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Abstract

We prove that double Schubert polynomials have the saturated Newton polytope property. This settles a conjecture
by Monical, Tokcan and Yong. Our ideas are motivated by the theory of multidegrees. We introduce a notion
of standardization of ideals that enables us to study nonstandard multigradings. This allows us to show that the
support of the multidegree polynomial of each Cohen—Macaulay prime ideal in a nonstandard multigrading, and in
particular, that of each Schubert determinantal ideal is a discrete polymatroid.
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1. Introduction

Schubert polynomials are classical and important objects in algebraic combinatorics. They were intro-
duced by Lascoux and Schiitzenberger [ 17] to study the cohomology classes of Schubert varieties. Since
then, Schubert polynomials have played a fundamental role in algebraic combinatorics (see, e.g., [8, 19,
1,2, 13, 14, 16] and the references therein).

We first recall the definition of Schubert polynomials. Let &, be the symmetric group on the set
[pl=A{1,...,p}. Foreveryi € [p—1] ={l,..., p—1}, we have the transposition o; = (i,i+1) € &p.
Recall that the set T = {o; | 1 <i < p} generates &§,,. The length {(x) of a permutation 7 is the least
amount of elements in T counting repetitions needed to obtain 7 from the identity permutation. The
permutation 7o = (p, p — 1,...,2,1) (in one-line notation) is the longest permutation and has length
w. We follow the notation of [14] and [18, Chapter 15] to present permutations and Schubert
polynomials.

© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.
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2 F. Castillo et al.

Definition 1.1. The double Schubert polynomial S, (t,s) € Z[t1,...,tp,S1,...,5p] of a permutation
n € §p is defined recursively in the following way. First, we define G, = [];,;<, (f; — 5;), and for any
permutation 7 and transposition o; with £(o;) < €(m) we set

IS _ 671- - O-ieﬂ'
i ti—tis1
where &, acts only on Z[#1, . ..,t,] by permutation of variables. The (ordinary) Schubert polynomial
Sx(t,0) € Z[t1,...,t,] is obtained from S, by setting each variable s; equal to 0.

The monomial expansion of ordinary Schubert polynomials has been combinatorially analyzed using
different objects such as compatible sequences [2], reduced pipe dreams [9, 1] and Kohnert diagrams
[15]. The description using pipe dreams also works for the double Schubert polynomials [18, Corollary
16.30]. We also have a formula for double Schubert polynomials using bumpless pipe dreams [16].

Following [19], we say that a polynomial f = ), chX™ € Z[xy,...,x,]| has the saturated Newton
polytope property (SNP property for short) if the support supp(f) = {n € N | ¢, # 0} of f is equal to
Newton( f) N N", where Newton( f) = ConvexHull{n € N" | ¢, # 0} denotes the Newton polytope of
f; in other words, if the support of f consists of the integer points of a polytope.

The main goal of this paper is to confirm the following challenging conjecture by Monical, Tokcan
and Yong that appeared in [19, Conjecture 5.2].

Conjecture 1.2 [19]. Double Schubert polynomials have the SNP property.

We confirm the conjecture by proving a stronger result that the support of each double Schubert
polynomial is a discrete polymatroid. A discrete polymatroid P on [n] = {1,...,n} is a collection of
points in N of the following form

P:{(xl,...,x,,) eN" | ij <r(3J), v3 ¢ [n], Z X =r([n])}

JE€J i€[n]

with r being a rank function on [n]. A rank function on [n] is a function r : 2["1 — N satisfying the
following three properties: (i) r(0) = 0, (i) r(J1) < r(Jp) if J1 € I C [n] and (ii) r(J) N Jp) +
r(J1U3J2) <7 (31) +7(I2) if 31,32 € [n].

The following is the main theorem of this article.

Theorem A. Let n € &), be a permutation and S, (t,s) € Z[ty,...,tp,51,...,5p] be the corresponding
double Schubert polynomial. Then, the support supp(S,) € NP of S is a discrete polymatroid on
[2p] ={1,...,2p}. In particular, the statement of Conjecture 1.2 holds.

Our approach to prove Theorem A can be summarized in the following quote by Miller and Sturmfels
[18, Introduction to Chapter 15]: ‘We consider the finest possible multigrading, which demands the
refined toolkit of a new generation of combinatorialists’. More precisely, we utilize the result that
double Schubert polynomials equal the multidegree polynomial of Schubert determinantal ideals with
the aforementioned ‘finest possible multigrading’ (see [18, Theorem 15.40]), and then we develop a
method of standardization of ideals. This process of standardization allows us to study multidegrees
in certain nonstandard multigradings by reducing the problem to a standard multigraded setting. Our
main tool is Theorem 2.2 from [3] which shows that the support of the multidegree polynomial of any
multihomogeneous prime ideal (with usual standard multigrading) is a discrete polymatroid. Here, we
extend this theorem to the family of nonstandard multigradings that we study.

Much interest has been paid to the important conjectures proposed in [19] and a number of them
have already been confirmed (see [8]). Therefore, Theorem A settles a hitherto remaining conjecture
from [19] and gives further evidence to the ubiquity of the SNP property in many ‘combinatorially
defined polynomials’. Theorem A also gives more evidence for the presence of the Lorentzian property
in double Schubert polynomials as conjectured in [12].
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The structure of the paper is as follows. We review the notion of multidegrees in Section 2 and recall
the connection between double Schubert polynomials and Schubert determinantal ideals in Section 3.
Section 4 contains our main results, in particular the proof of Theorem A.

2. A short recap on multidegrees

In this short section, we briefly recall the notion of multidegrees and some of its basic properties; for
more details the reader is referred to [18, 5].

Let k be a field and R = k[xy, ..., x,] be a ZP-graded polynomial ring (for now, we do not assume
the grading to be positive). Let M be a finitely generated Z”-graded module and F, be a ZP-graded
free R-resolution Fy : -+ — F; — Fi_y — --- — F| — Fyof M. Let tq,...,t, be variables over Z
and consider the polynomial ring Z[t] = Z[t1, . ..,¢,], where the variable ¢; corresponds with the i-th
elementary vector e; € ZP. If we write F; = @j R(=b; ;) with b, ; = (bij1,...,bij p) € ZP, then

we define the Laurent polynomial [F;]; := Y t"/ = 3, t'l)i’j SR t?f“’ *? . Then, the K-polynomial of M
is defined by

K(M:t) := Z(—l)"[mt.

It turns out that, even if the grading of R is nonpositive and we do not have a well-defined notion of
Hilbert series, the above definition of K-polynomial is an invariant of the module M and it does not
depend on the chosen free R-resolution F, (see [18, Theorem 8.34]).

Definition 2.1. The multidegree polynomial of a finitely generated Z”-graded R-module M is the
homogeneous polynomial C(M;t) € Z[t] given as the sum of all terms in

K(M:1-t)=K(M:1—t1,...,1—1,)

having total degree codim(M) = n — dim(M).

One case of particular interest is when R is a standard multigraded polynomial ring. We say that R
is standard 7P -graded if the total degree of each variable x; is equal to one (i.e., foreach 1 <i < n,
we have deg(x;) = ex, € ZP with 1 < k; < p). The study of standard multigraded algebras is of utmost
importance as they correspond with closed subschemes of a product of projective spaces (see, e.g., [3]
and the references therein). Since the coefficients of the multidegree polynomial are nonnegative in the
standard multigraded case, it becomes natural to address the positivity of these coefficients. For each
subset I = {J1,...,jk} € [p] ={1,...,p}, denote by R the Z*-graded k-algebra given by

R@y) = EB (R, i)

i1 20,..., ip20
i;=0if j&3
and for any R-homogeneous ideal / C R we define /() as the contraction I(5) := I N R(x). The
following theorem completely characterizes the positivity of multidegrees and is our main tool to prove

Theorem A.

Theorem 2.2 [3]. Let R = k[xy,...,x,] be a standard ZP -graded polynomial ring. Let I C R be an
R-homogeneous prime ideal. Write the multidegree polynomial of C(R/I;t) as

CRILY) = > cat" € N[ti,...,1,].
neNP
|n|=codim (1)
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4 F. Castillo et al.

Then, for alln = (ni,...,n,) € NP with |n| = codim(I) = n — dim(R/I), we have that ¢, > 0 if and
only if foreach3 = {j1, ..., jx} C [p] the inequalitynj, +---+n;, > codim(I(x)) holds. Furthermore,
the support of C(R/I;t) is a discrete polymatroid.

Proof. Consider the standard Z”-graded polynomial ring R" = R[Xpi1, ..., Xn+p] With deg(x,4) =
€ ZP, and notice that C(R/I;t) = C(R’/IR’;t). Thus, we assume that / is a relevant prime (i.e.,
13 Disi. ip>1 [Rl(i,...i,)» and so MultiProj(R/I) # 0. We embed X = MultiProj(R/1) as a

closed subscheme of a multiprojective space P := P];" DX o X Pﬂr; ? From [3, Remark 2.9], we have that
n € supp(C(R/I;t)) if and only if degg' " (X) > 0 where m —n = (m; — ny,...,mp, —np). Then, [3,
Theorem A] implies that n € supp(C(R/I;t)) if and only if [n| = codim(/) and ZJG ; > codim(/(5))
for each J C [p]. Equivalently, we obtain that n € supp(C(R/I;t)) if and only if |n| = codlm(l ) and

Zn] < codim(/) — codim(I([p1\3)) Zml +r([pI\3J) —r([p])

JEJ JEI

for each § C [p], where r : 2IP1 — N is the rank functlon r(3) := dim (MultiProj(R 5 /I(5))) (see [3,
Proposition 5.1]). Finally, we can check that s : 2[P] — N with s(3J) := Yjexmj+r([p]\3J) -r([p)
is a rank function (see, e.g., [20, §44.6f]), and so it follows that supp(C(R/I;t)) is a polymatroid. O

3. Schubert determinantal ideals

Here, we recall the connection between double Schubert polynomials and Schubert determinantal ideals
(for more details, the reader is referred to [18, Chapters 15, 16]).

First, we define matrix Schubert varieties and Schubert determinantal ideals by following [ 18, Chapter
15]. Letk be an algebraically closed field and M, (k) be the k-vector space of p X p matrices with entries
ink. As an affine variety we define its coordinate ring as R= k[x; j | (i, j) € [p] x [p]]. Furthermore,
we consider a (ZP @ ZP)-grading on R by setting deg(x; ;) = e; ® —e; € ZP & ZP, where e; € Z”
denotes the i-th elementary vector.

Definition 3.1 (see [18, Chapter 15]). Let 7 be a permutation matrix. The matrix Schubert variety
X, C M, (k) is the subvariety given by X,={Z¢€ M (k) | rank(Z,uxn) < rank(mpy,) forall m, n},
where Z,,«, is the restriction to the first m rows and n columns. The Schubert determinantal ideal
I, C R is the ﬁ—homogeneous ideal generated by all minors in X,,x,, of size 1 + rank(7;,,x,) for all m
and n, where X = (x; ;) is the p x p matrix with the variables of R.

The following theorem collects several results of fundamental importance to our approach. In
particular, it shows that double Schubert polynomials equal the multidegree polynomial of matrix
Schubert varieties. To define multidegrees over R with its (Z” @ ZP)-grading, we consider the polyno-
mial ring Z[t,s] = Z[t1,...,tp, S1,...,Sp], where t; has degree e; ® 0 € ZP & ZP and s; has degree
Ode cZP 0 ZP.

Theorem 3.2. Let 1 € &), be a permutation, and denote also by n the corresponding permutation
matrix. Then, the following statements hold:

L. Iy is a prime ideal, and so it coincides with the ideal 1 (Xx) of polynomials vanishing on the matrix

S;chubert variety X .. ([10], [18, Corollary 16.29])
2. R/l isa Cohgn—Macaulay ring. ([10], [18, Corollary 16.44])
3. Si(t,8) =C(R/I;;t,8). ([71.[14], [18, Theorem 15.40])

The next technical lemma will allow us to substitute the grading of R which has negative components
for the degrees of the variables. Let R = k[x; ; | (i, ) € [p] x [p]] with induced (ZP @ ZP)-grading by
setting deg(x; ;) = e;®e; € ZP @ZP. Asfor R, define multidegrees over R in the polynomial ring Z[t, s].
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Lemma 3.3.Let I C R be an E—homogeneous ideal, and denote also by I the correspond-
ing R-homogeneous ideal in R. Then we have C(R/I;t,...,tp,51,...,8p) = C(R/L;t1,...,tp,
=150 =8p).

Proof. Notice that, if F, is a (Z” ® ZP)-graded free R-resolution of R/I with F; = @j I?(—a,-’j, =b; ;).
then there is a corresponding (Z? ®Z”)-graded free R-resolution F, of R/I with F; = P iR (—a;j, bi ;).
By definition, this yields the equality of K-polynomials

K(R/I:t,8) = K(R/I;t1, ..o tp, St .o, 5p) = K(R/Lty, ..ty st sy = KR/t s7Y),

From [18, Claim 8.54], we have IC(R/I;1—t,1—5s) = C(R/I;t,s) + Q(t,s), where Q(t,s) is a polyno-
mial with terms of degree at least codim (/) + 1. Equivalently, we get C(R/I;t,s) = C(R/I;1 -t, 1 —s)+
0(1 -t,1—s). It then follows that

KR/I1=t1-8)=C(R/L;ty, ... ,tp, 1 = 7= .. 1— L R T e R =

—s1 I-sp -5

By expanding the right-hand side of the above equality, the result of the lemma is obtained. O

4. Standardization of ideals

In this section, we develop a process of standardization of ideals in a certain nonstandard multigrading.
This process will allow us to show that the support of the multidegree polynomial of any Cohen—
Macaulay prime ideal is a discrete polymatroid in the nonstandard multigradings that we consider. The
following setup is used throughout this section.

Setup 4.1. Let p > 1 be a positive integer and k be a field. Let R and S be the polynomial rings R = k[x]
and S = k[w, z] over the set of variables X = {x; j}1<i j<p, W = {Wi j}1<ij<p and Z = {z; j }1<i j<p-
We consider R and S as (Z” @ ZP)-graded rings by setting that

deg(x; ;) =e; ®e;, deg(w;;)=e¢;®0 and deg(z;;)=0e;,

where e; € ZP denotes the i-th elementary vector and 0 € Z” denotes the zero vector. We define the
k-algebra homomorphism

¢:R=Kk[x] — S=k[w,z], ¢(xi;)=wijzi;

For an R-homogeneous ideal / C R, we say that the extension ¢(/)S is the standardization of I, as
¢(I)S is an S-homogeneous ideal in the standard multigraded polynomial ring S. Lett = {t1,...,7,} and
s = {s1,...,5p} be variables indexing the (Z” ®Z”)-grading, where t; corresponds with e; 0 € Z” @Z”
and s; corresponds with 0 ® e; € ZP @ ZP. Given a finitely generated graded R-module M and a finitely
generated graded S-module N, by a slight abuse of notation, we consider both multidegrees C(M; t, s)
and C(N;t,s) as elements of the same polynomial ring Z[t,s] = Z[t,...,tp,51,...,5p].

First, we show some basic properties of the process of standardization.

Proposition 4.2. Assume Setup 4.1. Let I C R be an R-homogeneous ideal and J = ¢(I)S be its
standardization. Then, the following statements hold:

(1) codim(7) = codim(J).
(i) C(R/I;t,s) =C(S/J;t,s).
(iii) If R/I is a Cohen—Macaulay ring, then S/J also is.
(iv) Let > be a monomial order on R and >’ be a monomial order on S which is compatible with ¢ (i.e.,
if f,g € Rwith f > g, then ¢(f) >’ ¢(g)). Then ins.(J) = ¢(in (1))S.
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Proof. Let T be the polynomial ring T = k[x, w, z] = R ®y S with its natural (ZP & ZP)-grading induced
from the ones of R and S. We now think of R and S as subrings of 7. Consider the quotient ring 7'/IT,
and notice that {x; ; — w; ;i j}1<i,j<p is a regular sequence of homogeneous elements over 7'/IT. We
also have the following natural isomorphism

T

IT + ({xi,; = wi jzi jhi<i,j<p)

= S/J.

As the natural inclusion R < T is a polynomial extension, we have that dim(7/IT) = dim(R/I) +
dim(S) = dim(R) + dim(S) — codim(/) and that T/IT is Cohen—Macaulay when R/I is. So, by cutting
out with the regular sequence described above, we obtain that dim(S/J) = dim(7/IT) — dim(R) =
dim(S) — codim(7) and that S/J is Cohen—Macaulay when 7'/IT is. This completes the proofs of parts
(i) and (iii).

Let Fg @ - 2, F; A, Fy be a graded free R-resolution of R/I. Since {x; ; — w; ;zi jh<i j<p is
a regular sequence on both 7 and 7/IT, it follows that Torg (T/IT, T/({xi,; - wi,jzl-,j}ls,-h,vs,,)) =0
forall k > 0, and so G, = Fe ®r T/({xi,j — Wi jZi j}1<i,j<p) Provides (up to isomorphism) a graded
free S-resolution of S/J. The identification of G, as a resolution of S-modules is the same as ¢(F,)
(more precisely, G. has the same shiftings as F, in the (Z” @ Z”)-grading and the i-th differential
matrix of G, is given by the substitution ¢( f;) of f;). Therefore, by definition, we obtain the equality
C(R/I;t,s) = C(S§/J;t,s) that shows part (ii).

To show part (iv) we can use Buchberger’s algorithm (see, e.g., [6, Chapter 15]). Indeed, we can
perform essentially the same steps of the algorithm in a set of generators of I and the corresponding set
of generators for J. O

The following theorem provides the main result of this section. It shows that the support of the
multidegree polynomial is a discrete polymatroid for Cohen—Macaulay prime ideals in R. The proof is
carried out by performing a standardization process that allows us to invoke Theorem 2.2.

Theorem 4.3. Assume Setup 4.1. Let I C R be an R-homogeneous Cohen—Macaulay prime ideal. Then,
the support of the multidegree polynomial C(R/I;t,s) is a discrete polymatroid.

Proof. Let L ={(i, j) | x;,; € I} be the set of indices such that the corresponding variable belongs to /.
We consider the polynomial rings R" =k[x; ; | (i,j) € L] Cc Rand §" =k[w; j,z; ;| (i,j) € L] C S.
Let I’ C R’ be the (unique) ideal that satisfies the condition I = I’R+(x; ; | (i, j) € L). By construction,
we have that x; ; ¢ I’ forall x; ; € R’. Since R/I = R’/I’, it follows that I’ is also a Cohen—-Macaulay
prime ideal.

Let J’ = ¢(I’R)S N S’. For any w; ;z; ; € S’, Proposition 4.2(i) and the fact that the corresponding
x;,j does not belong to the prime /" imply that

codim(J’S + w; jz;, ;S) = codim(I'R + x; jR) = codim(/’R) + 1 = codim(J'S) + 1.

By Proposition 4.2(iii), §/J’S is Cohen—Macaulay, and so it necessarily follows that w; ;z; ; is a
nonzerodivisor over S/J’S for all w; ;z; ; € S’. Consequently, we obtain that $’/J is a domain if
and only if (S’/J')l—[wi,jzu is a domain. Let B = k[wi,j,zi,j,zi_j- | (i,7) ¢ L], and consider the
automorphism given by
Wi, j
Yy:B—>B, w;; o Zij &> i
i.j

The ideal ¥ (J’B) coincides with the extension of /” in B under the ring homomorphism R’ — B, x; ;
wi, ;> and so it follows that y(J’B) and, consequently, J'B are prime ideals. We then conclude that J’ is
a prime ideal.
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Since the variables x; ; with indices in £ form a regular sequence over R/I’R, we obtain the equation

CRILts) = [] (ti+s))-CRIT'R;ts) (1)

(i,j)eLl

(see, e.g., [18, Exercise 8.12]). To conclude the proof, it is now sufficient to show that the support of
C(R/I'R;t,s) is a discrete polymatroid; indeed, we would obtain that the support of C(R/I;t,s) is a
Minkowski sum of a finite number of discrete polymatroids which in turn is also a discrete polymatroid
by [20, Corollary 46.2c]. Finally, this condition follows by applying Theorem 2.2 to the prime ideal J'S
and exploiting the equality C(R/I’R;t,s) = C(S/J’S;t,s) from Proposition 4.2(ii). O

We are now ready to prove the main result of this paper.

Proof of Theorem A. As we already have all the necessary ingredients, the proof follows straightfor-
wardly by combining Theorem 3.2, Lemma 3.3 and Theorem 4.3. O

Furthermore, we determine the defining inequalities of the discrete polymatroids in Theorem 4.3
and, accordingly, in Theorem A. Similarly to Section 2, for any two subsets J;, 3> € [p], we denote
by R(3,,5,) € R and S(3,5,) C S the (ZR1! @ ZI2l)-graded k-algebras obtained by restricting to the
positions in J; for the first part ZP @ 0 of the grading, and to the ones in J, for the second part of the
grading 0 & Z”.

Theorem 4.4. Assume Setup 4.1. Let I C R be an R-homogeneous Cohen—Macaulay prime ideal. Then,
we have that the coefficient of t's® = IT‘ tp” sf‘ e s;” is nonzero in C(R/I;t,s) if and only if

(1) ZjE[p] rj + ZjE[p] Cj = COdlm(I)
(ii) For every 31,32 € [pl, we have that 3 jex, 7 + X jes, ¢j = codim(I(5, 5,)), where I3, 5,) is the
contracted ideal I(5, 5,) = I N R (5, 3,)-

Proof. By Theorem 4.3, we know that the Newton polytope of C(R/I;t,s) is a base polymatroid
polytope, and so, under the condition Y. jc,1 7 + 2 jep) € = codim([), all its defining inequalities are
of the form

ri+ ) c¢j2C(31,3) )
PNCEDY

JE3 JES2

for some constant C(J;, J») that depends on the subsets J;, 3> C [p]. We now determine C(J;, 32).

We keep the same notation of the proof of Theorem 4.3, in particular, I = I'R + (x; ; | (i, j) € L).
Equation (1) decomposes the Newton polytope of C(R/I;t,s) as the Minkowski sum of the Newton
polytopes of [[; jyes(#i +s5) and C(S/J’S;t,s), both of which are also base polymatroid polytopes.
So, we analyze the minimum of the sum in Equation (2) with the two contributions.

1. Newton([](;, jyec (i + 5;)) is determined by the equality X ;c(,) 7/ + Xje[pj¢; = |£] and the

inequalities ), jex, 7j + X jey, € 2 |{(i J)EL]|ieJandj € 32}|

2. Due to Theorem 2.2, Newton(C(S/J S;t,s)) is determined by the equality ¥ jc(,) 7 + 2 je[p] € =
codim(J’S) and the inequalities Y. ;ex, 7 + X jex, ¢; = codim((J'S) g, “52)) where J’ S)(31 5 I8
the contracted ideal (J'S) (3, 5,) =J'S N S(3,.3,)-

Notice that Proposition 4.2(i) yields the equality
codim(/(3, 5,)) = codim(J(5,.5,)) = codim((J'S) (5, 5,)) +[{(i. /) € L ]i € Iy and j € J}.
Therefore, since we can split the value of C(J;, J) in terms of the sum of the defining inequalities of the

Newton polytopes of []; jec(ti + 5;) and C(S/J’S:t,s), it follows that C(J1,J2) = codim(/(3,.3,))-
This concludes the proof of the theorem. m}
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Finally, we perform a simple computation out of the six possible permutations in &3 (see [18,
Examples 15.4, 15.42]).

Example 4.5 (p = 3 and © = (1, 3,2)). The Schubert determinantal ideal and the double Schubert
polynomials are given by 1132 = (x1,1x2,2 — x1,2x2,1) and &35 = 11 + 12 — 51 — 52. The standardization of
I3, is the ideal J = (w1, 1w2,221,122,2 — W1,2w2,121,222,1) € S. The ideal J is prime and S has a standard
(Z* @ Z?)-grading. One can compute that

C(S/T;t,8) =t +tr+51+ 5

(see [18, Exercise 8.12], or just utilize the built-in command multidegree on the computer algebra
system Macaulay2 [11]). Coinciding with the claim of Theorem 2.2, the support of C(S/J;t,s) is a
discrete polymatroid. Notice that Sy3p = t) +t, — 51 — 52 = C(S/J;t, —s), as shown by Lemma 3.3.

Remark 4.6. From the conjectures stated by Monical, Tokcan and Yong [19], a remaining open one
is to show that Grothendieck polynomials also satisfy the SNP property (see [19, Conjecture 5.5]). In
[4], we settled a particular case of this conjecture. More precisely, we showed that the support of a
Grothendieck polynomial is a generalized polymatroid when the Schubert polynomial is zero-one (see
[4, Theorem B]).
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