿ))ÿÿ, ý(ý) =⨁

ÿ⩾0 in<(ý(ý)
(ÿ+1))ÿÿ, and ÿ(ý) = ÿ(ý)∕ý(ý). Assume that ÿ(ý) is Noetherian and that ÿ(ý)
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is reduced for all ý ≫ 0. Ifÿ is any field of characteristic zero, ý = ÿ[ý1, … , ýý] is equipped with the

same monomial order < as ý, and ÿ = ýý, then in<(ÿ
(ÿ)) = in<(ÿ)

(ÿ) for all ÿ ⩾ 1.

Proof. First we prove the statement for ÿ = ℚ, that is, for ý = ý and ÿ = ý. Let ý = ýý and fix
ÿ ∈ ℤ⩾0; by Remarks 7.8 and 7.14, we only have to show in<(ý)

(ÿ)(ý) = in<(ý
(ÿ))(ý) for all ý ≫ 0.

By Lemma 7.12 and Remark 7.13, for ý ≫ 0, we have

in<(ý)
(ÿ)(ý) = (in<(ý)(ý))

(ÿ) = in<(ý(ý))
(ÿ)

and

in<

(
ý(ÿ)

)
(ý) = in<

(
ý(ÿ)(ý)

)
= in<

(
ý(ý)(ÿ)

)
.

Moreover, by Remark 7.13, we have that in<(ý(ý)) is square free for all ý ≫ 0, given that in<(ý)
is square free by assumption. Since ÿ(ý) is finitely generated and ÿ(ý) is reduced for all ý ≫ 0,
we conclude by Corollary 7.10 that in<(ý(ý))

(ÿ) = in<(ý(ý)
(ÿ)) for all ý ≫ 0, and the proof is

complete in this case.
Now let ÿ be any field of characteristic zero and fix ÿ ∈ ℤ⩾0. Since Buchberger’s algorithm is

stable under base extensions, we have in<(ý)ý = in<(ýý) for any ideal ý ⊆ ý. Moreover, as the
natural inclusion ý ↪ ý ≅ ý ⊗ℚ ÿ is flat andℚ→ ÿ is separable, we have ý(ÿ)ý = (ýý)(ÿ) for any
radical ideal ý ⊆ ý. By what we have already shown, we finally get

in<

(
ÿ(ÿ)

)
= in<

(
(ýý)(ÿ)

)
= in<

(
ý(ÿ)

)
ý =

(
in<(ý)

(ÿ)
)
ý = in<(ýý)

(ÿ) = in<(ÿ)
(ÿ). □

7.4 Main results of this section

We are ready to present the main results of this section in the context of determinantal ideals.
In the generic case, the equality between initial ideals of symbolic powers and symbolic powers
of initial ideals was proved by Bruns and Conca [10, Lemma 7.2]. The methods developed in this
paper allow us to recover this result.

Theorem 7.16. Assume Setup 6.3 and ý > min{ý, ÿ − ý}. Then, the filtration {in<(ýý(ÿ)
(ÿ))}ÿ∈ℤ⩾0

and the algebraℛ({in<(ýý(ÿ)
ÿ)}) are ý-split. Moreover,

in<(ýý(ÿ)
(ÿ)) = in<(ýý(ÿ))

(ÿ)

for every ÿ ∈ ℤ⩾0.

Proof. We consider ÿÿ(ÿ) as in Notation 6.3. We have that in<(ÿ1(ÿ)) is square free and
ÿ1(ÿ) ∈

⋂
ÿ∈ℤ⩾0

(ýý(ÿ)
ÿ)[ý] ∶ ýý(ÿ)

ÿý by the proof of Theorem 6.8. Then, ℛ({in<(ýý(ÿ)
ÿ)}) is ý-

split by Proposition 7.5(2). We also have ÿý(ÿ) ∈ ýý(ÿ)
(ht(ýý(ÿ))) by the proof of Theorem 6.5. Then,

{in<(ýý(ÿ)
(ÿ))}ÿ∈ℤ⩾0 is an ý-split filtration by Proposition 7.5 (1). Thus,

ÿ ∶=
⨁
ÿ∈ℤ⩾0

in<(ýý(ÿ)
(ÿ))

in<(ýý(ÿ)
(ÿ+1))
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is an ý-split ring by Theorem 4.7, and so, it is reduced. Since ℛ({in<(ýý(ÿ)
(ÿ))}) is a finitely

generated algebra [10, Lemma 7.1.], we conclude that

in<(ýý(ÿ)
(ÿ)) = in<(ýý(ÿ))

(ÿ)

for every ÿ ∈ ℤ⩾0 by Corollary 7.10. □

Corollary 7.17. Let ÿ be a field of characteristic zero, ÿ be a generic ÿ × ý matrix of variables, and

ý = ÿ[ÿ]. For every ý ⩽ min{ÿ, ý} and every ÿ ∈ ℤ⩾0, we have

in<(ýý(ÿ)
(ÿ)) = in<(ýý(ÿ))

(ÿ).

Proof. This is immediate consequence of Theorems 7.15 and 7.16. □

Finally, we now turn our attention to the case of Pfaffians, which, to the best of our knowledge,
was not previously known.

Theorem 7.18. Assume Setup 6.21 and ý > min{2ý, ÿ − 2ý}. Then, the filtration

{in<(ÿ2ý(ý)
(ÿ))}ÿ∈ℤ⩾0 and the algebraℛ({in<(ÿ2ý(ý)

ÿ)}) are ý-split. Moreover,

in<

(
ÿ2ý(ý)

(ÿ)
)
= in< (ÿ2ý(ý))

(ÿ)

for every ÿ ∈ ℤ⩾0.

Proof. We consider ÿ2ÿ(ý) as inNotation 6.21.We have that in<(ÿ2) is a square-freemonomial and
ÿ2(ý) ∈

⋂
ÿ∈ℤ⩾0

(ÿ2ý(ý)
ÿ)[ý] ∶ ÿ2ý(ý)

ÿý by the proof of Theorem 6.26. Then,ℛ({in<(ÿ2ý(ý)
ÿ)}) is

ý-split by Proposition 7.5(2). We also have ÿ2ý(ý) ∈ ÿ2ý(ý)
(ht(ÿ2ý(ý))) by the proof of Theorem 6.23,

therefore {in<(ÿ2ý(ý)
(ÿ))}ÿ∈ℤ⩾0 is an ý-split filtration by Proposition 7.5(1). In particular,

ÿ =
⨁
ÿ∈ℤ⩾0

in<(ÿ2ý(ý)
(ÿ))

in<(ÿ2ý(ý)
(ÿ+1))

is a ý-split by Theorem 4.7, and so, it is reduced. As ℛ({in<(ÿ2ý(ý)
(ÿ))}) is a finitely generated

algebra [2, Proof of Proposition 3.1], we conclude that

in<(ÿ2ý(ý)
(ÿ)) = in<(ÿ2ý(ý))

(ÿ)

for every ÿ ∈ ℤ⩾0 by Corollary 7.10. □

Corollary 7.19. Let ÿ be a field of characteristic zero, ý be a generic ÿ × ÿ skew-symmetric matrix,

and ý = ÿ[ý]. For every ý ⩽ + ÿ
2
, and every ÿ ∈ ℤ⩾0, we have

in<(ÿ2ý(ý)
(ÿ)) = in<(ÿ2ý(ý))

(ÿ).

Proof. This is an immediate consequence of Theorems 7.15 and 7.18. □
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The case of Hankel matrix was also known, and it is due to Conca [15, Lemma 3.5 and Theorem
3.8]. We recover it here.

Theorem 7.20. Assume Setup 6.30 and ý > min{ý, ÿ − ý}. Then, the filtration

{in<
(
ýý
(
ÿý

ÿ

)(ÿ))
}ÿ∈ℤ⩾0 and the algebraℛ({in<(ýý(ÿ

ý
ÿ
)ÿ)}) are ý-split. Moreover,

in<

(
ýý(ÿ

ý
ÿ)
(ÿ)

)
= in<

(
ýý(ÿ

ý
ÿ)
)(ÿ)

for every ÿ ∈ ℤ⩾0.

Proof. We set ÿ = ÿodd(ÿ
ý
ÿ
) if ý is odd and ÿ = ÿeven(ÿ

ý
ÿ
) if ý is even as in Notation 6.30, and

ÿ = ÿý
ÿ
. We have that in<(ÿ) is square free and ÿ ∈

⋂
ÿ∈ℤ⩾0

(ýý(ÿ)ÿ)[ý] ∶ ýý(ÿ)ÿý by the proof

of Theorem 6.35. It follows that ℛ({in<(ýý(ÿ)ÿ)}) is an ý-split ring by Theorem 4.7, and so, it
is reduced. We also have that ÿ ∈ ýý(ÿ)(ht(ýý(ÿ))) by the proof of Theorem 6.33, and therefore
{in<(ýý(ÿ)(ÿ))}ÿ∈ℤ⩾0 is an ý-split filtration by Proposition 7.5(1). We also have

ÿ =
⨁
ÿ∈ℤ⩾0

in<(ýý(ÿ)(ÿ))

in<(ýý(ÿ)(ÿ+1))

is an ý-split, and so, it is reduced. Sinceℛ({ýý(ÿ)(ÿ))}) is a finitely generated algebra [15, Theorem
4.1], we conclude that

in<(ýý(ÿ)(ÿ)) = in<(ýý(ÿ))(ÿ)

for every ÿ ∈ ℤ⩾0 by Corollary 7.10. □

Corollary 7.21. Let ÿ be a field of characteristic zero, ÿý
ÿ
be a ÿ × ý + 1 − ÿ Hankel matrix of

variables, and ý = ÿ[ÿý
ÿ
]. For every ý ⩽ min{ÿ, ý + 1 − ÿ} and every ÿ ∈ ℤ⩾0, we have

in<(ýý(ÿ
ý
ÿ)
(ÿ)) = in<(ýý(ÿ

ý
ÿ))

(ÿ).

Proof. This is an immediate consequence of Theorems 7.15 and 7.20. □

Remark 7.22. In the case of minors of a generic symmetric matrix ý, it is not known whether the
algebraℛ({in<(ýý(ý)

(ÿ))}) is finitely generated. For this reason, we cannot use the same strategy
used above for the other three types of determinantal ideals.

Remark 7.23. If ý is a standard graded polynomial ring over a fieldÿ and ý ⊆ ý is a homogeneous
ideal, we denote by ÿ(ý) the smallest degree of a minimal generator of ý. Let < be a monomial
order on ý. We note that ÿ(ý) = ÿ(in<(ý)). In particular, if ý and in<(ý) are radical and in<(ý

(ÿ)) =

in<(ý)
(ÿ) for every ÿ, then their Waldschmidt constants coincide. Specifically,

ÿ̂(ý) = lim
ÿ→∞

ÿ
(
ý(ÿ)

)
ÿ

= lim
ÿ→∞

ÿ(in<(ý)
(ÿ))

ÿ
= ÿ̂(in<(ý)).
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In particular, Theorems 7.16, 7.18, and 7.20 allow us to compute the Waldschmidt constant of
certain determinantal rings via their initial ideals, for which a formula has already been proved
[5]. We point out that one can also compute directly that ÿ̂(ýý(ÿ)) =

ÿ

ÿ−ý+1
[10, Lemma 7.1.],

ÿ̂(ÿ2ý(ý)) =
+ÿ∕2,

+ÿ∕2,−ý+1 [2, Proof of Proposition 3.1], and ÿ̂(ýý(ÿ
ý
ÿ
)) =

+(ý+1)∕2,
+(ý+1)∕2,−ý+1 [15, Theorem

4.1].

Remark 7.24. If ý is a polynomial ring, < is a monomial order, and ý ⊆ ý is a homogeneous ideal,
then ý(ÿ) ⊆ ýÿ implies in<(ý

(ÿ)) ⊆ in<(ý
ÿ). We recall that the resurgence of ý is defined by ÿ(ý) =

sup{ÿ
ÿ
| ý(ÿ) ⊈ ýÿ}. If in<(ý) are radical, in<(ý

(ÿ)) = in<(ý)
(ÿ), and in<(ý

ÿ) = in<(ý)
ÿ for every ÿ,

then ÿ(in<(ý)) ⩽ ÿ(ý). In particular, this case occurs for ideals of minors of Hankel matrices (see
Theorem 7.20 and [15, Theorem 3.16(b)]).

Hoa and Trung showed that the limit above exists for square-freemonomial ideals. In fact, they
showed a stronger version for the ÿ-invariants [46, Theorems 4.7 and 4.9].

Corollary 7.25. Assume Setup 6.30.

(1) Assume Setup 6.3. Then lim
ÿ→∞

reg
(
ÿ[ÿ]∕ in<

(
ýý(ÿ)

(ÿ)
))

ÿ
exists. Moreover, for ÿ ≫ 0, we have that

depth
(
ÿ[ÿ]∕ in<

(
ýý(ÿ)

(ÿ)
))
stabilizes.

(2) Assume Setup 6.21. Then lim
ÿ→∞

reg
(
ÿ[ý]∕ in<

(
ÿ2ý(ý)

(ÿ)
))

ÿ
exists. Moreover, for ÿ ≫ 0, we have that

depth
(
ÿ[ý]∕ in<

(
ÿ2ý(ý)

(ÿ)
))
stabilizes.

(3) Assume Setup 6.30. Then lim
ÿ→∞

reg
(
ÿ[ÿý

ÿ
]∕ in<

(
ýý(ÿ

ý
ÿ
)(ÿ)

))

ÿ
exists. Moreover, for ÿ ≫ 0, we have that

depth
(
ÿ[ÿý

ÿ
]∕ in<

(
ýý(ÿ

ý
ÿ
)(ÿ)

))
stabilizes.

Proof. If ý is a square-free monomial ideal in a polynomial ring ý, it is already known

that lim
ÿ→∞

reg(ý∕ý(ÿ))

ÿ
exists, and that depth(ý∕ý(ÿ)) stabilizes [46]. Then, the result follows from

Theorems 7.16, 7.18, and 7.20. □
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