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Mineral-associated organic carbon (MAOC) constitutes a major fraction of
global soil carbon and is assumed less sensitive to climate than particulate
organic carbon (POC) due to protection by minerals. Despite itsimportance
for long-term carbon storage, the response of MAOC to changing climates

indrylands, which cover more than 40% of the global land area, remains
unexplored. Here we assess topsoil organic carbon fractions across global
drylands using a standardized field survey in 326 plots from 25 countries
and 6 continents. We find that soil biogeochemistry explained the majority
of'variationin both MAOC and POC. Both carbon fractions decreased with
increasesin mean annual temperature and reductions in precipitation, with
MAOC responding similarly to POC. Therefore, our results suggest that
ongoing climate warming and aridification may result in unforeseen carbon
losses across global drylands, and that the protective role of minerals may
not dampen these effects.

Soilsindrylands—thelargest set of biomes on the planet—store 646 Pg
organic carbon (C), more thanall living vegetation on Earth™* This vast
soil organic C pool supports essential ecosystem services, including
food provision and water and climate regulation for more than
2.5 billion people®*. Yet temperature increases and precipitation
reductions forecasted for many dryland regions are expected to
disrupt the balance of soil organic C, accelerating microbial decompo-
sition, reducing plant C inputs into the soil and resulting in more
CO, emissions to the atmosphere’.

The sensitivity of organic C in soils (sensu ref. 7) to temperature
and precipitation at timescales relevant to climate change mitigation
is thought to be controlled largely by interactions with soil minerals,
which restrict the accessibility of microbial decomposers by encap-
sulating and adsorbing organic matter®'°. Plant-derived materials
at early stages of decomposition are the main constituents of the
mineral-unprotected, particulate organic C (POC) fraction of soil
organic matter’. The POC fraction is thus directly affected by changes
inplant Cinputsintothe soiland is more exposed to microbial decom-
positionthanthe organic component of the mineral-associated organic
C (MAOC) fraction, which has, therefore, a lower turnover rate*2,

Asaresult, large-scale meta-analyses and observational studies suggest
that POC is more sensitive to changes in climate, and particularly to
warming, thanis MAOC”"'¢, Because of the typically large ratio of soil
mineralsto organic matter indrylands, MAOC s expected to dominate
over POC, potentially driving a high persistence of soil organic C in
these ecosystems”'®"”. However, no studies to date have examined the
relationship of POC and MAOC with climate across the diverse environ-
mental gradients that characterize global drylands. Investigating this
relationshipis particularly timely and relevant as it would substantially
reduce the uncertainty surrounding the land carbon-climate feed-
back. In addition, it would provide valuable insights for adapting soil
carbon-related ecosystem services to ongoing climate change.

Here we evaluated how mean annual temperature and precipita-
tion relate to POC and MAOC contents across global drylands after
accounting for major biotic (net primary productivity, vegetation
type, woody cover, plantand herbivore richness and grazing pressure)
and soil biogeochemistry (clay and silt contents, pH, chemical index
of alteration, exchangeable Ca, non-crystalline Al and Fe, available N
and P and microbial biomass C) factors known to potentially affect soil
organic C content by regulating C inputs and stabilization processes™’s.
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Fig.1|Distribution of soil organic C contents in POC and MAOC fractions
and their relationships with climate inglobal drylands. a, POC and MAOC
contents. Box, first and third quartiles; central horizontal line, median; upper
vertical line end, largest value smaller than 1.5 times the interquartile range;
lower vertical line end, smallest value larger than 1.5 times the interquartile range
(n=326plots).b,c, Relationships between POC and MAOC contents and mean
annual temperature (MAT; b) and mean annual precipitation (MAP; ¢). Lines and
shading represent linear regressions and 95% confidence intervals, respectively.
d, Summary of alinear mixed-effects model, controlling for biotic factors and
soilbiogeochemistry (Methods). The panel shows coefficients (circles) and

95% Cl (bars) for main and interaction effects of C fraction type (binary variable,
either POC or MAOC) and climate (MAT and MAP) on POC and MAOC contents.

The variance explained (R?) by the fixed and random effects relative to the total
variance was 77% and 12%, respectively (n = 634 POC and MAOC observations).
Carbon fraction contents were natural-logarithm transformed, and all the
predictors were standardized. The positive coefficient of C fraction type (MAOC
versus POC) indicates that MAOC contents are significantly greater than POC
contents (P<0.001). For the observed negative association of MAT and positive
association of MAP with C content (P < 0.001and P= 0.039, respectively),
negative coefficients for the interaction of C fraction type with MAT and MAP
indicate thatincreasing MAT has a stronger negative effect on MAOC than on
POC (P=0.053) contents, while decreasing MAP has a stronger negative effect on
POC thanon MAOC (P=0.181).

To do so, we surveyed in situ 326 plots from 98 dryland ecosystems
located in 25 countries from 6 continents (Extended Data Fig. 1). Our
survey spans the broad gradients of temperature, precipitation, arid-
ity, soil properties, vegetation types and grazing pressures that canbe
found across drylands worldwide (Extended Data Tables 1 and 2)"*%°.
At each site, we collected topsoil samples (0-7.5 cm) from areas both
covered (322) and not covered (326) by perennial vegetation from 2-4
plots located across a local gradient of extensive grazing pressure
(648 samples in total; Methods). We subjected all samples to a size
fractionation procedure to separate and quantify C contentin POC and
MAOC pools®”. Using these data, we tested the hypothesis that MAOC,
being protected by minerals, is less sensitive than POC to increases in
temperature and decreases in precipitation”'%'*>, We also hypothesize
that the presence of vegetation mitigates declines in soil C, particularly
POC, by increasing soil Cinputs.

MAOC dominates soil organic C and is sensitive to
climate

Our results show that MAOC was the dominant soil organic C fraction
indrylands globally (Fig.1a). In particular, median MAOC content was
5.2 gC kg™ soil, equivalent to 66% of the total soil organic C content,
whereas median POC content was 2.3 gC kg soil. This quantification
falls within the range of soil organic C content (MAOC and POC) com-
monly found in drylands and is relevant to improve the performance
ofemerging models of soil organic C formation and persistence using
POC and MAOC frameworks>* ™,

Contrary to our hypothesis, we found that MAOC and POC were
equally sensitive to differences in climate across global drylands. In
particular, both MAOC and POC were negatively associated with
increasing temperature and decreasing precipitation to a similar
extent, asindicated by the similar slopes of the associations (Fig. 1b,c).
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Fig.2|Relationships between climate and POC and MAOC contents in soils
under the canopy of the dominant perennial vegetation and in open areas
across global drylands. a-d, Relationships between POC and MAT (a) and

MAP (c), and between MAOC and MAT (b) and MAP (d) in both open areas (O)

and perennial vegetation (V) microsites. Lines and shading represent linear
regressions and 95% Cls (n =326 and 322 for O and V, respectively). e, Coefficients

(dots) and 95% Cls (bars) of linear mixed-effects modelillustrating the fixed
main and interaction effects of MAT, MAP and the presence of vegetation cover
(Vversus O) on POC and MAOC contents (n =648 Vand O areas). The variance
explained (R?) by the fixed and random effects relative to the total variance was
30% and 55%, respectively, for POC, and 32% and 61%, respectively, for MAOC.

These results were supported by the lack of a significant interaction
between the effects of temperature and precipitation and the type of
fraction (MAOC versus POC) tested by a linear mixed-effects model
(Fig. 1d; Methods). On the basis of the results from this model, we
estimated that POC and MAOC contents significantly declined with
temperature atanaverage rate of 3.2% per °C (95% confidence interval
(CI):1.8,4.6) andincreased with precipitation at an average rate of 6.6%
per100 mm (95% Cl: 0.6,12.6).

Warmingaccelerates the microbial decomposition of soil organic
matter, and precipitation reduction constrains plant production and
organic matter inputsinto the soil**. Our results are, therefore, consist-
entwith previously reported reductions in soil organic C content with
increasing temperature and reducing precipitation across terrestrial
ecosystems” %, However, and contrary to expectations of smaller
sensitivity of MAOC versus POC to changes in climate observed in
more mesic systems'*", our findings based on a space-for-time sub-
stitution highlight that the MAOC and POC fractions may decrease at
similar rates in response to climate warming and precipitation reduc-
tion across global drylands. Therefore, they suggest that the current
paradigm of mineral protection may not determine soil C persistence
indryland ecosystems®*°~*2, The apparent lack of protection by miner-
als, which contrasts with what was observed in mesic systems richer
in organic matter, was consistent across the range of soil organic C
content found in drylands (Extended Data Fig. 2). There is recent
evidence that MAOC is controlled not only by C stabilization in soil
organo-mineral complexes, but also by changes in C inputs driven by
climate®.Indrylands, not only precipitation reduction but alsowarming

may increase water deficit, which may decrease plant productivity’,
Cinputsintothe soiland Caccumulationintothe MAOC fraction. These
isalso evidence that dryland soils maintain a high oxidative potential
during dry periods, mainly through the stabilization of enzymes, which
resultsinarapid organic matter decomposition in wet periods?®* and
may further limit C inputs to the MAOC fraction.

Vegetation buffers soil C declines with warming
Both POC and MAOC contents were higher in soil beneath perennial
vegetation (Fig.2). We further observed that as mean annual tempera-
ture increased, POC and MAOC contents decreased, but to a lesser
extent, beneath vegetation. Conversely, as mean annual precipita-
tionincreased, both contents increased in a similar manner in open
areas and in areas under the canopy of perennial vegetation (Fig. 2).
These results are important because they suggest that the presence
ofvegetation buffers, but does not fully compensate for, the negative
effects of higher temperature on soil C fractions. While the buffering
effect of vegetation did not completely counteract the vulnerability of
organic C poolstoincreasing temperatures, our findings indicate that
management practices aimed at protecting vegetationin drylands may
help to maintain soil organic C stocks in global drylands and reduce
their losses in response to a changing climate.

Coupling of POCand MAOCindrylands

We found that POC and MAOC contents were strongly correlated
across global drylands (r=0.83, n =326, P< 0.001; Fig. 3a). These
results strongly suggest that both fractions remain highly coupled in
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Fig.3| Coupling and drivers of POC and MAOC in global drylands.

a, Relationship between POC and MAOC contents. Dots represent individual
dryland plots, with the colours of the dots illustrating their aridity (1 - annual
precipitation/potential evapotranspiration) values. The line and shading
represent the fitted linear regression and 95% confidence interval, respectively.
b, Variance explained (R?) by linear mixed-effects models for POC and MAOC
contents partitioned into the fraction attributable to unique and shared

among groups of drivers (climate: mean annual temperature and mean annual

POC

Fraction

MAOC

0 10 20 30 40
Variance explained (% R?)

M Climate
M Biotic factors
M Soil biogeochemistry
Climate + biotic factors
Climate + soil biogeochemistry
Biotic factors + soil biogeochemistry
Climate + biotic factors + soil biogeochemistry

precipitation; biotic factors: net primary productivity, type of vegetation,
woody cover, plant richness, grazing pressure and herbivore richness; and soil
biogeochemistry: clay and silt, pH, chemical index of alteration, exchangeable
Ca, non-crystalline Al and Fe, available N and P and microbial biomass carbon).
The variance explained (R?) by the fixed and random effects relative to the total
variance was 69% and 20% for POC (n = 317) and 84% and 11% for MAOC (n = 317),
respectively.

drylands despite their different levels of putative protection against
decomposition by microorganisms.

Variance partitioning of linear mixed-effects models and
random-forest analysis showed that the order of importance of the
group of factors that explained most of the variation of POC and MAOC
across global drylands was essentially the same for both organic C
fractions (Fig. 3b and Extended Data Fig. 3). Soil biogeochemistry,
above climate and biotic factors, was the most important predictor
of both POC and MAOC contents. Both C fractions were negatively
associated with soil pH and positively associated with exchangeable Ca,
available N and P and microbial biomass C contents; in addition, MAOC
was associated positively with clay and silt and non-crystalline Al and
Fe contents (Extended Data Fig. 4). Slightly acidic to neutral soils
generally feature higher nutrient availability and more fertility than
alkaline soils®’, which may thus favour soil organic C accumulation in
drylands throughincreased plant-derived Cinputs and microbial activ-
ity. The prevalentrole of soil fine texture and non-crystalline Aland Fein
MAOC formation has been widely documentedin theliterature. Sorp-
tion of organic matter to mineral surfaces is known to be promoted by
the relatively high specific surface area and charge of clay and silt,
while non-crystalline Fe and Al phases are also known to form strong
associations with organic matter,

The coupling of POC and MAOC observed here for drylands may
be, however, disrupted in more productive terrestrial ecosystems,
where higher plant inputs may result in larger POC contents”™. In
contrast to experimental manipulation studies™, our work addresses
the vulnerability of soil C fractions using a space-for-time substitution.
Further research into the pace of the climate-induced changes and
the causality of the associations found in our study is thus warranted.

Concluding remarks

By using aglobal standardized field study and by focusing exclusively on
dryland ecosystems, our work expands previous efforts to understand
abiotic and biotic drivers of POC and MAOC along large geographical
gradients, which either have been based on literature syntheses, which

use datasets that are inherently heterogeneous, or have focused on
ecosystems other than drylands'®. Our study generated highly stand-
ardized field data on the POC and MAOC fractions of dryland soils
worldwide, along with their major predictors. These data substantially
expand existing global databases and can be used to refine current soil
organic C models.

Our findings suggest that ongoing changes in climate, particularly
warming, may adversely affect both unprotected and mineral-protected
soil Ccontentindrylands to asimilar extent. The results obtained also
indicate that maintaining vegetation cover can mitigate, but not fully
counteract, the negative impacts of rising temperatures on soil organic
C fractions. Our study enhances our understanding of how POC and
MAOC contentsinsoil respond to key abiotic and biotic drivers, reveal-
ing that mineral protection has limited potential to sustain organic C
storageindryland soilsin the face of ongoing global warming. The novel
insights provided here about dryland soil C pools and their sensitivity
could facilitate much-needed advances in our model representation
of dryland ecosystems and their response to climate change.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41558-024-02087-y.
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Methods

Global field survey and soil sampling

Fieldwork was conducted from January 2016 to September 2019. A
total of 326 plots distributed across 98 study sites in 25 countries
from all continents except Antarctica (Algeria, Argentina, Australia,
Botswana, Brazil, Canada, Chile, China, Ecuador, Hungary, Iran, Israel,
Kazakhstan, Kenya, Mexico, Mongolia, Namibia, Niger, Palestine, Peru,
Portugal, South Africa, Spain, Tunisia and the United States of America)
and encompassing the wide range of vegetation, soil, climate and
grazing-pressure levels found in drylands worldwide were surveyed
using acommon and standardized protocol*.

At each site, we gathered field data within multiple 45 m x 45m
plots situated along a gradient of grazing pressure, encompassing
high (n=98), medium (n =97) and low (n = 88) pressure levels, as well
as ungrazed areas (n =43). To establish the grazing gradients, in 90
out of the 98 sites surveyed, we strategically positioned these plots
atvarying distances from artificial watering points, which are usually
created in drylands to supply introduced livestock with permanent
water sources®*. The closer the plot to the permanent water source,
the more intense the grazing®**. In the remaining eight sites, local
variations in grazing-pressure gradients were ascertained by observ-
ing different paddocks featuring varying grazing intensities. See ref.
20 for additional details on the characterization and validation of the
local grazing-pressure gradients established.

Aportable Global Positioning System was used to record the coor-
dinates and elevation of each plot, which were standardized to the
World Geodetic System 1984 ellipsoid for visualization and analyses.
During the dry season at each site, four soil cores (145 cm?) from O to
7.5 cm depth (topsoil) were collected from five 50 x 50 cm quadrats
randomly placed in areas under the canopy of the dominant peren-
nial vegetation and five placed in open areas not covered by perennial
vegetation. The soil cores were homogenized and composited to form
asamplerepresentative of the soil under the dominant vegetation and
asamplerepresentative of the soil inopen areas within each plot. The
soil samples were passed through a2 mm sieve. A portion of each soil
sample was air dried and used for organic matter fractionation and
texture and pH analysis, and another portion was stored at —20 °C and
used for microbial biomass C analysis. A portion of the air-dried soil
samples was ground with a ball mill for additional chemical analysis.

Soil organic carbon fractionation and quantification

All the soil samples, a total of 648 (326 from open areas and 322 from
under the canopy of the dominant vegetation), were subjected to a
size fractionation method”-*° to separate the POC (not protected by
minerals from microbial decomposition) and MAOC (protected by
minerals) fractions. Aggregates were dispersed by adding 30 ml of
sodium hexametaphosphate (5g L™) to10 g of soiland shaking withan
overhead shaker for 18 h. After dispersion, the mixture was thoroughly
rinsed through a 53 pmsieve to separate the POC (>53 pm) and MAOC
(<53 um) fractions using an automated wet sieving system. The isolated
fractions were ovendried at 60 °C, weighed and ground with aball mill.
Thewhole soil samplesand the POC and MAOC fractions were analysed
for organic C contents by dry combustion and gas chromatography
usinga ThermoFlash 2000 NC Soil Analyzer (Thermo Fisher Scientific)
after removing carbonates by acid fumigation®.

Climate data

Mean annual temperature and mean annual precipitation data were
obtained from WorldClim 2.0 (ref. 38), a high-resolution (30 arcsec,
or ~1km at the Equator) database based on a large number of climate
observations and topographical datafor the 1970-2000 period. Arid-
ity index (ratio of average annual precipitation to potential evapo-
transpiration) data were obtained from the Global Aridity Index and
Potential Evapotranspiration Climate Database v.3 (ref. 39). Aridity was
calculated as1 - aridity index.

Vegetation and herbivore richness survey

Each plot was classified as grassland, shrubland or forest by identify-
ing the dominant type of vegetation. Net primary productivity was
estimated using the mean annual Normalized Difference Vegetation
Index averaged monthly values between 1999 and 2019 at a reso-
lution of 30 m from Landsat 7 Enhanced Thematic Mapper Plus*.
The cover of perennial vascular plants (plant cover) was measured
along four parallel 45 m transects separated by 10 m and oriented
downslope during the peak of the growing season using the line-
intercept method"*"*2, Woody cover was measured in 25 contiguous
quadrats (1.5 m x 1.5 m) placed in each transect (100 quadrats per
plot). Plant richness was the total number of unique perennial spe-
cies found along the quadrats and transects surveyed. The richness
of herbivores was quantified at each plot using dung data collected
systematically in situ along the four 45 m transects established as
described inref. 20.

Soil analyses

Allthe bulk soil samples were analysed as follows. Clay and silt contents
were determined by sieving and sedimentation®’. Soil pH was meas-
ured in a water suspension at a soil-to-water ratio of 1.0:2.5 (ref. 44).
The chemical index of alteration, which is an indicator of the degree of
weathering, was calculated as the molecular proportion of Al,O, versus
AlLO; +Ca0 +Na,O0 +K,O (ref. 45), using total Al, Ca, Na and K contents
and after correcting Ca for soils with carbonates'®; total Al, Ca, Na and
K contents were determined by inductively coupled plasma atomic
emission spectroscopy (ICP-AES) after digestion in nitric and perchloric
acids***®. Exchangeable Ca content was determined by ICP-AES after
extractionwithammoniumacetateatpH 7.0 (refs. 44,47). Non-crystalline
Fe and Al contents were determined by ICP-AES after extraction with
acidammonium oxalate*®. Available N (ammonium and nitrate) content
was determined by extraction with 0.5 M K,SO, and the indophenol
blue method using amicroplate reader*’. Available P content was deter-
mined by the Olsen method*°. Microbial biomass C was determined by
substrate-induced respiration® using anautomated microrespirometer.

Statistical analyses
We compared the content of MAOC with that of POCin global dryland
soils controlling for confounding factors, and tested the hypothesis
that the effects of climate (mean annual temperature and precipita-
tion) on POC and MAOC contents depends on (interacts with) the C
fractiontype.Forthese analyses, we aggregated soil data for open and
vegetation-covered areas by plot using plant cover area as a weight-
ing factor, and fitted a linear mixed-effects model on the response of
C contentwith Cfractiontypeasabinary categorical predictor (either
MAOC or POC). Inthe fixed-effects term of the model, we also included
mean annual temperature, mean annual precipitationand theinterac-
tions of mean annual temperature and mean annual precipitation with
Cfractiontype, as well as key biotic (net primary productivity, type of
vegetation, woody cover, plant richness, grazing pressure and herbi-
vorerichness) and soil biogeochemical (clay and silt, pH, chemical index
of alteration, exchangeable Ca, non-crystalline Al and Fe, available N
and P and microbial biomass C) covariates to control for confounding
factors.Inthe random termof the model, weincorporated anintercept
structure with plot nested withinsite as a categorical variable to account
forthelack ofindependenceintheresiduals due to the paired POC and
MAOC separation and the plot sampling design. We checked whether
the fit of this linear mixed-effects model improved by including quad-
ratic terms of mean annual temperature, mean annual precipitation,
and both mean annual temperature and precipitation, using the Akaike
information criterionand likelihood ratio tests. None of the quadratic
models tested was a significantly better fit to the data (2 (1) <1.0,
P> 0.3) than the linear model (lowest Akaike information criterion).
To examine separately the variance of POC and MAOC con-
tents explained by the groups of predictors (climate: mean annual
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temperature and mean annual precipitation; biotic factors: net
primary productivity, type of vegetation, woody cover, plant rich-
ness, grazing pressure and herbivore richness; soil biogeochemis-
try: clay and silt, pH, chemical index of alteration, exchangeable Ca,
non-crystalline Aland Fe, available N and P and microbial biomass C),
we built two linear mixed-effects models (one for POC and another for
MAOC) withsite asarandom categorical variable. These two separate
models were used to assess the importance of the different groups of
predictorsin explaining either POC or MAOC, and not to test statisti-
cally for differencesin the size of the effects of the predictors between
POCand MAOC. To support the linear mixed-effects models, we tested
the importance of the same groups of predictors of POC and MAOC
using random-forest regression modelling™. In particular, we built
two random-forest models, one for POC and one for MAOC, combin-
ing 500 trees, and quantified the importance of each predictor by
computing the increase in mean squared error across trees when the
predictor was permuted.

We tested whether the presence of vegetation cover interacted
with the effects of temperature and precipitation also by linear
mixed-effects modelling. For this purpose, we built two linear mixed-
effects models, one for POC content and another for MAOC content
in areas under the canopy of the dominant perennial vegetation and
openareas, with vegetation cover as abinary predictor and plot nested
withinsite in therandom term.

Forallthelinear mixed-effects models, POC, MAOC, exchangeable
Ca, non-crystalline Aland Fe, available Nand P and microbial biomass C
were natural-logarithm transformed to reduce the skewness of the data.
To compare effect sizes, all the numeric predictors were standardized
by subtracting the mean and dividing by two standard deviations, and
thebinary variables (C fraction type and vegetated versus open areas)
were rescaled to —0.5 and 0.5 (ref. 54). The coefficients of the models
were estimated by the restricted maximum likelihood approach, 95%
Cls were calculated, and P values were computed on the basis of the
Satterthwaite approximation®. The validity of the assumptions of nor-
mality, homoscedasticity and linearity were examined using residual
plots. The generalized variance inflation factors were computed to
check for multicollinearity among predictors (the values were <3 in
all cases, suggesting that multicollinearity was low™). All statistical
analyses were performed using R version4.3.0 (ref. 57) and the R pack-
ages arm version 1.13 (ref. 58), ggplot2 version 3.4.4 (ref. 59), Ime4
version 1.1(ref. 60), ImerTest version 3.1 (ref. 55), partR2 version 0-9-1
(ref. 61), patchwork version 1.1.3 (ref. 62), rnaturalearth version 0.3.2
(ref.63), randomForest version 4.7 (ref. 64), sf version 1.0 (ref. 65), terra
version 1.7 (ref. 66) and viridis version 0.6.3 (ref. 67).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data associated with this study are publicly available via figshare
(https://doi.org/10.6084/m9.figshare.24678891) (ref. 68).
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Extended Data Fig. 1| Locations of the 326 plots surveyed across global drylands. Locations are shown as red circles on a global aridity (1 - annual precipitation/
potential evapotranspiration) map for drylands (areas with aridity > 0.35), on aless arid-to-more arid color scale.
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Extended Data Fig. 2| Effects of climate on particulate organic C (POC)

and mineral-associated organic C (MAOC) in dryland soils with organic C
contents below and above the median. a-d, Relationships between POC and
MAOC in soils with soil organic C contents below and above the median and mean
annual temperature (MAT, aand b, respectively) and precipitation (MAP,cand d,
respectively). Lines and shading represent linear regressions and 95% confidence
intervals. e-f, Summary of linear mixed-effects models for soils with organic C
contents below (e, n=318 POC and MAOC observations) and above (f,n =316
POC and MAOC observations) the median, controlling for biotic factors and soil
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biogeochemistry (see Methods). The panel shows coefficients (circles) and 95%
confidence intervals (CI, bars) for main and interaction effects of C fraction type
(binary variable, either POC or MAOC) and climate (MAT and MAP) on POC and
MAOC contents. The variance explained (R2) by the fixed and random effects
relative to the total variance was 53% and 25%, respectively (n =318), for soils with
organic C content below the median, and 62% and 13%, respectively (n=316), for
soils with high organic C content above the median. Carbon fraction contents
were natural-logarithm transformed, and all the predictors were standardized.
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Extended Data Fig. 3 | Importance of climate, biotic factors, and soil
biogeochemistry inrandom forest models of particulate organic carbon
C (POC) and mineral-associated organic carbon C (MAOC) in global
drylands. Climate predictorsincluded mean annual temperature and mean
annual precipitation; biotic factors included net primary productivity, type
of vegetation, woody cover, plant richness, grazing pressure, and herbivore
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richness; and soil biogeochemistry included clay and silt, pH, chemical index

of alteration, exchangeable Ca, non-crystalline Al and Fe, available N and P, and
microbial biomass C. Importance was quantified as the increase in mean squared
error (MSE) when a predictor was permuted. The variance explained by random
forest models was 71% for POC and 85% for MAOC, respectively.
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Extended Data Table 1| Summary statistics of the numeric predictors and covariates used to examine the response of
particulate organic carbon (POC) and mineral-associated (MAOC) contents to climate across global drylands

Variable n Min Q1 Median Mean Q3 Max
MAT (°C) 326 -1.2 10.4 16.6 15.5 19.9 29.2
MAP (mm) 326 26 233 332 357 505 891
Net primary productivity (NDVI, unitless) 326 0.06 0.13 0.17 0.19 0.25 0.43
Woody cover (%) 326 0 15 46 48 83 100
Plant richness (number of species) 326 0 8 16 19 26 57
Herbivore richness (number of species) 326 0 1 2 2 3 6
Clay and silt (g kg™) 326 10 120 271 325 512 870
pH 326 4.5 6.1 7.0 6.9 7.8 9.9
Chemical index of alteration (%) 326 42 74 81 79 87 97
Exchangeable Ca (mg kg™) 321 39 843 1730 3394 3443 42446
Non-crystalline Al and Fe (mg kg™) 326 28 475 932 1357 1620 9889
Available N (mg kg™) 326 1 8 14 21 26 143
Available P (mg kg™) 323 0.1 5.5 11.5 13.6 17.8 87.6
Microbial biomass C (mg kg™) 326 16 101 186 245 331 1065

n, sample size; Min, minimum; Q1, first quartile; Q3, third quartile; max, maximum; MAP, mean annual precipitation; MAT, mean annual temperature; MAP, mean annual precipitation; NDVI,
Normalized Difference Vegetation Index.
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Extended Data Table 2 | Categorical covariates used to examine the response of particulate organic carbon (POC) and
mineral-associated (MAOC) contents to climate in global drylands

Variable Category ::l:s?::\?;t?cf)ns
Vegetation type Grassland 94

Shrubland 160

Forest 72
Grazing pressure Zero 43

Low 88

Medium 97

High 98

Plots were situated along a gradient of grazing pressure, encompassing high-, medium-, and low-pressure levels, as well as ungrazed areas, and each one was classified as grassland,
shrubland, or forest by identifying the dominant type of vegetation.
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