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Vulnerability of mineral-associated soil 
organic carbon to climate across global 
drylands

Mineral-associated organic carbon (MAOC) constitutes a major fraction of 
global soil carbon and is assumed less sensitive to climate than particulate 
organic carbon (POC) due to protection by minerals. Despite its importance 
for long-term carbon storage, the response of MAOC to changing climates 
in drylands, which cover more than 40% of the global land area, remains 
unexplored. Here we assess topsoil organic carbon fractions across global 
drylands using a standardized !eld survey in 326 plots from 25 countries 
and 6 continents. We !nd that soil biogeochemistry explained the majority 
of variation in both MAOC and POC. Both carbon fractions decreased with 
increases in mean annual temperature and reductions in precipitation, with 
MAOC responding similarly to POC. Therefore, our results suggest that 
ongoing climate warming and aridi!cation may result in unforeseen carbon 
losses across global drylands, and that the protective role of minerals may 
not dampen these e"ects.

Soils in drylands—the largest set of biomes on the planet—store 646 Pg 
organic carbon (C), more than all living vegetation on Earth1,2. This vast 
soil organic C pool supports essential ecosystem services, including  
food provision and water and climate regulation for more than  
2.5 billion people3,4. Yet temperature increases and precipitation  
reductions forecasted for many dryland regions are expected to  
disrupt the balance of soil organic C, accelerating microbial decompo-
sition, reducing plant C inputs into the soil and resulting in more  
CO2 emissions to the atmosphere5,6.

The sensitivity of organic C in soils (sensu ref. 7) to temperature 
and precipitation at timescales relevant to climate change mitigation 
is thought to be controlled largely by interactions with soil mine rals, 
which restrict the accessibility of microbial decomposers by encap-
sulating and adsorbing organic matter8–10. Plant-derived materials 
at early stages of decomposition are the main constituents of the 
mineral-unprotected, particulate organic C (POC) fraction of soil 
organic matter9. The POC fraction is thus directly affected by changes 
in plant C inputs into the soil and is more exposed to microbial decom-
position than the organic component of the mineral-associated organic 
C (MAOC) fraction, which has, therefore, a lower turnover rate11,12.  

As a result, large-scale meta-analyses and observational studies suggest 
that POC is more sensitive to changes in climate, and particularly to 
warming, than is MAOC7,13–16. Because of the typically large ratio of soil 
minerals to organic matter in drylands, MAOC is expected to dominate 
over POC, potentially driving a high persistence of soil organic C in 
these ecosystems7,10,17. However, no studies to date have examined the 
relationship of POC and MAOC with climate across the diverse environ-
mental gradients that characterize global drylands. Investigating this 
relationship is particularly timely and relevant as it would substantially 
reduce the uncertainty surrounding the land carbon–climate feed-
back. In addition, it would provide valuable insights for adapting soil 
carbon-related ecosystem services to ongoing climate change.

Here we evaluated how mean annual temperature and precipita-
tion relate to POC and MAOC contents across global drylands after 
accounting for major biotic (net primary productivity, vegetation 
type, woody cover, plant and herbivore richness and grazing pressure) 
and soil biogeochemistry (clay and silt contents, pH, chemical index 
of alteration, exchangeable Ca, non-crystalline Al and Fe, available N 
and P and microbial biomass C) factors known to potentially affect soil 
organic C content by regulating C inputs and stabilization processes5,18. 
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MAOC dominates soil organic C and is sensitive to 
climate
Our results show that MAOC was the dominant soil organic C fraction 
in drylands globally (Fig. 1a). In particular, median MAOC content was 
5.2 gC kg−1 soil, equivalent to 66% of the total soil organic C content, 
whereas median POC content was 2.3 gC kg−1 soil. This quantification 
falls within the range of soil organic C content (MAOC and POC) com-
monly found in drylands and is relevant to improve the performance 
of emerging models of soil organic C formation and persistence using 
POC and MAOC frameworks2,23–25.

Contrary to our hypothesis, we found that MAOC and POC were 
equally sensitive to differences in climate across global drylands. In  
particular, both MAOC and POC were negatively associated with 
increasing temperature and decreasing precipitation to a similar 
extent, as indicated by the similar slopes of the associations (Fig. 1b,c). 

To do so, we surveyed in situ 326 plots from 98 dryland ecosystems 
located in 25 countries from 6 continents (Extended Data Fig. 1). Our 
survey spans the broad gradients of temperature, precipitation, arid-
ity, soil properties, vegetation types and grazing pressures that can be 
found across drylands worldwide (Extended Data Tables 1 and 2)19,20. 
At each site, we collected topsoil samples (0–7.5 cm) from areas both 
covered (322) and not covered (326) by perennial vegetation from 2–4 
plots located across a local gradient of extensive grazing pressure 
(648 samples in total; Methods). We subjected all samples to a size 
fractionation procedure to separate and quantify C content in POC and 
MAOC pools9,21. Using these data, we tested the hypothesis that MAOC, 
being protected by minerals, is less sensitive than POC to increases in 
temperature and decreases in precipitation7,10,16,22. We also hypothesize 
that the presence of vegetation mitigates declines in soil C, particularly 
POC, by increasing soil C inputs.
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Fig. 1 | Distribution of soil organic C contents in POC and MAOC fractions 
and their relationships with climate in global drylands. a, POC and MAOC 
contents. Box, first and third quartiles; central horizontal line, median; upper 
vertical line end, largest value smaller than 1.5 times the interquartile range; 
lower vertical line end, smallest value larger than 1.5 times the interquartile range 
(n = 326 plots). b,c, Relationships between POC and MAOC contents and mean 
annual temperature (MAT; b) and mean annual precipitation (MAP; c). Lines and 
shading represent linear regressions and 95% confidence intervals, respectively. 
d, Summary of a linear mixed-effects model, controlling for biotic factors and  
soil biogeochemistry (Methods). The panel shows coefficients (circles) and  
95% CI (bars) for main and interaction effects of C fraction type (binary variable, 
either POC or MAOC) and climate (MAT and MAP) on POC and MAOC contents. 

The variance explained (R2) by the fixed and random effects relative to the total 
variance was 77% and 12%, respectively (n = 634 POC and MAOC observations). 
Carbon fraction contents were natural-logarithm transformed, and all the 
predictors were standardized. The positive coefficient of C fraction type (MAOC 
versus POC) indicates that MAOC contents are significantly greater than POC 
contents (P < 0.001). For the observed negative association of MAT and positive 
association of MAP with C content (P < 0.001 and P = 0.039, respectively), 
negative coefficients for the interaction of C fraction type with MAT and MAP 
indicate that increasing MAT has a stronger negative effect on MAOC than on  
POC (P = 0.053) contents, while decreasing MAP has a stronger negative effect on 
POC than on MAOC (P = 0.181).
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These results were supported by the lack of a significant interaction 
between the effects of temperature and precipitation and the type of 
fraction (MAOC versus POC) tested by a linear mixed-effects model 
(Fig. 1d; Methods). On the basis of the results from this model, we 
estimated that POC and MAOC contents significantly declined with 
temperature at an average rate of 3.2% per °C (95% confidence interval 
(CI): 1.8, 4.6) and increased with precipitation at an average rate of 6.6% 
per 100 mm (95% CI: 0.6, 12.6).

Warming accelerates the microbial decomposition of soil organic 
matter, and precipitation reduction constrains plant production and 
organic matter inputs into the soil5,26. Our results are, therefore, consist-
ent with previously reported reductions in soil organic C content with 
increasing temperature and reducing precipitation across terrestrial 
ecosystems27–29. However, and contrary to expectations of smaller 
sensitivity of MAOC versus POC to changes in climate observed in 
more mesic systems14,15, our findings based on a space-for-time sub-
stitution highlight that the MAOC and POC fractions may decrease at 
similar rates in response to climate warming and precipitation reduc-
tion across global drylands. Therefore, they suggest that the current 
paradigm of mineral protection may not determine soil C persistence 
in dryland ecosystems8,30–32. The apparent lack of protection by miner-
als, which contrasts with what was observed in mesic systems richer 
in organic matter, was consistent across the range of soil organic C 
content found in drylands (Extended Data Fig. 2). There is recent 
evidence that MAOC is controlled not only by C stabilization in soil 
organo-mineral complexes, but also by changes in C inputs driven by  
climate15. In drylands, not only precipitation reduction but also warming 

may increase water deficit, which may decrease plant productivity5,  
C inputs into the soil and C accumulation into the MAOC fraction. These 
is also evidence that dryland soils maintain a high oxidative potential 
during dry periods, mainly through the stabilization of enzymes, which 
results in a rapid organic matter decomposition in wet periods28,29 and 
may further limit C inputs to the MAOC fraction.

Vegetation buffers soil C declines with warming
Both POC and MAOC contents were higher in soil beneath perennial 
vegetation (Fig. 2). We further observed that as mean annual tempera-
ture increased, POC and MAOC contents decreased, but to a lesser 
extent, beneath vegetation. Conversely, as mean annual precipita-
tion increased, both contents increased in a similar manner in open 
areas and in areas under the canopy of perennial vegetation (Fig. 2). 
These results are important because they suggest that the presence 
of vegetation buffers, but does not fully compensate for, the negative 
effects of higher temperature on soil C fractions. While the buffering 
effect of vegetation did not completely counteract the vulnerability of 
organic C pools to increasing temperatures, our findings indicate that 
management practices aimed at protecting vegetation in drylands may 
help to maintain soil organic C stocks in global drylands and reduce 
their losses in response to a changing climate.

Coupling of POC and MAOC in drylands
We found that POC and MAOC contents were strongly correlated 
across global drylands (r = 0.83, n = 326, P < 0.001; Fig. 3a). These 
results strongly suggest that both fractions remain highly coupled in 
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Fig. 2 | Relationships between climate and POC and MAOC contents in soils 
under the canopy of the dominant perennial vegetation and in open areas 
across global drylands. a–d, Relationships between POC and MAT (a) and 
MAP (c), and between MAOC and MAT (b) and MAP (d) in both open areas (O) 
and perennial vegetation (V) microsites. Lines and shading represent linear 
regressions and 95% CIs (n = 326 and 322 for O and V, respectively). e, Coefficients 

(dots) and 95% CIs (bars) of linear mixed-effects model illustrating the fixed 
main and interaction effects of MAT, MAP and the presence of vegetation cover 
(V versus O) on POC and MAOC contents (n = 648 V and O areas). The variance 
explained (R2) by the fixed and random effects relative to the total variance was 
30% and 55%, respectively, for POC, and 32% and 61%, respectively, for MAOC.
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drylands despite their different levels of putative protection against 
decomposition by microorganisms.

Variance partitioning of linear mixed-effects models and 
random-forest analysis showed that the order of importance of the 
group of factors that explained most of the variation of POC and MAOC 
across global drylands was essentially the same for both organic C  
fractions (Fig. 3b and Extended Data Fig. 3). Soil biogeochemistry, 
above climate and biotic factors, was the most important predictor 
of both POC and MAOC contents. Both C fractions were negatively 
associated with soil pH and positively associated with exchangeable Ca, 
available N and P and microbial biomass C contents; in addition, MAOC 
was associated positively with clay and silt and non-crystalline Al and  
Fe contents (Extended Data Fig. 4). Slightly acidic to neutral soils  
generally feature higher nutrient availability and more fertility than 
alkaline soils33, which may thus favour soil organic C accumulation in 
drylands through increased plant-derived C inputs and microbial activ-
ity. The prevalent role of soil fine texture and non-crystalline Al and Fe in 
MAOC formation has been widely documented in the literature31. Sorp-
tion of organic matter to mineral surfaces is known to be promoted by  
the relatively high specific surface area and charge of clay and silt, 
while non-crystalline Fe and Al phases are also known to form strong 
associations with organic matter31.

The coupling of POC and MAOC observed here for drylands may 
be, however, disrupted in more productive terrestrial ecosystems, 
where higher plant inputs may result in larger POC contents13–15. In 
contrast to experimental manipulation studies14, our work addresses 
the vulnerability of soil C fractions using a space-for-time substitution. 
Further research into the pace of the climate-induced changes and 
the causality of the associations found in our study is thus warranted.

Concluding remarks
By using a global standardized field study and by focusing exclusively on 
dryland ecosystems, our work expands previous efforts to understand 
abiotic and biotic drivers of POC and MAOC along large geographical 
gradients, which either have been based on literature syntheses, which 

use datasets that are inherently heterogeneous, or have focused on 
ecosystems other than drylands16. Our study generated highly stand-
ardized field data on the POC and MAOC fractions of dryland soils 
worldwide, along with their major predictors. These data substantially 
expand existing global databases and can be used to refine current soil 
organic C models.

Our findings suggest that ongoing changes in climate, particularly 
warming, may adversely affect both unprotected and mineral-protected 
soil C content in drylands to a similar extent. The results obtained also 
indicate that maintaining vegetation cover can mitigate, but not fully 
counteract, the negative impacts of rising temperatures on soil organic 
C fractions. Our study enhances our understanding of how POC and 
MAOC contents in soil respond to key abiotic and biotic drivers, reveal-
ing that mineral protection has limited potential to sustain organic C 
storage in dryland soils in the face of ongoing global warming. The novel 
insights provided here about dryland soil C pools and their sensitivity 
could facilitate much-needed advances in our model representation  
of dryland ecosystems and their response to climate change.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41558-024-02087-y.
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Methods
Global !eld survey and soil sampling
Fieldwork was conducted from January 2016 to September 2019. A 
total of 326 plots distributed across 98 study sites in 25 countries 
from all continents except Antarctica (Algeria, Argentina, Australia, 
Botswana, Brazil, Canada, Chile, China, Ecuador, Hungary, Iran, Israel, 
Kazakhstan, Kenya, Mexico, Mongolia, Namibia, Niger, Palestine, Peru, 
Portugal, South Africa, Spain, Tunisia and the United States of America) 
and encompassing the wide range of vegetation, soil, climate and 
grazing-pressure levels found in drylands worldwide were surveyed 
using a common and standardized protocol19,20.

At each site, we gathered field data within multiple 45 m % 45 m 
plots situated along a gradient of grazing pressure, encompassing 
high (n = 98), medium (n = 97) and low (n = 88) pressure levels, as well 
as ungrazed areas (n = 43). To establish the grazing gradients, in 90 
out of the 98 sites surveyed, we strategically positioned these plots 
at varying distances from artificial watering points, which are usually 
created in drylands to supply introduced livestock with permanent 
water sources34. The closer the plot to the permanent water source, 
the more intense the grazing34,35. In the remaining eight sites, local 
variations in grazing-pressure gradients were ascertained by observ-
ing different paddocks featuring varying grazing intensities. See ref. 
20 for additional details on the characterization and validation of the 
local grazing-pressure gradients established.

A portable Global Positioning System was used to record the coor-
dinates and elevation of each plot, which were standardized to the 
World Geodetic System 1984 ellipsoid for visualization and analyses. 
During the dry season at each site, four soil cores (145 cm3) from 0 to 
7.5 cm depth (topsoil) were collected from five 50 % 50 cm quadrats 
randomly placed in areas under the canopy of the dominant peren-
nial vegetation and five placed in open areas not covered by perennial 
vegetation. The soil cores were homogenized and composited to form 
a sample representative of the soil under the dominant vegetation and 
a sample representative of the soil in open areas within each plot. The 
soil samples were passed through a 2 mm sieve. A portion of each soil 
sample was air dried and used for organic matter fractionation and 
texture and pH analysis, and another portion was stored at −20 °C and 
used for microbial biomass C analysis. A portion of the air-dried soil 
samples was ground with a ball mill for additional chemical analysis.

Soil organic carbon fractionation and quantification
All the soil samples, a total of 648 (326 from open areas and 322 from 
under the canopy of the dominant vegetation), were subjected to a 
size fractionation method21,36 to separate the POC (not protected by 
minerals from microbial decomposition) and MAOC (protected by 
minerals) fractions. Aggregates were dispersed by adding 30 ml of 
sodium hexametaphosphate (5 g L−1) to 10 g of soil and shaking with an 
overhead shaker for 18 h. After dispersion, the mixture was thoroughly 
rinsed through a 53 µm sieve to separate the POC (>53 µm) and MAOC 
(<53 µm) fractions using an automated wet sieving system. The isolated 
fractions were oven dried at 60 °C, weighed and ground with a ball mill. 
The whole soil samples and the POC and MAOC fractions were analysed 
for organic C contents by dry combustion and gas chromatography 
using a ThermoFlash 2000 NC Soil Analyzer (Thermo Fisher Scientific) 
after removing carbonates by acid fumigation37.

Climate data
Mean annual temperature and mean annual precipitation data were 
obtained from WorldClim 2.0 (ref. 38), a high-resolution (30 arcsec, 
or ~1 km at the Equator) database based on a large number of climate 
observations and topographical data for the 1970–2000 period. Arid-
ity index (ratio of average annual precipitation to potential evapo-
transpiration) data were obtained from the Global Aridity Index and 
Potential Evapotranspiration Climate Database v.3 (ref. 39). Aridity was 
calculated as 1 – aridity index.

Vegetation and herbivore richness survey
Each plot was classified as grassland, shrubland or forest by identify-
ing the dominant type of vegetation. Net primary productivity was 
estimated using the mean annual Normalized Difference Vegetation 
Index averaged monthly values between 1999 and 2019 at a reso-
lution of 30 m from Landsat 7 Enhanced Thematic Mapper Plus40. 
The cover of perennial vascular plants (plant cover) was measured 
along four parallel 45 m transects separated by 10 m and oriented 
downslope during the peak of the growing season using the line–
intercept method19,41,42. Woody cover was measured in 25 contiguous 
quadrats (1.5 m % 1.5 m) placed in each transect (100 quadrats per 
plot). Plant richness was the total number of unique perennial spe-
cies found along the quadrats and transects surveyed. The richness 
of herbivores was quantified at each plot using dung data collected 
systematically in situ along the four 45 m transects established as 
described in ref. 20.

Soil analyses
All the bulk soil samples were analysed as follows. Clay and silt contents 
were determined by sieving and sedimentation43. Soil pH was meas-
ured in a water suspension at a soil-to-water ratio of 1.0:2.5 (ref. 44). 
The chemical index of alteration, which is an indicator of the degree of 
weathering, was calculated as the molecular proportion of Al2O3 versus 
Al2O3 + CaO + Na2O + K2O (ref. 45), using total Al, Ca, Na and K contents 
and after correcting Ca for soils with carbonates18; total Al, Ca, Na and 
K contents were determined by inductively coupled plasma atomic 
emission spectroscopy (ICP-AES) after digestion in nitric and perchloric 
acids44,46. Exchangeable Ca content was determined by ICP-AES after 
extraction with ammonium acetate at pH 7.0 (refs. 44,47). Non-crystalline 
Fe and Al contents were determined by ICP-AES after extraction with 
acid ammonium oxalate48. Available N (ammonium and nitrate) content 
was determined by extraction with 0.5 M K2SO4 and the indophenol 
blue method using a microplate reader49. Available P content was deter-
mined by the Olsen method50. Microbial biomass C was determined by 
substrate-induced respiration51 using an automated microrespirometer52.

Statistical analyses
We compared the content of MAOC with that of POC in global dryland 
soils controlling for confounding factors, and tested the hypothesis 
that the effects of climate (mean annual temperature and precipita-
tion) on POC and MAOC contents depends on (interacts with) the C 
fraction type. For these analyses, we aggregated soil data for open and 
vegetation-covered areas by plot using plant cover area as a weight-
ing factor, and fitted a linear mixed-effects model on the response of  
C content with C fraction type as a binary categorical predictor (either 
MAOC or POC). In the fixed-effects term of the model, we also included 
mean annual temperature, mean annual precipitation and the interac-
tions of mean annual temperature and mean annual precipitation with 
C fraction type, as well as key biotic (net primary productivity, type of 
vegetation, woody cover, plant richness, grazing pressure and herbi-
vore richness) and soil biogeochemical (clay and silt, pH, chemical index 
of alteration, exchangeable Ca, non-crystalline Al and Fe, available N 
and P and microbial biomass C) covariates to control for confounding 
factors. In the random term of the model, we incorporated an intercept 
structure with plot nested within site as a categorical variable to account 
for the lack of independence in the residuals due to the paired POC and 
MAOC separation and the plot sampling design. We checked whether 
the fit of this linear mixed-effects model improved by including quad-
ratic terms of mean annual temperature, mean annual precipitation, 
and both mean annual temperature and precipitation, using the Akaike 
information criterion and likelihood ratio tests. None of the quadratic 
models tested was a significantly better fit to the data (χ2 (1) < 1.0, 
P > 0.3) than the linear model (lowest Akaike information criterion).

To examine separately the variance of POC and MAOC con-
tents explained by the groups of predictors (climate: mean annual 
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temperature and mean annual precipitation; biotic factors: net 
primary productivity, type of vegetation, woody cover, plant rich-
ness, grazing pressure and herbivore richness; soil biogeochemis-
try: clay and silt, pH, chemical index of alteration, exchangeable Ca, 
non-crystalline Al and Fe, available N and P and microbial biomass C), 
we built two linear mixed-effects models (one for POC and another for 
MAOC) with site as a random categorical variable. These two separate 
models were used to assess the importance of the different groups of 
predictors in explaining either POC or MAOC, and not to test statisti-
cally for differences in the size of the effects of the predictors between 
POC and MAOC. To support the linear mixed-effects models, we tested 
the importance of the same groups of predictors of POC and MAOC 
using random-forest regression modelling53. In particular, we built 
two random-forest models, one for POC and one for MAOC, combin-
ing 500 trees, and quantified the importance of each predictor by 
computing the increase in mean squared error across trees when the 
predictor was permuted.

We tested whether the presence of vegetation cover interacted 
with the effects of temperature and precipitation also by linear  
mixed-effects modelling. For this purpose, we built two linear mixed- 
effects models, one for POC content and another for MAOC content 
in areas under the canopy of the dominant perennial vegetation and 
open areas, with vegetation cover as a binary predictor and plot nested 
within site in the random term.

For all the linear mixed-effects models, POC, MAOC, exchangeable 
Ca, non-crystalline Al and Fe, available N and P and microbial biomass C 
were natural-logarithm transformed to reduce the skewness of the data. 
To compare effect sizes, all the numeric predictors were standardized 
by subtracting the mean and dividing by two standard deviations, and 
the binary variables (C fraction type and vegetated versus open areas) 
were rescaled to −0.5 and 0.5 (ref. 54). The coefficients of the models 
were estimated by the restricted maximum likelihood approach, 95% 
CIs were calculated, and P values were computed on the basis of the 
Satterthwaite approximation55. The validity of the assumptions of nor-
mality, homoscedasticity and linearity were examined using residual 
plots. The generalized variance inflation factors were computed to 
check for multicollinearity among predictors (the values were <3 in  
all cases, suggesting that multicollinearity was low56). All statistical 
analyses were performed using R version 4.3.0 (ref. 57) and the R pack-
ages arm version 1.13 (ref. 58), ggplot2 version 3.4.4 (ref. 59), lme4 
version 1.1 (ref. 60), lmerTest version 3.1 (ref. 55), partR2 version 0-9-1 
(ref. 61), patchwork version 1.1.3 (ref. 62), rnaturalearth version 0.3.2 
(ref. 63), randomForest version 4.7 (ref. 64), sf version 1.0 (ref. 65), terra 
version 1.7 (ref. 66) and viridis version 0.6.3 (ref. 67).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data associated with this study are publicly available via figshare 
(https://doi.org/10.6084/m9.figshare.24678891) (ref. 68).
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Extended Data Fig. 1 | Locations of the 326 plots surveyed across global drylands. Locations are shown as red circles on a global aridity (1 – annual precipitation/
potential evapotranspiration) map for drylands (areas with aridity > 0.35), on a less arid-to-more arid color scale.
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Extended Data Fig. 2 | Effects of climate on particulate organic C (POC) 
and mineral-associated organic C (MAOC) in dryland soils with organic C 
contents below and above the median. a-d, Relationships between POC and 
MAOC in soils with soil organic C contents below and above the median and mean 
annual temperature (MAT, a and b, respectively) and precipitation (MAP, c and d, 
respectively). Lines and shading represent linear regressions and 95% confidence 
intervals. e-f, Summary of linear mixed-effects models for soils with organic C 
contents below (e, n = 318 POC and MAOC observations) and above (f, n = 316 
POC and MAOC observations) the median, controlling for biotic factors and soil 

biogeochemistry (see Methods). The panel shows coefficients (circles) and 95% 
confidence intervals (CI, bars) for main and interaction effects of C fraction type 
(binary variable, either POC or MAOC) and climate (MAT and MAP) on POC and 
MAOC contents. The variance explained (R2) by the fixed and random effects 
relative to the total variance was 53% and 25%, respectively (n = 318), for soils with 
organic C content below the median, and 62% and 13%, respectively (n = 316), for 
soils with high organic C content above the median. Carbon fraction contents 
were natural-logarithm transformed, and all the predictors were standardized.
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Extended Data Fig. 3 | Importance of climate, biotic factors, and soil 
biogeochemistry in random forest models of particulate organic carbon 
C (POC) and mineral-associated organic carbon C (MAOC) in global 
drylands. Climate predictors included mean annual temperature and mean 
annual precipitation; biotic factors included net primary productivity, type 
of vegetation, woody cover, plant richness, grazing pressure, and herbivore 

richness; and soil biogeochemistry included clay and silt, pH, chemical index 
of alteration, exchangeable Ca, non-crystalline Al and Fe, available N and P, and 
microbial biomass C. Importance was quantified as the increase in mean squared 
error (MSE) when a predictor was permuted. The variance explained by random 
forest models was 71% for POC and 85% for MAOC, respectively.
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Extended Data Fig. 4 | Effects of soil biogeochemistry on particulate organic 
C (POC) and mineral-associated organic C (MAOC) contents across global 
dryland soils. Coefficients (dots) and 95% confidence intervals (CI, bars) for the 
effects of soil biogeochemical variables in linear mixed-effects models for POC 

and MAOC contents. The variance explained by the fixed and random effects 
relative to the total variance was 69% and 20% for POC (n = 317) and 84% and 11% 
for MAOC (n = 317), respectively.
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Extended Data Table 1 | Summary statistics of the numeric predictors and covariates used to examine the response of 
particulate organic carbon (POC) and mineral-associated (MAOC) contents to climate across global drylands

n, sample size; Min, minimum; Q1, first quartile; Q3, third quartile; max, maximum; MAP, mean annual precipitation; MAT, mean annual temperature; MAP, mean annual precipitation; NDVI, 
Normalized Difference Vegetation Index.
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Extended Data Table 2 | Categorical covariates used to examine the response of particulate organic carbon (POC) and 
mineral-associated (MAOC) contents to climate in global drylands

Plots were situated along a gradient of grazing pressure, encompassing high-, medium-, and low-pressure levels, as well as ungrazed areas, and each one was classified as grassland, 
shrubland, or forest by identifying the dominant type of vegetation.
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