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Abstract

Inspired by methods in prime characteristic in commutative algebra, we introduce and study

combinatorial invariants of seminormal monoids. We relate such numbers with the singular-

ities and homological invariants of the semigroup ring associated to the monoid. Our results

are characteristic independent.
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1 Introduction

Frobenius splittings have inspired a large number of results in commutative algebra, algebraic

geometry, and representation theory. In this manuscript we seek to continue this approach

in the context of combinatorics of monoids. Given a monoid M ⊆ Z
q

�0 for some q ∈ Z>0,

and m ∈ Z>0, we study the pure M-submodules of 1
m

M that are translations of M , which

algebraically corresponds to free summands of k[ 1
m

M] as k[M]-module. It turns out that

the purity of M ⊆ 1
m

M detects both normality and seminormality (see Proposition 3.5). The

study of pure submodules, or equivalently of free summands, of normal monoids was already

initiated by other authors in order to compute the F-signature of normal affine semigroup

rings [21, 26]. Moreover, the structure of 1
m

M as M-module was described by Bruns and

Gubeladze [6, 7] for normal monoids (see [20] for a related result in prime characteristic).

In this manuscript we study combinatorial numerical invariants of a seminormal monoid.

Our key motivation is that seminormality for a monoid can be seen as a characteristic-

free version of F-purity for affine semigroup rings. For more information and examples on

seminormal monoids we direct the interested reader to Li’s thesis on this subject [17].

In Definition 3.19 we introduce the notion of pure threshold of a seminormal monoid

M , denoted by mpt(M), which is motivated by the F-pure threshold in prime characteristic.

This number can be described as the largest degree of a pure translation of M inside the cone

R�0 M or, equivalently, of 1
m

M for some m. We show that mpt(M) gives an upper bound for

the Castelnuovo-Mumford regularity reg(k[M]) defined in terms of local cohomology, and

the Castelnuovo-Mumford regularity Reg(k[M]) defined in terms of graded Betti numbers

of k[M] (see Sect. 2 for more details).

Theorem A (Theorem 5.4) Let M be a seminormal monoid with a minimal set of generators

{γ1, . . . , γu}. Then, ai (k[M]) ≤ −mpt(M). As a consequence,

reg(k[M]) = max{ai (k[M]) − i} ≤ dim(k[M]) − mpt(M) = rank(M) − mpt(M).

Moreover, if we present R as S/I , where S = k[x1, . . . , xu] and each xi has degree di :=

deg(xi ) = |γi | the degree of γi for i = 1, . . . , u, and I ⊆ S is a homogeneous ideal, then

Reg(k[M]) = sup{βS
i (M) − i | i ∈ Z} ≤ rank(M) +

u
∑

i=1

(di − 1) − mpt(M).

Theorem A allows us to give an upper bound for the degrees of generators of the defining

ideal I . We also show that mpt(M) is a rational if M is a normal (see Proposition 4.4).

Despite mpt(M) being inspired by F-pure thresholds, these numbers do not always coincide

(see Example 3.23 and Remark 3.24). In addition, mpt(M) is defined independently of the

field k and so it is a characteristic-free invariant, while the F-pure threshold is only defined

when k has prime characteristic.

We introduce the pure prime ideal P(M), and the pure prime face FM , of a seminormal

monoid M (see Corollary 3.28, and Definitions 3.26 and 3.29). The former emulates the

splitting prime ideal of an F-pure ring, while the latter is related to the quotient of a ring

by its splitting prime. In fact, the submonoid FM ∩ M is normal (see Corollary 3.28). We

note that the rank of FM ∩ M is a monoid version of the splitting dimension and so we call

it the pure dimension and denote it by mpdim(M). It turns out that this rank is equal to the

rank of M if and only if M is normal, and it is non-negative if and only if M is seminormal

(see Corollary 3.30). Therefore, in some sense, mpdim(M) measures how far a seminormal

123



Purity of monoids and characteristic-free splittings... Page 3 of 20 31

monoid is from being normal. Furthermore, mpdim(M) is related to the depth of k[M] as

the following theorem shows.

Theorem B (Theorem 5.7) If M is a seminormal monoid, then mpdim(M) ≤ depth(k[M]).

We point out that Theorem B recovers Hochster’s result that normal semigroup rings are

Cohen–Macaulay [14].

Finally, we consider the growth of the number of disjoint pure translations of M in 1
m

M

as m varies. More specifically, if m ∈ Z>0 is such that 1
m

M ∩ ZM = M , we define

Vm(M) :=

{

α ∈
1

m
M | (α + M) ⊆

1

m
M is pure

}

.

Theorem C (Theorem 4.6) Let M be a seminormal monoid, A (M) = {m ∈ Z>0 | 1
m

M ∩

ZM = M}, and s = mpdim(M). Then,

mpr(M) := lim
t→∞

|Vmt (M)|

ms
t

exists and it is positive for every increasing sequence mt ∈ A (M). Furthermore, if M is

normal, then mpr(M) ∈ Q>0.

We call the limit in Theorem C the pure ratio of M . If the field has prime characteristic, this

number coincides with the splitting ratio of k[M] [1]. A consequence of Theorem C is that

the value of the F-splitting ratio depends only on the structure of M , and so it is independent

of the characteristic of the field as long as k[M] is F-pure. Finally, using this result we give

a monoid version of a celebrated Theorem of Kunz [16, Theorem 2.1] which characterizes

regularity of rings of prime characteristic in terms of Frobenius (see Theorem 5.9).

Throughout this article we adopt the following notation.

Notation 1.1 Let k be a field of any characteristic and q a positive integer. Let M ⊆ Z
q

�0 be

an affine monoid, i.e., a finitely generated submonoid of Zq . We fix {γ1, . . . , γu} a minimal

set of generators of M . Let ZM denote the group generated by M and C(M) = R�0 M the

cone generated by M .

2 Background

In this section we include some preliminary information that is needed in the rest of the paper.

2.1 Affinemonoids and affine semigroup rings

For proofs of the claims in this subsection and further information about affine monoids we

refer the reader to Bruns and Gubeladze’s book [4]. Let M ⊆ Z
q

�0 be an affine monoid. A

subset U ⊆ Qq is an M-module if U + M ⊆ U . An M-module U is an ideal if it is contained

in M . An ideal U ⊆ M is prime if whenever a + b ∈ U with a, b ∈ M , we must have a ∈ U

or b ∈ U . The rank of M is the dimension of the Q-vector space Q ⊗Z ZM .

Let R = k[M] ⊆ k[x] := k[x1, . . . , xq ] be the affine semigroup associated to M . As a

k-vector space, R is generated by the monomials {xα | α ∈ M}. We note that the monomial

ideals of R are precisely those generated by {xα | α ∈ U } for some ideal U ⊆ M . Under this

correspondence, prime monomial ideals of R correspond to prime ideals of M . For every

M-module U ⊆ Qq we have a corresponding R-module RU := {xα+η | α ∈ M, η ∈ U } in

the algebraic closure of k(x1, . . . , xq). Moreover, we have dim(R) = rank(M).
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2.2 Graded algebras andmodules

A non-negatively graded algebra A is a ring that admits a direct sum decomposition A =
⊕

j≥0 A j of Abelian groups such that Ai · A j ⊆ Ai+ j . It follows from this that A0 is a ring,

and each Ai is an A0-module. If we let A+ =
⊕

j>0 A j , then A+ is an ideal of A, called the

irrelevant ideal.

Throughout this manuscript we will make the assumption that A is Noetherian or, equiva-

lently, that there exist finitely many elements a1, . . . , an ∈ A+ such that A = A0[a1, . . . , an],

which can be assumed to be homogeneous of degrees d1, . . . , dn . In this case, note that A is

a quotient of a polynomial ring A0[x1, . . . , xn] by a homogeneous ideal.

A Z-graded A-module is an A-module N that admits a direct sum decomposition N =
⊕

j∈Z
N j of Abelian groups, and such that Ai · N j ⊆ Ni+ j . As a consequence, each Ni is an

A0-module. Moreover, if N is Noetherian there exists i0 ∈ Z such that Ni = 0 for all i < i0;

on the other hand, if N is Artinian there exists j0 ∈ Z such that N j = 0 for all j > j0.

Given a Z-graded A-module N , and an integer j ∈ Z, we define the shift N ( j) as the

Z-graded A-module whose i-th graded component is N ( j)i = Ni+ j . In particular, A(− j) is

a free graded A-module of rank one with generator in degree j .

2.3 Graded local cohomology and Castelnuovo–Mumford regularity

In this subsection we recall general properties of local cohomology. We refer the inter-

ested reader to Brodmann and Sharp’s book on this subject [3]. Let k be a field and

S = k[x1, . . . , xn], with deg(xi ) = di > 0. Let N be a finitely generated Z-graded S-

module. If we let m = (x1, . . . , xn), then the graded local cohomology modules H i
m

(N ) are

Artinian and Z-graded.

Definition 2.1 Let ai (N ) = sup{ j ∈ Z | H i
m

(N ) j 
= 0} be the i-th a-invariant of N . If

N 
= 0 we define the Castelnuovo-Mumford regularity of N as reg(N ) = sup{ai (N ) + i |

i = 0, . . . , n}. On the other hand, if N = 0 we let reg(N ) = −∞.

In the standard graded case, reg(N ) has a well-known interpretation in terms of graded

Betti numbers of N . In our setup this is still the case, but the degrees of the algebra generators

of S must be taken into account. For i ∈ Z�0, let βS
i (N ) = a0(TorS

i (N , k)) ∈ Z ∪ {−∞}.

As another way to see this, for a non-zero graded S-module T let β(T ) be the maximum

degree of an element in a minimal homogeneous generating set of T . If

F• : 0 Fc Fc−1 . . . . . . F1 F0 N 0,

is a minimal graded free resolution of N where c := pd(N ) is the projective dimension of

N , then βS
i (N ) = β(Fi ).

Definition 2.2 For N 
= 0 we let Reg(N ) = sup{βS
i (N ) − i | i ∈ Z}, while for N = 0 we

let Reg(N ) = −∞.

In the standard graded case, that is, when d1 = . . . = dn = 1, then reg(N ) = Reg(N ). In

our more general scenario, we still have the following relation between the two notions of

regularity.

Lemma 2.3 With the above notation we have that

Reg(N ) = reg(N ) +

n
∑

i=1

(di − 1).
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Proof We may assume that n > 0, otherwise the claim is trivial. We prove the statement by

induction on c = pdS(N ). If c = 0 then N is free, and it is clear that Reg(N ) = β(N ). On the

other hand, ai (N ) = 0 for all i 
= n, while an(N ) = an(S) + β(N ) = −
∑n

i=1 di + β(N ).

It follows that reg(N ) = n + an(N ) = β(N ) +
∑n

i=1(1 − di ) = Reg(N ) +
∑n

i=1(1 − di ),

and the base case follows.

Now assume that c ≥ 1. We have a graded short exact sequence 0 → � → F0 → N → 0,

where F0 is the first free module in a minimal free resolution of N , and pdS(�) = c − 1.

By induction we have that Reg(�) = reg(�) +
∑n

i=1(di − 1). Moreover, it is clear from

the definitions that Reg(N ) = max{β(N ), Reg(�)− 1} = max{β(N ), reg(�)+
∑n

i=1(di −

1) − 1}. We have that β(N ) ≤ reg(N ) +
∑n

i=1(di − 1) [10, Proposition 3.1], and therefore

the above equality gives that

Reg(N ) ≤ max{reg(N ), reg(�) − 1} +

n
∑

i=1

(di − 1). (2.1)

We now show that max{reg(N ), reg(�)−1} = reg(N ). The short exact sequence 0 → � →

F0 → N → 0 yields graded isomorphisms H i
m

(N ) ∼= H i+1
m

(�) for all i < n − 1, and a

graded exact sequence 0 → Hn−1
m

(N ) → Hn
m

(�) → Hn
m

(F0) → Hn
m

(N ) → 0. If we had

reg(�) − 1 > reg(N ), then necessarily reg(�) = an(�) + n, and looking at top degrees

in the above exact sequence we also conclude that an(�) = an(F0). On the other hand,

an(F0) = β(N ) + an(S) = β(N ) −
∑n

i=1 di ≤ reg(N ) − n [10, Proposition 3.1], and so,

reg(�) ≤ reg(N ), a contradiction. Thus we always have that reg(�) − 1 ≤ reg(N ), and by

(2.1) the inequality Reg(N ) ≤ reg(N ) +
∑n

i=1(di − 1) is proved.

For the reverse inequality, first observe that the above isomorphisms give that ai (N ) =

ai+1(�) for all i < n−1, while the exact sequence yields that an−1(N ) ≤ an(�). Since n > 0

and � is a submodule of a free module, it has positive depth, and thus a0(�) = 0. It follows

that max{ai (N )+i | i = 0, . . . , n−1} ≤ max{ai+1(�)+i | i = 0, . . . , n−1} = reg(�)−1.

By induction we have that reg(�) = Reg(�) +
∑n

i=1(1 − di ), and thus max{ai (N ) + i |

i = 0, . . . , n − 1} ≤ Reg(�) − 1 +
∑n

i=1(1 − di ) ≤ Reg(N ) +
∑n

i=1(1 − di ) since the

inequality Reg(�) − 1 ≤ Reg(N ) always holds. Now, the above exact sequence on local

cohomology also gives that an(N ) ≤ an(F0) = β(N ) + an(S) ≤ Reg(N ) −
∑n

i=1 di ,

and thus an(N ) + n ≤ Reg(N ) +
∑n

i=1(1 − di ). In conclusion, we have that reg(N ) =

sup{ai (N ) + i | i = 0, . . . , n} ≤ Reg(N ) +
∑n

i=1(1 − di ), and the proof is complete. 
�

3 Purity ofM-modules and (semi)normal affinemonoids

Definition 3.1 Let U ⊆ V ⊆ Qq be M-modules. We say that the inclusion U ⊆ V is pure if

V \ U is also an M-module.

Example 3.2 Let M = Z�0(2, 1) + Z�0(1, 2) be the monoid generated by {(2, 1), (1, 2)}.

We have that the inclusion ( 3
2
, 3

2
) + M ⊂ 1

2
M ⊂ Q2 is pure. In Fig. 1 we represent the

elements of M with circles and the ones from
(

3
2
, 3

2

)

+ M with multiplication signs. The

shaded region is included to illustrate that
(

3
2
, 3

2

)

+ M is obtained as a translation of M .

In the following proposition, we provide equivalent statements for Definition 3.1 in a

particular case.
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Fig. 1 For M = Z�0(2, 1) + Z�0(1, 2), the inclusion
(

3
2 , 3

2

)

+ M ⊂ 1
2 M ⊂ Q2 is pure

Proposition 3.3 Let V ⊆ Qq be an M-module and α ∈ V . The following statements are

equivalent:

(i) The inclusion (α + M) ⊆ V is pure.

(ii) For every γ ∈ M and β ∈ V we have γ + β − α ∈ M implies β − α ∈ M .

(iii) (V − α) ∩ ZM ⊆ M

Proof First, assume (i) and let γ ∈ M and β ∈ V with γ + β ∈ α + M . Thus, β ∈ α + M

and then (ii) follows.

Now, assume (ii) and let β ∈ V be such that β − α ∈ ZM . Write β − α = σ − γ with

σ, γ ∈ M . Then γ + β − α = σ ∈ M implies β − α ∈ M . Thus, (iii) follows.

Finally, assume (iii). Let β ∈ V \ (α+ M) and γ ∈ M . Assume by means of contradiction

that β + γ ∈ α + M . Then β + γ = α + σ for some σ ∈ M , which implies β − α ∈

(V − α) ∩ ZM\M which contradicts (iii). Thus, β + γ ∈ V \ (α + M) and then (i) follows.


�

We now discuss seminormality and normality, which are the main subjects of study in this

manuscript. We refer to the work of Bruns, Li and Römer [8] to reader in seminormal rings.
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Definition 3.4 A monoid M is called seminormal if, whenever α ∈ ZM is such that 2α ∈ M

and 3α ∈ M , then α ∈ M . The monoid is called normal if C(M) ∩ ZM = M .

The following alternative characterization of seminormality and normality is useful for

the proof of our main results. While it might be already known to experts, we record it here

with a proof for convenience of the reader. For a related result in prime characteristic we

refer to the work of Bruns, Li, and Römer [8, Section 6].

Proposition 3.5 Let M be an affine monoid.

(1) M is seminormal if and only if there exists m ∈ Z>1 such that 1
m

M ∩ ZM = M.

(2) M is normal if and only if 1
m

M ∩ ZM = M for every m ∈ Z>1.

Proof We note that the containment 1
m

M ∩ ZM ⊇ M holds trivially for any m ∈ Z>1.

For (1), assume that 1
m

M ∩ ZM ⊆ M for some m ∈ Z>1. Let α ∈ ZM be such that

2α ∈ M and 3α ∈ M . We can find nonnegative integers a and b such that m = 2a + 3b,

and thus mα = a(2α) + b(3α) ∈ M . It follows by our assumption that α ∈ M , and thus

M is seminormal. Conversely, let F be the set of all faces of C(M) (of any dimension); we

note that F is a finite set. For any F ∈ F we consider the finitely generated Abelian group

G F = (ZM ∩ QF)/(Z(M ∩ F)). Let p � 0 be a prime number such that the ideal (p) is

not associated to G F as a Z-module for any F ∈ F . We claim that 1
p

M ∩ ZM ⊆ M . Let

α ∈ 1
p

M ∩ ZM ⊆ C(M) ∩ ZM , then α ∈ int(F ′) the interior of some F ′ ∈ F , and also

pα ∈ M ∩ F ′. By the choice of p it follows that α ∈ Z(M ∩ F ′) ∩ int(F ′) and then α ∈ M

[8, Theorem 2.1].

For (2), if M is normal then 1
m

M ∩ ZM ⊆ C(M) ∩ ZM = M . Conversely, let α ∈

C(M) ∩ ZM , then α =
∑r

i=1
ti

mi
αi , with αi ∈ M and ti

mi
∈ Q�0. If we let m =

∏r
i=1 mi , it

then follows that α ∈ 1
m

M ∩ ZM = M , as desired. 
�

Motivated by the previous result, we consider the following definition.

Definition 3.6 We set A (M) = {m ∈ Z>1 | 1
m

M ∩ ZM = M}.

Remark 3.7 As a consequence of Proposition 3.5, we deduce that

(1) A (M) 
= ∅ if and only if M is seminormal;

(2) M is normal if and only if A (M) = Z>1.

We now see that A (M) is a multiplicative set.

Lemma 3.8 Let m, n ∈ Z>1. Then mn ∈ A (M) if and only if both m ∈ A (M) and

n ∈ A (M).

Proof First assume that mn ∈ A (M). Then m ∈ A (M) because 1
m

M∩ZM ⊆ 1
mn

M∩ZM =

M . Likewise n ∈ A (M). For the converse, assume that α ∈ ZM is such that mnα ∈ M .

Note that β = nα ∈ ZM is such that mβ ∈ M , and thus β ∈ M because m ∈ A (M). But

then α ∈ ZM is such that nα ∈ M , and thus α ∈ M because n ∈ A (M). It follows that

mn ∈ A (M). 
�

Now, we consider a set that records the pure translations of M in 1
m

M . In Sect. 5 we see

that this set corresponds to the free summands of k
[

1
m

M
]

as a k[M]-module.
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Definition 3.9 Let m ∈ Z>1. We set

Vm(M) =

{

α ∈
1

m
M

∣

∣

∣

∣

(

1

m
M − α

)

∩ ZM ⊆ M

}

.

Moreover, we set

V (M) =
⋃

m∈Z>1

Vm(M).

Remark 3.10 We note that, because of Proposition 3.3, Vm(M) is precisely the set of α ∈ 1
m

M

such that (α + M) ⊆ 1
m

M is pure.

Remark 3.11 We note that Vm(M) 
= ∅ if and only if m ∈ A (M). As a consequence we

have

V (M) =
⋃

m∈A (M)

Vm(M).

Indeed, if m ∈ A (M) then 0 ∈ Vm(M). Conversely, fix α ∈ Vm(M). From the containments
1
m

M∩ZM =
((

1
m

M + α
)

− α
)

∩ZM ⊆
(

1
m

M − α
)

∩ZM ⊆ M , it follows that m ∈ A (M).

Remark 3.12 If M is seminormal, then M ∩ V (M) = {0}. Indeed, if 0 
= γ ∈ M , then

−γ ∈
((

1
m

M − γ
)

∩ ZM
)

\M for every m ∈ A (M).

In the following remarks we observe that Vm(M) is compatible with projections onto faces

of C(M) and with isomorphisms of monoids.

Remark 3.13 For every face F of C(M) and m ∈ Z�1 we have Vm(M) ∩ F ⊆ Vm(M ∩ F).

Indeed, let α ∈ Vm(M) ∩ F , then
(

1

m
(M ∩ F) − α

)

∩ Z(M ∩ F) ⊆

((

1

m
M − α

)

∩ ZM

)

∩ F = M ∩ F .

Remark 3.14 Since every isomorphism of monoids ϕ : M → M ′ extends to an isomorphism

of groups ϕ : ZM → ZM ′, it follows that A (M ′) = A (M). Furthermore, for every

m ∈ A (M) we have mVm(M ′) = ϕ(mVm(M)).

We now describe basic properties Vm(M). In particular, we see that this set is finite.

Proposition 3.15 Let m ∈ Z>1 and α, β, η ∈ 1
m

M be such that α = β + η. If α ∈ Vm(M),

then β, η ∈ Vm(M).

Proof Let w ∈ 1
m

M be such that w − β ∈ ZM . Thus, from

w − β = (w + η) − α ∈

(

1

m
M − α

)

∩ ZM ⊆ M

it follows that w − β ∈ M . This argument implies that β ∈ Vm(M). Likewise, η ∈ Vm(M),

finishing the proof. 
�

Corollary 3.16 For every m ∈ Z>1 the set M \ mVm(M) is an ideal of M.

Proof Let a ∈ M\mVm(M) and g ∈ M . Suppose a + g ∈ mVm(M), then
a+g

m
∈ Vm(M).

By Proposition 3.15 this implies a
m

∈ Vm(M) which is a contradiction. 
�
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The following lemma provides useful facts about the sets Vm(M). We recall that the

Minkowski sum of two subsets A, B ⊆ Rq is defined as A ⊕ B = {a + b | a ∈ A, b ∈ B}.

Lemma 3.17 Let m, n ∈ A (M). Then,

(1) 1
m

M ∩ Vmn(M) = Vm(M).

(2) 1
n

Vm(M) ⊕ Vn(M) ⊆ Vmn(M);

(3) | 1
n

Vm(M) ⊕ Vn(M)| = |Vm(M)| · |Vn(M)| � |Vmn(M)|.

Proof We begin with the containment ⊇ in (1). Let α ∈ Vm(M), then α ∈ 1
m

M ⊆ 1
mn

M .

Consider y ∈
(

1
mn

M − α
)

∩ZM , then my +mα ∈ 1
n

M ∩ZM = M , Thus, y ∈
(

1
m

M − α
)

∩

ZM ⊆ M and the conclusion follows. Now we prove the containment ⊆. Let α ∈ 1
m

M ∩

Vmn(M) and let β ∈ 1
m

M be such that β − α ∈ ZM . Then β − α ∈
(

1
m

M − α
)

∩ ZM ⊆
(

1
mn

M − α
)

∩ ZM ⊆ M .

We continue with (2). Let α ∈ Vm(M) and β ∈ Vn(M). Clearly we have 1
n
α +β ∈ 1

mn
M .

Let γ ∈ M and η ∈ 1
mn

M be such that γ + η − ( 1
n
α + β) ∈ M , then nγ + nη − α ∈ M .

Since nη ∈ 1
m

M , Proposition 3.3 applied to α implies nη − α ∈ M , i.e, η − 1
n
α ∈ 1

n
M .

Thus, Proposition 3.3 applied to β implies η − ( 1
n
α + β) = (η − 1

n
α) − β ∈ M . Therefore,

by Proposition 3.3 we have 1
n
α + β ∈ Vmn(M).

We now show (3). Let α, β ∈ Vm(M). We first show that (α + M) ∩ (β + M) = ∅

for α 
= β, we proceed by contradiction. Set W = (α + M) ∩ (β + M), and note that

W ⊆ (α + M) splits since

(α + M) \ W = (α + M) ∩

(

1

m
M \ (β + M)

)

is an M-module (see Remark 3.10). Let T = (α+M)\W . If γ ∈ T and z ∈ W −α ⊆ M , then

γ + z ∈ T but also γ + z ∈ γ +(W −α) ⊆ W + M = W , which is not possible. We conclude

T = ∅, and so W = (α + M). Thus, α + M ⊆ β + M . By symmetry, β + M ⊆ α + M ,

an then β + M = α + M . It follows that α − β ∈ M ∩ Vm(M) = {0} by Proposition 3.15

and Remark 3.12, which is a contradiction. Therefore, the union
⋃

α∈Vm (M)(α + M) ⊆ 1
m

M

is disjoint, and so,
⋃

α∈Vm (M)

(

α
n

+ 1
n

M
)

⊂ 1
mn

M is also disjoint. By applying the same

argument, the union

⋃

α∈Vm (M)

⋃

β∈Vn(M)

(α

n
+ β + M

)

⊂
1

mn
M

is disjoint. Hence,

1

n
Vm(M) ⊕ Vn(M) =

{α

n
+ β | α ∈ Vm(M), β ∈ Vn(M)

}

⊆
1

mn
M

is a set of of cardinality |Vm(M)| · |Vn(M)|. Finally, the inequality follows from Part (2). 
�

Proposition 3.18 Let m ∈ A (M) and α ∈ 1
m

M. Write α = c1
m

γ1 + · · · + cu

m
γu with

c1, . . . , cu ∈ Z�0. If c1 + . . . + cu � (m − 1)u + 1, then α /∈ Vm(M). Furthermore,

|Vm(M)| ≤ mrank(M).

Proof By assumption we have that α ∈ γi +
1
m

M for some 1 � i � u. By way of contradiction

suppose that α ∈ Vm(M). Since α − γi ∈ 1
m

M , it follows by Proposition 3.15 that γi ∈

Vm(M). However, this contradicts Remark 3.12, and therefore α /∈ Vm(M).
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For the second claim, recall that
⋃

α∈Vm (M)(α+ M) is a disjoint union of M-modules (see

proof of Lemma 3.17 (3)), and thus
⋃

α∈Vm (M)(α + M) ⊆ 1
m

M is pure. As a consequence,

the ZM-module Z
(

1
m

M
)

contains
⊕

α∈Vm (M) Z(α + M) as a free direct summand, and thus

|Vm(M)| ≤ mrank(M), where the latter is the rank of Z
(

1
m

M
)

as a ZM-module. 
�

We now define a new numerical invariant for seminormal monoid. This number plays an

important role in our main results. This invariant is inspired by the F-pure threshold of a ring

[24]. This is because the F-pure threshold of a standard graded algebra can be described as

the supremum among the degrees of a minimal generator of a free summand of R1/pe
[11].

However, the F-pure threshold of R = k[M] can be different than the pure threshold of M

(see Example 3.23 and Remark 3.24). In Proposition 4.4 we prove that for normal monoids

this invariant is rational.

Definition 3.19 We define the pure threshold of M as

mpt(M) = sup{|α| | α ∈ V (M)}.

If V (M) = ∅, i.e., if M is not seminormal, we set mpt(M) = −∞.

Remark 3.20 Let b = max{|γ1|, . . . , |γu |}. By Proposition 3.18 we have |α| < bu for every

α ∈ V (M). Therefore, mpt(M) < ∞.

We now discuss how the pure threshold of a monoid M can be obtained from any increasing

sequence in A (M).

Proposition 3.21 Let {mt }t∈Z�1
be the elements of A (M) ordered increasingly. Then,

lim
t→∞

max{|α| | α ∈ Vmt (M)} = mpt(M),

In particular,

lim
t→∞

max{|α| | α ∈ Vmt (M)} = mpt(M)

for any m ∈ A (M).

Proof If mpt(M) = 0, the result follows. We assume mpt(M) > 0. Let b =

max{|γ1|, . . . , |γu |} and for any n ∈ A (M) set an = max{|α| | α ∈ Vn(M)}. Fix ε > 0 and

N ∈ Z�0 such that bu
m N

< ε
2

. Let m′ ∈ A (M) be such that bm′ > mpt(M)− ε
2

and fix t � N .

By Lemma 3.17 we have bmt m′ > mpt(M) − ε
2

. Consider α = c1
mt m′ γ1 + · · · + cu

mt m′ γu ∈

Vmt m′(M) with ci ∈ Z�0 and |α| = bmt m′ . For each 1 � i � u let 0 � ri < m′ be such that

ci ≡ ri (mod m′). By Proposition 3.15 and Lemma 3.17 (1) we have

α′ :=
c1 − r1

mt m′
γ1 + · · · +

cu − ru

mt m′
γu ∈

1

mt

M ∩ Vmt m′(M) = Vmt (M).

Moreover,

mpt(M) − |α′| = mpt(M) − |α| + (|α| − |α′|) <
ε

2
+

bu

mt

< ε.

Since ε was chosen arbitrarily, the result follows. 
�

We now compute some examples of pure thresholds. We note that this invariant depends

on the grading given by the embedding M ⊆ Zq .
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Example 3.22 Let M be generated by d1e1, . . . , dqeq ∈ Zq , where di ∈ Z>0 and {e1, . . . , eq}

is the canonical basis in Zq . Then, Vm(M) =
{

(d1
α1
m

, . . . , dq
αq

m
) ∈ 1

m
Zq | 0 ≤ αi ≤ m − 1

}

,

and so, mpt(M) = d1 + . . . + dq .

Example 3.23 Let q ∈ Z>1, t ∈ Z>0 and M = {α ∈ Z
q

�0 | |α| ∈ tZ>0}. Then k[M] is the

Veronese subring of order t of a polynomial ring k[x1, . . . , xq ] with the grading deg(xi ) = 1.

We have that

Vm(M) =

{

(α1

m
, . . . ,

αq

m

)

∈
1

m
Zq | 0 ≤ αi ≤ m − 1 and |α| ∈ tZ>0

}

,

and therefore mpt(M)= q . We point out that, if k has prime characteristic, then

fpt(k[M])=
q
t

[13, Example 6.1].

Remark 3.24 It follows from Example 3.23 that mpt(M) may differ from fpt(k[M]) even

when M is normal. This is not surprising since fpt(k[M]) is independent of the presentation

of k[M] as a quotient of a polynomial ring, while we have already observed that mpt(M)

heavily depends on the degrees of the generators and on the embedding of M .

The following construction allows us to provide bounds for depths of affine semigroup

rings (see Sect. 5). In Proposition 3.26 we justify the terminology used in the definition.

Definition 3.25 We define the pure prime of M by

P(M) = M \
⋃

m∈Z>1

mVm(M).

Proposition 3.26 Let M be an affine monoid. Then P(M) is a prime ideal of M.

Proof Since P(M) =
⋂

m∈Zm>1
(M\mVm(M)), it follows from Corollary 3.16 that P(M)

is an ideal of M . Now, let a, b ∈ M\P(M) and m, n ∈ A (M) be such that α := a
m

∈ Vm(M)

and β := b
m

∈ Vn(M). We claim that a+b
mn

∈ Vmn(M) which implies a+b /∈ P(M), finishing

the proof. Indeed, suppose a+b
mn

/∈ Vmn(M), then from Proposition 3.15 it follows that

1

n
α + β =

a

mn
+

mb

mn
=

a + b

mn
+

(m − 1)b

mn
/∈ Vmn(M),

which contradicts Lemma 3.17 (2). 
�

We obtain the following theorem that relates P(M) with the normality of M .

Theorem 3.27 Let M be an affine monoid. Then M is normal if and only P(M) = ∅.

Proof We begin with the forward direction. Since M is normal, by Remark 3.14 we can

assume that M is a submonoid of Zn
�0 for some n ∈ Z>0 and such that M = ZM ∩ Zn

�0

[4, Theorem 2.29]. Fix a ∈ M ⊆ Zn
�0 and chose m ∈ Z>1 bigger than every entry in a. By

Remark 3.7 we have m ∈ A (M) and m ∈ A (Zn
�0). By the choice of m, it is clear that

(

1

m
Zn

�0 −
a

m

)

∩ Zn ⊆ Zn
�0. (3.1)

Thus, the left hand side expression in (3.1) is equal to
(

1
m

Zn
�0 − a

m

)

∩Zn
�0. Intersecting this

with ZM we obtain,
(

1

m
Zn

�0 −
a

m

)

∩ Zn
�0 ∩ ZM =

(

1

m
Zn

�0 −
a

m

)

∩ M =

(

1

m
M −

a

m

)

∩ M .
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31 Page 12 of 20 A. De Stefani et al.

Therefore,
(

1
m

M − a
m

)

∩ M ⊆ Zn
�0 ∩ ZM = M, which shows a ∈ mVm(M).

We continue with the backward direction. Let f ∈ ZM be such that n f ∈ M for some

n ∈ Z>1. By Proposition 3.5 it suffices to show f ∈ M . Write f = a − b with a, b ∈ M ,

then na ∈ nb + M . Thus, n(a, b) = b + (n − 1)(a, b), where (a, b) denotes the ideal of M

generated by the set {a, b}. It follows that (n + r)(a, b) = rb + n(a, b) for every r ∈ Z>0.

Hence,

ra + nb ∈ (n + r)(a, b) = rb + n(a, b) ⊆ rb + M for every r ∈ Z>0.

By assumption there exists m ∈ A (M) such that nb ∈ mVm(M). Therefore,

f = a − b =

(

ma + nb

m

)

−
nb

m
− b ∈

(

b +
1

m
M

)

−
nb

m
− b =

1

m
M −

nb

m
.

On the other hand, f ∈ ZM , then f ∈
(

1
m

M − nb
m

)

∩ ZM = M , which finishes the proof. 
�

Corollary 3.28 There exists a face FM of C(M) such that M\P(M) = M ∩FM . Moreover,

the monoid M ∩ FM is normal.

Proof The first part follows from Proposition 3.26 and the correspondence between prime

ideals of monoids and faces of their cones [4, Proposition 2.36]. By Theorem 3.27 to show

that M ∩ FM is normal it suffices to show M ∩ FM =
⋃

m∈Z>1
mVm(M ∩ FM ). Moreover,

we may assume M is seminormal. We note that

M ∩ FM =
⋃

m∈Z>1

mVm(M) ⊆
⋃

m∈Z>1

mVm(M ∩ FM ),

where the last inclusion follows from Remark 3.13. Since we always have the other inclusion
⋃

m∈Z>1
mVm(M ∩ FM ) ⊆ M ∩ FM , the proof is complete. 
�

The previous proposition allows us to define the following invariant of affine monoids,

the pure dimension. As we see in Corollary 3.30, this new notion measures how far a monoid

is from being normal. In Theorem 5.7 we use this invariant to provide lower bounds for the

depth of affine semigoup rings.

Definition 3.29 The face FM in Proposition 3.28 is called the pure prime face of M . We

define the pure dimension of M by mpdim(M) := rank(M ∩ FM ). If FM = ∅, we set

mpdim(M) = −∞.

Corollary 3.30 Let M be an affine monoid. Then

(1) mpdim(M) � rank(M).

(2) mpdim(M) � 0 if and only if M is seminormal.

(3) mpdim(M) = rank(M) if and only if M is normal.

Proof Part (1) follows directly from the definition. For part (2) we note that mpdim(M) � 0

if and only if
⋃

m∈Z>1

mVm(M) 
= ∅, and by Remarks 3.27 and 3.11 this is equivalent to M

being seminormal. Part (3) follows from Theorem 3.27. 
�

We finish this section with the following example.
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Fig. 2 The monoid M = Z�0(2, 0) + Z�0(1, 1) + Z�0(0, 1)

Example 3.31 Let M = Z�0(2, 0) + Z�0(1, 1) + Z�0(0, 1) be the monoid with set of

generators {(2, 0), (1, 1), (0, 1)}. It is easy to see that M = Z2
�0\{(2a + 1, 0) | a ∈ Z�0}

(see Fig. 2). We also have that A (M) = {m ∈ Z>1 | m is odd}. Then, for every m ∈ A (M)

we have mVm(M) = {(a, 0) | a is even and a < m}. Therefore, mpt(M) = 1, FM =

R�0(1, 0), and mpdim(M) = 1. In particular, by Corollary 3.30, M is seminormal but not

normal; this is consistent with [17, Example 1.0.3].

4 Asymptotic growth of number of pure translations

In the short section, we study the asymptotic behavior of the number of elements in the sets

Vm(M). Throughout we adopt the same notation from Sect. 3.

Definition 4.1 Let M be a seminormal affine monoid, and let FM be its pure prime face. For

every m ∈ A (M) we define

Bm(M) =
⋃

α∈Vm (M)

((α − FM ) ∩ FM ) .

Moreover, we set

B(M) =
⋃

m∈A (M)

Bm(M).

When M is normal, there is a simple description of B(M) as the region in Notation 4.2.

We prove that these regions coincide in Lemma 4.3, which also includes important properties

of B(M).
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Notation 4.2 Let M be a normal affine monoid. Let {H1, . . . , Hs} be the supporting hyper-

planes of C(M) so that C(M) = H+
1 ∩ · · · ∩ H+

s . Let vi ∈ Qq be rational vectors such that

x ∈ H+
i if and only if 〈x, vi 〉 � 0 for 1 � i � s. We can further assume that 〈x, vi 〉 ∈ Z for

every x ∈ ZM and that min{〈α, vi 〉 | α ∈ M} = 1 [4, Remark 1.72]. We define 
 by


 = {x ∈ Rq | 0 � 〈x, vi 〉 < 1 for 1 � i � s}.

Lemma 4.3 Let M be a seminormal affine monoid. Then

(1) B(M) is a bounded set and it has volume, i.e., its boundary has measure zero in the

dim(RFM )-dimensional Lebesgue measure on RFM .

(2) There exists an increasing sequence {pt }t∈Z�1
⊆ A (M) such that Bpt ⊆ Bpt+1 for every

t ∈ Z�1 and B(M) =
⋃

t∈Z�1
Bpt (M).

(3) Vm(M) = 1
m

M ∩ B(M) for every m ∈ A (M).

(4) If M is normal and 
 is as in Notation 4.2, then B(M) = 
.

Proof We begin with (1). Let {g1, . . . , gl} be a minimal set of generators of M ∩ FM and

consider the region � = ∪l
i=1(gi + FM ). Let α ∈ 1

m
M ∩ �, then α = gi + η for some

i and η ∈ FM . Since M ∩ FM is normal by Corollary 3.28, it follows that η ∈ Z

m
(M ∩

FM ) ∩ FM ⊆ Z

m
M . If α ∈ Vm(M), then Proposition 3.15 implies gi ∈ Vm(M) which

contradicts Remark 3.12. We conclude Vm(M), and then Bm(M), is contained in FM \ �

which is bounded.

Now, let ∂ and ◦ denote boundary and interior on RFM , respectively. Let μ denote the

dim(RFM )-dimensional Lebesgue measure on RFM . We note that for any x ∈ ∂ B(M) \

∂FM we have x + F
◦
M ⊆ FM \ B(M); indeed, if x + y ∈ B(M) for some y ∈ F

◦
M , then

x + y′ ∈ B(M) for some y′ ∈ F
◦
M , which would imply x ∈ B(M)◦. Therefore, for any

r > 0 and any x ∈ ∂ B(M)\∂FM we have ∂ B(M)∩ B(r , x)∩(x +F
◦
M ) = ∅, where B(r , x)

denotes the ball in RFM with radius r and center x . Therefore, there exists a real c < 1 such

that for any such r and x we have
μ(∂ B(M)∩B(r ,x))

μ(B(r ,x))
< c. By Lebesgue’s density theorem [19,

Corollary 2.14], we conclude μ(∂ B(M)) = 0.

We continue with (2). Let {mt }t∈Z�1
be the elements of A (M) ordered increasingly. For

each t ∈ Z�1 set pt = m1 · · · mt and notice pt ∈ A (M) by Lemma 3.8. The conclusion

now follows from Lemma 3.12 (1).

Now we prove (3). Let mt ∈ A (M) and α ∈ 1
mt

M ∩ B(M), it suffices to show α ∈

Vmt (M). By (2), we have α ∈ Bpi
(M) for some i . We may assume i � t and then mt

divides pi . Therefore, there exists η ∈ FM and β ∈ Vpi
(M) such that α + η = β. Since

M ∩FM is normal by Corollary 3.28, it follows that η ∈ Z

pi
(M ∩FM )∩FM ⊆ Z

pi
M . Thus,

α ∈ 1
mt

M ∩ Vpi
(M) = Vmt (M) by Proposition 3.15 and Lemma 3.17, which finishes the

proof.

We finish with (4). If M is normal we have Vm(M) = Z

m
M ∩ 
 [26, Lemma 3.11]. Thus,

the equality B(M) = 
 follows as the set ∪m∈Z�1

Z

m
M is dense in Rq . 
�

From Lemma 4.3 (4) we obtain that the pure threshold of normal monoids is rational.

Proposition 4.4 If M is normal, then mpt(M) ∈ Q>0.

Proof The statement follows readily from Lemma 4.3 (4) and the equality mpt(M) =

sup{|α| | α ∈ B(M)}. 
�

We now turn our focus to asymptotic growth of the number of elements in the sets Vm(M).

We define the following limit, which we prove exists in Theorem 4.6
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Definition 4.5 Let M be a seminormal affine monoid. Set s = mpdim(M) and let {mt }t∈Z�1

be the elements of A (M) ordered increasingly. We define the pure ratio of M as

mpr(M) = lim
t→∞

|Vmt (M)|

ms
t

.

We define the pure signature of M as

mps(M) = lim
t→∞

|Vmt (M)|

m
rank(M)
t

.

In the following theorem we show that mpr(M) exists as a limit, and that it equals the

relative volume of B(M). Here, by relative volume with respect to a lattice L ⊆ H of rank

r in an r -dimensional hyperplane H ⊆ Rq , denoted by volL , we mean the r -dimensional

volume in H normalized such that any fundamental domain of L has volume one.

Theorem 4.6 Let M be a seminormal affine monoid. We have that

mpr(M) = volZ(M∩F M )(B(M)) > 0.

In particular, M is normal if and only if mps(M) > 0. Furthermore, in this case mps(M) ∈

Q>0.

Proof By Lemma 4.3 (1), the characteristic function χB(M) is Riemann integrable. Now, by

Lemma 4.3 (3) and Corollary 3.28 we have Vmt (M) = Z

mt
(M ∩FM )∩ B(M). Thus,

|Vmt (M)|

ms
t

is a Riemann sum for χB(M) with normalized volumes of the cells and mesh the diameter

of a fundamental domain for Z(M∩F M )
mt

. Therefore, by taking the limit t → ∞ we obtain

that the limit exists and is equal to volZ(M∩F M )(B(M)). We note that volZ(M∩F M )(B(M))

is positive since Vm(M) has interior points of FM (see Corollary 3.28). The last statements

follow from Corollary 3.30 and Lemma 4.3 (4). 
�

Theorem 4.6 is related to previous computations done for the F-signature of normal

semigroup rings [21, 26].

Example 4.7 Let M be as in Example 3.31. We observe that |Vm(M)| = �m
2
� for every m ∈

A (M). Then, mpr(M) = 1
2

. We also have B(M) = [0, 1), therefore volZ(M∩F M )(B(M)) =
1
2

, which is consistent with Theorem 4.6.

We end this section with a question motivated by Proposition 4.4. This question is open,

to the best of our knowledge, for seminormal monoids that are not normal.

Question 4.8 Let M be a seminormal affine monoid. Is mpr(M) a rational number?

5 Applications to affine semigroup rings

Throughout this section we adopt the following notation.

Notation 5.1 Given an affine monoid as in Notation 1.1, we let R = k[M] = K [xα|α ∈

M] ⊆ k[x] := k[x1 . . . , xq ] be the affine semigroup ring of M . Given m ∈ Z>0, we set

R1/m = k
[

1
m

M
]

the k-algebra k
[

xα|α ∈ 1
m

M
]

. Given m ∈ Z>0 and α ∈ 1
m

M , we consider
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φm
α : R1/m → R the k-linear map given by φm

α (xβ) = x
β−α if β−α ∈ M and zero otherwise.

For an ideal I ⊆ M , we denote by x
I the corresponding M-homogeneous R-ideal,

x
I = (xα | α ∈ I ).

For an M-homogeneous element f = x
α ∈ R, we denote by log( f ) = α ∈ M the

corresponding element in M .

Remark 5.2 We note that R ∼= R1/m via the k-algebra map given by x
α �→ x

α/m .

Proposition 5.3 Let M be an affine monoid, and let α ∈ 1
m

M. Then, φm
α is a map of R-modules

if and only if α ∈ Vm(M).

Proof We note that φm
α is a map of R-modules if and only if for every γ ∈ M and β ∈ 1

m
M we

have φm
α (xγ

x
β) = x

γ φm
α (xβ). By the definition of φm

α these are equivalent to φm
α (xγ

x
β) 
= 0

implies x
γ φm

α (xβ) 
= 0, or equivalently to,

γ + β − α ∈ M implies β − α ∈ M .

The conclusion now follows from Proposition 3.3. 
�

In the next result, we use the semigroup splitting threshold to provide a bound for the

Castelnuovo-Mumford regularity of affine semigoup rings. We refer the reader to Sect. 2 for

information about a-invariants and regularity.

Theorem 5.4 Let M and R be as in Notation 5.1. Then, ai (R) ≤ −mpt(M). As a

consequence,

reg(R) ≤ dim(R) − mpt(M) = rank(M) − mpt(M).

Moreover, if we present R as S/I , where S = k[x1, . . . , xu] and each xi has degree di :=

deg(xi ) = |γi | the degree of γi for i = 1, . . . , u, and I ⊆ S is a homogeneous ideal, then

β(I ) ≤ dim(R) +

u
∑

i=1

(di − 1) − mpt(M) − 1 = rank(M) +

u
∑

i=1

(di − 1) − mpt(M) − 1.

Proof We can assume that M is seminormal. Let m ∈ A (M) be such that m > 1, which

exists by Proposition 3.5 (1). Fix t ∈ Z�0 and α ∈ Vmt (M). From Proposition 5.3 it follows

that φmt

α gives a splitting of the homogeneous injective map R(−|α|) ↪→ R1/mt
defined as

multiplication by x
α . Thus, for each i , the induced map

H i
m(R)(−|α|) = H i

m(R(−|α|)) → H i
m(R1/mt

) = H i
m(R)1/mt

also splits. By comparing the highest degrees of these modules we obtain

ai (R) + |α| �
ai (R)

mt
.

By taking the maximum value of |α| over all α ∈ Vmt (M) and letting t → ∞, by Proposi-

tion 3.21 we obtain that ai (R) � −mpt(M) as desired. The inequality for regularity follows

by definition, and the last equality by the relation between the rank of semigroups and

dimension of semigroup rings (see e.g. [5, p.257]).

Finally, the inequalities involving β(I ) follow at once from the fact that β(I ) ≤ Reg(I ) ≤

Reg(R) − 1 = reg(R) +
∑u

i=1(di − 1) − 1 by Lemma 2.3 and the previous inequalities. 
�

123



Purity of monoids and characteristic-free splittings... Page 17 of 20 31

We now compute the pure threshold for a normal monoid that is Gorenstein. This follows

previous work done for the F-pure threshold [11, Theorem B], which was motivated by a

conjecture posted by Hirose, Watanabe and Yoshida [13].

Theorem 5.5 Assume that M is normal of rank d. If R is Gorenstein, then mpt(M) = −ad(R).

Proof Since M is normal, the Gorenstein property of R = k[M] is independent of the

field k [4, Remark 6.34]. The pure threshold mpt(M) is also independent of k. If k has

characteristic zero, then ad(k[M]) = ad(Q[M]) = ad(Fp[M]) for all p � 0 (see for

instance by [9, Lemma 4.3] adapted to the positively graded case). If L is any field extension

of k, and m is the homogeneous maximal ideal of R, then we have graded isomorphisms

Hd
m(R) ⊗k L ∼= Hd

m(R ⊗k L) = Hd
m(L[M]). Thus, we may assume that k is a perfect

field of characteristic p > 0. We can write R = S/I , where S = k[T1, . . . , Tu], each Ti

maps to a generator x
γi of R and deg(Ti ) = |γi | = di > 0. Since R is Gorenstein, we have

that HomR(R1/pe
, R) ∼= (I [pe] :S I )/I [pe] = ( fe + I [pe])/I [pe] [12]. If F• : 0 → Fc →

. . . → F0 = S → R → 0 is a minimal free resolution of R over S, then c = ht(I ) and

Fc = S(−D−ad(R)), where D =
∑u

i=1 di . The minimal free resolution of Fe
• : 0 → Fe

c →

. . . → Fe
0 = S → S/I [pe] → 0 of S/I [pe] is such that Fe

c = S(pe(−D − ad(R))). The

comparison map Fe
• → F• induced by the natural surjection S/I [pe] → R in homological

degree c is S(pe(−D − ad(R))) → S(−D − ad(R)). Furthermore, it is given, up to an

invertible element, by multiplication by fe [27, Lemma 1]. Since such a map is homogeneous

of degree zero, we conclude that deg( fe) = (pe − 1)(D + ad(R)). Let n = (T1, . . . , Tu).

As fe /∈ n[pe] by Fedder’s criterion [12], there is a monomial T
n1

1 · · · T
nu
u in its support

with 0 ≤ ni ≤ pe − 1 for all i . This implies that the map S/I → (S/I )1/pe
sending

1 �→ (T
pe−1−n1

1 · · · T
pe−1−nu

u )1/pe
splits. Via the isomorphism S/I ∼= R, this means that

the map R → R1/pe
= k[M1/pe

] sending 1 �→
(

x
γ1(pe−1−n1) · · · x

γu (pe−1−nu)
)1/pe

= x
β(e)

splits, and so, β(e) ∈ Vpe (M). Note that

|β(e)| =

∑u
i=1 |γi |(pe − 1 − ni )

pe
=

(pe − 1)D −
∑u

i=1 ni di

pe
=

(pe − 1)D − deg( fe)

pe

= −ad(R)
pe − 1

pe
.

We have that mpt(M) ≥ lim
e→∞

|β(e)| = −ad(R) by Proposition 3.21. As the other inequality

always holds by Theorem 5.4, we have equality. 
�

From the previous result, one may wonder if the converse is true. In particular, as

fpt(k[M]) = ad(k[M]) implies that k[M] is Gorenstein if k[M] has a structure of standard

graded k-algebra [22]. This motivates the following question.

Question 5.6 Assume that M is normal of rank d . If mpt(M) = −ad(R), is R is Gorenstein?

We now provide a bound for the depth of R, which recovers Hochster’s result that normal

semigroup rings are Cohen-Macaulay [14, Theorem 1].

Theorem 5.7 Let M and R be as in Notation 5.1. Then, mpdim(M) ≤ depth(R).

Proof We can assume that M is seminormal. Let S = k[y1, . . . , yu] endowed with the M-

grading given by deg(yi ) = γi . We set a surjection of k-algebras ρ : S → R by yi �→ x
γi .

Let m = (xγ1 , . . . , x
γu ) ⊆ R and η = (y1, . . . , yu) ⊆ S. We note that ρ(η) = m. Set

J = Ker(ρ), so that R = S/J .
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Set t = depth(R) = min{i | Extu−i
S (R, S) 
= 0}. We first show that

AnnR

(

Extu−t
S (R, S)

)

⊆ x
P (M); we proceed by contradiction. Suppose that there exists an

M-homogeneous element f ∈ R such that f ∈ AnnR

(

Extu−t
S (R, S)

)

\x
P (M). Let m ∈ Z�0

be such that log( f ) ∈ mVm(M). Since the multiplication map Extu−t
S (R, S)

f
→ Extu−t

S (R, S)

is the zero map, we have that H t
m(R)

f
→ H t

m(R) is the zero map by Matlis duality

[18]. Thus, H t
m(R1/m)

f 1/m

→ H t
m(R1/m) is the zero map as well. Since the composition

of R
ι

→ R1/m f 1/m

→ R1/m
φm

log( f )
→ R is the identity, we have the same for the composition

H t
m(R)

ι
→ H t

m(R1/m)
f 1/m

→ H t
m(R1/m)

φm
log( f )
→ H t

m(R).

Since the middle map is zero, we have that H t
m(R) = 0, which is not possible because

t = depth(R).

Since AnnR

(

Extu−t
S (R, S)

)

⊆ x
P (M), we have that

dim
(

Extu−t
S (R, S)

)

≥ dim
(

R/x
P (M)

)

= mpdim(M). (5.1)

Since S is a Gorenstein ring, its injective resolutions as S-module is given by

0 → S → E0 → E2 → . . . Eu,

where E j =
⊕

ht(p)= j E(S/p) is the direct sum of the injective hulls of all the prime ideals

in S of height j [2]. Therefore,

dim
(

Extu−t
S (R, S)

)

≤ t . (5.2)

Combining Inequalities (5.1) and (5.2) we obtain the desired result. 
�

We now relate the pure ratio of a monoid M to the splitting ratio of R [1] and F-signature

[15, 23, 25].

Proposition 5.8 Let M and R be as in Notation 5.1. If char(k) ∈ A (M), then mpr(M) is

the F-splitting ratio of R. As a consequence, if char(k) is a prime number and M is normal,

then mps(M) equal to the F-signature of R.

Proof Let p = char(k) and m be the maximal homogeneous ideal in R. Let

Ie = { f ∈ R | φ( f 1/pe

) ∈ m ∀φ ∈ Hom(R1/pe

, R)}.

We note that dimk(R/Ie) = |Vpe (M)|, and that x
P (M) is the splitting prime of R [1]. It

follows that mpdim(M) = sdim(R), and the result follows for the ratios.

We now discuss the claim about F-signature. We have that char(k) ∈ A (M) for normal

monoids by Proposition 3.5. The result follows because the F-signature coincides with the

F-splitting ratio for strongly F-regular rings, and R is strongly F-regular if and only if M is

normal. 
�

We end this section with a monoid version of Kunz’s characterization of regularity [16].

Theorem 5.9 Let M be an affine monoid. Then, |Vm(M)| = mrank(M) for some m ∈ Z>0 if

and only if M ∼= Zt
>0 for some t.
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Proof Since |Vm(M)| = mrank(M), we have that |Vmt (M)| = mt rank(M) by Lemma 3.17 (3).

Then,

mps(R) = lim
t→∞

|Vm(M)|

mrank(M)
= 1.

Hence, mpdim(M) = rank(M), and so, M is a normal monoid by Corollary 3.30. We have

that mps(R) = 1. Then, Fp[M] is a regular graded Fp-algebra, because s(R) = 1 by

Proposition 5.8 and the characterization of regular rings via F-signature [15, Corollary 16].

Moreover, M has a set of rank(M) minimal generators. Hence, M ∼= Zt
>0. 
�
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