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Abstract

We study when blowup algebras are F-split or strongly
F-regular. Our main focus is on algebras given by
symbolic and ordinary powers of ideals of minors of
a generic matrix, a symmetric matrix, and a Hankel
matrix. We also study ideals of Pfaffians of a skew-
symmetric matrix. We use these results to obtain bounds
on the degrees of the defining equations for these alge-
bras. We also prove that the limit of the normalized
regularity of the symbolic powers of these ideals exists
and that their depth stabilizes. Finally, we show that, for
determinantal ideals, there exists a monomial order for
which taking initial ideals commutes with taking sym-
bolic powers. To obtain these results, we develop the
notion of F-split filtrations and symbolic F-split ideals.
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1 | INTRODUCTION

Let R be a Noetherian ring. A filtration 1 = {In}nEZ>0 is a sequence of ideals such that I, = R,
I, C1I,foreveryn € Z,q, and I,,,J,, C1,,,, for every n,m € Z. Classical examples of filtra-
tions include ordinary and symbolic powers. By taking the initial ideals of a filtration under a
monomial order, one obtains a filtration of monomial ideals. Given a filtration, one can con-
struct its Rees algebra % (I) and associated algebra gr(l). Notably, the Rees algebra of the ordinary
powers of an ideal I gives the coordinate ring of the blowup of Spec(R) along the variety defined
by I.

In this paper, we provide several results regarding ordinary and symbolic powers of determinan-
tal ideals, and their Rees and associated graded algebras. Specifically, we study ideals of minors
of generic, symmetric, and Hankel matrices of variables. We also study ideals of Pfaffians of a
skew-symmetric matrix of variables. These objects have been intensively studied together with
the varieties that they define, and they have connections with other areas of mathematics. For
more information on this topic, we refer the interested reader to Bruns and Vetter’s book [14], and
to the more recent book of Bruns, Conca, Raicu, and Varbaro [11].

In what follows, I;(—) denotes the ideal generated by t-minors, and P,,;(—) the ideal generated
by 2t-Pfaffians. In our first set of results, we show that the Rees and associated graded algebras of
determinantal ideals have mild singularities from the perspective of Frobenius [48-51]. In partic-
ular, we show that several of them are strongly F-regular, or at least F-split. These singularities
are regarded as the characteristic p analog of log-terminal and log-canonical singularities [39, 40,
68, 88-90] (see also [80]). We recall that strongly F-regular rings are Cohen-Macaulay and nor-
mal [48]. They are also simple as modules over their ring of differential operators [87]. We point
out that the local cohomology modules of F-split rings satisfy desirable vanishing theorems [28,
54] and their defining ideals satisfy Harbourne’s conjecture on symbolic powers [3, 36, 41]. In the
following result, we denote by Z(I) the Rees algebra corresponding to the ordinary powers of
the ideal I, and by #°(I) and gr’(I) the Rees and associated graded algebras corresponding to the
symbolic powers of the ideal I.

Theorem A. Let K be an F-finite field of prime characteristic p > 0. Let X be a generic matrix, Y
be a generic symmetric matrix, Z be a generic skew-symmetric matrix, and W be a generic Hankel
matrix. For an integer t > 0, we have the following:

Q) F5(1(X)) and gr’(I,(X)) are strongly F-regular (Theorem 6.7).

(2) If p> 0, then Z(1,(X)) is F-split (Theorem 6.8).

3) R ,(Y)) and gr’(1,(Y)) are F-split (Theorem 6.13).

(4) If p> 0, then Z(I1,(Y)) is F-split (Theorem 6.17).

(5) R5(Py(2)) and gr’(P,,(Z)) are strongly F-regular (Theorem 6.25).
(6) If p> 0, then #(P,(Z)) is F-split (Theorem 6.26).

(7) R5UI,(W)) and gr’(1,(W)) are F-split (Theorem 6.33).

(8) R(I,(W)) is F-split (Theorem 6.35).
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The wide variety of determinantal objects that we are able to cover in Theorem A highlights
the fact that our techniques have a broad range of applications.

Note that, since K[X]/I;(X) and K[Z]/P,(Z) are direct summands of gr’(I,(X)) and gr*(P,,(Z)),
respectively, Theorem A(1) and (5) imply the known results that K[X]/I,(X) and K[Z]/P;(Z) are
strongly F-regular. In fact, the proofs of Theorem A(1) and (5) can be specialized to give alternative
proofs for the strong F-regularity of K[X]/I,(X) and K[Z]/P;(Z).

Although it was already known that #°(I,(X)) is F-rational [8], hence Cohen-Macaulay and
normal, F-rationality does not imply that the ring is F-split. Therefore, Theorem A(1) improves
this result, as strong F-regularity implies that the ring is both F-rational and F-split. Cohen-
Macaulayness was also known for symbolic Rees algebras of ideals of Pfaffians of a generic
skew-symmetric matrix [2], and this is now also a consequence of Theorem A(5). We point out
that the new techniques we use to study F-singularities of blowup algebras are neither based on
the theory of Sagbi bases [16, 63, 78] nor on that of straightening laws [8, 29]. We only invoke
known results that use Sagbi bases in order to have that some blowup algebras we consider are
Noetherian. Our strategy uses the new notion of F-split filtrations (Definition 4.2), classical meth-
ods in tight closure theory [48], and the choice of certain polynomials inspired by Seccia’s work
on Knutson ideals [81, 82].

Since all the Rees and associated graded algebras in Theorem A are F-split, their a-invariants
are not positive [54]. As a consequence, we obtain bounds for the Castelnuovo-Mumford regular-
ity and the degrees of the defining equations of such algebras; see Theorems 6.9, 6.10, 6.18, 6.19,
6.27, 6.28, 6.36, and 6.37. We point out that, even for monomial ideals, it was generally not known
how to bound the degrees of the defining equations of these Rees algebras in terms of the genera-
tors of the ideal. Significant work has been done over the years in order to find such equations via
different methods [34, 38, 55, 56, 64, 67, 70-72, 83, 84, 93, 96].

A related question is whether the limit of normalized Castelnuovo-Mumford regularities,
lim eeR/I™)

n

n—oo

authors have approached this question in a variety of cases; however, it remains widely open in
general. Some classes of ideals for which this limit is known to exist are square-free monomial
ideals [46] and ideals of small dimension [45]. We obtain this property for determinantal ideals in
prime characteristic.

, always exists [45]. See also the work of Cutkosky on the subject [20]. Several

Theorem B. Let K be an F-finite field of prime characteristic. Let X be a generic matrix, Y be a
generic symmetric matrix, Z be a generic skew-symmetric matrix, and W be a generic Hankel matrix.
For an integer t > 0, we have the following:

(1) lim reg(K[X1/1,C0™)
n

n—oo

exists (Theorem 6.6).

(n)
(2) lim w exists (Theorem 6.15).

n—oo

(n)
(3) lim %np”(z)) exists (Theorem 6.24).

n—0o00

(4) lim

n—oo

(n)
w exists (Theorem 6.34).

If the ground field is the field of complex numbers, there are linear formulas for reg(R/I™)
when [ is the ideal of t-minors of a generic matrix [76] or 2¢-Pfaffians of a generic skew-symmetric
matrix [75]. These results were obtained using representation theory in characteristic zero. The
case of ideals of t-minors of a generic matrix was recently further extended to fields of any
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characteristic [11]. It is worth mentioning that, in general, the function reg(R/I") is not even-
tually linear, not even for square-free monomial ideals [30]. In particular, this linearity may fail
even if the symbolic Rees algebra, #°(I), is Noetherian.

We also obtain that the depth of symbolic powers of determinantal ideals stabilizes, and in some
cases, we obtain the stable value. Our approach shows that the stable value equals the minimum
of the depths among all the symbolic powers. This minimum value was already computed [14];
however, to the best of our knowledge, it was not shown that the stable and minimum values
coincide.

Theorem C. Let K be an F-finite field of prime characteristic. Let X be a generic matrix, Y be a
generic symmetric matrix, Z be a generic skew-symmetric matrix, and W be a generic Hankel matrix.
For an integer t > 0, we have the following:
(1) lim depth(K[X]/I,(X)™) = t> — 1 (Theorem 6.6).
n—0o00
(2) depth(K[Y]/I,(Y)™) stabilizes for n 3> 0 (Theorem 6.15).
(3) lim depth(K[Z]/P,,(Z)"™) = t(2t — 1) — 1 (Theorem 6.24).
n—oo
(4) depth(K[W]/I,(W)™) stabilizes for n > 0 (Theorem 6.34).

Itis known that the initial ideals of the determinantal ideals treated in this work are radical with
respect certain monomial orders (see Section 6.1). Then, it is natural to compare the initial ideal
of their symbolic powers and the symbolic powers of their initial ideals. Sullivant showed that
in_(I )y ¢ in_(I Y if K is algebraically closed and in_(I) is radical [92]. In the case of ideals of
minors of generic matrices [10], and of Hankel matrices of variables [15], not only the containment,
but in fact equality is known to hold. As a consequence of the techniques introduced in this paper,
we recover these results, and we also obtain equality in the case of Pfaffians.

Theorem D. Let K be a perfect field of prime characteristic. Let X be a generic matrix, Z be a generic

skew-symmetric matrix, and W be a generic Hankel matrix. In each case, let < be the monomial order
introduced in Section 6.1. For an integer t > 0, we have that

(D gr (fin, (L™ )}neZ>o) is F-split, therefore

in_ (1,00 ) = in(1,)"

foreveryn € 7, (Theorem 7.16).
() gr({in. (PZt(Z)(”))}nEZZO) is F-split, therefore

in_ (Pm(zf")) = in_(P,,(2))™

Joreveryn € 7, (Theorem 7.18).
(3) gr(fin. (I [(W)(”))}nez>0) is F-split, therefore

in_ (L™ ) = in 0,

foreveryn € Z, (Theorem 7.20).
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IfK is a field of characteristic zero, then we obtain the equalities in_(I,(X)"™) = in_(I,(X))",
in<(P21(Z)(”)) = in<(P21(Z))(”), and in<(lt(W)(”)) = in<(It(W))(”) for every n € 7, (see Corol-
laries 7.17, 7.19, and 7.21), via reduction to prime characteristic. We point out that we do not obtain
analogous results for generic symmetric matrices Y because we do not know whether the Rees
algebra associated to the filtration {in (7, I(Y)(”))}nGZZO is Noetherian.

Theorem D allows us to find bounds for numerical invariants of determinantal ideals in terms of
their initial ideals (see Remarks 7.23 and 7.24). We also obtain that the regularity and depth of the
initial ideals of such determinantal ideals satisfy desirable properties (see Corollary 7.25). In this
context, we provide new examples of existence of limits of normalized Castelnuovo-Mumford
regularities for filtrations given by initial ideals. This is closely related to questions previously
asked by Herzog, Hoa, and Trung [45].

We stress that our strategy to show Theorem D makes no use of the standard techniques
employed before to obtain results about initial ideals of determinantal rings and their ordinary
and symbolic powers [2, 10, 17, 24, 25, 91]. In particular, we use neither the straightening laws
[29] nor the Knuth-Robinson-Schensted correspondence. Indeed, our techniques to prove Theo-
rem D rely on methods in prime characteristic, and a test for the equality in_(I") = in_(I)™ (see
Theorem 7.9 and Corollary 7.10) inspired by the work of Huneke, Simis, and Vasconcelos [57].

Our main tool in this paper is our new notion of F-split filtration (Definition 4.2). If the F-split
filtration is given by symbolic powers of an ideal, we say that the ideal is symbolic F-split (Defini-
tion 5.2). Ideals that are symbolic F-split produce symbolic Rees algebras and symbolic associated
graded algebras that are F-split (see Theorem 4.7). As for the classical notion of F-purity, there
exists a criterion that allows us to test when an ideal is symbolic F-split (see Theorem 5.8), which
resembles the one given by Fedder [33]. We note that if an ideal is symbolic F-split, then its
quotient ring is F-split. However, the converse is not true: In Example 5.13, we show that even
strong F-regularity does not imply that the ideal is symbolic F-split. Examples of symbolic F-split
ideals include square-free monomial ideals (see Example 5.11) and determinantal ideals (see Theo-
rems 6.5, 6.13, 6.23, and 6.33). We refer to Corollary 5.10 and Example 5.16 for additional examples.
Using these ideas, we are able to answer a question raised by Huneke' regarding F-Konig ide-
als (see Example 5.18), which arose in connection to the Conforti-Cornuéjols conjecture [18]. We
also show that a-invariants and depths of symbolic F-split ideals have good behavior (see Propo-
sition 4.9). In addition, there is a finite test to verify that their symbolic and ordinary powers
coincide (see Theorem 5.7).

2 | NOTATIONS AND PRELIMINARIES

Throughout this paper, all rings are commutative with identity. We begin this section by recalling
some notation and preliminary results that we use in the paper.

2.1 | Graded algebras

A 7 -graded ring is aring A, which admits a direct sum decomposition A = (P, 4,, of Abelian
groups, with A; - A; C A4, ; forall i and j.

T BIRS-CMO workshop on Ordinary and Symbolic Powers of Ideals Summer of 2017, Casa Matemética Oaxaca, Mexico.
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6 of 50 | DE STEFANI ET AL.

Assume that A is a Z,-graded algebra over a Noetherian ring A, and let M = @, , M, and
N =@,,c, N, be graded A-modules. An A-homomorphism ¢ : M — N is called homogeneous of
degreecif(M,) € N, foralln € Z.Theset of all graded homomorphisms M — N of all degrees
form a graded submodule of Homg(M, N). In general, these two modules are not the same, but
they coincide when M is finitely generated [12].

Given a Noetherian Z,-graded algebra A, there exist f1,..., f, € A homogeneous elements
such that A = Ay[f}, ..., f,], which is equivalent to @,.,4,, = (f1, ..., f,) [12, Proposition 1.5.4].
Therefore, if A is local, or Z-graded over a field, there is a minimal set of integers d;, ..., d,
such that there exist such f, ..., f, of degree d, ..., d,, respectively. We call these numbers the
generating degrees of A as A,-algebra.

Let S = Ay[y;, -, ¥, ] be a polynomial ring over A, with deg(y;) =d; for 1 <i<r,andlet ¢ :
S — A be an A,-algebra homomorphism defined by ¢(y;) = f; for 1 <i < r. Consider the ideal
& = Ker(¢). We call any minimal set of homogeneous generators of .# the defining equations of
A over A.

2.2 | Methods in prime characteristic

In this subsection, we assume that A is reduced and that it has prime characteristic p > 0. For
e € Z, let F¢ : A — A denote the e-th iteration of the Frobenius endomorphism on A. If A'/P*
denotes the ring of p®-th roots of A taken in the total field of fractions of A, we can identify F*
with the natural inclusion ¢ : A < A'/P°. Throughout this paper, any A-linear map ¢ : A'/P° —
A such that ¢ot = id, is called a splitting of Frobenius, or just a splitting.

Given an A-module M, we let M1/P° denote the A-module, which has the same additive
structure as M and scalar multiplication defined by a - m/?P° := (a?’m)/?°, for all a € A and
ml/p° e MY/p°,

For an ideal I generated by {f,, .., f,,}, we denote by I'?°] the ideal generated by {f7", ..., f'}.
We note that IAY/P* = (IIP°1Y1/r°,

In the case in which A = @,,0A,, is Z,,-graded, we can view AP asa #Zzo-graded mod-

ule in the following way: We write f € A as f = fy + - + fg , with fd]_ € Adj. Then, f1/?° =
fcli/pe + o+ f(li/pe, where each f(li/pe hasdegree d;/p®. Similarly, if M is a Z-graded A-module, we
1 n J

have that MY/P° is a #Z-graded A-module. As a submodule of A/P°, A inherits a natural ﬁzzo
grading, which is compatible with its original grading. In other words, if f € A is homogeneous
of degree d with respect to its original grading, then it has degree d = dp®/p® with respect to the
inherited ézzo grading.

Definition 2.1. Let A be a Noetherian ring of positive characteristic p. We say that A is F-finite
if it is a finitely generated A-module via the action induced by the Frobenius endomorphism F :
A — A or, equivalently, if A'/P is a finitely generated A-module. If (4, m,K) is a Z-graded K-
algebra, then A is F-finite if and only if K is F-finite, thatis, ifand onlyif [K : KP] < c0. Aring A is
called F-pureif F is a pure homomorphism, that is, if and only if themap A ® , M — AP @ , M
induced by the inclusion ¢ is injective for all A-modules M. A ring A is called F-split if F is a split
monomorphism. Finally, an F-finite ring A is called strongly F-regular if for every c € Anotin any
minimal prime, the map A — A/P° sending 1 ~ ¢!/ splits for some (equivalently, all) e > 0.
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Remark 2.2. We have that A is F-split if and only if A is a direct summand of A!/P. If A is an
F-finite ring, then A is F-pure if and only if A is F-split [54, Corollary 5.3].

Remark 2.3. Assume A is an F-finite regular local ring, or a polynomial ring over an F-finite field,
then Hom 4(A'/P°, A) is a free A/P°-module [33, Lemma 1.6]. If ® is a generator (homogeneous
in the graded case) of this module as an AY/P°-module, then for ideals I,J C A we have that the
map ¢ 1= f1/P°. & = ®(f1/P°—)satisfies ¢ (J1/P") C I'ifand onlyif f1/P° € (TIAYVP" : 51 /pe JYP°)
or, equivalently, f € (I Pl T ) [33, Proposition 1.6]. In particular, ¢ is surjective if and only if
fYP° ¢ mAYP thatis, f ¢ mlP°l,

Now, assume A = K[x,, ..., x,] is a polynomial ring and y : K/?° — K is a splitting. Let @ :
AYP° - Abe the A-linear map defined by

d
d

ey (o —p®+1)/p® (g—p°+1)/p® . .
q,(cl/pexiﬁ/f X1 = y (/P )X e Xy ! if p¢|(; — p¢ +1) Vi,
0 otherwise.

We have that @ is a generator of Hom , (A!/P°, A) as an A'/P*-module [6, p. 22]. The map @ is often
called the trace map of A. We point out that, if K is not perfect, ® depends on y, but this is usually
omitted from the notation.

2.3 | Local cohomology and Castelnuovo-Mumford regularity

For an ideal I C A, we define the i-th local cohomology of M with support in I as HIi(M) =
H(C'(f; A) ® 4, M), where C*(f;A) is the Cech complex on a set of generators f = f1,..., f,
of I. We note that H}'(M) does not depend on the choice of generators of I. Moreover, it
only depends on the radical of I. We recall that the i-th local cohomology functor H;(—) can
also be defined as the i-th right derived functor of I';(—), where I')(M)={m e M | I"m =0
for some n € Z 4} If I = m is a maximal ideal and M is finitely generated, then Htin(M ) is
Artinian.

IfM = EBP%E§ZMP% isa #Zzo-graded R-module, and we let A, = ), A,, then Hf4+(M)

isa I%Z-graded A-module. Moreover, [Hf4 (M)] » is a finitely generated A,-module for every
+ p¢

n ez, and Hi1 (M)n =0 for n> 0 [7, Theorem 16.1.5]. We define the a;-invariant of M
+ p¢
as

a,(M) = max {I% [H, (M)]x # o}
+ g
iin4+ (M) # 0, and q;(M) = —co otherwise.

Remark 2.4. Given a finitely generated Z-graded A-module M, we have a;(M /Py = a;(M)/p¢ for
alli € Z,. In fact, H', (MY/P%) = H (M)Y/P° since the functor ()P is exact.
+ +

Remark 2.5. If A is an F-split Z ,-graded ring, then a;(A) < O for all i € Z [54, Lemma 2.3].
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8 of 50 | DE STEFANI ET AL.

Given a finitely generated Z-graded A-module, the Castelnuovo-Mumford regularity of M is
defined as

reg(M) = max{a;(M) +i|i € Z,}.

Remark 2.6. If A = Ay[x,,...,x,] is a polynomial ring over A, such that x; has degree d; > 0 for
every 1 <i<r,thenreg(A)=r—3Y_ d,.

2.4 | Filtrations and blowup algebras

Let R be a commutative ring. We say that a sequence of ideals{I,,},,c,_  of Risa filtration if I, = R,
I, CI,foreveryn € Z,,and 1,1, C I, foreveryn,m € 7.

Definition 2.7. Let R be a ring. Consider the following graded algebras associated to a filtration
I= {In}n6220:

(i) The the Rees algebra of I: Z(I) = EBHGZ>0 I,T" C R[T], where T is a variable.
(ii) The associated graded algebra of I: gr(l) = @nez>0 /1.1

We generally refer to the above as the blowup algebras associated to the filtration [ [97].
If the Rees algebra is Noetherian, we can compute the dimensions of the blowup algebras. We
show this in the next proposition.

Proposition 2.8. Assume that the ideal I, has positive height and that % (1) is finitely generated as
an R-algebra. Then, dim(% (1)) = dim(R) + 1 and dim(gr(l)) = dim(R).

Proof. Consider the extended Rees algebra B := R[IT,T~1] = ®,¢,I,T", whereI, = Rforn <0.
Since % (1) is Noetherian, there exists £ € Z, such that

I,.,=1,1,foreveryn > ¢ [77, Remark 2.4.3]. (24.1)

Thus, B is an integral extension of R[I,T,T~!] = EBHEZI;T”, and Z(1) is an integral extension of
R[I,T] = @] ;T", and hence they both have dimension dim(R) + 1 [58, Theorem 2.2.5, The-
orem 5.1.4(1)(2)]. Now, T~! is a homogeneous regular element of B, thus B/(T~!) = gr(l) has
dimension dim(R), finishing the proof. I

3 | GENERATORS OF DEFINING EQUATIONS OF F-SPLIT BLOWUP
ALGEBRAS

This section is devoted to find bounds for the degrees of the defining equations of the alge-
bras introduced in Definition 2.7 when they are F-split. The main results of this section are
Theorems 3.3 and 3.4.

Let A = @,04, bea Z,-graded Noetherian ring. Given a finitely generated graded A-module
M =&,,M,, we let

Ba(M) =inf{i | M = A - (®,M,)},
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BLOWUP ALGEBRAS OF DETERMINANTAL IDEALS IN PRIME CHARACTERISTIC | 9 of 50

that is, the largest degree of a minimal homogeneous generator of M. The following lemma states
an upper bound on  4(M) in terms of the Castelnuovo-Mumford regularity. This statement can
be found in the literature when A is generated as an algebra in degree one [7, Theorem 16.3.1], or
when A, is a field [22, Theorem 3.5] [21, Theorem 2.2]. While the same result in our setup may be
well known to experts, we could not find a reference in the literature. We include its proof here
for the sake of completeness.

Proposition 3.1. Let A = @,,0A, be a Z,,-graded Noetherian ring. Let dy, ..., d, > 0 be the gen-
erating degrees of A as an Ay-algebra. Let M be a finitely generated Z-graded A-module. Then,

Ba(M) < reg(M) + X[_,(d; — 1).

Proof. Let f1, ..., f, be homogeneous generators of A as an A,-algebra of degree d, ..., d,, respec-
tively. Without loss of generality, we may assume 1 < d; < .. <d,. Observe A, = @n>0 A, =

(f1s s f1-

We now proceed by induction on Zl.rzl d; > r.Thebasecased; = 1forall1 < i < risknown [7,
Theorem 16.3.1]. Let A’ = A[y], where deg(y) = 1and M’ = M ® 4, A’. Since y is regular on M’,
a standard argument via the long exact sequence of local cohomology of

0o M(-1)S M - M/yM=M -0

shows reg(M) = reg(M’), where the regularity of M’ is computed with respect to the ideal A, =
®,50A,. We observe that f = f, — y% is a homogeneous element of degree d,, which is regular
on M’. The short exact sequence

0 - M'(-d,) ER M - M/fM -0

gives reg(M'/fM’') < max{reg(M') +d, — 1,reg(M’)} =regM’') +d, — 1 < reg(M) +d, — 1.
Note that M'/fM’ is an A’/fA’-module and that A’/fA’ = A,lfy,..,f,—1,¥]. Since
Elr:_ll d; +1< Y!_, d;, by induction, we have

r—1 r

BaryparM' [fM') < reg(M'/fM') + ) (d; — 1) < reg(M) + ) (d; — 1).
i=1 i=1

Let N be the A’-submodule of M’ generated by elements of degree at most reg(M) + X.;_,(d; —
1). We have just shown that M’ = N + fM’, and therefore M’ = N + m’M’, where m’ = m, +
A,'. Thus, from the graded Nakayama’s lemma, it follows that M’ = N. In particular, B, (M’) <
reg(M) + Yi_ (d; — 1). Since 8 4/(M") = §,4,(M), the proof is complete. O

We need one more lemma before stating the main result of this section.
Lemma 3.2. Let A = @,,,(A,, be a Noetherian F-finite and F-split graded ring. Let d, ..., d,. be the

generating degrees of A as an Ay-algebra. Then the defining equations of A over A, have degree at
most

dim(A) + )’ d; — max{dim(A), r}.
i=1
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10 of 50 | DE STEFANI ET AL.

Proof. Let f1, ..., f, be homogeneous generators of A as an A,-algebra of degree d;, ..., d,, respec-
tively. Let S = Ay[y;,...,¥,] be a polynomial ring over A, with deg(y;) =d; for 1 <i<r, and
let ¢ : S — A be the graded Aj-algebra homomorphism defined by ¢(y;) = f; for 1 <i <r. Let
J = Ker(¢).

Set S, = (¥;,...,¥,) € S and consider the homogeneous short exact sequence:

<
<

0> FF->S->A-0.

From the long exact sequence of local cohomology modules with support in S, we obtain
HL (A)= HiS“(J) for i < r — 2, and an exact sequence
+ +

0— HA) - H§+(J) - H§+ S) - Hg+(A) - 0.

Since a;(A) < 0forevery i € Z,, by Remark 2.5, and a,(S) = — }|_, d; by Remark 2.6, we have
a;,(J) < Oforeveryi € Z,,. Thus,

reg(.#) = max{a;(¥) + i} < min{r, dim(A)},

as q;(.#) = —oo for i > min{r, dim(A)} [7, Theorems 3.3.1 and 6.1.2]. The result now follows by
Proposition 3.1, after performing some easy calculations. 1

The following is the main theorem of this section, as it provides bounds for the degrees of
generators of defining equations of F-split blowup algebras.

Theorem 3.3. Let R be a Noetherian F-finite and F-split ring of characteristic p > 0. Let | =
ndnez,, be afiltration such that X(1) is a finitely generated F-split R-algebra. Let e, ..., e, be the
generating degrees of % (1) as an R-algebra, that is, Z(1) = R[Iel T, ... ,Ief T¢s], and let vy, ..., v, be
the number of generators of I, ...,1,, respectively. Further assume that I, has positive height. The
defining equations of Z(1) = D, I, T" over R have degree at most

¢ ¢
dim(R) +1 + Z e;U; — max {dim(R) +1, Z vi}.
i=1 i=1

Moreover, if gr(l) is F-split, then the defining equations of gr(1) = @, I,,/I,4+1 over R/I; have
degree at most

¢ ¢
dim(R) + Z e;; — max {dim(R), Z v; }
i=1 i=1

Proof. This follows from Lemma 3.2 and Proposition 2.8. O

Theorem 3.4. Let K be an F-finite field, and R be an F-split graded K-algebra, generated over K
by u elements of degree one. Let | = {I n}nezzo be a filtration such that Z(1) is a finitely generated
F-split R-algebra. Let ey, ..., e, be the generating degrees of Z(l) as an R-algebra, that is, Z(1) =
R[I, T*,...,1,,T%]. Set w; = Br(,) for 1 <i < ¢ and let vy, ..., v, be the number of generators of
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BLOWUP ALGEBRAS OF DETERMINANTAL IDEALS IN PRIME CHARACTERISTIC | 11 of 50

I,,...,1,, respectively. Further assume that I, has positive height. The defining equations of Z (1) over
K have total degree at most

¢ ¢
dim(R)+1+,u+Zvi(wi + e;) — max {dim(R)+1,,u+ Zvi}.

i=1 i=1

Moreover, if gr(l) is F-split, then the defining equations of gr(1) over K have total degree at most

¢ ¢
dim(R) + u + Z v;(w; + ¢;) — max {dim(R),,u + Z vi}.

i=1 i=1

Proof. Both parts of the result follow from Lemma 3.2 and Proposition 2.8. O

4 | F-SPLIT FILTRATIONS

Throughout this section, we assume the following setup.

Setup 4.1. Let R be a Noetherian F-finite and F-split ring of characteristic p > 0, which is either
local or Zzo-graded. In the local case, we let m denote its unique maximal ideal, and K = R/m
its residue field. In the graded case, we assume R = P, R, is a finitely generated R -algebra,
where (R,, m,) is a local ring. We let R, = P, ., R, and m = m; + R, . We further assume that
R is generated in degree one, that is, R = Ry[R; ]. In the graded case, every object we consider is
homogeneous with respect to the given grading.

4.1 | F-split filtrations of ideals

We introduce the main object of study of this paper: F-split filtrations. For a related notion in the
case of ordinary powers, see [65].

Definition 4.2. Assume Setup 4.1. We say that a sequence of R-ideals | = {In}n€Z>0 is an F-split
filtrationif I, = R,I,,,; C I, foreveryn € Z, 1,1, C I, ,, forevery n,m € 7, and there exists

asplitting ¢ : R'/P — R such that ¢((I,,,41)"/?) C 1, for every n € Z,,.

‘We now study properties regarding F-splittings, depth, and regularity for ideals appearing in

these filtrations (see Theorem 4.7 and Theorem 4.10). In particular, we will show that F-split
filtrations yield F-split blowup algebras.
Remark 4.3. Suppose ¢ : R/P — R is a surjective map such that ¢((I,,1)"/P) C Iy, for
every n € Zs,. Let g € R such that ¢(g'/P) = 1. Then, ¢(—) = ¢(g'/P—) induces a splitting such
that qo(([np DY P) C€1,,, for every n € Z. Then, it suffices to assume that ¢ is surjective in
Definition 4.2.

Remark 4.4. We observe that if | = {I,},,c,_ is an F-split filtration, then R/I, is F-split. In fact,
by considering n = 0 in Definition 4.2, one gets an induced splitting ¢ : (R/I;)'/P — R/I;. In
particular, I; is a radical ideal.
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12 of 50 | DE STEFANI ET AL.

Proposition 4.5. Assume Setup 4.1 and let | = {I n}neZ>0 be a filtration. The following statements
are equivalent:

(1) is an F-split filtration.

(2) There exists a splitting ¢, : R*/P* — Rsuch that ¢, (I, pe5)"/P") =1, foreverye € Z.o, n €
Z4, and s € Z such that1 < s < p°.

(3) There exists a splitting ¢, : RY/P* — Rsuch that ¢, ((I,pe1)"/P") C Iy, forsomee € Z., and
every n € Zs,,

Proof. We consider the implication (1) = (2). Let ¢ be as in Definition 4.2. For every j > 0,
we consider the R-linear map ¢; : RY/P - R/P"™" defined as (pj(rl/PJ) = (prV/P)/P | We
observe that goj((Inij)l/P]) C qoj((Inp_,-H)l/pj) C (Inp,-_lﬂ)l/l’k1 for every n € 7, and j,s €
Z. Then, we have

Pr0@0 -+ ocoe((lnpe+s)1/ pe) cl,,

for every e>0, n
¢e((1np"+s)1/pe) for s

>0, and s> 0. Set ¢, := @op,0--0p,. It remains to show I, C
< p®. But this inclusion follows by noticing that

In+1 c ¢e (In+1R1/pe) < ¢e <(Inpe+s)1/pe)

for s < p°.

Since (2) = (3) is clear, it remains to show the implication (3) = (1). We consider the natu-
ral inclusion ¢ : R'/P — RY/P° and set ¢ := ¢,or. We note that, (((I,,,,1)"/?) € (I WP
(Inpeﬂ)l/l’e. As a consequence, we have

np+1 npé+pe-l

¢((Inp+l)1/P> c ¢e ((Inpe+1)1/pe> < In+1
foreveryn € Z, and the result follows. O

For ideals in a regular ring R, we state an effective criterion for F-split filtrations analogous to
the classical one by Fedder [33].

Proposition 4.6. Assume Setup 4.1 with R regular. In the graded case, we further assume that R, is
a field, so that m = R,. We have that | = {I,,},c,_ is an F-split filtration if and only

m ((In+1)[p] ‘R Inp+1) -¢— m[p].

neZy
Proof. Since R is regular, we can pick the trace ®, which is a generator of Homg(R'/P, R) as a free

R'/P-module described, see Remark 2.3. Then, for f € Rand ¢ := f'/P . & = &(f/P—), we have
$(Typs1)V/P) C Iy, for every n € Z, if and only if

fE ﬂ <(In+1)[p] :RInp+1)’

neZy,

by Remark 2.3. In addition, ¢ is surjective if and only if f ¢ m!P!, and the result follows. [l
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4.2 | F-split blowup algebras

In this subsection, we obtain the first significant property for F-split filtrations. In the following
theorem, we prove that if | is an F-split filtration, then the algebras in Definition 2.7 are F-split.
This is one of the main motivations for introducing F-split filtrations.

Theorem 4.7. Assume Setup 4.1. If 1 is an F-split filtration, then % (1) and gr(l) are F-split.

Proof. Let ¢ be such that [ is F-split with respect to ¢, see Definition 4.2. We note that % (I)
is reduced. Then, we can consider the ring of p-th roots Z(1)'/P = @nez>0(1n)1/PT”/P. We
define ¢ : Z()'/P — %(1) as the homogeneous homomorphism of % (I)-modules induced by
@(r'/PTn/P) = $(rY/PYT/P if p divides n, and p(r'/PTn/p) = 0 otherwise. The map ¢ is well
defined because

B (Unr)’?) € $(aps)? ) € L

for every n € 7, and it is #(l)-linear since ¢ is R-linear. If r € I,, C (Inp)l/l’, then @(rt"P/P) =
¢(r)T" = rT" because ¢ is a splitting. We conclude that ¢ is a splitting of the inclusion (1) —»
2 (1)1/P, and hence %(1) is F-split.

Consider the ideal # = @ne@o Iy T" € R(). Since (1,44
we obtain go((Ian)l/PT”p/p) C I,,,T" forevery n € Z. Therefore, p(7/P) C 7. This induces
asplitting @ : (Z(1)/F)/P = R(1)/ 7 and then %(1)/ 7 = gr(l) is also F-split. O

)V/P) C I, for every n € Z,,

Remark 4.8. We remark that in order to prove that (1) is F-split, we only need a splitting ¢’ :
RYP — R such that ¢’((1(n+1)p)1/p) CI,,, for every n € Z,. The stronger requirement in the
definition of F-split filtrations is to ensure that gr(l) is F-split as well.

4.3 | Depth and regularity of F-split filtrations

In this subsection, we study the asymptotic behavior of the depth and Castelnuovo-Mumford
regularity of F-split filtrations. We assume Setup 4.1. In the graded case, by depth of a graded R-
module we mean its grade with respect to the maximal ideal m, that is, the length of a maximal
regular sequence for M inside m + R, . On the other hand, by Castelnuovo-Mumford regularity,
we mean the regularity computed with respect to the ideal R, .

In Theorem 4.10, we show that the sequences {depth(I ,1)},1EZZO and {regr(f")
limit under mild assumptions. We begin with the following technical result.

Ynez,, converge to a

Proposition 4.9. Assume Setup 4.1, and let | = {I n}n€Z>0 be an F-split filtration. Then,

@) depth(,) < depth(I[L])for everyn, e € Zy;
p° -
(2) ifRisgraded, then a;(I,) > peai(I[L])for everyn, e € Z,yand 0 < i < dim(R/I).
g

Proof. By Proposition 4.5, the natural map ¢ : I,,,; — (Inpe+s)1/ P° splits for every n, e € Z
and 1 < s < p° via a splitting ¢,. Therefore, the module H‘m (In +1) is a direct summand of
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14 of 50 | DE STEFANI ET AL.

H ((Typeys)'/P") for every 1 < i < dim(R/I,). We note that
i ()7 ) = (1L, ()™
m npé+s m \"npe+s :

Thus, H.| (I,e,s) = Oimplies H ((I,pe;)"/P") = 0,and hence H, (R/I,,,) = 0. Therefore, we
have depth(I,,;,) > depth(I,, .., ), which proves the first part.
)1/P%) and

We note that Hie+ (I,,4,) is also a direct summand of Héh (Type s

. . . 1/p®
H;Q_'_ ((Inpe+s)1/P ) = <H;3+ (Inpe+j)> s
thus we obtain
I.)<a(d )= Lo

ai( n+1) S ( npe+s) - pe ai( np3+s)’

and the second part follows. [l
The following is the main result of this section.

Theorem 4.10. Assume Setup 4.1, and let | be an F-split filtration such that Z(l) is Noetherian.
Then,
(1) depth(I,) stabilizes and the stable value is equal to min{depth(I,,)},

(2) if R is graded, then lim % exists. As a consequence, if R is regular, then lim %
n—oo n—oo

exists.

Proof. We begin with (1). Since (1) is Noetherian, there exists £ € Z, such that I, , = I.I,,
for every n > £ [77, Remark 2.4.3]. Hence, for every j = 0, ..., £ — 1, there exist dj, fj € Z, such
that

depth(I(,41)4;) = depth((,)"I,, ) = d;,

forn > fj [42, Theorem 1.1].

Let 6 = min{depth(I,)},c,_, and fix s € Z,, such that § = depth(I,). Let ¢ = p® be such
that g > ¢, and g(s — 1) > (¢; + 1)¢ for every j =0, ..., — 1. From Proposition 4.9, it follows
that

depth(lq(s—l)ﬂ') < depth(Is)

for every i = 1,...,q. By our choice for g, for each j =0,...,7 — 1, there exist natural numbers
m>¢;+1land1<i<qsuchthatq(s—1)+i=m¢ + j. Then,

6 = depth(I) > depth(Iy(s_1)4)

= depth(l,,;, ;) = d;.
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BLOWUP ALGEBRAS OF DETERMINANTAL IDEALS IN PRIME CHARACTERISTIC | 15 of 50

We conclude that § = d i forevery j =0,...,7 — 1 because ¢ is the minimum depth. Then,
depth(l,)) = &, forn > 0.

We proceed to prove (2). Since % (1) is Noetherian and by Equation (2.4.1), the sequence reg(I,,)
eventually agrees with a linear quasi-polynomial [94, Theorem 3.2]. Then, there exists w € Z,
and cy, ..., ¢y, by, ..., by, € Z, such that reg(l,) = cin+ b]- for n = j (mod w) and n > 0. We
want to show ¢; = -+ = ¢,,. Set &, = max{a;(I,,)} and notice that a,, # —oo for every n € Z,,. We
have

C(wm+j

m—oo Wm +]

for every j=0,..,w—1. We fix i,j €{1,..,w}, and e € Z, such that g = p* > w. Fix ¢ €
R, and let r € Z;, be such that ¢; — Zwm—":“j < ¢ for every m > r. From Proposition 4.9, we
obtain

A gl (wr+j—1)+b

a
q6

wr+j X

forevery® € Z,,and b =1,..., q°. Then,

Xwr+j X (wr+j—1)+b X (wr+j—1)+b
€< - < — < - .
wr+j o wr+j) qfwr+j-1)+b

Since this inequality holds for every b =1, ..., ¢° and since w < ¢°, there exist infinitely many
pairs 8, b such that g°(wr + j — 1) + b = i (mod w). We conclude that c ;i —e < ¢ foreverye, and

then ¢ i< ¢ Since i, j were chosen arbitrarily, we conclude thatc; = --- = c,,. O

Under some extra assumptions, we can say more about the stable value lim depth(Z,,).
n—oo

Corollary 4.11. Assume Setup 4.1, and let | be an F-split filtration such that Z(1l) is a Noetherian
Cohen-Macaulay algebra. Then,

nlirn depth(l,,) = dim(R) — dim(Z(1)/mZ(1)) + 1.
Proof. There exists ¢ € Z.,, such that Z(¢) is generated in degree one as an algebra [77, 2.4.4]. If

R = A(1) is Cohen-Macaulay, then so is Z(¢) = Y. I,,T" as it is a direct summand of &#.
Therefore,

neZy,

nh_}ngo depth(l,,)) = dim(%(¢)) — dim(Z(¢)/mA(¢)) [42, Theorem 1.1]

= dim(R) — dim(Z(£)/mA(£)) + 1

= dim(R) — dim(%Z/m%) + 1. n
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5 | SYMBOLIC F-SPLIT IDEALS AND SYMBOLIC POWERS

We now focus on F-split filtrations that are given by symbolic powers. We recall that, given a ring
Rand anideal I C R, for n € Z,, the n-th symbolic power of I is defined as I () = ["Ry;,, where W
is the complement of the union of the minimal primes of I.

Throughout this section, we assume Setup 4.1 with R regular. In the graded case, we further
assume that R, is a field, that is, R is standard graded. We recall it here more explicitly for future
reference:

Setup 5.1. Let (R, m, K) be an F-finite regular ring of characteristic p > 0, which is either local, or
R =@,.,R, = K[R;] is a standard graded polynomial ring over the field K, with homogeneous

maximal ideal m = @, , R,,. We denote by

RN = @ I™7" and  gr'() = @ 1 1+

neZy neZy

the symbolic Rees algebra and symbolic associated graded algebra of I, respectively. We also let

2= @ rm™ ad gn=

neZy, n€Zy
be the Rees algebra and associated graded algebra of I, respectively.
The interest in symbolic blowups has significantly increased, even in recent years [37, 79].
Definition 5.2. We say that an ideal I is symbolic F-splitif | = {I (”)}nEZZO is an F-split filtration.

We start by studying equality between ordinary and symbolic powers for symbolic F-splitideals.
We use the following remark to study symbolic powers.

Remark 5.3. Assume Setup 5.1. We note that gr(I) is torsion free over R/I if and only if I"* = I for
every n € Z,. In fact, if gr(I) is torsion free over R/I, then Assp(I" /1Y) C Assg(R/I) for every
n € Zy,. From 0 — I"/I"*! — R/I"*! — R/I" — 0, we obtain Assp(R/I"*!) C Assy(I" /I"*1) U
Assp(R/I™). Therefore, proceeding by induction on n, we obtain Assz(R/I"*1) C Assy(R/I)
for every n € 7, which implies I" = I™ for every n € Z,. Conversely, if I" = 1™ for
every n € Z, then Assp(I" /I"*!) C Assp(R/I"*!) = Assp(R/I) for every n € Z,. This implies
Assp(gr(I)) C Assg(R/I), that is, gr(I) is torsion free over R/I.

We can now rephrase a result due to Huneke, Simis, and Vasconcelos as follows:

Lemma 5.4 [57, Corollary 1.10]. Assume Setup 5.1. Let I C R be a radical ideal. Then, I" = I for
every n € Z, if and only if the associated graded algebra gr(I) is reduced.

Proposition 5.5. Assume Setup 5.1. Let I C R be a symbolic F-split ideal. Then, I" = I™ for every
n € Z, if and only if gr(I) is an F-split ring.
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Proof. If I" = I for every n € Z,, then gr(I) = gri(R). Hence, gr(I) is F-split by Theorem 4.7.
Conversely, if gr(I) is F-split, then it is reduced. Therefore, I" = I?V for every n € Z, by
Lemma 5.4. O

For the proof of Theorem 5.7, we need the following well-known lemma. Here, we denote by
() the minimal number of (homogeneous) generators of I.

Lemma 5.6. Assume Setup 5.1. Let I C R be any ideal. If r > u(I)(p — 1) + 1, then I" = I"~P[IP],

Proof. Let u = u(I) and f4,..., f, a minimal set of generators of I. Let a;,...,a, € Z, be
such that a; + -+ + a,, = r, then by assumption, there must exist «; such that «; > p. There-
fore, ffl R ffl ---ff‘i_pf,f“ ‘ff € I"~P[IPI, This shows I" C I"~PI!P!, To obtain the other
containment, we observe that I'?! C P, O

The following result gives a finite test to verify whether all the symbolic and ordinary powers
of a symbolic F-split ideal coincide.

Theorem 5.7. Assume Setup 5.1. Let I C R be a symbolic F-split ideal. If I" = I™ for every n <
[—”(I)(If’_l)], then I = [ foreveryn € Z,.

Proof. By Proposition 5.5, it suffices to show gr(I) is F-split. Let ¢ be such that I is symbolic F-
split with respect to ¢. Proceeding as in Theorem 4.7, it suffices to prove ¢ ((I"P+1)1/P) C I"*! for

every n € Z,,. By assumption, this inclusion holds for n < [%] , as for these values I"+1) =
"1 We fixn > [%] . Then, ["P*1 = [(»=Dp+11P] by Lemma 5.6. The latter is equivalent to

(np+1yl/p = (J(n=Dp+1)1/P[ Therefore, by induction on n,
¢((Inp+1)1/p> - ¢<(1(n—1)p+1)1/p1) - ¢<(I(n—1)p+1)1/p>1 C 1" = [, O

We continue with a version of Fedder’s Criterion for symbolic F-split ideals. This improves
Proposition 4.6 as it only requires to verify that a finite intersection of colon ideals is not contained
in mlP], We recall that the big height of an ideal I, denoted by bigheight(I), is the largest height of
a minimal prime of I.

Theorem 5.8. Assume Setup 5.1. Let I C R be a radical ideal and set H = bigheight(I). Let § = 1
if p < H and & = 0 otherwise. Then, I is symbolic F-split if and only if

max{0,H—1-8}

N <(I<n+1))[p1 " I(np+1>) ¢ mlP).

n=0
Proof. By Proposition 4.6, it suffices to show
max{0,H—1-6}

N ((I<n+1>)[p] ZRI("”“))= N ((I<n+1>)[p] :RI(”P“)>-

nEZy, n=0
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We note that if H = 0, then I = 0 and the result follows. If H = 1, then I is a principal ideal.
Therefore,

(1(n+1))[P] ‘R 1(np+1) — np+p ‘R e+l — -1 _ glp] w1

and the result follows. Hence, for the rest of the proof, we may assume H > 2. Let J be the
ideal (IH=9)[P! : p [(H=1=6)p+1) We claim thatJ C (I("“))[p] g 1Pt foreveryn > H — 1 — 6.
We proceed by induction on n. The base of induction follows from the definition of J. Sup-
pose J C (I+D)IPI : , [(2p+1) we need to show JI("+DP+1) € (1(+2)[P] and it suffices to show
this containment locally at every prime ideal in Assg(R/I (n+2)lP ]) = Assp(R/I (n+2)y = Assg(R/D),
where the first equality holds by flatness of Frobenius. Let Q € Assgz(R/I) and set Q= QR,.
We observe thatsincen +1 > H — §,wehave(n+ 1)p+1>Hp—6p+1>H(p—1) + 1.Then,
Lemma 5.6 implies
(6n+2)[13] ‘R §(n+1)p+1 — 6[p](§n+l)[l’] ‘R 6[p]6(np+1) ) (§n+1)[l)] R a(np+1)‘

Since JR,, € (Q"*HIP! :p Q*P+V) by induction hypothesis, the proof of our claim follows. We
conclude that

H-1-6
N ((I<n+1>)[p] iRI‘"”“))= N <(1(n+1>)[p] iRI(”””),
nEZy n=0
and the result follows. O

Remark 5.9. The correction given by § = 0 in the case p > H of Theorem 5.8 is needed. Indeed, if
we could always use § = 1, that is, if the condition

max{0,H—2}

N <(I(n+1>)[p] ‘R I(np+1>) ¢ ml?!

n=0

implies that I is symbolic F-split, then every F-split ideal I such that bigheight(I) = 2 would be
symbolic F-split. This is not the case, as we show in Example 5.13.

Corollary 5.10. Assume Setup 5.1. Let I CR be a radical ideal and set H = bigheight(I). If
THP=1) ¢ mlPl then I is symbolic F-split.

Proof. For every n € Zs,,, we have [(A(P=D)f(np+1) ¢ H(p=Dinp+l)  (7(+D)[P] 36, Lemma 2.6].
Therefore, IH(P~1) c (J(++D)IP] : , ["P+1)_ The result now follows from Theorem 5.8. O

Example 5.11. Let I be a square-free monomial ideal in a polynomial ring K[x;, ..., x,.]. We
observe that

(x; - x, )Pt e (h ((I(n+1))[p] ‘R I(np+1))> \ mlPl,

n=0
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Then, by Theorem 5.8, I is symbolic F-split. This can also be proven via monomial valuations (see
Example 7.3(2)).

We also obtain the following sufficient condition for %5(I) to be F-split.

Proposition 5.12. Assume Setup 5.1. Let I C R be a radical ideal and set H = bigheight(I). Let
8 =1ifp < H—1and & = 0 otherwise. If

H-2-¢'
ﬂ <(I<n+1))[p1 ‘R I<<n+1>p>> ¢ mlP],
n=0
then %5(I) is F-split. In particular, #(I) is F-split if [(H=1D(P=1)) ¢ mlp],
Proof. We note that %5(I) is F-split if there is a splitting ¢’ : R'/P — R for which the inclusion

' (1((n+1)p)\1/p (n+1)
'\ ) crI

holds for every n € Z,, (see Remark 4.8). Let 8’ = 1if p < H — 1 and &’ = 0 otherwise. We can
adapt Lemma 4.6 and the proof of Theorem 5.8 to obtain that

H-2-¢'
<(I<n+1>)[p] R I((n+1)p)> ¢ ml?!
n=0

implies that Z5(I) is F-split.
For the last statement, we can proceed as in Corollary 5.10 to obtain

[(HE-D(P-1) <(I(n+1))[p] r I(<n+1>p)>,

whence the conclusion follows. [l

Since every symbolic F-split ideal is F-split, one may ask whether these two conditions are
equivalent. The following example shows that this is not the case.

Example 5.13. Let R = K[a, b, ¢, d] be a polynomial ring and char p > 3. Consider the following
matrix:

a’> b d
A= [ c a’> b-— d] ’
Let I = I,(A) be the ideal generated by the 2 X 2 minors of A. The ring R/I is F-split, in
fact strongly F-regular [86, Proposition 4.3]. The ideal I is prime of height 2. Moreover,
the symbolic and ordinary powers of I coincide [36, Corollary 4.4]. Considering p = 3, we
verify with Macaulay2 [35] that (I?)13 :; I* € m[3l. Therefore, I is not symbolic F-split by
Theorem 5.8.
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The following definition due to Huneke provides a sufficient condition for an ideal to be
symbolic F-split.

Definition 5.14 (Huneke). Assume Setup 5.1. Let I C R be a radical ideal of height h. We say that
I is F-Konig if there exists a regular sequence f7, ..., fj, € I such that R/(f, ..., f},) is F-split.

In particular, if I is an ideal generated by a regular sequence and such that R/I is F-pure, then
I'is F-Konig.

Proposition 5.15. Assume Setup 5.1. If I C R is equidimensional and F-Konig, then it is symbolic
F-split.

Proof. Let h = ht(I) and f4, ..., f, € I a regular sequence such that R/(f1, ..., f},) is F-split. We
considerJ = (fy, ..., fj)- Since J is F-split, we have ff_l fﬁ_l € Jhp=1 \ mlPl[33, Proposition
2.1]. The result now follows from Corollary 5.10 since J*P~1) ¢ [(x(p=1), O

Example 5.16. Let A and B be two generic matrices of size n X n with entries in disjoint sets of
variables. Let J be the ideal generated by the entries of AB — BA and I the ideal generated by the
off-diagonal entries of this matrix. Then if n = 2, or 3, the ideals I and J are F-Konig [62], and
hence symbolic F-split.

We now mention and answer a question that was raised by Huneke at the BIRS-CMO workshop
on Ordinary and Symbolic Powers of Ideals during the summer of 2017 at Casa Matematica Oaxaca,
which arose in connection with the Conforti-Cornuéjols conjecture [18].

Question 5.17 (Huneke). Let Q C R be a prime ideal such that R/Q is F-split, and Q") = Q" for
every n € Z. Is Q F-Konig?

The following example shows that the answer to this question is negative.

Example 5.18. Let I and R be as in Example 5.13 with p > 3. Then, I is a prime ideal of height 2.
As noted before, I = 1" for every n € Z,,; however, I is not F-Konig. Indeed, by Proposition 5.15
and its proof, it suffices to show I2(P~1) = 12(P=1) ¢ mlPl, Assume that the variable a has degree 1
and that the variables b, ¢, and, d have degree 2. Hence, I is generated in degree 4 and then I 2(p-1)
is generated in degree 8(p — 1). On the other hand, if f := a™b™c"3d™ ¢ mlPl, we must have
n; < p — 1 for each i. Therefore, such an f has degree at most 7(p — 1).

6 | SYMBOLIC AND ORDINARY POWERS OF DETERMINANTAL
IDEALS

In this section, we prove our main results on symbolic powers of several types of determinan-
tal ideals. A key point in our proofs is the construction of specific polynomials that allow us to
directly apply Fedder’s Criterion for an ideal to be symbolic F-split, Theorem 5.8; this construction
is inspired by the work of Seccia in the context of Knutson ideals [81, 82].

Notation 6.1. Let A be an r X s matrix, and i, j,k,7 € Zbe suchthat 1 i<k <rand1<j<
£.

¢ < s. We denote by AB_’I;]] the submatrix of A with row indices i, ..., k and column indices j, ...,
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In the next subsections, we repeatedly use the following lemma.
Lemma 6.2. Let R be a Z,,-graded polynomial ring over an F-finite field K, and let m be the homo-
geneous maximal ideal of R. Let I be a radical homogeneous ideal with H = bigheight(I). Assume

that there exist a homogeneous polynomial f € R and a monomial order < such thatin_(f) is square
free.

(1) If f € I, then I is symbolic F-split.
Q) IffP~1 e (IMIP) : 1" for every n € Z,, then the Rees algebra R (I) is F-split.

Proof. We first prove (1). The assumption that in_(f) is a square-free monomial implies fP~1 ¢

mlPl. Since fP~1 € (1M)P-1 € 1H(P=1) we conclude by Corollary 5.10 that I is symbolic F-split.
In order to prove (2), we let ® be the trace map (see Remark 2.3), and we consider ¢ = ®(fP~1-).

Because of our assumptions, the map ¢ induces an % (I)-linear map ¥ : (R ))1/ P %(I). As

above, we have fP~! ¢ mlP! and therefore ¥ is surjective. It follows that % (I) is F-split. O

6.1 | Ideals of minors of a generic matrix

In this subsection, we use the following setup.

Setup 6.3. Letr,s € Z,,besuch thatr <s.LetX = (xl-, j) be a generic r X s matrix of variables, K

be an F-finite field of characteristic p > 0, R = K[X],and m = (x; j). Fort € Z,,suchthatt <r
we let I,(X) be the ideal generated by the ¢ X t minors of X. We let

fuX) = (ﬁdet( [r=¢+1r] >d t( [s f+1s >> (sﬁldet< [;ijw 1 >>

for u < r. We consider the lexicographical monomial order on R induced by
Xpq > Xpp > > X0 > Xo > X0 > 0 > Xy 1 > Xy
Remark 6.4. For any t € Z, we note that the initial form in_(f,(X)) is a square-free monomial.
‘We begin by showing that generic determinantal ideals are symbolic F-split.
Theorem 6.5. Assuming Setup 6.3, the ideal I,(X) is symbolic F-split.

Proof. Leth =(s—t+ 1)(r —t + 1) = ht(I,(X)). Let f = f,(X), and note that

r—1 2
fe <H IAX)) LX)+

‘=t

r—1 2
s—r+1
c <H LX) —f“)) (II(X)(’_I“)) [14, Proposition 10.2]

‘=t
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c It(X)((r—t)(r—t+l))It(X)((r—t+l)(s—r+1))
g I[(X)(S_[+1)(r_[+1) — II(X)(h)
The conclusion follows from Remark 6.4 and Lemma 6.2(1). O

From the previous proposition, we obtain the following consequences.

Theorem 6.6. Assuming Setup 6.3, the limit

reg (R/1,)™)
m ——————

n—oo n

exists and
depth (R /I[(X)(")>
stabilizes for n > 0. Furthermore, if 1 < t < min{m, r}, then
lim depth <R/I[(X)(”)> = dim(R) — dim (%*(I,(X))/mA L, (X)) = £2 — 1.
Proof. We know that %° (I,(X)) is Noetherian [14, Proposition 10.2, Theorem 10.4]. Hence, the

result follows by combining Theorem 6.5 and Theorem 4.10. Since %#° (I,(X)) is Cohen-Macaulay
[9, Corollary 3.3], we have

}1_}1210 depth (R/I,(X)™) = dim(R) — dim (%#°([,(X))/m%*([,(X))) by Corollary 4.11,
= min{depth (R/I,(X)™)} by Theorem 4.10,
= grade (m gr’(l,(X))) [14, Proposition 9.23],
=t2-1 [14, Proposition 10.8]. [

We now show that #5(1,(X)) and gr’(I;(X)) are strongly F-regular. This strengthens a result
of Bruns and Conca [8] showing that #%(I,(X)) is F-rational using techniques from the theory of
Sagbi bases [16].

Theorem 6.7. Assuming Setup 6.3, the algebras Z°(1,(X)) and gr®(I,(X)) are strongly F-regular.

Proof. We know that #%(I,(X)) and gr’(I,(X)) are Noetherian [14, Proposition 10.2, Theorem

10.4]. We proceed by induction on ¢. If t = 1, then the result follows because I; (X) = m. We now

assume the result is true for (¢ — 1) X (t — 1)-minors of a generic matrix. If we let f = f,(X),

then in_(f) is a square-free monomial, which is not divisible by x, ;, because ¢ > 2. Let g =
[T %, Ly ) p—1,p-1 (p]

o in (D" ———, and as a consequence fP~gP™" & m'Pl. Let

ij
X
¢ = @ (fP~V/Pg(P~D/P—) where ® : RY/P — Rdenotes the trace map introduced in Remark 2.3.

r,1
We note that ¢ (xipl_l)/p> =1

We note that in (fP~1gP~!) =
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We have f € It(X)(h‘(It(X)) as shown in the proof of Theorem 6.5. It follows that fP~! €
(It(X)(”“)) [p] : It(X)(”P“) for every n € Z [36, Lemma 2.6] (see also proof of Corollary 5.10).
As a consequence, ¢ induces maps ¥ : Z5(I,(X))'/P — %5(I,(X)) and ¥ : gr’(I,(X))"/P —
gr’(I,(X)), which satisfy

‘P( xP” W") =1 and 1I‘< X P WP) 1. (6.1.1)

Let A = K[U], where U = (u; j1<i<r—1, is a generic matrix of size (r — 1) X (s — 1), and let
2¢j<ss

S =A[X] 15 s Xp_1 15 Xp 15 e s Xy 5]

: ; . -1 -1 : -1
We have an isomorphism y : R[x "] — S[x 7] defined by x; j = w; ; + X, jX; 1 X1, Xj 1 = X; 5,

and x, ; = x, ; fori <r —1and j > 2. Furthermore, we have y <I (X)R[x ]) =1I_ 1(U)S[x‘l]
and then y(I (X)(”)R[x ]) =1I_ 1(U)(”)S[x_l] for every n € Z,, [14, Lemma 10.1]. By the
induction hypothesis, %S(It 1(U)) and grS(I[ 1(U)) are strongly F-regular. It follows that
RI,_1(U)) @4 S[xr %] and gr'(f,_;(U)) ® 4 S[x, ] are strongly F-regular, because strong F-
regularity is preserved by adding variables and locahzmg Therefore, thanks to the isomorphism
¥, the rings #*(I,(X)) ®g R[x ] and gri(l;(X)) ®g R[x, ] are also strongly F-regular. From
this and Equation (6.1.1), we conclude that Z5(1,(X)) and grS(I (X)) are strongly F-regular [48,
Theorem 3.3]. O

We now show that the ordinary Rees algebra of a generic determinantal ideal is F-split. We note
that it was already known that % (I,(X)) is F-rational [8]. However, F-rationality does not imply
that the ring is F-split.

Theorem 6.8. In addition to assuming Setup 6.3, suppose p > min{t,r — t}. Then the Rees algebra
R(1,(X)) is F-split.

Proof. Let f = f,(X), and note that f € I,(X)("U-X) for every # < r, as shown in the proof of

Theorem 6.5. It follows that fP~1 € (If(X))("“))[p] : I,(X)"P+D) for every £ < r and n € Zs,
[36, Lemma 2.6] (cf. proof of Corollary 5.10). Thus,

[p]
£P71L, ()P ¢ fp1p, (x) (D) ¢ ( I f(x)<”+1>)

foreveryZ < randn € Zy. Then,

t
FPL X)) = fP—1<ﬂ LX) +1)”P>) [14, Corollary 10.13]
=1

t
C ﬂ fr-1 <If(X)((t—f+1)np)>
‘=1

t
[p]
c m <IK(X)((t—f+1)n)>
£=1
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t [p]
— <ﬂ If(X)(([_f+1)n)>

=1

= (1, (x))P! [14, Corollary 10.13].
The conclusion follows from Remarks 6.4 and Lemma 6.2(2). O

We end this subsection with the following results, which provide bounds for the degrees of
the defining equations of symbolic and ordinary Rees algebras and associated graded algebra of
determinantal ideals of generic matrices.
Theorem 6.9. Assume Setup 6.3. Set = () (7).
(1) Suppose deg(x; ;) = 0 for every i, j, then the defining equations of Z(1,(X)) over R have degree

at most min{rs + 1, u}.
(2) Suppose deg(x; ;) =1 for every i, j, then the defining equations of #(I,(X)) over K have total
degree at most rs + u(t + 1).

Proof. The result follows from Theorems 6.8 and 3.3, and Proposition 2.8. O

Theorem 6.10. Assume Setup 6.3 and thatt <r.For j =t,...,r, set u; = (:) (j)

(1) Suppose deg(x; ;) = 0 for every i, j, then the defining equations of %°(1;(X)) over R have degree
at most min{rs + 1 + Z;=r+1 ui(G —1), Z;=t pi(j —t+1)} and of gri(I,(X)) over R/I,(X),
have degree at most min{rs + E;:t+1 ui(G = 1), Z;:t ui(G—t+ 1}

(2) Suppose deg(xi,j) = 1 foreveryi, j, then the defining equations of £°(I1,(X)) and gr*(I;(X)) over
K have total degree at most rs + Z;:t ui(2j —t+1).

Proof. By Theorem 6.5 and Theorem 4.7, the algebras %°(I,(X)) and gr*(I,(X)) are F-split. Both
parts of the result now follow from Theorem 3.4, Proposition 2.8, and the equality

RI,(X)) = RUI,X)T, I, ,(X)T?,...,I(X)T""**1]  [14, Proposition 10.2, Theorem 10.4]. [

6.2 | Ideals of minors of a symmetric matrix
In this subsection, we use the following setup.
Setup 6.11. Letr € Z,, and Y = (y; ;) be a generic symmetric matrix of size r X r. Let K be an

F-finite field of characteristic p > 0, R = K[Y],and m = (y; ;). Fort € Z_, with t < r,welet[,(Y)
be ideal generated by the ¢ X t minors of Y. We let

.
— [L7]
fu¥) = fl [ det <Y[r—f+1,rj>’

=u
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for u < r. We consider the lexicographical monomial order on R induced by
Vi1 > V12> > V1, > Vo0 > o > Vi
Remark 6.12. Foranyt € Z,, we note that the initial form in_(f,(Y)) is a square-free monomial.
We now show that ideals of minors of a generic symmetric matrix is symbolic F-split.

Theorem 6.13. Assuming Setup 6.11, the ideal I,(Y) is symbolic F-split. In particular, the rings
R5(1,(Y)) and gr’(1,(Y)) are F-split.

Proof. Leth = (r—t+1)2ﬂ = ht(I;(Y)) [60, Corollary 2.4]. Let f = f,(Y), and note that
r
fe Hlf(Y)
/=t

.
c [Ta)“ "+ [59, Theorem 4.4]
=t

cI,()™.

The first statement now follows from Remark 6.12 and Lemma 6.2(1), and the second statement
from Theorem 4.7. O

Lemma 6.14. Assuming Setup 6.11, the rings Z5(1;(Y)) and gr’(I,(Y)) are Noetherian. Moreover,
RS (I,(Y)) = R[L,(Y)T, I, ,(Y)T?, ..., [ (Y)T"~'+1],

Proof. We have I, , (Y)C It(Y)(”) foreveryn > 1 [59, Theorem 4.4]. Moreover, we have

LOY)™ = ¥ 1y, 1 (Y) = Iy 1 (Y), Where the sum ranges over the integers ny, ..., n; > 1, such

thats < nand n; + --- + ng > n [59, Proposition 4.3]. The conclusion clearly follows. O
‘We obtain the following homological consequences.

Theorem 6.15. Assuming Setup 6.11, the limit

reg(R/1,(Y)™)
m —

n— oo n

exists and
depth(R/I,(Y)™)
stabilizes for n > 0.

Proof. Since %°(,(Y)) is Noetherian by Lemma 6.14, the result follows by combining
Theorems 6.13 and 4.10. O
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26 of 50 | DE STEFANI ET AL.

‘We now show that the symbolic Rees algebra of a determinantal ideal of a generic symmetric
matrix is strongly F-regular.

Theorem 6.16. Assuming Setup 6.11, Z°(1,(Y)) is strongly F-regular.

Proof. We set h = ht(I,(Y)). We know that %5(I,(Y)) Noetherian by Lemma 6.14.

If t =r, then I,(Y) is principal, and so, Z°(I,(Y)) = R[det(Y)T], which is isomorphic to a
polynomial ring over K. Then, %#5(I,(Y)) is strongly F-regular.

We proceed by induction on ¢. If ¢ = 1, then the result follows because I;(Y) = m. We now
assume the result is true for (t — 1) X (¢ — 1)-minors of a generic symmetric matrix. If we
let

f =det (Y[g r]J) H det (erl in r]>

as in the proof of Theorem 6.13, we have that f € It(Y)(h_l). In addition, then in_(f) is a
square-free monomial, which is not divisible by y, ;, because ¢t > 2. We have f p=1 ¢ mlpl Let
p=o (f(p_l)/p—), where @ : R'/P — R denotes the trace map introduced in Remark 2.3. We
note that ¢ <y§{’1—1)/p) = 1. It follows that fP~! € (I,(Y)(”H))[p] : L(Y)(+DP) for every n € Zy
by Proposition 5.12.

As a consequence, ¢ induces maps ¥ : Z5(I,(X WP - RS(1 (X)), which satisfy

(ygpl Wp) =1 and ‘P(y (p- 1)/p> =1. (6.2.1)

Let A=K[U], where U = (ui’j)zgigr_l, is a generic symmetric matrix of size (r — 1) X (r — 1),
2gjsr
and let

S=A115 Y2155 Vel

We have an isomorphismy : R[y1 1] - Sly> ]deﬁnedbyylj B U+ VXY 1,yl 1+ Yip,and
y1,j = ¥y for j > 2 [69] (see also [60 Lemmal 1].
Furthermore, we have 7 (1 (Y)R[y‘1]> =1, ,(U)S[y;}1. and then y(I,(Y)"™R[x;1]) =
I 1(U)(")S[y ] for every n € Z, [14, Lemma 10.1]. By the induction hypothesis, %#*(I,_;(U))
and gri(J [_1(U)) are strongly F-regular. It follows that Z5(I,_,(U)) ®4 [y1 1] is strongly F-
regular, because strong F-regularity is preserved by adding variables and locahzmg Therefore,

thanks to the isomorphism y, the ring Z5(1,(Y)) ®x [y1 1] is also strongly F-regular. From this
and Equation (6.2.1), we conclude that Z5(1,(Y)) is strongly F-regular [48, Theorem 3.3]. O

We now show that the ordinary Rees algebra of a generic symmetric determinantal ideal is
F-split.

Theorem 6.17. In addition to Setup 6.11, suppose p > min{t, r — t}. Then, the Rees algebra Z(I,(Y))
is F-split.

d ‘T $TOT "0SLLEIYT

sdny woxy

98 “[F202/11/92) U0 K11qr] SurguQ K[ “boy AusIoatun) ol euozity Aq 6967 1 SWINZL [ °01/10p/wox KajimKreaqrour

:sd)y) SUONIPUOY) pUE SULIDY, ) o

- Kopuareaqriou

ANERI) 0[qratidde Uy £q PIUISAOS QIE SIIIIE V() fasn JO SO[ 10J ATBIQIT QUIUQ KO[1AL UO (SUONIP

ASULDI SUOWIWIOD) 3



BLOWUP ALGEBRAS OF DETERMINANTAL IDEALS IN PRIME CHARACTERISTIC | 27 of 50

Proof. Let f = f,(Y), and note that f € I f(Y)(h‘(If(Y)) for every ¢ < r, as shown in the proof of

Theorem 6.13. It follows that fP~! € (If(Y))(”“))[p] 2 I,(Y)"P*+D) for every £ < r and n € Z,
[36, Lemma 2.6] (cf. proof of Corollary 5.10). Thus,

(p]
FP71, () DP) ¢ fp1p (7)) ¢ < I f(y)(nﬂ))

forn € Z,. Then,

t
[P ()P = fPt ( ﬂ If(Y)((t_f“)”p)) [59, Theorem 4.4]

=1

t
C m fp-1 <IK(Y)((t—f+1)np))
=1

t
[p]
c ﬂ < If(y)((t—f+1)n)>
£=1

t [p]
— <ﬂ If(y)(([—f+1)n)>
=1

= (I[(Y)n)[P ] [59, Theorem 4.4].
The result follows from Remark 6.12 and Lemma 6.2(2). O

We end with the following results about degrees of defining equations for ordinary Rees and
associated graded algebras in the case of generic symmetric matrices.

Theorem 6.18. Assume Setup 6.11. Set u = %(:)2

(1) Suppose deg(y; ;) = 0 for every1i, j, then the defining equations of ®(1,(Y) over R have degree at
most min{(r;'l) +1,uk

(2) Suppose deg(y; ;) = 1 for every i, j, then the defining equations of R(I,(Y)) over K have total

r+1

degree at most ( : ) + u(t +1).

Proof. The result follows from Theorems 6.17 and 3.3, and Proposition 2.8. O
Theorem 6.19. Assume Setup 6.11. For j = t,...,r, set ji; = %(;)2
(1) Suppose deg(y; ;) = 0 for every i, j, then the defining equations of #°(1,(Y)) over R have degree

at most min{(r;’l) +1+ Z;th ui(G =0, Z;zt #;(j =t + 1)}, and of gr*(1,(Y)) over R/I,(Y),

have degree at most min{(rzl) + Y U =0, 2 (=t + D
(2) Suppose deg(yl-,j) = 1foreveryi, j, then the defining equations of Z5(1,(Y)) and gr(I,(Y")) over

K have total degree at most (Hz'l) + 2 H2j =t + 1),

Proof. The result follows from Theorem 6.13, Theorem 3.4, Proposition 2.8, and Lemma 6.14. []
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6.3 | Ideals of Pfaffians of a skew-symmetric matrix
For the convenience of the reader, we recall the definition of Pfaffians.

Definition 6.20. Let Z = (zi, j) be a generic r X r skew-symmetric matrix, that is, zZij =
[yl ]> is the

i
[iy5eeesiny ]

—z;; for

every 1 i< j<r, and z;;=0 for every 1 < i < m. A minor of the form det (Z

.....

In this subsection, we use the following setup.
Setup 6.21. Letr € Z,, and Z = (z; ;) be a generic skew-symmetric matrix of size r X r. Let K be
an F-finite field of characteristic p > 0, R = K[Z], and m = (z; j). For t € Z such that 2t <r,

we let P,,(Z) be the ideal generated by the 2¢-Pfaffians of Z. If  is odd, we set b = |r/2], and we
let

f2u(Z) =

b—1
<pr (Z,..001) PE(Z1,. 0040, 20411) PE (Zirsr—ae,.01) PE (Zirae,pmmtpmei,.., rj))'

foru < r/2.Ifr is even, we set b = r/2, and we let

qu(Z) =

b—1
(pr (Z11,..201) PE (21,042, 20417) PE (Zjrs1—20,.) PE (Z[r—2f...,r—f—1,r—f+1...,r]))pf(Z)7
‘=u

for u < r/2. We consider the lexicographical monomial order on R induced by
2y > 2 > > 210 > 2 > e > 2,
Remark 6.22. Forany t € Z, we note that the initial form in_(f,,(Z)) is a square-free monomial.
In the following result, we show ideals of Pfaffians are symbolic F-split.
Theorem 6.23. Assuming Setup 6.21, the ideal P,,(Z) is symbolic F-split.

Proof. We set h = Wﬂ = ht(P,,(2)) [61, Theorem 2.3]. Let b = |r/2], and f = f,,(2).
If r is odd, we have

4

b—-1
fe <HPM(Z)> Py (Z)?
‘=t
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4

b—1
c <HP2t(Z)(f_t+1)> X <P2t(Z)(b—t+1))3

=t

4

b—t
= (HPZt(Z)(a)> : (Pzt(Z)(b_HD)S
a=1

g PZ[(Z)(Z(b—l)(b—l-}—l)) . PZt(Z)(3(b—[+1))

C P2t(Z)(Z(b_t)(b_t+1)+3(b_t+1))
=P, (2)M.

On the other hand, if r is even, we have

4

b—1
fe (HPM(Z)> -P.(2)
‘=t

4
-1
g <H PZI(Z)(f_t+1)> . PZI(Z)(b_I+1)

=t

4

b—t
= <HP2t(Z)(“)> - Py (2)7HHD
a=1

C PZt(Z)(Z(b—[)(b—[+1)) . PZt(Z)(b—[+1)

C P, (2)20-Db—t+D+(b—t+1)

=P, (Z2)M.

The conclusion follows from Remarks 6.22 and Lemma 6.2(2).

[59, Theorem 4.6]

[59, Theorem 4.6]

The previous result leads to the following homological consequences.

Theorem 6.24. Assuming Setup 6.21, the limit

(n)
o Te8R/Py(Z)™)

n—oo n

exists and
depth(R/P,,(2)™)

stabilizes for n > 0, Furthermore,

lim depth(R/P,(2)™) = dim(R) — dim (#°(Py(2))/ m%*(Py,(Z))) = t(2t = 1) = 1.
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30 of 50 | DE STEFANI ET AL.

Proof. We recall that #° (P,;(Z)) is Noetherian [1] (see also [2, Section 3]). Hence, the result fol-
lows by combining Theorem 6.23 and Theorem 4.10. Since %° (P,,(Z)) is Cohen-Macaulay [2,
Corollary 3.2], we have

Tim depth (R /P2t(Z)(”)> = dim(R) — dim (%*(P,,(2))/ m%* (P, (2))) by Remark 4.1,
= min {depth (R /P2t(Z)(”)> } by Theorem 4.10,
= grade (m gr’(P,,(2))) [14, Proposition 9.23].

It remains to show grade (m grS(PZ,(Z))) = t(2t — 1) — 1. This computation is already known in
the generic case in arbitrary characteristic [14, Proposition 10.8], we adapt the proof for ideals of
Pfaffians. We let H be the poset of all the Pfaffians of Z, and consider the partial order induced

by

We let Q be the subposet of H consisting of the 2s-Pfaffians with s > ¢. We note that Q is also given
by

Q={eH|d<[r=2t+1,..,r]}.

Since #°(P,;(Z)) is Cohen-Macaulay, then so is gr*(P,,(Z)) [95, Proof of Proposition 2.4]. Then,
we have grade (m gr’(P,,(Z ))) = rk(H) — rk(Q) [14, Proof of Proposition 10.8], where the rank of
a poset P is defined as

rk(P) = max{i | there exists a chain p; < p, < --- < p; of elements of P}.

We note that every maximal chain of H has length rk(H) = dim(R) = (;) [14, Lemma 5.13(d)
and Proposition 5.10]. We also note that a maximal chain of Q can be extended to a maxi-
mal chain of H by adjoining a maximal chain of Pfaffians of the submatrix of Z with rows

{r—t+1,..,r} and columns {r —t + 1,...,r}. Then, rk(H) — rk(Q) = (;) - ((;) - (22[) + 1) =

t(2t — 1) — 1, finishing the proof. O
We now show that #%(P,,(Z)) and gr*(P,,(Z)) are strongly F-regular.
Theorem 6.25. Assuming Setup 6.21, the rings %°(P,,(Z)) and gr®(P,,(Z)) are strongly F-regular.

Proof. We know that #°(P,,(Z)) and gr¥(P,,(Z)) are Noetherian [1] (see also [2, Section 3]). We

proceed by induction on t. If t = 1, then the result follows because P,;(Z) = m. We now assume
the result is true for the ideal of (2t — 2)-Pfaffians.

Let f = f,(Z), and note that in_(f) is a square-free monomial, which is not divisi-

;227

[Ti<; 2, We note that in(fP~1gP1) = i< %, , and so,

z1,in_(f)" p—1
12in(f) i,

ble by Z12 because t > 2. Let g =
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fP1gP=1 ¢ mlpl, Let ¢ = &(fP~1/Pglp=1/P_) where ® : R'/P — R denotes the trace map
introduced in Remark 2.3. We note go(z%z_l)/ Py=1.

We have f € P,,(Z)"Px(?) as shown in the proof of Theorem 6.23. We therefore have fP~! €
(P, (Z)(n+D) ol P,,(2)"P*D forevery n € Z, [36, Lemma 2.6] (see also proof of Corollary 5.10).
Thus, ¢ induces maps ¥ : %5(P,,(Z))/P — %5(P5,(Z)) and W : gri(P,,(2))/P — gr’(P,,(2)),
which satisfy

‘P( e WP) =1 and lP( (= WP) 1. (6.3.1)
Let A = K[U], where U = (u;, j)3<i <j<<r D€ a generic skew-symmetric matrix of size (r — 2) X
(r—2), and let S = Az 3,...,21,, 223,25, ]. We have an isomorphism y : R[z‘l] - S[z]
defined by z; j = w; j — 2, 25,27, + 21,252, fOr 3<i < j << 1,21 0 2 fori > 2, andzzl
z,; for i > 3. Furthermore, y(Py(Z))R[z]}]) = Py _,(U)S[z;}], and then y(Py(Z)MR[z1]) =

W(P,y,_ 2(U))(”)S [z] ]) foreveryn € 7, [61, Lemma1.2] (see also [14, Lemma 10.1]). By the 1nduc—
tion hypothesis, the rings Z5(P,;_,(U)) and gr’(P,;_,(U)) are strongly F-regular. It follows that
RE(P_5(U)) @4 S[zl‘é] and gri(P;_,(U)) ®,4 S [zl‘é] are strongly F-regular, because strong F-
regularity is preserved by adding variables and localizing. Therefore, thanks to the isomorphism
¥, the rings %#°(P,,(2)) ®g R[z] ] and gri(P,(2)) ®g Rlz] ] are also strongly F-regular. From
this and Equation (6.3.1), we conclude that #5(P,;(Z)) and grs (P,;(Z)) are strongly F-regular [48,
Theorem 3.3]. O

In the following result, we show that ordinary Rees algebras of ideals of Pfaffians are also
F-split.

Theorem 6.26. In addition to assuming Setup 6.21, suppose p > min{2t,r — 2t}. Then the Rees
algebra #(P,,(Z)) is F-split.

Proof. Let f = f,(Z), and note f € P,,(Z)MPx(?) as shown in the proof of Theorem 6.23. It
follows that fP~1 € (sz(Z)(”“))[p] : Py, (Z)"P+Y) for every £ < r/2 and n € Z,, [36, Lemma
2.6] (cf. proof of Corollary 5.10). Thus,
[p]
fPP,, (2)(HP) ¢ Pl ()Pt ¢ (sz(z)(n+1)>

forevery # <r/2and n € Z,,. We then get

t
fPIPy(2)"P = [P ( ﬂ sz(Z)((t_“l)"p)) [26, Proposition 2.6]

=1

t
C ﬂ fp—l (PZ/(Z)((t—f+1)np))
=1

t
[p]
- ﬂ (P2f(Z)((t_f+1)n)>
=1
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t [p]
g <ﬂ sz(Z)((t_f_'—l)n))

=1

= (P (2)H)P! [26, Proposition 2.6].
The result follows from Remark 6.22 and Lemma 6.2(2). O

As in the previous subsections, we end with the following results about degrees of defining
equations for ordinary blowup algebras for ideals of Pfaffians of generic skew-symmetric matrices.

Theorem 6.27. Assume Setup 6.21. Setu = ( ).

(1) Suppose deg(z; ;) = 0 for every i, j, then the defining equations of %(P,,(Z)) over R have degree
at most min{(7) + 1, u}.

(2) Suppose deg(z; ;) = 1 for every i, j, then the defining equations of #(P,,(Z)) over K have total
degree at most () + u(t +1).

Proof. The result follows from Theorems 6.26 and 3.3, and Proposition 2.8. O

Theorem 6.28. Assume Setup 6.21. For j = t, ..., |r], set u; = (er)
(1) Supposedeg(z; ;) = 0 foreveryi, j, then the defining equations of #*(P,,(Z)) over R have degree
at most min{(;) +1+ Z;=z+1 (=), Z;zt p;(j =t + 1)}, and of gr’(P,,(Z)) over R/P,,(Z),

have degree at most min{()) + Z}Lr:/tzjl ui(G = 1), Z}LL/[ZJ ui(G—t+ 1)}
(2) Suppose deg(z; ;) = 1 for every i, j, then the defining equations of #*(P,,(Z)) and gr*(P,,(Z))

lr/2]

over K have total degree at most () + X

ui(2j —t+1).

Proof. By Theorem 6.23 and Theorem 4.7, the algebras #%(P,,(Z)) and gr’(P,;(Z)) are F-split.
Both parts of the result now follow from Theorem 3.4, Proposition 2.8, and the equality

R (Py(2)) = R[Py(Z)T, Py (Z)T?, ..., Py 1o (Z)TV/2I]  [1] (see also [2, Section 3]). [

6.4 | Ideals of minors of a Hankel matrix
We first recall the definition of Hankel matrix.

Definition 6.29. Let j,c € Z_,, with j < c. Let w,, ..., w, be variables. We denote by WJC. the
Jj X (¢ + 1 — j) Hankel matrix, which has the following entries

Wy Wy v Weyg—j
W, ws
c _
Wj— Wy
w w
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Setup 6.30. Let j,c € Z,, with j <c, and WJC. be the j X (c + 1 — j) Hankel matrix. Let K be
an F-finite field of characteristic p > 0, R = K[WJC.], and m = (wy,...,w,). Fort € Z_, with t

min{j,c + 1 — j}, we denote by I, [(WJC.) the ideal generated by the minors of size t of WJ‘? CIfcis

odd, we set m = %, and we let

foaa(W§) = det (W}, ) det (<an)ﬁjﬁ]_u)-

If ¢ is even, we set m = % and we let

1, 1,
Feven(W) = det (W)l 1) det (owe b ).
Consider the lexicographical monomial order on R induced by
Wy > W3 > e >We > Wy > Wy > e > W

Remark 6.31. We note that the initial forms in_( fodd(ch.)) and in_( feven(Wj.)) are square-
free monomials.

Remark 6.32. 1t is well known that I t(WJ?) only depends on ¢ and ¢, that is, I, [(WJC.) = I,(W7) for
every t < min{j,c+ 1 — j}.

Theorem 6.33. Assuming Setup 6.30, the ideal It(W]C.) is symbolic F-split for every t < min{j,c +
1 — j}. In particular, the rings %S(I[(WJC.)) and grS(It(WJC.)) are F-split.

Proof. Let m = L%J, and observe that t < m. Moreover, we have I ,(W]C.) =I1,(W;) by
Remark 6.32.

Ifcisodd,let f = fodd(Wj.), and observe h = ht(I,(W]c.)) =c—2t+2=2m—2t+1. We then
have

f € Im(Wgn)Im—l(W,fn)
C I, (We )=t (we Ym0 [15, Theorem 3.16 (a)]

C It(W;l)(2m—2t+1) — It(an)(h)'

Ifciseven,welet f = feven(WJc.), and we observe thath = ht(It(WJC.)) =c—2t+2=2m—2t+2.
In this case, we have

fer,w;)I, (W, )
C I, (We )=t (we Ym=t+D) [15, Theorem 3.16(a)]

g I[(Wﬁn)(zm_ZH—Z) — I[(an)(h)

In both cases, we have shown that f eIt(an)(h). The first statement now follows from
Remark 6.31 and Lemma 6.2(1), and the second statement from Theorem 4.7. O
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‘We obtain the following homological consequences.

Theorem 6.34. Assuming Setup 6.11, the limit

reg(R/I,(W$)™)
lim ——MM
n—oo n

exists and
depth(R /It(WJ‘?)(”))
stabilizes for n > 0.

Proof. Since #* (I[(WJC.)) is Noetherian [15, Theorem 4.1], the result follows by combining
Theorems 6.33 and 4.10. O

‘We now show that ordinary Rees algebras of a determinantal ideals of Hankel matrices are
F-split.

Theorem 6.35. Assume Setup 6.30. Then, the Rees algebra R(I [(WJC.)) is F-split.

Proof. Let m = L%J, and observe that t < m. We have If(W]C.) =1,(W¢) for every £ < m by

Remark 6.32. If ¢ is odd, we set f = f odd(W]C.), otherwise we set f = f even(WJC.). From the proof
of Theorem 6.33, we see that f € I,(W¢ )W) for every £ < m. It follows that fP~! €
(If(an)(”“))[p] : (If(an))(an) for every # < m and n € Z [36, Lemma 2.6] (cf. proof of
Corollary 5.10). Thus,
[p]
SR (W) DP) ¢ pp=ip (e Yt ¢ < I K(W;)mﬂ))

forall# <mandn € Z,. Then,

t
P (We ) = fp—1< ﬂ I,(We )npt+i=r >>> [15, Theorem 3.16 (a)]
=1

t
c ﬂ (fp_llf(Wc )(np(t+1—f)))
- m
£=1
! [p]
- m (If(an)(n(t+1—f))>
£=1

t [p]
— ﬂ If(an)(n(t-'—l_f)))
=1

= (It(an)” ) Lp] [15, Theorem 3.16(a)].

The conclusion follows from Remarks 6.31 and Lemma 6.2(2). O
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Finally, we prove the following results about degrees of defining equations for ordinary Rees
and associated graded algebra for ideals of minors of generic Hankel matrices.
Theorem 6.36. Assume Setup 6.30. Set u = (C+i_t).
(1) Suppose deg(w;) = 0 for every i, then the defining equations of Z(I t(WJC. )) over R have degree at
most min{c, u}.
(2) Suppose deg(w;) = 1 for every i, then the defining equations of %(It(WJ‘f)) over K have total
degree at most ¢ + u(t + 1).

Proof. The result follows from Theorems 6.35 and 3.3, and Proposition 2.8. O

Theorem 6.37. Assume Setup 6.30. For j = t, ..., m, set jt; = (C+;_j).

(1) Supposedeg(w;) = 0foreveryi. The defining equations of Z5(I, t(WJC.)) over R have degree at most
min{c + 1+ ZT:tH ui(G—1), ZT:: u;j(j —t + 1)}, and the defining equations of grS(It(W]C.))
over R/I[(Wj?) have degree at most min{c + Z;.":Hl ui(G —1), Z;."zt pi(G —t+ 1}

(2) Supposedeg(w;) = 1 forevery i, then the defining equations of Z°(I t(W;)) and gri(], t(W;)) over

K have total degree at most ¢ + Z;":[ ui(2j —t+1).

Proof. The result follows from Theorem 6.33, Theorem 3.4, Proposition 2.8, and the equality

%S(I[(WJ?)) = RILWOT, I, (WOT2, . T,(WOT"*1]  [15, Proposition 4.1].

6.5 | Binomial edge ideals

We now give another example of symbolic F-split ideals, the binomial edge ideals, which are
generated by minors of certain matrices related to graphs.

Definition 6.38 [43, 74]. Let G = (V(G),E(G)) be a simple graph such that V(G) = [n] =
{1,2,...,n}. LetK be afield and S = K[xy, ..., X, ¥}, ..., ¥,,] the ring of polynomials in 2n variables.
The binomial edge ideal, 7, of G is defined by

Jo = (xiy; = x| for {i, j} € E(G)).

Definition 6.39 [43]. A graph G on [n] is closed if G has a labeling of the vertices such that for
all edges {i, j} and {k, [} with i < j and k < [, one has {j, 1} € E(G) if i = k, and {i, k} € E(G) if
j=1L

The binomial ideals of closed graphs class of graphs can be characterized via Grébner bases for
binomial edge ideals [43]. This class of binomial edge ideals has been studied in several works [19,
31, 32, 43]. For example, it is known that, for closed graphs, a binomial edge ideal is equidimen-
sional if and only if it is Cohen-Macaulay [32, Theorem 3.1]. Since their initial ideals correspond
to a bipartite graphs, we have that the ordinary and symbolic powers of closed binomial edge
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ideals coincide [31, Corollary 3.4]. This follows from the analogous result for monomial edge ideals
of bipartite graphs [85, Theorem 5.9].

Proposition 6.40. Let G be a closed connected graph such that 7 is equidimensional. Then, 7 is
symbolic F-split. In particular, the rings %°(7;) and gr'( ;) are F-split.

Proof. Since G is connected and S/ %; is equidimensional, we have bigheight(7;) = n —1 ([32,
Theorem 3.1], [43, Corollary 3.4]). We also have fé”) =75 [31, Corollary 3.4]. Now, since a closed
graph is a proper interval graph, it contains a Hamiltonian graph [4, 19]. We assume with out loss of
generality that this path is given by 1, ..., n, in this order. We set f = H:’z_ll (x;¥i41 — Xi41Y)- Then,
fp-1 e g=Dp-1)\ (xf, s XE yf, .., Y5, Therefore, 7 is symbolic F-split by Corollary 5.10.
The second statement follows from Theorem 4.7. O

7 | EXAMPLES OF MONOMIAL F-SPLIT FILTRATIONS

In this section, we present several classes of filtrations of monomial ideals that are F-split. The list
of examples include symbolic powers and rational powers of squarefree monomial ideals, and ini-
tial ideals of symbolic and ordinary powers of determinantal ideals of generic and Hankel matrices
of variables, and of Pfaffians of generic skew-symmetric matrices.

Throughout this section, we assume the following setup.

Setup 7.1. Let R be a standard graded polynomial ring R = K[x,, ..., x;] over an F-finite field K of

characteristic p > 0. For a vector n = (n,, ..., ny) € Zio, we set X = x'fl de.

7.1 | F-split filtrations obtained from monomial valuations

Assuming Setup 7.1, let a = (ay,...,a,) € Zgo and consider the following function on the set of
monomials in R :

v(x™)=n-a.

We extend v to the entire R by setting

uv(f) = v(Z c;xM ) 1= min {v(x™)}
for a polynomial f = Y ¢;x™ € Rwith 0 # ¢; € K. Such a function is called a monomial valuation
of R [58, Definition 6.1.4].

The following is the main result of this subsection.

Theorem 7.2. Assuming Setup 7.1, let vy, ..., v, be monomial valuations of R. For each n € Z, we
set

I,={f €R|v(f) = n, foreveryl <i<r}.
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(1) The sequencel = {I,},c,_, is an F-split filtration of monomial ideals.
(2) (1) is Noetherian and strongly F-regular.

Proof. We begin with the proof of (1). We note that each I,, is a monomial ideal by the definition of

valuation [58, Definition 6.1.1]. Let p : K'/P — K be a splitting. Let ¢ : RY/P — R be the K-linear
map defined on the monomials of R as:

¢<(cxn)1/p) - ¢<Cl/p<x¥1 '--x;’d)l/p>

_ p(cl/l’)x'fl/p ---xsd/p, ifn=--=n;=0 (mod p),
0 otherwise.

In particular, ¢(c!/P(x™)1/P) = ¢(c/P)p((x™)'/P). If ¢,c € K and x",x™ € R are monomial, then
P((ExP)c/Px™/P) = p(Tc!/P)p(x"x/P) = Ep(c!/P)xP(x"/P) = Tx"p(c'/Px™/P),
Then,

¢<f(gl/p>)=f¢<g1/p) forevery f,g €R. (7.1.1)

We have that ¢ is an R-homomorphism and thus a splitting of the natural inclusion R < R/P.
Now, let n € Z,, be arbitrary and x" = x?l ---de € I,,41 be such that H((x™)/P) £ 0.
Therefore, p|n; foreveryi =1,...,d and then

d
o (#0/0) = 3 )z | = ne,

forevery 1 < i < r. It follows that ¢((x™)!/P) € I, ;. Therefore, ¢((Inp+1)1/l’) €l,,, foreveryn €
Z,, which implies [ is an F-split filtration.

We continue with the proof of (2). Let a; = (v;(x;), ..., ;(xy)) € Zio and let ./; be the affine
semigroup

d+1 d+1
M; = {(n n) € 2% I(ai,—l)-(n,n)>0}gz>g

for every 1 <i<r. Then, # = M, N..N M, is a finitely generated affine semigroup [44, The-
orem 1.1 and Corollary 1.2]. We note that Z(I) = K[.#], and so, Z(1) is a finitely generated
K-algebra.

Since #(1) = K[.#] is F-split regardless of the characteristic of the field by part (1), we have
that ./ is a normal monoid [13, Corollary 6.3]. As a consequence, % (1) is a strongly F-regular ring
[47, Theorem 1], finishing the proof. O

In the following example, we include several well-studied filtrations of monomial ideals
covered by Theorem 7.2.
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Example 7.3. Some examples of F-split filtrations of monomial ideals.

(1) (Rational powers of monomial ideals) Let I be a monomial ideal and u,, ..., u, its Rees valua-
tions, which in this setting are also monomial valuations (see [58, Proposition 10.3.4]). For each
i,setu;(I) = min{u;(f) | f € Itandletu = mem(u, (1), ..., u,(I)). Foreach 1 < i <, r, consider
the monomial valuation v; = ﬁui. Then, the monomial ideal

I, ={f €R|vi(f) =2 n, forevery1 <i <r}

is the g-rational power of I (see [58, Proposition 10.5.5], [66]). Therefore, by Theorem 7.2(1),
I =n}nez,, is an F-split filtration. Thus, % (1) is Noetherian and strongly F-regular by The-
orem 7.2(2) and gr(l) are F-split by Theorem 4.7. Since these algebras are Noetherian, the
conclusions of Theorem 4.10 hold for I.

The sequence of integral closure powers {I_”}nEZZO is a subsequence of the rational powers.
Indeed, one has I" = I wu 158, Proposition 10.5.2 (5)]. Thus, the conclusions of Theorem 4.10
hold for {I_n}nez>o and, since direct summands of strongly F-regular rings are strongly

F-regular, the normal Rees algebra % = ®n€Z>0 I"T" is also strongly F-regular.

(2) (Symbolic powers of squarefree monomial ideals) Let I be a square-free monomial ideal
and py, ..., p, be its minimal primes. The functions v;(f) = max{n | f € p'} are monomial
valuations, therefore, the symbolic powers of I

I™ ={geR|v(g)>n, foreveryl <i<r}

form an F-split filtration.

7.2 | F-split filtrations obtained from initial ideals

Setup 7.4. Assume Setup 7.1 and suppose that R is equipped with a monomial order <. If [ is a
filtration, then in (1) = {in(J, n)}nEZ>0 is also a filtration.

In the following proposition, we provide sufficient conditions for certain filtrations and algebras
obtained from initial ideals to be F-split.

Proposition 7.5. Assuming Setup 7.4, let I C R be a homogeneous equidimensional radical ideal
of height h such that in _(I) is radical.

(1) Ifthereexists f € I such thatin_(f)issquare free, then thefiltration {in_(I (”))}nGZZO is F-split.
(2) If there exists f € ﬂneZZO I ”)“’J : I"P such that in_(f) is square free, then Z({in (I")}) is F-
split.

[p]

Proof. We begin with (1). Since f € I?, we have fP~1 € (I0+D)™ 1 ["P+D) for every n € 7,

[36, Lemma 2.6] (cf. proof of Corollary 5.10). Thus,

in_ (fP—l) in_ (I("p+1))> =in_ (fP—ll(”PH))
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Cin. <<I(”+1))[p ]>

= in< (I(n+1)>[p]

Then, in_(fP~') ¢ m/Pl and in_(fP!) e (in<(1("+1)))[p] :in (I®P+D) for every n € Z,. It
follows that {in (I ("))},1EZ>0 is an F-split filtration by Proposition 4.6.
We continue with (2). The assumptions of this part guarantee that

in_ (fP7')in. (I"P) = in_ (fP'I"P)

cin ((17)")

= in_ (I")".

Then, in_(fP~!) ¢ mlPland in_(fP~) € (in_.(I™)) L in_(I"P) for every n € Z,,. We conclude
that Z({in_(I")}) is F-split proceeding as in the proof of Lemma 6.2(2). O

Our next goal is to prove a technical result, Theorem 7.9, which is crucially used in the rest of
this section. First we need two lemmas.

Lemma 7.6. Assume Setup 7.4 with K a perfect field. Let P C R be a homogeneous prime ideal such
thatin_(P)is radical, and let Q = (x, ..., X},). Suppose thatin _(P) C Q. Let {x™ Th1, ..., x"Tbm} be
a set of generators of S = @5, in_(P")T" as an R-algebra. Writen; = (n;q ..., q) foreach 1 <
i < mand suppose p > max{n; ;, b} <icm 1<j<a- Then, in (P"*D) € Qin_(P™) foreveryn € Z,,.
Proof. Set 7 1= @5, in (P"TV)T" C S. We have that o/ := {x™T?~!, ., x"T’»~1} generates
Z as an S-ideal. Fix x™T bi=1 & of. We claim that there exists 1 < Jj < h such that nj = 1. If not,
we would get that X% Tb~1R, = Ry, and therefore in_(P(®)) ¢ Q. However, this contradicts the
assumption in_(P) C Q. It follows from this claim and by the assumption on p thatd j (xmihi—1y £

0. Let g € P(®) be such that in_(g) = x",and setd; = %. We have
J
0# 8;(x™T" ) = 8,(in(9)T" ™) = in_(8;(9)T*! € in (PO~D)r>~!
by the characterization of symbolic powers in terms of differential operators [23, 27, 73, 98]. Hence,

xmTh € x;in <P(bi_1)>Tbi_1 C Qin. (13(1’1'—”):#%—1 cQ-Ss.

We have 7 C Q - S, and therefore in_(P""+V) C Qin_(P™) for every n € Z,, O

Lemma 7.7. Let (S,n) be a universally catenary local domain. Let | be a filtration of nonzero
S-ideals, such that the Rees algebra R(l) is finitely generated as S-algebra. Then, gr(l) is
equidimensional of dimension dim(S).
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Proof. Consider the extended Rees algebra A := S[IT,T~'] = ®,,c,1,T" where I,, = S for n < 0.
Thus, there exists £ € Z,, such that A is an integral extension of S[I,T,T™1] = @,¢c,I}T"; see
Equation (2.4.1). Therefore, A has dimension dim(S) + 1 [58, Theorem 2.2.5, Theorem 5.1.4(1)].
Now, T~! is a homogeneous nonzero element of A and then every minimal prime of (t~!) has
height one. We also have that A/(T~!) = gr(l). The result now follows by noticing that A is a
catenary graded domain, which has a unique homogeneous maximal ideal &,,_oI,,t" & n @,
I,,t", and thus for any homogeneous ideal # C A, one has dim(A4/.7) + ht(,) = dim(A). O

Remark 7.8. Assuming Setup 7.4 with K algebraically closed, Sullivant proved that foralln € 7,
and all radical ideals I such that in_(I) is radical, one has in_(I )y ¢ in (I )™ [92]. We point out
that his proof works, more generally, if K is just any perfect field.

We are now ready to present the technical theorem (cf. [57, Theorem 1.2]).

Theorem 7.9. Assume Setup 7.4with K a perfect field. Let P C R be a homogeneous prime ideal such
that in_(P) is radical. Let S = @, in (PM)T", 7 = @, in . P"NT" CS, and G=S/7.
Assume that S is Noetherian and let by, ..., b, be the generating degrees of S and an R-algebra.
Assume p > lem(by,...,b,,) and that G is reduced. Then, there is a one-to-one correspondence
between primes of R minimal over in_(P) and minimal primes of G.

More specifically, if q € Spec(R) is minimal over in_(P), then Q = ker(G — G ®y Rq) is a
minimal prime of G such that Q N R = q, and every minimal prime of G is of this form.

Proof. Foralln > 1,setJ, = in_(P"). Without loss of generality, we may assume that X is infinite.
Foralln > 1, we have J? C J,,and by Remark 7.8, we also have J,, C J'g”). Let g € Spec(R) be min-
imal over J;. After localizing at q, the above inclusions all become equalities. Moreover, since J;
is radical, we have J 1Ry = aRy, and therefore IRy = (qRq)". It follows that G ®p Ry = B4R, (Rq),
and since Rq is regular, this associated graded ring is a domain. If we let Q = ker(G — G ®p Rq),
then G/Q is a subring of a domain, hence a domain itself. It follows that Q is a prime ideal of
G, and it is easy to see that Q N R = ker(R/J; — R,;/qR,) = q. Finally, the map G — G ®; R,
becomes an isomorphism when localized at Q. Therefore, QG, =0, that is, Q is a minimal prime
of G.

Now let Q be a minimal prime of G. Let Q be a lift of Qto S, so that Q is a prime of S,
which is minimal over #. Let ¢ = Q N R, which is a monomial ideal. Hence, q generated by
variables, say x,...,x;,. Consider the multiplicative system W = K[x},;,...,x4] \ {0} C R, let
K' =K(xpy1yrXq) = WK[xp41, ., xgland R = WIR = K'[x, ..., x;,]. In addition, W~1q =
WlQ' nW~IR = (x4, ..., x;,)R". We replace K by K’, and may assume QN R = m = (xy, ..., X))
By Lemma 7.7, we have dim(S/Q) = dim(G) = d. We want to show that m is minimal over J;.

First, we want to show that, in our current setup, the monomial ideal J; is generated by vari-
ables. If not, after possibly relabeling the indeterminates, we may find integers 1 < #; < ¢, < d,
a square-free monomial ideal A C (x,, ...,xfl)z, and an ideal L = (xf1 h ...,xfz) generated by
variables such thatJ; = A + L.

By Lemma 7.6, we have that J,, ; € mJ, for all n > 0, and thus # C mS C Q. Since G =S/ 7
is reduced, and Q is a minimal prime of #, we have # So = QS, and thus 7S, = mS,. In par-
ticular, there exist n > 0 and fT" € S \ Q such that fT"(mS) C 7. Thus, f € J,, is an element
such that fm CJ,,;, and fT" € Q. In our assumptions, if s = lcm(b,, ..., b,,,), then we can find
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homogeneous elements a, 7%, ..., a;T*, which form a full system of parameters for the finitely gen-
erated graded K-algebra S/mS. In particular, notice that a;T° ¢ Q for all i, since Q is a minimal
prime of mS.

First, we claim that a; € m**! foralli = 1, ..., d, that is, each q; has degree at most s. By way of
contradiction, assume q; € m5t! for some i. We have

aiTS(an)s+1 c (fm)s+1T(n+1)(s+1)—1 C J(n+1)(s+1)T(n+1)(s+1)_1 c7cCo,

which contradicts the fact that a;7* and fT" do not belong to Q.

We now claim that Jis) =(A+L)Y C(x),., X, P+ L. Let Ry =K[xy,...,x, ], my =
(X1, ., X, )Ry and B = AN R,. Since we have (A + L)) C A®) + L, it suffices to show B®) € m$*!
in Ry. Since p = char(K) > s, every K-linear differential operator 8 of R’ of order at most s can
be written as axioa' for some K-linear differential operator 8’ of order at most s — 1, and some
1<i<?,. Wehave

3(B®) = 3y, ' (B®)) c 6,.(B) C 6xl_(m§) C m; (for instance, [23, Proposition 2.14]).

Therefore, we have B® C m(f“) = mi“ [23, Proposition 2.14]. At this point, we have shown
that (ay,...,ay) CJ; CJ is) C (Xp, .5 Xp, )**! + L. Since each q; is homogeneous, and has degree
at most s, we must have (a,, ..., a,) C L.

Finally, let I = (a,, ..., a4); we claim that \/f =J;. Once we have shown this, we have J; =
\/f C L CJ,, which implies J; = L is generated by variables. Since a,T%,...,a,T° are a full
system of parameters for S/mS, we can find an integer N > 0 such that (Jﬁ,\’ TN$)S/mS C
(a,T5,...,ayT)S/mS, so that JTNS C (a,T%, ..., agT* ) s TN + (mS)y, TN5. In particular, we
have a containment J C (ay, ..., a4) + mJy;. Because S is generated in degree at most s, we have
Jys =JY, and we conclude that Jy C (a, ..., ag) + mJy,. It follows from graded Nakayama’s
Lemma that Jy, C (a, ..., a4), and since Jf’s C Jy,» We conclude that J; C \/f Since I C J;, the
other inclusion is trivial.

To conclude the proof, observe that since J; is generated by variables, we have JT' = J g”) for all
n. It follows that G = @,50 /T ns1 = Bpso Iy I} = gy (R) is reduced. Then, m is a minimal
prime over J;, by the one-to-one correspondence between minimal primes of G and R/J; already
established in this case [57, Theorem 1.2]. O

From the previous theorem, we obtain the following useful corollary.

Corollary 7.10. Assume Setup 7.4 with K a perfect field. Let P C R be a homogeneous prime
ideal such that in_(P) is radical. Let S = @, in.(PM)T", 7 = @, in (PM+)T" C S, and
G =S/ 7. Assume S is Noetherian and let b, ..., b,, be the generating degrees of S and an R-algebra.
Assume p > lem(by, ..., b,,) and that G is reduced. Then, in<(P(”)) = in<(P)(") foralln > 1.

Proof. For all n > 1, set J, = in_(P™). By Theorem 7.9, we have that G = Do /Tns1 isa
torsion-free R /J;-module. The same argument used in Remark 5.3 shows Assp(R/J,,) € Min(J;)
for all n > 1. Thus, since J,, contains J{‘, it must in fact contain J;”). Finally, because the

containmentJ, CJ g") always holds, we obtained the desired equality. O
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The following observation shows how close is the equality in_(P() = in_(P)", for every n €
Z,, to I being symbolic F-split.

Remark 7.11. Assume Setup 7.4 with K a perfect field. Let P C R be a homogeneous prime ideal
such that in_(P) is radical and in<(P(”)) = in<(P)(”) for all n > 1. Then, x; - x4 € in<(P)(h) =
in<(P(h)), where h = height(P). Let f € P™M be a homogeneous polynomial such that in_(f) =
x; - Xg. Thus, f ¢ m!Pl, and so, P is symbolic F-split by Corollary 5.10.

7.3 | Results in characteristic zero

LetJ C R = Q[xy,...,x4], and let A = Z[x;, ..., x4]. LetJ, =T N A, and let f,,..., f, € A be gen-
erators of J 4. Note that (f, ..., f{)R = J. For every prime p € Z, we let J(p) = J 4 - A(p), where
A(p) = z/(p)[x;, ..., x4]. Note that, if A/J, is flat over A, then J, ®, Z/(p) can be identified
with the ideal J(p) of A(p) @ A ®, Z/(p).

Lemma 7.12. Given an integer n € Z, and an ideal J C R = Q[x,, ..., X4], we have (J(p))"” =
((T)™)(p) for all primes p > 0.

Proof. Consider a minimal primary decomposition (J,)" =I; N...N I in A. We collect the pri-
mary components and write (J4)" = (J A)(") NI, where (J A)(”) =1, N..N I, is the n-th symbolic
power of J, in A. Let P; = \/E By generic freeness [53, Lemma 8.1], there exists an element
a € Z such that all the modules (A/Ij)a, (A/]fx)a’ (A/]I(:))a, and (A/J ), are free over Z,,. Since
we are seeking to get the equality (J (pH™ = ((J A)(”))( p) only for p > 0, without loss of gener-
ality, we directly assume that all the above modules are free over Z. By flatness, we have J ®
z/(p) 2 J5(p) = U(p)" = I,(p)N..NI(p) as ideals of A(p) and, in particular, ((JA)(”))(p) =
I,(p) N ...I,(p). It is left to show I,(p) N ... N I,(p) = (J(p))™. Since (J )™ ®, Q@ = J™, we have
that for p > 0 there is no associated prime of I; (p) N ... N I;(p), which is embedded [52, Theorem
2.3.9], and the desired equality follows. O

Remark 7.13. Assume that < is a monomial order on R = Q[x,,...,Xy], and let J CR be an
ideal. We have that in_(J4)(p) = in.(J(p)) for all p > 0 [81, Lemma 2.3]. Moreover, any mini-
mal monomial generating set of in_(J) is a minimal monomial generating set of in_(J(p)) for
p>0.

Remark 7.14. If I C J are two ideals of R = Q[x, ..., X4] such that I(p) = J(p) for all p > 0, then
I =J. In fact, after localizing at a nonzero element a € Z, we may assume that (J,/I,), is a
free Z ,-module, by generic freeness. Our assumptions guarantee that there is a sufficiently large
prime integer p such that (J,/14), ®7, Z,/(p) =J4/14 ®; Z/(p) = J(p)/I(p) = 0, and since
(J4/14), is free over 7, this implies (I4), = (J4),- In particular, I = J.

Theorem 7.15. Let B = Q[xy,...,X ] be equipped with a monomial order <. Let f,...,fs €
A =Z[xy,...,x4] be homogeneous elements, and Q = (fy,..., f;)B. Assume that Q is prime,
and that in_(Q) is radical. For a prime integer p, we let S(p) = @nzo in_(Q(p)"™)1", 7(p) =
Do in_(Q(p)™*NT™, and G(p) = S(p)/ 7 (p). Assume that S(p) is Noetherian and that G(p)
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is reduced for all p > 0. IfK is any field of characteristic zero, R = K[x,, ..., X4] is equipped with the
same monomial order < as B, and P = QR, then in<(P(”)) = in<(P)(") foralln > 1.

Proof. First we prove the statement for K = Q, that is, for R =B and P = Q. Let J = Q4 and fix
n € Z,; by Remarks 7.8 and 7.14, we only have to show in<(J)(")(p) = in<(J(”))(p) for all p > 0.
By Lemma 7.12 and Remark 7.13, for p > 0, we have

in (N™(p) = (in N(P)H™ = in(Q(p)™

and
in_ (7)) = in. (17(p) = in. (QP)™).

Moreover, by Remark 7.13, we have that in_(Q(p)) is square free for all p > 0, given that in_(Q)
is square free by assumption. Since S(p) is finitely generated and G(p) is reduced for all p > 0,
we conclude by Corollary 7.10 that in<(Q(p))(”) = in<(Q(p)(”)) for all p > 0, and the proof is
complete in this case.

Now let K be any field of characteristic zero and fix n € Z,,. Since Buchberger’s algorithm is
stable under base extensions, we have in_(I)R = in_(IR) for any ideal I C B. Moreover, as the
natural inclusion B & R = B ®, K is flatand @ — K is separable, we have IR = (IR)" for any
radical ideal I C B. By what we have already shown, we finally get

in_ (p<">) = in_ ((QR)<">) = in. <Q<">)R - (in<(Q)<">)R = in(QR)™ = in.(P".

7.4 | Main results of this section

We are ready to present the main results of this section in the context of determinantal ideals.
In the generic case, the equality between initial ideals of symbolic powers and symbolic powers
of initial ideals was proved by Bruns and Conca [10, Lemma 7.2]. The methods developed in this
paper allow us to recover this result.

Theorem 7.16. Assume Setup 6.3 and p > min{t,r — t}. Then, the filtration {in_(I,(X )(”))}nEZ>0
and the algebra Z({in_(I,(X)™)}) are F-split. Moreover,

in (1, O™) = in (7,0
foreveryn € 7,

Proof. We consider f,(X) as in Notation 6.3. We have that in_(f,;(X)) is square free and
F100 € Nuez,, TEMP 2 1,(X)"P by the proof of Theorem 6.8. Then, Z(fin (1, (X)")}) is F-
split by Proposition 7.5(2). We also have f,(X) € I,(X)("%:(X)) by the proof of Theorem 6.5. Then,
{in (I;(X )(”))}nEZZO is an F-split filtration by Proposition 7.5 (1). Thus,

in_(I,(X)™)

G:= =
in_(I,(X)("+D)

nezy,
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is an F-split ring by Theorem 4.7, and so, it is reduced. Since Z({in_(I,(X Y)Y is a finitely
generated algebra [10, Lemma 7.1.], we conclude that

in (1,00™) = in (I, )™
for every n € 7, by Corollary 7.10. [

Corollary 7.17. Let K be a field of characteristic zero, X be a generic r X s matrix of variables, and
R = K[X]. For every t < min{r, s} and every n € Z,, we have

in_(I,(X)™) = in_(1,(X))™.
Proof. This is immediate consequence of Theorems 7.15 and 7.16. O

Finally, we now turn our attention to the case of Pfaffians, which, to the best of our knowledge,
was not previously known.

Theorem 7.18. Assume Setup 6.21 and p > min{2t,r —2t}. Then, the (filtration
{in <(P2t(Z)("))}~n€Z>0 and the algebra % ({in_(P,;(Z)")}) are F-split. Moreover,

in_ (P@)™) = in. (P(@)"
foreveryn € 7,

Proof. We consider f,,(Z) as in Notation 6.21. We have thatin_(f,) is a square-free monomial and
@) e ﬂnez>0 (PZt(Z)”)[p] : P,,(Z)"P by the proof of Theorem 6.26. Then, % ({in_(P,;(Z)")}) is

F-split by Proposition 7.5(2). We also have f,,(Z) € P,,(Z)*2(Z)) by the proof of Theorem 6.23,
therefore {in_(P,;(Z )(”))}nEZ>0 is an F-split filtration by Proposition 7.5(1). In particular,

in_(P,,(2)™)

G = =
in_(Py(Z)(n+D)

neZy

is a F-split by Theorem 4.7, and so, it is reduced. As %({in<(P2t(Z)(”))}) is a finitely generated
algebra [2, Proof of Proposition 3.1], we conclude that

in_(P,(2)™) = in_(P,,(2))™
for every n € 7, by Corollary 7.10. [

Corollary 7.19. Let K be a field of characteristic zero, Z be a generic r X r skew-symmetric matrix,
and R = K[Z]. Forevery t < L%J and every n € Z,, we have

in<(P2[(Z)(")) = in<(P2[(Z))(”),

Proof. This is an immediate consequence of Theorems 7.15 and 7.18. O
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The case of Hankel matrix was also known, and it is due to Conca [15, Lemma 3.5 and Theorem
3.8]. We recover it here.

Theorem 7.20. Assume Setup 6.30 and p > min{t,r —t}. Then, the (filtration
{in (I, (WJC.)(n))}nEZZO and the algebra R ({in (I t(WJC.)”)}) are F-split. Moreover,

: c\(n) : c (m)
in_ <It(Wj) ) =in_ <It(Wj)>
Joreveryn € 7,

Proof. We set f = fodd(WJC.) ifdisodd and f = feven(W]C.) if d is even as in Notation 6.30, and

W= WJC.. We have that in_(f) is square free and f € ﬂnezzo (It(W)”)[p] : I;(W)"P by the proof
of Theorem 6.35. It follows that Z({in_(I,(W)")}) is an F-split ring by Theorem 4.7, and so, it
is reduced. We also have that f € I,(W)MU:(W)) by the proof of Theorem 6.33, and therefore
{in_(I, [(W)(”))}nEZZO is an F-split filtration by Proposition 7.5(1). We also have

in_(L,(W)™)

G= T ———
in_(I,(W)(n+D)

neZy,

is an F-split, and so, it is reduced. Since % ({I t(W)("))}) is a finitely generated algebra [15, Theorem
4.1], we conclude that

in (I, W)™) = in_(I,(W)™
for every n € 7, by Corollary 7.10. [

Corollary 7.21. Let K be a field of characteristic zero, WJ? be a jxc+1— j Hankel matrix of
variables, and R = K[W;?]. For every t < min{j,c + 1 — j} and every n € Z, we have

in_ (I, (W$)™) = in_(I, (W)™,
Proof. This is an immediate consequence of Theorems 7.15 and 7.20. O

Remark 7.22. In the case of minors of a generic symmetric matrix Y, it is not known whether the
algebra Z({in (I t(Y)(”))}) is finitely generated. For this reason, we cannot use the same strategy
used above for the other three types of determinantal ideals.

Remark 7.23. If R is a standard graded polynomial ring over a field K and I C R is a homogeneous
ideal, we denote by a(I) the smallest degree of a minimal generator of I. Let < be a monomial
order on R. We note that a(I) = a(in_(I)). In particular, if I and in_(I) are radical and in (I )y =
in_(I)™ for every n, then their Waldschmidt constants coincide. Specifically,

(n) : (n)
an = lim “(In ) _ lim —“(mf) ) _ atin_(1).

n—oo
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In particular, Theorems 7.16, 7.18, and 7.20 allow us to compute the Waldschmidt constant of
certain determinantal rings via their initial ideals, for which a formula has already been proved

[5]. We point out that one can also compute directly that &(I,(X)) = r_: — [10, Lemma 7.1.],

ap,(2)) = % [2, Proof of Proposition 3.1], and &(It(Wj.)) = % [15, Theorem
41].

Remark 7.24. If R is a polynomial ring, < is a monomial order, and I C R is a homogeneous ideal,
then I@ C I® implies in_(I?)) C in_(I?). We recall that the resurgence of I is defined by p(I) =
sup{% | 1@ ¢ 1P}, If in_(I) are radical, in<(I(”)) = in<(I)("), and in_(I") = in_(I)" for every n,
then p(in_(I)) < p(I). In particular, this case occurs for ideals of minors of Hankel matrices (see
Theorem 7.20 and [15, Theorem 3.16(b)]).

Hoa and Trung showed that the limit above exists for square-free monomial ideals. In fact, they
showed a stronger version for the a-invariants [46, Theorems 4.7 and 4.9].

Corollary 7.25. Assume Setup 6.30.

K[X]/inc (L,CO™
(1) Assume Setup 6.3. Then lim reg( m<(t >>

n—-oo n

depth (K[X]/in. (I,(X)™)) stabilizes.

reg( K[Z]/ ing ( Py (2)™
(2) Assume Setup 6.21. Then lim < << 2 >>

n—oo n

depth (K[Z]/in (P,,(2)™)) stabilizes.
reg(KIW¢1/ in (1L,W5)®))

exists. Moreover, for n > 0, we have that

exists. Moreover, for n > 0, we have that

(3) Assume Setup 6.30. Then lim

n—oo n

depth <K[WJC.] /in. (I[(WJ?)(”)> ) stabilizes.

exists. Moreover, for n > 0, we have that

Proof. If J is a square-free monomial ideal in a polynomial ring R, it is already known

(n)
that lim reg(Rn¢ exists, and that depth(R/J (”)) stabilizes [46]. Then, the result follows from
n—oo
Theorems 7.16, 7.18, and 7.20. O
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