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Abstract

Inspired by methods in prime characteristic in commutative algebra, we introduce and study
combinatorial invariants of seminormal monoids. We relate such numbers with the singular-
ities and homological invariants of the semigroup ring associated to the monoid. Our results
are characteristic independent.
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1 Introduction

Frobenius splittings have inspired a large number of results in commutative algebra, algebraic
geometry, and representation theory. In this manuscript we seek to continue this approach
in the context of combinatorics of monoids. Given a monoid M C Z;O for some g € Z-y,
and m € Z-q, we study the pure M-submodules of %M that are translations of M, which
algebraically corresponds to free summands of lk[%M ] as k[M]-module. It turns out that
the purity of M C %M detects both normality and seminormality (see Proposition 3.5). The
study of pure submodules, or equivalently of free summands, of normal monoids was already
initiated by other authors in order to compute the F-signature of normal affine semigroup
rings [21, 26]. Moreover, the structure of %M as M-module was described by Bruns and
Gubeladze [6, 7] for normal monoids (see [20] for a related result in prime characteristic).

In this manuscript we study combinatorial numerical invariants of a seminormal monoid.
Our key motivation is that seminormality for a monoid can be seen as a characteristic-
free version of F-purity for affine semigroup rings. For more information and examples on
seminormal monoids we direct the interested reader to Li’s thesis on this subject [17].

In Definition 3.19 we introduce the notion of pure threshold of a seminormal monoid
M, denoted by mpt(M), which is motivated by the F-pure threshold in prime characteristic.
This number can be described as the largest degree of a pure translation of M inside the cone
R oM or, equivalently, of %M for some m. We show that mpt(M) gives an upper bound for
the Castelnuovo-Mumford regularity reg(k[M]) defined in terms of local cohomology, and
the Castelnuovo-Mumford regularity Reg(k[M]) defined in terms of graded Betti numbers
of k[M] (see Sect.2 for more details).

Theorem A (Theorem 5.4) Let M be a seminormal monoid with a minimal set of generators
{vi, .-y Vu} Then, a;(K[M]) < —mpt(M). As a consequence,

reg(k[M]) = max{a; (k[M]) — i} < dim(k[M]) — mpt(M) = rank(M) — mpt(M).

Moreover, if we present R as S/1, where S = Kk[x1, ..., x,] and each x; has degree d; :=
deg(x;) = |yi| the degree of y; fori =1,...,u, and I < S is a homogeneous ideal, then

Reg(k[M]) = sup{,Bl-S(M) —i|ieZ) <rank(M) + Z(di — 1) — mpt(M).

i=1

Theorem A allows us to give an upper bound for the degrees of generators of the defining
ideal /. We also show that mpt(M) is a rational if M is a normal (see Proposition 4.4).
Despite mpt(M) being inspired by F-pure thresholds, these numbers do not always coincide
(see Example 3.23 and Remark 3.24). In addition, mpt(M) is defined independently of the
field k and so it is a characteristic-free invariant, while the F-pure threshold is only defined
when k has prime characteristic.

We introduce the pure prime ideal (M), and the pure prime face %)y, of a seminormal
monoid M (see Corollary 3.28, and Definitions 3.26 and 3.29). The former emulates the
splitting prime ideal of an F-pure ring, while the latter is related to the quotient of a ring
by its splitting prime. In fact, the submonoid .#); N M is normal (see Corollary 3.28). We
note that the rank of .%); N M is a monoid version of the splitting dimension and so we call
it the pure dimension and denote it by mpdim(M). It turns out that this rank is equal to the
rank of M if and only if M is normal, and it is non-negative if and only if M is seminormal
(see Corollary 3.30). Therefore, in some sense, mpdim (M) measures how far a seminormal
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monoid is from being normal. Furthermore, mpdim (M) is related to the depth of k[M] as
the following theorem shows.

Theorem B (Theorem 5.7) If M is a seminormal monoid, then mpdim(M) < depth(k[M]).

We point out that Theorem B recovers Hochster’s result that normal semigroup rings are
Cohen—Macaulay [14].
Finally, we consider the growth of the number of disjoint pure translations of M in %M

as m varies. More specifically, if m € Z ¢ is such that %M NZM = M, we define
1 1
V(M) := {a e —M|(x+M)Z —Mis pure}.
m m

Theorem C (Theorem 4.6) Let M be a seminormal monoid, /(M) = {m € Z~g | %M N
ZM = M}, and s = mpdim(M). Then,

Vin, (M
mpr(M) := lim [V, (M| (X )l
t—00 my
exists and it is positive for every increasing sequence m; € </ (M). Furthermore, if M is

normal, then mpr(M) € Q.

We call the limit in Theorem C the pure ratio of M. If the field has prime characteristic, this
number coincides with the splitting ratio of k[M] [1]. A consequence of Theorem C is that
the value of the F'-splitting ratio depends only on the structure of M, and so it is independent
of the characteristic of the field as long as k[M] is F-pure. Finally, using this result we give
a monoid version of a celebrated Theorem of Kunz [16, Theorem 2.1] which characterizes
regularity of rings of prime characteristic in terms of Frobenius (see Theorem 5.9).

Throughout this article we adopt the following notation.

Notation 1.1 Let k be a field of any characteristic and ¢ a positive integer. Let M C Z;O be
an affine monoid, i.e., a finitely generated submonoid of Z4. We fix {y1, ..., y,} a minimal
set of generators of M. Let ZM denote the group generated by M and C(M) = R3oM the
cone generated by M.

2 Background

In this section we include some preliminary information that is needed in the rest of the paper.

2.1 Affine monoids and affine semigroup rings

For proofs of the claims in this subsection and further information about affine monoids we
refer the reader to Bruns and Gubeladze’s book [4]. Let M C Z;O be an affine monoid. A
subset U C Q7 is an M-module if U + M C U. An M-module U is an ideal if it is contained
in M. Anideal U C M is prime if whenevera +b € U witha, b € M, we musthavea € U
or b € U. The rank of M is the dimension of the Q-vector space Q ®z ZM.

Let R = k[M] C Kk[x] := Kk[xy, ..., x4] be the affine semigroup associated to M. As a
k-vector space, R is generated by the monomials {x“ | « € M}. We note that the monomial
ideals of R are precisely those generated by {x* | « € U} for some ideal U € M. Under this
correspondence, prime monomial ideals of R correspond to prime ideals of M. For every
M-module U € Q4 we have a corresponding R-module RU := {x*™ |« € M,n € U} in
the algebraic closure of k(xi, ..., x4). Moreover, we have dim(R) = rank(M).
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2.2 Graded algebras and modules

A non-negatively graded algebra A is a ring that admits a direct sum decomposition A =
69]»20 A of Abelian groups such that A; - A; € A;4 ;. It follows from this that A is a ring,
and each A; is an Ag-module. If we let Ay = P Aj,then A is anideal of A, called the
irrelevant ideal.

Throughout this manuscript we will make the assumption that A is Noetherian or, equiva-

Jj>0

lently, that there exist finitely many elements ay, . .., a, € A4 suchthat A = Aglay, ..., anl,
which can be assumed to be homogeneous of degrees dy, . . ., d,. In this case, note that A is
a quotient of a polynomial ring Ag[x1, ..., x,] by a homogeneous ideal.

A Z-graded A-module is an A-module N that admits a direct sum decomposition N =
€<z Nj of Abelian groups, and such that A; - Nj € Nj ;. As a consequence, each N; is an
Ap-module. Moreover, if N is Noetherian there exists iy € Z such that N; = 0 forall i < ig;
on the other hand, if N is Artinian there exists jo € Z such that N; = 0 for all j > jo.

Given a Z-graded A-module N, and an integer j € Z, we define the shift N(j) as the
Z-graded A-module whose i-th graded componentis N (j); = N;4 ;. In particular, A(—j) is
a free graded A-module of rank one with generator in degree ;.

2.3 Graded local cohomology and Castelnuovo-Mumford regularity

In this subsection we recall general properties of local cohomology. We refer the inter-
ested reader to Brodmann and Sharp’s book on this subject [3]. Let k be a field and
S = Kk[xq,...,x,], with deg(x;) = d; > 0. Let N be a finitely generated Z-graded S-
module. If we let m = (xq, ..., x,), then the graded local cohomology modules H:im (N) are
Artinian and Z-graded.

Definition 2.1 Let a;(N) = sup{j € Z | H‘;(N)j # 0} be the i-th ag-invariant of N. If
N # 0 we define the Castelnuovo-Mumford regularity of N as reg(N) = sup{a;(N) +i |
i =0,...,n}. On the other hand, if N = 0 we let reg(N) = —o0.

In the standard graded case, reg(N) has a well-known interpretation in terms of graded
Betti numbers of N. In our setup this is still the case, but the degrees of the algebra generators
of § must be taken into account. For i € Zxo, let ,BiS(N) = ao(Torf(N, k)) € Z U {—o0c}.
As another way to see this, for a non-zero graded S-module T let 8(7) be the maximum
degree of an element in a minimal homogeneous generating set of 7. If

F. :0 FC FC,l ...... Fl F() N

is a minimal graded free resolution of N where ¢ := pd(N) is the projective dimension of
N, then B¥(N) = B(F;).

Definition 2.2 For N # 0 we let Reg(N) = sup{,BiS(N) —1i | i € Z}, while for N = 0 we
let Reg(N) = —o0.

In the standard graded case, that is, whend; = ... =d,, = 1, then reg(N) = Reg(N). In
our more general scenario, we still have the following relation between the two notions of
regularity.

Lemma 2.3 With the above notation we have that

Reg(N) =reg(N) + Y (d; — 1).

i=1
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Proof We may assume that n > 0, otherwise the claim is trivial. We prove the statement by
induction on ¢ = pdg(N).If c = Othen N is free, and it is clear that Reg(N) = B(N). On the
other hand, a; (N) = 0 for all i # n, while a,(N) = a,(S) + B(N) = =Y 7, d;i + B(N).
It follows that reg(N) = n 4+ a,(N) = B(N) + > (1 —d;) = Reg(N) + Y1, (1 — d;),
and the base case follows.

Now assume that ¢ > 1. We have a graded short exact sequence ) — Q — Fp - N — 0,
where Fj is the first free module in a minimal free resolution of N, and pdg(€2) = ¢ — 1.
By induction we have that Reg(€2) = reg(2) + Z:’z 1(d; — 1). Moreover, it is clear from
the definitions that Reg(N) = max{B(N), Reg(2) — 1} = max{B(N), reg(2) + Z?Zl (d; —
1) — 1}. We have that B(N) < reg(N) + Z?:l (d; — 1) [10, Proposition 3.1], and therefore
the above equality gives that

Reg(N) < max{reg(N), reg(2) — 1} + Z(di — 1. 2.1

i=1

We now show that max{reg(N), reg(€2) — 1} = reg(N). The short exact sequence 0 — Q —
Fy - N — 0 yields graded isomorphisms H&(N) = Ht’;{"l(Q) foralli < n—1,and a
graded exact sequence 0 — H;’;l (N) = H} () — H] (Fy) — Hp(N) — 0.If we had
reg(2) — 1 > reg(N), then necessarily reg(2) = a,(2) + n, and looking at top degrees
in the above exact sequence we also conclude that a,(2) = a,(Fp). On the other hand,
an(Fy) = B(N) + a,(S) = B(N) — Z?:l d; < reg(N) — n [10, Proposition 3.1], and so,
reg(2) < reg(N), a contradiction. Thus we always have that reg(2) — 1 < reg(N), and by
(2.1) the inequality Reg(N) < reg(N) + >_;_,(d; — 1) is proved.

For the reverse inequality, first observe that the above isomorphisms give that a; (N) =
a;+1(R2) foralli < n—1, while the exact sequence yields thata,, 1 (N) < a,(2).Sincen > 0
and €2 is a submodule of a free module, it has positive depth, and thus ag(£2) = 0. It follows
that max{a;(N)+i |i =0,...,n—1} <max{a;+1(Q)+i |i =0,...,n—1} =reg(2)—1.
By induction we have that reg(2) = Reg(<2) + Z?:l (1 — d;), and thus max{a; (N) + i |
i=0,...,n—1}) <Reg() — 1+ > (1 —d) <Reg(N)+ Y ! (1 —d;) since the
inequality Reg(2) — 1 < Reg(N) always holds. Now, the above exact sequence on local
cohomology also gives that a,(N) < a,(Fo) = B(N) + a,(S) < Reg(N) — Z?:l d;,
and thus a,(N) + n < Reg(N) + Y/, (1 — d;). In conclusion, we have that reg(N) =
sup{a;(N) +i |i =0,...,n} <Reg(N)+ > ! (1 —d;), and the proof is complete. O

3 Purity of M-modules and (semi)normal affine monoids

Definition 3.1 Let U C V C Q7 be M-modules. We say that the inclusion U C V is pure if
V \ U is also an M-module.

Example 3.2 Let M = Z3>(2, 1) 4+ Z>o(1, 2) be the monoid generated by {(2, 1), (1, 2)}.
We have that the inclusion (%, %) + M C %M C Q? is pure. In Fig.1 we represent the
elements of M with circles and the ones from (%, %) + M with multiplication signs. The

shaded region is included to illustrate that (%, %) + M is obtained as a translation of M.

In the following proposition, we provide equivalent statements for Definition 3.1 in a
particular case.
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0 2 4 6 8 10 12 14 16

Fig.1 For M = Z30(2, 1) + Zx(1, 2), the inclusion (%, %) + M C M c Q?is pure

Proposition 3.3 Ler V. C Q7 be an M-module and o € V. The following statements are
equivalent:

(i) The inclusion (¢ + M) C V is pure.
(ii) Foreveryy € M and B € V we have y + 8 —a € M implies B —a € M.
(i) (V—a)NZM M

Proof First, assume (i) andlety € Mand 8 € V withy + 8 € a + M. Thus, B e x« + M
and then (ii) follows.

Now, assume (ii) and let 8 € V be such that 8 — o € ZM. Write 8 —«a = 0 — y with
o,y € M. Theny + 8 —a =0 € M implies 8§ — « € M. Thus, (iii) follows.

Finally, assume (iii). Let 8 € V \ (@ + M) and y € M. Assume by means of contradiction
that B+ y € o« + M. Then B + y = o + o for some 0 € M, which implies B — « €
(V — a) N ZM\M which contradicts (iii). Thus, 8 +y € V \ (¢ + M) and then (i) follows.

]

‘We now discuss seminormality and normality, which are the main subjects of study in this
manuscript. We refer to the work of Bruns, Li and Romer [8] to reader in seminormal rings.
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Definition 3.4 A monoid M is called seminormal if, whenever a« € ZM is such that 2o € M
and 3o € M, then @« € M. The monoid is called normal if C(M) NZM = M.

The following alternative characterization of seminormality and normality is useful for
the proof of our main results. While it might be already known to experts, we record it here
with a proof for convenience of the reader. For a related result in prime characteristic we
refer to the work of Bruns, Li, and Romer [8, Section 6].

Proposition 3.5 Let M be an affine monoid.

(1) M is seminormal if and only if there exists m € 7. such that %M NZM = M.
(2) M is normal if and only if%M NZM = M for everym € Z~1.

Proof We note that the containment %M NZM 2 M holds trivially for any m € Z..

For (1), assume that n%M NZM C M for some m € Z-. Let « € ZM be such that
200 € M and 3¢ € M. We can find nonnegative integers a and b such that m = 2a + 3b,
and thus ma = a(2a) + b(3a) € M. It follows by our assumption that « € M, and thus
M is seminormal. Conversely, let .% be the set of all faces of C(M) (of any dimension); we
note that .% is a finite set. For any F' € . we consider the finitely generated Abelian group
Gr=@MNQF)/(Z(M N F)). Let p > 0 be a prime number such that the ideal (p) is
not associated to G as a Z-module for any F € .%. We claim that %M NZM C M. Let
o € %M NZM C C(M)NZM, then o € int(F’) the interior of some F’ € .%, and also
pa € M N F'. By the choice of p it follows that « € Z(M N F’) Nint(F’) and then o € M
[8, Theorem 2.1].

For (2), if M is normal then %M NZM < C(M)NZM = M. Conversely, let o €
C(M)NZM, thena =) ;_, r;—"[ai, with o; € M and r:Tl, € Qxo. Ifweletm = []i_, m;, it

then follows that o € %M NZM = M, as desired. O
Motivated by the previous result, we consider the following definition.
Definition 3.6 We set o (M) = {m € Z>1 | M NZM = M}.

Remark 3.7 As a consequence of Proposition 3.5, we deduce that

(1) «Z/(M) # @ if and only if M is seminormal;
(2) M is normal if and only if &/ (M) = Z.

We now see that .7 (M) is a multiplicative set.

Lemma3.8 Let m,n € Z-1. Then mn € o/ (M) if and only if both m € /(M) and
neodM).

Proof Firstassumethatmn € o/ (M).Thenm € </ (M) because %MHZM - %MHZM =
M. Likewise n € o/ (M). For the converse, assume that « € ZM is such that mna € M.
Note that 8 = na € ZM is such that mpB € M, and thus 8 € M because m € </ (M). But
then @ € ZM is such that na € M, and thus & € M because n € o/ (M). It follows that
mn € o/ (M). ]

Now, we consider a set that records the pure translations of M in %M . In Sect.5 we see
that this set corresponds to the free summands of k [ M ] as a k[M]-module.

1
m
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Definition 3.9 Letm € Z-1. We set
1 1
V(M) = {ae —M‘ (—M—a)ﬂZMEM}.
m m

Moreover, we set

V(M) = U Vi (M).

meZ-1

Remark 3.10 We note that, because of Proposition 3.3, V,,, (M) is precisely the setof & € %M
such that (¢« + M) C %M is pure.

Remark 3.11 We note that V,,,(M) # @ if and only if m € o/ (M). As a consequence we
have

V(M) = U Vi (M).

mest (M)

Indeed, if m € &/ (M) then 0 € V,,,(M). Conversely, fix @ € V,,,(M). From the containments
LMNZM = (A M + ) —a)NZM C (LM — a)NZM C M., itfollows thatm € o/ (M).

m

Remark 3.12 If M is seminormal, then M N V(M) = {0}. Indeed, if 0 # y € M, then
—y € (M —y) NZM)\M for every m € o/ (M).

In the following remarks we observe that V,,, (M) is compatible with projections onto faces
of C(M) and with isomorphisms of monoids.

Remark 3.13 For every face F of C(M) andm € Z31 we have V,,(M)NF C V,,(M N F).
Indeed, let @ € V,,(M) N F, then

(i(MmF)—a>mZ(MmF)g ((iM—a)mZM>mF:MmF.
m m

Remark 3.14 Since every isomorphism of monoids ¢ : M — M’ extends to an isomorphism
of groups ¢ : ZM — ZM/, it follows that &/ (M’') = o/ (M). Furthermore, for every
m € o/ (M) we have mV,,(M") = o(mV,,(M)).

We now describe basic properties V,,, (M). In particular, we see that this set is finite.

Proposition 3.15 Let m € Z.i and o, B, 1) € =M be such that o = B+ n. If o € Vi (M),
then B, n € V,,(M).

Proof Letw € %M be such that w — 8 € ZM. Thus, from
1
w—B=w+n —ac (—M—a)ﬁZMgM
m

it follows that w — 8 € M. This argument implies that 8 € V,,(M). Likewise, n € V,,(M),
finishing the proof. O

Corollary 3.16 For every m € Z~.| the set M \ mV,,(M) is an ideal of M.

Proof Leta € M\mV,,(M) and g € M. Suppose a + g € mV,, (M), then <5 € V,,(M).
By Proposition 3.15 this implies ;- € V,,, (M) which is a contradiction. O
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The following lemma provides useful facts about the sets V,,(M). We recall that the
Minkowski sum of two subsets A, B C RY isdefinedas A® B ={a+b|a e A, b e B}.

Lemma3.17 Letm,n € </ (M). Then,

(1) LM NV (M) = Vi (M).
Q) V(M) ® V(M) S Vi (M);
3) 11V (M) @ Vo (M)| = [V (M) - [V (M)] < Vi (M)

Proof We begin with the containment 2 in (1). Let ¢ € V,,,(M), then & € %M c Lwm.
Consider y € (;.-M — «)NZM, thenmy+ma € LMNZM = M, Thus,y € (LM —a)n
ZM < M and the conclusion follows. Now we prove the containment C. Let o € %M N
Vin(M) and let B € LM be such that p — o € ZM. Then p — € (A M — ) NZM C
(LM —a)NZM C M.

We continue with (2). Leta € V,,(M) and g € V,;(M). Clearly we have %Ol +B e ﬁM.
Lety e Mandn € ﬁMbesuchthaty—i—n—(%a—f—ﬁ) € M,thenny +nn—o € M.
Since nn € %M, Proposition 3.3 applied to « implies nn —a € M, i.e, n — %a € %M.
Thus, Proposition 3.3 applied to 8 implies n — (%(x +B8)=0n—- %oz) — B € M. Therefore,
by Proposition 3.3 we have %a + B € Vi (M).

We now show (3). Let o, B € V,,,(M). We first show that (« + M) N (B + M) = 0
for « # B, we proceed by contradiction. Set W = (¢ + M) N (B + M), and note that

W C (o + M) splits since
(a—}-M)\W:(a—i—M)ﬂ(%M\(ﬂ%—M))

is an M-module (see Remark 3.10). Let T = (¢ +M)\W.Ify € Tandz € W—a C M, then
y+zeThutalsoy+z € y+(W—a) € W+ M = W, which is not possible. We conclude
T =0%,andso W = (0« + M). Thus, o + M € 8+ M. By symmetry, B+ M C o + M,
anthen § + M = o + M. It follows thate — 8 € M N V,,(M) = {0} by Proposition 3.15
and Remark 3.12, which is a contradiction. Therefore, the union | J, ev,on (e +M) < %M

is disjoint, and so, Uaevm(M) (% + %M) - ﬁM is also disjoint. By applying the same
argument, the union

U U (g—i—ﬁ—l—M)C%M

eV (M) BeVy (M)

is disjoint. Hence,

1 o 1

V(M) @ Va(M) = | % + @ € VW), B Va(M)| € — M

n n mn
is a set of of cardinality |V, (M)| - |V,,(M)|. Finally, the inequality follows from Part (2). O
Proposition3.18 Let m € /(M) and o € %M. Write a = SLyy 4 - + Sty with
Cly.o.scu € Zxo. If c1 + ... +¢cy = (m — Du + 1, then o ¢ V,,(M). Furthermore,
|V (M)] < mrank¥D),

Proof By assumption we have thata € y;+ %M forsome 1 < i < u.By way of contradiction

suppose that @ € V,,(M). Since ¢« — y; € %M , it follows by Proposition 3.15 that y; €
Vin (M). However, this contradicts Remark 3.12, and therefore o ¢ V,,,(M).
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For the second claim, recall that |_J,, €V, (M) (o« + M) is a disjoint union of M-modules (see
proof of Lemma 3.17 (3)), and thus UotEV,,,(M)(a + M) C %M is pure. As a consequence,
the ZM-module Z (nil M ) contains B, €V, (M) Z(a + M) as a free direct summand, and thus

[Vin (M)| < m™k) where the latter is the rank of Z (%M) as a ZM-module. O

We now define a new numerical invariant for seminormal monoid. This number plays an
important role in our main results. This invariant is inspired by the F-pure threshold of a ring
[24]. This is because the F-pure threshold of a standard graded algebra can be described as
the supremum among the degrees of a minimal generator of a free summand of R'/7° [11].
However, the F-pure threshold of R = k[M] can be different than the pure threshold of M
(see Example 3.23 and Remark 3.24). In Proposition 4.4 we prove that for normal monoids
this invariant is rational.

Definition 3.19 We define the pure threshold of M as
mpt(M) = sup{le| | @ € V(M)}.
If V(M) =0, i.e.,if M is not seminormal, we set mpt(M) = —oo.

Remark 3.20 Let b = max{|y1], ..., |yu|}. By Proposition 3.18 we have |«| < bu for every
o € V(M). Therefore, mpt(M) < oo.

‘We now discuss how the pure threshold of a monoid M can be obtained from any increasing
sequence in <7/ (M).

Proposition 3.21 Let {m,},€Z>l be the elements of <7 (M) ordered increasingly. Then,
lim max{|a| | @ € V,, (M)} = mpt(M),
—>00
In particular,
lim max{|a| | @ € V,,i (M)} = mpt(M)
—00
foranym € of (M).

Proof If mpt(M) = 0, the result follows. We assume mpt(M) > 0. Let b =
max{|y1l, ..., |vu|} and for any n € &/ (M) set a, = max{|e| | @ € V,;(M)}. Fix ¢ > 0 and
N € Z3 such that rZ—Z/ < §.Letm’ € o/ (M) be such that b, > mpt(M)— 5 and fixt > N.
By Lemma 3.17 we have by,,,» > mpt(M) — 5. Consider a = mf;n, Yi4-+ mfum’ Yu €
Vi, (M) with ¢; € Z¢ and || = by, py. Foreach 1 <i < ulet0 < r; < m’ be such that
¢;i = r; (mod m’). By Proposition 3.15 and Lemma 3.17 (1) we have

;. €1 —I Cy — Ty 1
o = ; Vit + 7 yueiMﬂ‘G?ltin/(M):th(M)'
mim mym mg
Moreover,
, , € bu
mpt(M) — |o'| = mpt(M) — |a| + (la| — |&']) < 5 + <€
t
Since € was chosen arbitrarily, the result follows. O

We now compute some examples of pure thresholds. We note that this invariant depends
on the grading given by the embedding M C Z4.
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Example 3.22 Let M be generatedby diey, ..., dye, € Z9, whered; € Z-gand{ey, ..., e;}
is the canonical basis in Z4. Then, V,, (M) = {(d1 %, ... q‘;;’) elzi|0< <m—1},

and so, mpt(M) =d; +...+dy.

Example3.23 letq € Z-1,t € Z-oand M = {« € Zq;o | lo| € tZ~o}. Then k[M] is the
Veronese subring of order ¢ of a polynomial ring k[x1, ..., x4] with the grading deg(x;) = 1.
We have that

VMM):{(%,...,OZ)e%Zq 10 < a <m—1and|a|etZ>0}

and therefore mpt(M)=g¢g. We point out that, if k has prime characteristic, then
fpt(k[M]) = % [13, Example 6.1].

Remark 3.24 1t follows from Example 3.23 that mpt(M) may differ from fpt(k[M]) even
when M is normal. This is not surprising since fpt(k[M]) is independent of the presentation
of k[M] as a quotient of a polynomial ring, while we have already observed that mpt(M)
heavily depends on the degrees of the generators and on the embedding of M.

The following construction allows us to provide bounds for depths of affine semigroup
rings (see Sect. 5). In Proposition 3.26 we justify the terminology used in the definition.

Definition 3.25 We define the pure prime of M by
PMy=M\ ] mVu(M).

m€Z>]

Proposition 3.26 Let M be an affine monoid. Then &?(M) is a prime ideal of M.

Proof Since Z(M) = ﬂmeZW] (M\mV,,(M)), it follows from Corollary 3.16 that & (M)
isanideal of M. Now, leta, b € M\ Z(M)andm,n € o/ (M)besuchthata := % € V(M)

and B := £ € V,(M). We claim that £ € V,,,,(M) whichimpliesa+b ¢ 2 (M), finishing
the proof. Indeed suppose ath ¢ Viun (M ), then from Proposition 3.15 it follows that

mn

1 a mb a+b (m—1)>b
—atp=— 4 + 2 Vi (M),
n mn  mn mn mn
which contradicts Lemma 3.17 (2). m]

We obtain the following theorem that relates (M) with the normality of M.
Theorem 3.27 Let M be an affine monoid. Then M is normal if and only Z(M) = .

Proof We begin with the forward direction. Since M is normal, by Remark 3.14 we can
assume that M is a submonoid of Z">O for some n € Z-q and such that M = ZM N Z
[4, Theorem 2.29]. Fixa € M C Z>0 and chose m € Z-| bigger than every entry in a. By
Remark 3.7 we have m € o/ (M) andm € M(Z o) By the choice of m, it is clear that

r_. a
— ——\|\nz"<cZ",. 3.1
(m 20 m) =720 @1

a

Thus, the left hand side expression in (3.1) is equal to (%Z’;O - E) NZY . Intersecting this
with ZM we obtain,
1 a 1 a 1 a

m

@ Springer



31 Page120f20 A. De Stefani et al.

Therefore, (- Ly — 4\NM c Z%,NZM = M, which shows a € mV,,(M).

We continue w1th the backward direction. Let f € ZM be such that nf € M for some
n € Z-1. By Proposition 3.5 it suffices to show f € M. Write f =a — b witha, b € M,
then na € nb + M. Thus, n(a, b) = b+ (n — 1)(a, b), where (a, b) denotes the ideal of M
generated by the set {a, b}. It follows that (n + r)(a, b) = rb + n(a, b) for every r € Z-o.
Hence,

ra+nbem+r)a,b)y=rb+n(a,b) Srb+ M foreveryr € Z-op.

By assumption there exists m € o/ (M) such that nb € mV,,(M). Therefore,

1 1
f:a_b:<w>_@_be(HfM)_@_b:fM_@,
m

m m m m m

On the other hand, f € ZM, then f € (n%M — :Tb) NZM = M, which finishes the proof. 0

Corollary 3.28 There exists a face Fp of C(M) such that M\ 2 (M) = M N.Zy. Moreover,
the monoid M N %y is normal.

Proof The first part follows from Proposition 3.26 and the correspondence between prime
ideals of monoids and faces of their cones [4, Proposition 2.36]. By Theorem 3.27 to show
that M N.%, is normal it suffices to show M N.Fy = UmEZ>1 mV,, (M N .%y). Moreover,
we may assume M is seminormal. We note that

M0 Ty = | mVaD) S (J mViu(M N Zy),

meZi- meZ1

where the last inclusion follows from Remark 3.13. Since we always have the other inclusion
UmEZ>| mVy, (M N Zy) € M N Fyy, the proof is complete. |

The previous proposition allows us to define the following invariant of affine monoids,
the pure dimension. As we see in Corollary 3.30, this new notion measures how far a monoid
is from being normal. In Theorem 5.7 we use this invariant to provide lower bounds for the
depth of affine semigoup rings.

Definition 3.29 The face %) in Proposition 3.28 is called the pure prime face of M. We
define the pure dimension of M by mpdim(M) := rank(M N Fy). If Fy = 0, we set
mpdim(M) = —

Corollary 3.30 Let M be an affine monoid. Then

(1) mpdim(M) < rank(M).
(2) mpdim(M) > 0 if and only if M is seminormal.
(3) mpdim(M) = rank(M) if and only if M is normal.

Proof Part (1) follows directly from the definition. For part (2) we note that mpdim(M) > 0
if and only if U mV,y, (M) # @, and by Remarks 3.27 and 3.11 this is equivalent to M

MmeZi-
being seminormal. Part (3) follows from Theorem 3.27. ]

We finish this section with the following example.
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O © & © O © @ © o—b
Fig.2 The monoid M = Z>((2,0) + Z>o(1, 1) + Z3((0, 1)

Example3.31 Let M = Z3>p(2,0) + Z3o(1,1) + Z3((0, 1) be the monoid with set of
generators {(2, 0), (1, 1), (0, 1)}. It is easy to see that M = Zéo\{@a +1,0) | a € Zxo}
(see Fig. 2). We also have that o/ (M) = {m € Z~1 | m is odd}. Then, for every m € /(M)
we have mV,,(M) = {(a,0) | aisevenand a < m}. Therefore, mpt(M) = 1, Fy =
R>0(1, 0), and mpdim(M) = 1. In particular, by Corollary 3.30, M is seminormal but not
normal; this is consistent with [17, Example 1.0.3].

4 Asymptotic growth of number of pure translations

In the short section, we study the asymptotic behavior of the number of elements in the sets
Vin (M). Throughout we adopt the same notation from Sect. 3.

Definition 4.1 Let M be a seminormal affine monoid, and let %y, be its pure prime face. For
every m € o/ (M) we define

B.M)= | (@=Zm)NnFu).
aeV, (M)

Moreover, we set

B(M) = U By (M).

me/ (M)

When M is normal, there is a simple description of B(M) as the region in Notation 4.2.
We prove that these regions coincide in Lemma 4.3, which also includes important properties
of B(M).
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Notation 4.2 Let M be a normal affine monoid. Let {H, ..., Hy} be the supporting hyper-
planes of C (M) so that C(M) = Hl+ n---N H;‘. Let v; € Q7 be rational vectors such that
X € H;r if and only if (x, v;) > O for 1 < i < s. We can further assume that (x, v;) € Z for
every x € ZM and that min{{«, v;) | « € M} = 1 [4, Remark 1.72]. We define A by

A={xeR?|0<L (x,v) <1 for 1 <i<s}
Lemma 4.3 Let M be a seminormal affine monoid. Then

(1) B(M) is a bounded set and it has volume, i.e., its boundary has measure zero in the
dim(R.%#yy)-dimensional Lebesgue measure on R.% ;.

(2) There exists an increasing sequence {p,},€Z>l C /(M) suchthat By, C Bp,,, forevery
t € Zx1 and B(M) = U,€Z>l By, (M).

(3) V(M) = LM N B(M) for every m € o (M).

@) If M is normal and A is as in Notation 4.2, then B(M) = A.

Proof We begin with (1). Let {gj, ..., g/} be a minimal set of generators of M N .%y; and
consider the region I' = Uﬁzl(g,' + Fy). Leta € %M N T, then « = g; + n for some
i and n € Zy. Since M N %y is normal by Corollary 3.28, it follows that n € %(M N
Fu) N Fy C %M. If o € V,,(M), then Proposition 3.15 implies g; € V,,,(M) which
contradicts Remark 3.12. We conclude V,,,(M), and then B,, (M), is contained in .%y; \ T’
which is bounded.

Now, let 0 and ° denote boundary and interior on R.# ), respectively. Let u denote the
dim(R.%s)-dimensional Lebesgue measure on R.%),;. We note that for any x € dB(M) \
0.7y we have x + .7, C Fy \ B(M); indeed, if x + y € B(M) for some y € %, then
x +y € B(M) for some y' € .Zj5,, which would imply x € B(M)°. Therefore, for any
r > Oandany x € dB(M)\0.%y wehave 0 B(M)N B(r, x) N (x+.Fy,) = @, where B(r, x)
denotes the ball in R.%; with radius r and center x. Therefore, there exists areal ¢ < 1 such
that for any such r and x we have W < c. By Lebesgue’s density theorem [19,
Corollary 2.14], we conclude (3 B(M)) =0.

We continue with (2). Let {m; };cz-, be the elements of <7 (M) ordered increasingly. For
eacht € Z>y set py = my---my; and notice p: € /(M) by Lemma 3.8. The conclusion
now follows from Lemma 3.12 (1).

Now we prove (3). Let m; € /(M) and a € m%M N B(M), it suffices to show o €
Vin, (M). By (2), we have a € B, (M) for some i. We may assume i > t and then m;,
divides p;. Therefore, there exists n € %) and B € V,, (M) such that & + n = B. Since

M N.Z ) is normal by Corollary 3.28, it follows that n € pﬁ (MNFy)N Ty € [%M Thus,
o€ m%M NV, (M) = V,,, (M) by Proposition 3.15 and Lemma 3.17, which finishes the

proof.
‘We finish with (4). If M is normal we have V,,(M) = %M N A [26, Lemma 3.11]. Thus,

the equality B(M) = A follows as the set Umez,, %M is dense in RY. ]

From Lemma 4.3 (4) we obtain that the pure threshold of normal monoids is rational.
Proposition 4.4 [f M is normal, then mpt(M) € Q.

Proof The statement follows readily from Lemma 4.3 (4) and the equality mpt(M) =
sup{la| | « € B(M)}. ]

‘We now turn our focus to asymptotic growth of the number of elements in the sets V,,, (M).
We define the following limit, which we prove exists in Theorem 4.6
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Definition 4.5 Let M be a seminormal affine monoid. Set s = mpdim (M) and let {m,},€Z>]
be the elements of o/ (M) ordered increasingly. We define the pure ratio of M as

Vin, (M
mpr(M) = lim M
nmy
We define the pure signature of M as
| Vi, (M)

mps(M) = Tt = cant -
my

In the following theorem we show that mpr(M) exists as a limit, and that it equals the
relative volume of B(M). Here, by relative volume with respect to a lattice L € H of rank
r in an r-dimensional hyperplane H C R, denoted by vol;, we mean the r-dimensional
volume in H normalized such that any fundamental domain of L has volume one.

Theorem 4.6 Let M be a seminormal affine monoid. We have that
mpr(M) = volzmnz,)(B(M)) > 0.

In particular, M is normal if and only if mps(M) > 0. Furthermore, in this case mps(M) €

@>0-

Proof By Lemma 4.3 (1), the characteristic function xp () is Riemann integrable. Now, by
Lemma 4.3 (3) and Corollary 3.28 we have V(M) = :Z (M N.Fy) 0 B(M). Thus, 130!
is a Riemann sum for xp(y) with normalized Volumes of the cells and mesh the dlameter

of a fundamental domain for W Therefore, by taking the limit 1 — oo we obtain
that the limit exists and is equal to volZ(Mm 7, (B(M)). We note that volzynz,,) (B(M))
is positive since V,,, (M) has interior points of % (see Corollary 3.28). The last statements
follow from Corollary 3.30 and Lemma 4.3 (4). ]

Theorem 4.6 is related to previous computations done for the F-signature of normal
semigroup rings [21, 26].

Example 4.7 Let M be as in Example 3.31. We observe that |V,,(M)| = (%1 for every m €
o/ (M). Then, mpr(M) = 1 We also have B(M) = [0, 1), therefore volzyn.z,,)(B(M)) =
%, which is consistent with Theorem 4.6.

We end this section with a question motivated by Proposition 4.4. This question is open,
to the best of our knowledge, for seminormal monoids that are not normal.

Question 4.8 Let M be a seminormal affine monoid. Is mpr(M) a rational number?

5 Applications to affine semigroup rings

Throughout this section we adopt the following notation.

Notation 5.1 Given an affine monoid as in Notation 1.1, we let R = k[M] = K[x%|a €
M] C k[x] := k[x; ..., x4] be the affine semigroup ring of M. Given m € Z, we set
R'™ =Kk [%M] the k-algebra k [x“|ot € %M] Givenm € Z-panda € %M, we consider
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@™ . R'/™ — R the k-linear map given by ¢/ (x#) = x#~%if B—« € M and zero otherwise.
For an ideal I € M, we denote by x’ the corresponding M-homogeneous R-ideal,

X' =x|ael.

For an M-homogeneous element f = x* € R, we denote by log(f) = « € M the
corresponding element in M.

Remark 5.2 We note that R = R'/™ via the k-algebra map given by x¥ > x%/™.

Proposition 5.3 Let M be an affine monoid, andlet a € %M. Then, ¢} is amap of R-modules
if and only ifa € V,, (M).

Proof We note that ¢}’ is a map of R-modules if and only if forevery y € M and 8 € %M we
have ¢} (x¥xP) = xv U (x#). By the definition of @' these are equivalent to ¢}’ (x¥ xPy £0
implies x” ¢ (x#) # 0, or equivalently to,

y+B—a€ Mimpliesp —a € M.

The conclusion now follows from Proposition 3.3. O

In the next result, we use the semigroup splitting threshold to provide a bound for the
Castelnuovo-Mumford regularity of affine semigoup rings. We refer the reader to Sect. 2 for
information about a-invariants and regularity.

Theorem 5.4 Let M and R be as in Notation 5.1. Then, a;(R) < —mpt(M). As a
consequence,

reg(R) < dim(R) — mpt(M) = rank(M) — mpt(M).
Moreover, if we present R as S/I, where S = Kk[x1, ..., x,] and each x; has degree d; :=

deg(x;) = |y;| the degree of y; fori = 1,...,u, and I C S is a homogeneous ideal, then
u u
B(I) < dim(R) + Y (d; — 1) — mpt(M) — 1 = rank(M) + » "(d; — 1) — mpt(M) — 1.
i=1 i=1

Proof We can assume that M is seminormal. Let m € /(M) be such that m > 1, which
exists by Proposition 3.5 (1). Fix t € Z> and a € V,,,: (M). From Proposition 5.3 it follows
that qﬁl’;‘[ gives a splitting of the homogeneous injective map R(—|«|) <> R/ m' defined as
multiplication by x*. Thus, for each i, the induced map

. . . 1 t . 1 t
Hiy (R)(—lal) = Hiy (R(=la) = Hy(R'™) = Hy (R)!/™
also splits. By comparing the highest degrees of these modules we obtain

ai(R)

ai(R) + |a| < ——.
m

By taking the maximum value of || over all @ € V,,: (M) and letting t — oo, by Proposi-
tion 3.21 we obtain that a; (R) < —mpt(M) as desired. The inequality for regularity follows
by definition, and the last equality by the relation between the rank of semigroups and
dimension of semigroup rings (see e.g. [5, p.257]).

Finally, the inequalities involving 8 (/) follow at once from the fact that 8(I) < Reg(I) <
Reg(R) — 1 =reg(R) + > ;_;(di — 1) — 1 by Lemma 2.3 and the previous inequalities. O
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We now compute the pure threshold for a normal monoid that is Gorenstein. This follows
previous work done for the F-pure threshold [11, Theorem B], which was motivated by a
conjecture posted by Hirose, Watanabe and Yoshida [13].

Theorem 5.5 Assume that M is normal of rank d. If R is Gorenstein, thenmpt(M) = —ag(R).

Proof Since M is normal, the Gorenstein property of R = k[M] is independent of the
field k [4, Remark 6.34]. The pure threshold mpt(M) is also independent of k. If k has
characteristic zero, then ay(k[M]) = a4(Q[M]) = ay(F,[M]) for all p > 0 (see for
instance by [9, Lemma 4.3] adapted to the positively graded case). If L is any field extension
of k, and m is the homogeneous maximal ideal of R, then we have graded isomorphisms
HE(R) ®x L = HE(R ®x L) = HZ(L[M]). Thus, we may assume that k is a perfect
field of characteristic p > 0. We can write R = §/I, where § = k[T, ..., T,], each T;
maps to a generator X" of R and deg(7T;) = |y;| = d; > 0. Since R is Gorenstein, we have
that Homg(R'/7°, R) = (I'P) 5 1)/1P°) = (f, + 1PN/ 1PV [12]. If Fy : 0 — F, —

.—> Fp =S - R — 0is a minimal free resolution of R over S, then ¢ = ht(/) and
F. = S(—=D—aq(R)),where D = i, d;. The minimal free resolution of F¢ : 0 — F¢ —

.= F¢ =8 — §/1P1 — 0 of S/1'7) is such that F¢ = S(p*(—D — aq(R))). The
comparison map F¢ — F, induced by the natural surjection S/I Pl > Rin homological
degree c is S(p¢(—D — a4(R))) — S(—D — ayz(R)). Furthermore, it is given, up to an
invertible element, by multiplication by f, [27, Lemma 1]. Since such a map is homogeneous
of degree zero, we conclude that deg(f,) = (p¢ — D(D + a4(R)). Let n = (T1, ..., Ty).
As fo ¢ ntP‘l by Fedder’s criterion [12], there is a monomial TI"1 -« T, in its support
with 0 < n; < p® — 1 for all i. This implies that the map S/I — (S/I)"/?° sending
1 (Tlpe_l_"' — TP 71T P gplits. Via the isomorphism S/ = R, this means that

the map R — R'/P° = k[M'/P°] sending 1 — (Xyl(p“—l—nl) .. .XVM(PE_I_nu))l/pE =xP©
splits, and so, B(e) € Vpe (M). Note that
Yzt lvil(pf =1=n)  (p¢ =D —=3_mid;  (p® — 1)D — deg(f.)
pe - pe - pe
p—1

- .

1Ble)| =

= —aq(R)

We have that mpt(M) > lim |B(e)| = —aq(R) by Proposition 3.21. As the other inequality
e— 00

always holds by Theorem 5.4, we have equality. O

From the previous result, one may wonder if the converse is true. In particular, as
fpt(k[M]) = ag(k[M]) implies that k[M] is Gorenstein if k[M] has a structure of standard
graded k-algebra [22]. This motivates the following question.

Question 5.6 Assume that M is normal of rank d. If mpt(M) = —a,(R), is R is Gorenstein?

We now provide a bound for the depth of R, which recovers Hochster’s result that normal
semigroup rings are Cohen-Macaulay [14, Theorem 1].

Theorem 5.7 Let M and R be as in Notation 5.1. Then, mpdim(M) < depth(R).

Proof We can assume that M is seminormal. Let S = k[y, ..., y,] endowed with the M-
grading given by deg(y;) = y;. We set a surjection of k-algebras p : § — R by y; — xi.
Letm = x",...,x) € Randn = (y1,...,Yu) C S. We note that p(n) = m. Set
J =Ker(p),sothat R = §/J.
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Set t+ = depth(R) = min{i | Ext’g_i(R, S) # 0}. We first show that
Anng (Ext§ '(R, S)) € x”™); we proceed by contradiction. Suppose that there exists an
M-homogeneous element f € R suchthat f € Anng (Ext§ (R, $)) \x” M) . Letm € Z3
be such thatlog(f) € mV,,(M). Since the multiplication map Ext§ (R, S) EN Ext{™"(R, S)
is the zero map, we have that HI (R) —f> H! (R) is the zero map by Matlis duality

1/m
[18]. Thus, H/ (R'/™) s HL (R'/™) is the zero map as well. Since the composition
1/m ¢rg .
of R = RY/m f—) RYm "5 Ris the identity, we have the same for the composition

m
log(f)

c1/m ¢
HL(R) 5 HL RV 'S HE(RV™) 75D |t (R).

Since the middle map is zero, we have that H‘; (R) = 0, which is not possible because
t = depth(R).
Since Anng (Ext{™' (R, S)) € x7 M) e have that

dim (Ext% (R, $)) > dim (R /x” <M>) — mpdim(M). (5.1)
Since S is a Gorenstein ring, its injective resolutions as S-module is given by
0—>S—E"> E?2— .  EY%

where E/ = @ht(p): G E (S/p) is the direct sum of the injective hulls of all the prime ideals
in S of height j [2]. Therefore,

dim (Ext§ (R, $)) <. (5.2)

Combining Inequalities (5.1) and (5.2) we obtain the desired result. ]

We now relate the pure ratio of a monoid M to the splitting ratio of R [1] and F'-signature
[15,23,25].

Proposition 5.8 Let M and R be as in Notation 5.1. If char(k) € &/ (M), then mpr(M) is
the F-splitting ratio of R. As a consequence, if char(Kk) is a prime number and M is normal,
then mps(M) equal to the F-signature of R.

Proof Let p = char(k) and m be the maximal homogeneous ideal in R. Let
I={f € R|¢(f"") em Vp € Hom(R'"", R)).

We note that dimy (R/1I,) = |V,e(M)], and that x” ™) is the splitting prime of R [1]. It
follows that mpdim (M) = sdim(R), and the result follows for the ratios.

We now discuss the claim about F-signature. We have that char(k) € /(M) for normal
monoids by Proposition 3.5. The result follows because the F-signature coincides with the
F-splitting ratio for strongly F-regular rings, and R is strongly F-regular if and only if M is
normal. O

We end this section with a monoid version of Kunz’s characterization of regularity [16].

Theorem 5.9 Let M be an affine monoid. Then, |V,,(M)| = m™ M) for some m € Z-g if
and only if M = 7, for some t.
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Proof Since |V,,,(M)| = m™*M) we have that |V, (M)| = m! ™ M) by Lemma 3.17 (3).
Then,

Vin (M
mps(R):tlim [Von (M)] =1.

— o0 mprank(M)

Hence, mpdim(M) = rank(M), and so, M is a normal monoid by Corollary 3.30. We have
that mps(R) = 1. Then, F,[M] is a regular graded I -algebra, because s(R) = 1 by
Proposition 5.8 and the characterization of regular rings via F-signature [15, Corollary 16].
Moreover, M has a set of rank (M) minimal generators. Hence, M = Z;O. O
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