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Abstract

We prove that double Schubert polynomials have the saturated Newton polytope property. This settles a conjecture

by Monical, Tokcan and Yong. Our ideas are motivated by the theory of multidegrees. We introduce a notion

of standardization of ideals that enables us to study nonstandard multigradings. This allows us to show that the

support of the multidegree polynomial of each Cohen–Macaulay prime ideal in a nonstandard multigrading, and in

particular, that of each Schubert determinantal ideal is a discrete polymatroid.
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1. Introduction

Schubert polynomials are classical and important objects in algebraic combinatorics. They were intro-

duced by Lascoux and Schützenberger [17] to study the cohomology classes of Schubert varieties. Since

then, Schubert polynomials have played a fundamental role in algebraic combinatorics (see, e.g., [8, 19,

1, 2, 13, 14, 16] and the references therein).

We first recall the definition of Schubert polynomials. Let ÿý be the symmetric group on the set

[ý] = {1, . . . , ý}. For every ÿ ∈ [ý − 1] = {1, . . . , ý − 1}, we have the transposition ÿÿ = (ÿ, ÿ + 1) ∈ ÿý .

Recall that the set ÿ = {ÿÿ | 1 ≤ ÿ < ý} generates ÿý . The length ℓ(ÿ) of a permutation ÿ is the least

amount of elements in ÿ counting repetitions needed to obtain ÿ from the identity permutation. The

permutation ÿ0 = (ý, ý − 1, . . . , 2, 1) (in one-line notation) is the longest permutation and has length
ý (ý−1)

2
. We follow the notation of [14] and [18, Chapter 15] to present permutations and Schubert

polynomials.
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Definition 1.1. The double Schubert polynomial ÿÿ (t, s) ∈ Z[ý1, . . . , ýý , ý1, . . . , ýý] of a permutation

ÿ ∈ ÿý is defined recursively in the following way. First, we defineÿÿ0
=
∏

ÿ+ ÿ≤ý (ýÿ − ý ÿ ), and for any

permutation ÿ and transposition ÿÿ with ℓ(ÿÿÿ) < ℓ(ÿ) we set

ÿÿÿ ÿ =
ÿÿ − ÿÿÿÿ

ýÿ − ýÿ+1

,

where ÿý acts only on Z[ý1, . . . , ýý] by permutation of variables. The (ordinary) Schubert polynomial

ÿÿ (t, 0) ∈ Z[ý1, . . . , ýý] is obtained from ÿÿ by setting each variable ý ÿ equal to 0.

The monomial expansion of ordinary Schubert polynomials has been combinatorially analyzed using

different objects such as compatible sequences [2], reduced pipe dreams [9, 1] and Kohnert diagrams

[15]. The description using pipe dreams also works for the double Schubert polynomials [18, Corollary

16.30]. We also have a formula for double Schubert polynomials using bumpless pipe dreams [16].

Following [19], we say that a polynomial ÿ =
∑

n ýnxn ∈ Z[ý1, . . . , ýÿ] has the saturated Newton

polytope property (SNP property for short) if the support supp( ÿ ) = {n ∈ Nÿ | ýn ≠ 0} of f is equal to

Newton( ÿ ) ∩ Nÿ, where Newton( ÿ ) = ConvexHull{n ∈ Nÿ | ýn ≠ 0} denotes the Newton polytope of

f ; in other words, if the support of f consists of the integer points of a polytope.

The main goal of this paper is to confirm the following challenging conjecture by Monical, Tokcan

and Yong that appeared in [19, Conjecture 5.2].

Conjecture 1.2 [19]. Double Schubert polynomials have the SNP property.

We confirm the conjecture by proving a stronger result that the support of each double Schubert

polynomial is a discrete polymatroid. A discrete polymatroid P on [ÿ] = {1, . . . , ÿ} is a collection of

points in Nÿ of the following form

P =
{
(ý1, . . . , ýÿ) ∈ N

ÿ |
∑

ÿ∈ý

ý ÿ ≤ ÿ (ý), ∀ý � [ÿ],
∑

ÿ∈[ÿ]

ýÿ = ÿ ([ÿ])
}

with r being a rank function on [ÿ]. A rank function on [ÿ] is a function ÿ : 2[ÿ] → N satisfying the

following three properties: (i) ÿ (∅) = 0, (ii) ÿ (ý1) ≤ ÿ (ý2) if ý1 ⊆ ý2 ⊆ [ÿ] and (iii) ÿ (ý1 ∩ ý2) +

ÿ (ý1 ∪ ý2) ≤ ÿ (ý1) + ÿ (ý2) if ý1,ý2 ⊆ [ÿ].

The following is the main theorem of this article.

Theorem A. Let ÿ ∈ ÿý be a permutation andÿÿ (t, s) ∈ Z[ý1, . . . , ýý , ý1, . . . , ýý] be the corresponding

double Schubert polynomial. Then, the support supp(ÿÿ) ⊂ N2ý of ÿÿ is a discrete polymatroid on

[2ý] = {1, . . . , 2ý}. In particular, the statement of Conjecture 1.2 holds.

Our approach to prove Theorem A can be summarized in the following quote by Miller and Sturmfels

[18, Introduction to Chapter 15]: ‘We consider the finest possible multigrading, which demands the

refined toolkit of a new generation of combinatorialists’. More precisely, we utilize the result that

double Schubert polynomials equal the multidegree polynomial of Schubert determinantal ideals with

the aforementioned ‘finest possible multigrading’ (see [18, Theorem 15.40]), and then we develop a

method of standardization of ideals. This process of standardization allows us to study multidegrees

in certain nonstandard multigradings by reducing the problem to a standard multigraded setting. Our

main tool is Theorem 2.2 from [3] which shows that the support of the multidegree polynomial of any

multihomogeneous prime ideal (with usual standard multigrading) is a discrete polymatroid. Here, we

extend this theorem to the family of nonstandard multigradings that we study.

Much interest has been paid to the important conjectures proposed in [19] and a number of them

have already been confirmed (see [8]). Therefore, Theorem A settles a hitherto remaining conjecture

from [19] and gives further evidence to the ubiquity of the SNP property in many ‘combinatorially

defined polynomials’. Theorem A also gives more evidence for the presence of the Lorentzian property

in double Schubert polynomials as conjectured in [12].
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The structure of the paper is as follows. We review the notion of multidegrees in Section 2 and recall

the connection between double Schubert polynomials and Schubert determinantal ideals in Section 3.

Section 4 contains our main results, in particular the proof of Theorem A.

2. A short recap on multidegrees

In this short section, we briefly recall the notion of multidegrees and some of its basic properties; for

more details the reader is referred to [18, 5].

Let k be a field and ý = k[ý1, . . . , ýÿ] be a Zý-graded polynomial ring (for now, we do not assume

the grading to be positive). Let M be a finitely generated Zý-graded module and ý• be a Zý-graded

free R-resolution ý• : · · · → ýÿ → ýÿ−1 → · · · → ý1 → ý0 of M. Let ý1, . . . , ýý be variables over Z

and consider the polynomial ring Z[t] = Z[ý1, . . . , ýý], where the variable ýÿ corresponds with the i-th

elementary vector eÿ ∈ Z
ý . If we write ýÿ =

⊕
ÿ ý(−bÿ, ÿ ) with bÿ, ÿ = (bÿ, ÿ ,1, . . . , bÿ, ÿ , ý) ∈ Z

ý , then

we define the Laurent polynomial [ýÿ]t :=
∑

ÿ tbÿ, ÿ =
∑

ÿ ý
bÿ, ÿ,1

1
· · · ý

bÿ, ÿ,ý

ý . Then, the K-polynomial of M

is defined by

K(ý; t) :=
∑

ÿ

(−1)ÿ [ýÿ]t.

It turns out that, even if the grading of R is nonpositive and we do not have a well-defined notion of

Hilbert series, the above definition of K-polynomial is an invariant of the module M and it does not

depend on the chosen free R-resolution ý• (see [18, Theorem 8.34]).

Definition 2.1. The multidegree polynomial of a finitely generated Zý-graded R-module M is the

homogeneous polynomial C (ý; t) ∈ Z[t] given as the sum of all terms in

K(ý; 1 − t) = K(ý; 1 − ý1, . . . , 1 − ýý)

having total degree codim(ý) = ÿ − dim(ý).

One case of particular interest is when R is a standard multigraded polynomial ring. We say that R

is standard Zý-graded if the total degree of each variable ýÿ is equal to one (i.e., for each 1 ≤ ÿ ≤ ÿ,

we have deg(ýÿ) = eýÿ ∈ Z
ý with 1 ≤ ýÿ ≤ ý). The study of standard multigraded algebras is of utmost

importance as they correspond with closed subschemes of a product of projective spaces (see, e.g., [3]

and the references therein). Since the coefficients of the multidegree polynomial are nonnegative in the

standard multigraded case, it becomes natural to address the positivity of these coefficients. For each

subset ý = { ÿ1, . . . , ÿý } ⊆ [ý] = {1, . . . , ý}, denote by ý(ý) the Zý -graded k-algebra given by

ý(ý) :=
⊕

ÿ1≥0,...,ÿý≥0

ÿ ÿ=0if ÿ∉ý

[ý] (ÿ1 ,...,ÿý) ,

and for any R-homogeneous ideal ý ⊂ ý we define ý (ý) as the contraction ý (ý) := ý ∩ ý(ý) . The

following theorem completely characterizes the positivity of multidegrees and is our main tool to prove

Theorem A.

Theorem 2.2 [3]. Let ý = k[ý1, . . . , ýÿ] be a standard Zý-graded polynomial ring. Let ý ⊂ ý be an

R-homogeneous prime ideal. Write the multidegree polynomial of C (ý/ý; t) as

C (ý/ý; t) =
∑

n∈Ný

|n |=codim(ý )

ýntn ∈ N[ý1, . . . , ýý] .
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Then, for all n = (ÿ1, . . . , ÿý) ∈ N
ý with |n| = codim(ý) = ÿ − dim(ý/ý), we have that ýn > 0 if and

only if for eachý = { ÿ1, . . . , ÿý } ⊆ [ý] the inequality ÿ ÿ1 +· · ·+ÿ ÿý ≥ codim
(
ý (ý)

)
holds. Furthermore,

the support of C (ý/ý; t) is a discrete polymatroid.

Proof. Consider the standard Zý-graded polynomial ring ý′ = ý[ýÿ+1, . . . , ýÿ+ý] with deg(ýÿ+ÿ) =

eÿ ∈ Zý , and notice that C (ý/ý; t) = C (ý′/ýý′; t). Thus, we assume that I is a relevant prime (i.e.,

ý ⊅
⊕

ÿ1≥1,...,ÿý≥1 [ý] (ÿ1 ,...,ÿý) ), and so MultiProj(ý/ý) ≠ ∅. We embed ÿ = MultiProj(ý/ý) as a

closed subscheme of a multiprojective space P := P
ÿ1

k
×k · · ·×k P

ÿý

k
. From [3, Remark 2.9], we have that

n ∈ supp(C (ý/ý; t)) if and only if degm−n
P

(ÿ) > 0 where m − n = (ÿ1 − ÿ1, . . . , ÿý − ÿý). Then, [3,

Theorem A] implies that n ∈ supp(C (ý/ý; t)) if and only if |n| = codim(ý) and
∑

ÿ∈ý ÿ ÿ ≥ codim
(
ý (ý)

)

for each ý ⊆ [ý]. Equivalently, we obtain that n ∈ supp(C (ý/ý; t)) if and only if |n| = codim(ý) and

∑

ÿ∈ý

ÿ ÿ ≤ codim(ý) − codim
(
ý ( [ý]\ý)

)
=

∑

ÿ∈ý

ÿ ÿ + ÿ ([ý] \ ý) − ÿ ([ý])

for each ý ⊆ [ý], where ÿ : 2[ý] → N is the rank function ÿ (ý) := dim
(
MultiProj

(
ý(ý)/ý (ý)

) )
(see [3,

Proposition 5.1]). Finally, we can check that ý : 2[ý] → N with ý(ý) :=
∑

ÿ∈ý ÿ ÿ + ÿ ([ý] \ý) − ÿ ([ý])

is a rank function (see, e.g., [20, §44.6f]), and so it follows that supp(C (ý/ý; t)) is a polymatroid. �

3. Schubert determinantal ideals

Here, we recall the connection between double Schubert polynomials and Schubert determinantal ideals

(for more details, the reader is referred to [18, Chapters 15, 16]).

First, we define matrix Schubert varieties and Schubert determinantal ideals by following [18, Chapter

15]. Let k be an algebraically closed field and ýý (k) be the k-vector space of ý× ý matrices with entries

in k. As an affine variety we define its coordinate ring as ý̃ = k[ýÿ, ÿ | (ÿ, ÿ) ∈ [ý] × [ý]]. Furthermore,

we consider a (Zý ⊕ Zý)-grading on ý̃ by setting deg(ýÿ, ÿ ) = eÿ ⊕ −e ÿ ∈ Zý ⊕ Zý , where eÿ ∈ Zý

denotes the i-th elementary vector.

Definition 3.1 (see [18, Chapter 15]). Let ÿ be a permutation matrix. The matrix Schubert variety

ÿÿ ⊂ ýý (k) is the subvariety given by ÿÿ = {ý ∈ ýý (k) | rank(ýÿ×ÿ) ≤ rank(ÿÿ×ÿ) forall ÿ, ÿ},

where ýÿ×ÿ is the restriction to the first m rows and n columns. The Schubert determinantal ideal

ýÿ ⊂ ý̃ is the ý̃-homogeneous ideal generated by all minors in Xÿ×ÿ of size 1 + rank(ÿÿ×ÿ) for all m

and n, where X = (ýÿ, ÿ ) is the ý × ý matrix with the variables of ý̃.

The following theorem collects several results of fundamental importance to our approach. In

particular, it shows that double Schubert polynomials equal the multidegree polynomial of matrix

Schubert varieties. To define multidegrees over ý̃ with its (Zý ⊕ Zý)-grading, we consider the polyno-

mial ring Z[t, s] = Z[ý1, . . . , ýý , ý1, . . . , ýý], where ýÿ has degree eÿ ⊕ 0 ∈ Zý ⊕ Zý and ýÿ has degree

0 ⊕ eÿ ∈ Z
ý ⊕ Zý .

Theorem 3.2. Let ÿ ∈ ÿý be a permutation, and denote also by ÿ the corresponding permutation

matrix. Then, the following statements hold:

1. ýÿ is a prime ideal, and so it coincides with the ideal ý (ÿÿ) of polynomials vanishing on the matrix

Schubert variety ÿÿ . ([10], [18, Corollary 16.29])

2. ý̃/ýÿ is a Cohen–Macaulay ring. ([10], [18, Corollary 16.44])

3. ÿÿ (t, s) = C (ý̃/ýÿ ; t, s). ([7],[14], [18, Theorem 15.40])

The next technical lemma will allow us to substitute the grading of ý̃ which has negative components

for the degrees of the variables. Let ý = k[ýÿ, ÿ | (ÿ, ÿ) ∈ [ý] × [ý]] with induced (Zý ⊕ Zý)-grading by

setting deg(ýÿ, ÿ ) = eÿ⊕e ÿ ∈ Z
ý⊕Zý . As for ý̃, define multidegrees over R in the polynomial ringZ[t, s].
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Lemma 3.3. Let ý ⊂ ý̃ be an ý̃-homogeneous ideal, and denote also by I the correspond-

ing R-homogeneous ideal in R. Then we have C (ý̃/ý; ý1, . . . , ýý , ý1, . . . , ýý) = C (ý/ý; ý1, . . . , ýý ,

−ý1, . . . ,−ýý).

Proof. Notice that, if ý̃• is a (Zý ⊕Zý)-graded free ý̃-resolution of ý̃/ý with ý̃ÿ =
⊕

ÿ ý̃(−aÿ, ÿ ,−bÿ, ÿ ),

then there is a corresponding (Zý⊕Zý)-graded free R-resolution ý• of ý/ý with ýÿ =
⊕

ÿ ý(−aÿ, ÿ , bÿ, ÿ ).

By definition, this yields the equality of K-polynomials

K(ý̃/ý; t, s) = K(ý̃/ý; ý1, . . . , ýý , ý1, . . . , ýý) = K(ý/ý; ý1, . . . , ýý , ý−1
1 , . . . , ý−1

ý ) = K(ý/ý; t, s−1).

From [18, Claim 8.54], we have K(ý/ý; 1 − t, 1 − s) = C (ý/ý; t, s) +ý(t, s), where ý(t, s) is a polyno-

mial with terms of degree at least codim(ý)+1. Equivalently, we getK(ý/ý; t, s) = C (ý/ý; 1 − t, 1 − s)+

ý(1 − t, 1 − s). It then follows that

K(ý̃/ý; 1 − t, 1 − s) = C (ý/ý; ý1, . . . , ýý , 1 − 1
1−ý1

, . . . , 1 − 1
1−ýý

) + ý(ý1, . . . , ýý , 1 − 1
1−ý1

, . . . , 1 − 1
1−ýý

).

By expanding the right-hand side of the above equality, the result of the lemma is obtained. �

4. Standardization of ideals

In this section, we develop a process of standardization of ideals in a certain nonstandard multigrading.

This process will allow us to show that the support of the multidegree polynomial of any Cohen–

Macaulay prime ideal is a discrete polymatroid in the nonstandard multigradings that we consider. The

following setup is used throughout this section.

Setup 4.1. Let ý ≥ 1 be a positive integer and k be a field. Let R and S be the polynomial rings ý = k[x]

and ÿ = k[w, z] over the set of variables x = {ýÿ, ÿ }1≤ÿ, ÿ≤ý , w = {ýÿ, ÿ }1≤ÿ, ÿ≤ý and z = {ÿÿ, ÿ }1≤ÿ, ÿ≤ý .

We consider R and S as (Zý ⊕ Zý)-graded rings by setting that

deg(ýÿ, ÿ ) = eÿ ⊕ e ÿ , deg(ýÿ, ÿ ) = eÿ ⊕ 0 and deg(ÿÿ, ÿ ) = 0 ⊕ e ÿ ,

where eÿ ∈ Z
ý denotes the i-th elementary vector and 0 ∈ Zý denotes the zero vector. We define the

k-algebra homomorphism

ÿ : ý = k[x] −→ ÿ = k[w, z], ÿ(ýÿ, ÿ ) = ýÿ, ÿ ÿÿ, ÿ .

For an R-homogeneous ideal ý ⊂ ý, we say that the extension ÿ(ý)ÿ is the standardization of I, as

ÿ(ý)ÿ is an S-homogeneous ideal in the standard multigraded polynomial ring S. Let t = {ý1, . . . , ýý} and

s = {ý1, . . . , ýý} be variables indexing the (Zý⊕Zý)-grading, where ýÿ corresponds with eÿ⊕0 ∈ Zý⊕Zý

and ýÿ corresponds with 0 ⊕ eÿ ∈ Z
ý ⊕ Zý . Given a finitely generated graded R-module M and a finitely

generated graded S-module N, by a slight abuse of notation, we consider both multidegrees C (ý; t, s)

and C (ý; t, s) as elements of the same polynomial ring Z[t, s] = Z[ý1, . . . , ýý , ý1, . . . , ýý].

First, we show some basic properties of the process of standardization.

Proposition 4.2. Assume Setup 4.1. Let ý ⊂ ý be an R-homogeneous ideal and ý = ÿ(ý)ÿ be its

standardization. Then, the following statements hold:

(i) codim(ý) = codim(ý).

(ii) C (ý/ý; t, s) = C (ÿ/ý; t, s).

(iii) If ý/ý is a Cohen–Macaulay ring, then ÿ/ý also is.

(iv) Let > be a monomial order on R and >′ be a monomial order on S which is compatible with ÿ (i.e.,

if ÿ , ý ∈ ý with ÿ > ý, then ÿ( ÿ ) >′ ÿ(ý)). Then in>′ (ý) = ÿ(in> (ý))ÿ.
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Proof. Let T be the polynomial ring ÿ = k[x, w, z] � ý⊗k ÿ with its natural (Zý ⊕Zý)-grading induced

from the ones of R and S. We now think of R and S as subrings of T. Consider the quotient ring ÿ/ýÿ ,

and notice that {ýÿ, ÿ − ýÿ, ÿ ÿÿ, ÿ }1≤ÿ, ÿ≤ý is a regular sequence of homogeneous elements over ÿ/ýÿ . We

also have the following natural isomorphism

ÿ

ýÿ +
(
{ýÿ, ÿ − ýÿ, ÿ ÿÿ, ÿ }1≤ÿ, ÿ≤ý

) � ÿ/ý.

As the natural inclusion ý ↩→ ÿ is a polynomial extension, we have that dim(ÿ/ýÿ) = dim(ý/ý) +

dim(ÿ) = dim(ý) + dim(ÿ) − codim(ý) and that ÿ/ýÿ is Cohen–Macaulay when ý/ý is. So, by cutting

out with the regular sequence described above, we obtain that dim(ÿ/ý) = dim(ÿ/ýÿ) − dim(ý) =

dim(ÿ) − codim(ý) and that ÿ/ý is Cohen–Macaulay when ÿ/ýÿ is. This completes the proofs of parts

(i) and (iii).

Let ý• : · · ·
ÿ2
−→ ý1

ÿ1
−→ ý0 be a graded free R-resolution of ý/ý. Since {ýÿ, ÿ − ýÿ, ÿ ÿÿ, ÿ }1≤ÿ, ÿ≤ý is

a regular sequence on both T and ÿ/ýÿ , it follows that Torÿ
ý

(
ÿ/ýÿ, ÿ/({ýÿ, ÿ − ýÿ, ÿ ÿÿ, ÿ }1≤ÿ, ÿ≤ý)

)
= 0

for all ý > 0, and so ÿ• = ý• ⊗ý ÿ/({ýÿ, ÿ − ýÿ, ÿ ÿÿ, ÿ }1≤ÿ, ÿ≤ý) provides (up to isomorphism) a graded

free S-resolution of ÿ/ý. The identification of ÿ• as a resolution of S-modules is the same as ÿ(ý•)

(more precisely, ÿ• has the same shiftings as ý• in the (Zý ⊕ Zý)-grading and the i-th differential

matrix of ÿ• is given by the substitution ÿ( ÿÿ) of ÿÿ). Therefore, by definition, we obtain the equality

C (ý/ý; t, s) = C (ÿ/ý; t, s) that shows part (ii).

To show part (iv) we can use Buchberger’s algorithm (see, e.g., [6, Chapter 15]). Indeed, we can

perform essentially the same steps of the algorithm in a set of generators of I and the corresponding set

of generators for J. �

The following theorem provides the main result of this section. It shows that the support of the

multidegree polynomial is a discrete polymatroid for Cohen–Macaulay prime ideals in R. The proof is

carried out by performing a standardization process that allows us to invoke Theorem 2.2.

Theorem 4.3. Assume Setup 4.1. Let ý ⊂ ý be an R-homogeneous Cohen–Macaulay prime ideal. Then,

the support of the multidegree polynomial C (ý/ý; t, s) is a discrete polymatroid.

Proof. Let L = {(ÿ, ÿ) | ýÿ, ÿ ∈ ý} be the set of indices such that the corresponding variable belongs to I.

We consider the polynomial rings ý′ = k[ýÿ, ÿ | (ÿ, ÿ) ∉ L] ⊂ ý and ÿ′ = k[ýÿ, ÿ , ÿÿ, ÿ | (ÿ, ÿ) ∉ L] ⊂ ÿ.

Let ý ′ ⊂ ý′ be the (unique) ideal that satisfies the condition ý = ý ′ý+
(
ýÿ, ÿ | (ÿ, ÿ) ∈ L

)
. By construction,

we have that ýÿ, ÿ ∉ ý ′ for all ýÿ, ÿ ∈ ý′. Since ý/ý � ý′/ý ′, it follows that ý ′ is also a Cohen–Macaulay

prime ideal.

Let ý ′ = ÿ(ý ′ý)ÿ ∩ ÿ′. For any ýÿ, ÿ ÿÿ, ÿ ∈ ÿ′, Proposition 4.2(i) and the fact that the corresponding

ýÿ, ÿ does not belong to the prime ý ′ imply that

codim(ý ′ÿ + ýÿ, ÿ ÿÿ, ÿÿ) = codim(ý ′ý + ýÿ, ÿý) = codim(ý ′ý) + 1 = codim(ý ′ÿ) + 1.

By Proposition 4.2(iii), ÿ/ý ′ÿ is Cohen–Macaulay, and so it necessarily follows that ýÿ, ÿ ÿÿ, ÿ is a

nonzerodivisor over ÿ/ý ′ÿ for all ýÿ, ÿ ÿÿ, ÿ ∈ ÿ′. Consequently, we obtain that ÿ′/ý ′ is a domain if

and only if (ÿ′/ý ′)∏ýÿ, ÿ ÿÿ, ÿ
is a domain. Let ý = k[ýÿ, ÿ , ÿÿ, ÿ , ÿ

−1
ÿ, ÿ | (ÿ, ÿ) ∉ L], and consider the

automorphism given by

ÿ : ý → ý, ýÿ, ÿ ↦→
ýÿ, ÿ

ÿÿ, ÿ
, ÿÿ, ÿ ↦→ ÿÿ, ÿ .

The ideal ÿ(ý ′ý) coincides with the extension of ý ′ in B under the ring homomorphism ý′ → ý, ýÿ, ÿ ↦→

ýÿ, ÿ , and so it follows that ÿ(ý ′ý) and, consequently, ý ′ý are prime ideals. We then conclude that ý ′ is

a prime ideal.
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Since the variables ýÿ, ÿ with indices in L form a regular sequence over ý/ý ′ý, we obtain the equation

C (ý/ý; t, s) =
∏

(ÿ, ÿ) ∈L

(ýÿ + ý ÿ ) · C (ý/ý
′ý; t, s) (1)

(see, e.g., [18, Exercise 8.12]). To conclude the proof, it is now sufficient to show that the support of

C (ý/ý ′ý; t, s) is a discrete polymatroid; indeed, we would obtain that the support of C (ý/ý; t, s) is a

Minkowski sum of a finite number of discrete polymatroids which in turn is also a discrete polymatroid

by [20, Corollary 46.2c]. Finally, this condition follows by applying Theorem 2.2 to the prime ideal ý ′ÿ

and exploiting the equality C (ý/ý ′ý; t, s) = C (ÿ/ý ′ÿ; t, s) from Proposition 4.2(ii). �

We are now ready to prove the main result of this paper.

Proof of Theorem A. As we already have all the necessary ingredients, the proof follows straightfor-

wardly by combining Theorem 3.2, Lemma 3.3 and Theorem 4.3. �

Furthermore, we determine the defining inequalities of the discrete polymatroids in Theorem 4.3

and, accordingly, in Theorem A. Similarly to Section 2, for any two subsets ý1,ý2 ⊆ [ý], we denote

by ý(ý1 ,ý2) ⊆ ý and ÿ (ý1 ,ý2) ⊆ ÿ the (Z |ý1 | ⊕ Z |ý2 |)-graded k-algebras obtained by restricting to the

positions in ý1 for the first part Zý ⊕ 0 of the grading, and to the ones in ý2 for the second part of the

grading 0 ⊕ Zý .

Theorem 4.4. Assume Setup 4.1. Let ý ⊂ ý be an R-homogeneous Cohen–Macaulay prime ideal. Then,

we have that the coefficient of trsc = ý
ÿ1

1
· · · ý

ÿý
ý ý

ý1

1
· · · ý

ýý
ý is nonzero in C (ý/ý; t, s) if and only if

(i)
∑

ÿ∈[ý] ÿ ÿ +
∑

ÿ∈[ý] ý ÿ = codim(ý)

(ii) For every ý1,ý2 ⊆ [ý], we have that
∑

ÿ∈ý1
ÿ ÿ +

∑
ÿ∈ý2

ý ÿ ≥ codim
(
ý (ý1 ,ý2)

)
, where ý (ý1 ,ý2) is the

contracted ideal ý (ý1 ,ý2) = ý ∩ ý(ý1 ,ý2) .

Proof. By Theorem 4.3, we know that the Newton polytope of C (ý/ý; t, s) is a base polymatroid

polytope, and so, under the condition
∑

ÿ∈[ý] ÿ ÿ +
∑

ÿ∈[ý] ý ÿ = codim(ý), all its defining inequalities are

of the form

∑

ÿ∈ý1

ÿ ÿ +
∑

ÿ∈ý2

ý ÿ ≥ ÿ (ý1,ý2), (2)

for some constant ÿ (ý1,ý2) that depends on the subsets ý1,ý2 ⊆ [ý]. We now determine ÿ (ý1,ý2).

We keep the same notation of the proof of Theorem 4.3, in particular, ý = ý ′ý +
(
ýÿ, ÿ | (ÿ, ÿ) ∈ L

)
.

Equation (1) decomposes the Newton polytope of C (ý/ý; t, s) as the Minkowski sum of the Newton

polytopes of
∏

(ÿ, ÿ) ∈L (ýÿ + ý ÿ ) and C (ÿ/ý ′ÿ; t, s), both of which are also base polymatroid polytopes.

So, we analyze the minimum of the sum in Equation (2) with the two contributions.

1. Newton(
∏

(ÿ, ÿ) ∈L (ýÿ + ý ÿ )) is determined by the equality
∑

ÿ∈[ý] ÿ ÿ +
∑

ÿ∈[ý] ý ÿ = |L| and the

inequalities
∑

ÿ∈ý1
ÿ ÿ +

∑
ÿ∈ý2

ý ÿ ≥


{(ÿ, ÿ) ∈ L | ÿ ∈ ý1and ÿ ∈ ý2}



.
2. Due to Theorem 2.2, Newton(C (ÿ/ý ′ÿ; t, s)) is determined by the equality

∑
ÿ∈[ý] ÿ ÿ +

∑
ÿ∈[ý] ý ÿ =

codim(ý ′ÿ) and the inequalities
∑

ÿ∈ý1
ÿ ÿ +

∑
ÿ∈ý2

ý ÿ ≥ codim
(
(ý ′ÿ) (ý1 ,ý2)

)
, where (ý ′ÿ) (ý1 ,ý2)

is

the contracted ideal (ý ′ÿ) (ý1 ,ý2)
= ý ′ÿ ∩ ÿ (ý1 ,ý2) .

Notice that Proposition 4.2(i) yields the equality

codim
(
ý (ý1 ,ý2)

)
= codim

(
ý(ý1 ,ý2)

)
= codim

(
(ý ′ÿ) (ý1 ,ý2)

)
+


{(ÿ, ÿ) ∈ L | ÿ ∈ ý1 and ÿ ∈ ý2}



.

Therefore, since we can split the value of ÿ (ý1,ý2) in terms of the sum of the defining inequalities of the

Newton polytopes of
∏

(ÿ, ÿ) ∈L(ýÿ + ý ÿ ) and C (ÿ/ý ′ÿ; t, s), it follows that ÿ (ý1,ý2) = codim
(
ý (ý1 ,ý2)

)
.

This concludes the proof of the theorem. �
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Finally, we perform a simple computation out of the six possible permutations in ÿ3 (see [18,

Examples 15.4, 15.42]).

Example 4.5 (ý = 3 and ÿ = (1, 3, 2)). The Schubert determinantal ideal and the double Schubert

polynomials are given by ý132 =
(
ý1,1ý2,2 − ý1,2ý2,1

)
andÿ132 = ý1 + ý2 − ý1 − ý2. The standardization of

ý132 is the ideal ý =
(
ý1,1ý2,2ÿ1,1ÿ2,2 − ý1,2ý2,1ÿ1,2ÿ2,1

)
∈ ÿ. The ideal J is prime and S has a standard

(Z3 ⊕ Z3)-grading. One can compute that

C (ÿ/ý; t, s) = ý1 + ý2 + ý1 + ý2

(see [18, Exercise 8.12], or just utilize the built-in command multidegree on the computer algebra

system Macaulay2 [11]). Coinciding with the claim of Theorem 2.2, the support of C (ÿ/ý; t, s) is a

discrete polymatroid. Notice that ÿ132 = ý1 + ý2 − ý1 − ý2 = C (ÿ/ý; t,−s), as shown by Lemma 3.3.

Remark 4.6. From the conjectures stated by Monical, Tokcan and Yong [19], a remaining open one

is to show that Grothendieck polynomials also satisfy the SNP property (see [19, Conjecture 5.5]). In

[4], we settled a particular case of this conjecture. More precisely, we showed that the support of a

Grothendieck polynomial is a generalized polymatroid when the Schubert polynomial is zero-one (see

[4, Theorem B]).
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