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Biological soil crusts (BSCs) consist of cyanobacteria, algae, fungi, lichens, and mosses, which 

live within the uppermost millimeters of the soil’s surface where they influence soil stability, 

nitrogen, and carbon cycles. BSCs are only a few millimeters thick but cover large expanses of 

ground allowing for possibly significant contributions to the carbon cycle in arid environments. 

Remote sensing of these organisms has been used to study BCS in a non-destructive manner over 

the last 36 years. In this project, we aimed to quantify the abundance and distribution of BSCs 

and to estimate their annual carbon fixation rate at different community stages in two unique 

research sites (T-East and T-West) in the Chihuahuan desert of southern New Mexico, USA. We 

first investigated the utility of an unoccupied aircraft system (UAS)-mounted hyperspectral 

camera to measure the spatial cover of two BSCs functional groups (light and dark BSC) in a 
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shrub-dominated vs. predominantly grassland site. Using a spectral angle mapper (SAM) 

algorithm we classified the hyperspectral imagery into five cover classes (light BSC, dark BSC, 

bare soil, grasses, and shrubs). With observations collected utilizing a line point intercept (LPI) 

method, we quantified the percent cover of BSCs and vegetation within the transects to validate 

the SAM estimates. Lastly, we incorporated C-fixation rates from local BSC communities to 

estimate the mean annual C-fixation rates for both BSCs within our research plots. The SAM 

algorithm overestimated light biocrust (LBC) in T-East by 17.7% when compared with the LPI 

estimates. Inversely, the SAM underestimated dark biocrust (DBC) for T-East by 9.3% as well as 

underestimating both Light and DBCs for T-west (23.9% and 6.7% respectively) when compared 

to the LPI estimates. This produced a higher annual fixed CO2 value for T-East’s LBC of 36.4% 

and a lower rate for DBC of 37.2% in comparison with the LPI’s observations.  The T-West 

annual fixed CO2 was underestimated by the SAM algorithm by 66.1% for LBC and 42.9% for 

DBC when compared to the LPI observations. The results indicate the heavily shrub-encroached 

T-East site had a better accuracy rate than the T-West grassland site for the accurate 

classification of the five cover classes. It was believed that the vegetation's close proximity to the 

soil surface and sample timing negatively interfered with the detection rates of light and dark 

BSCs.   

 

 

Keywords:  biological soil crust, remote sensing, spectral angle mapper, annual carbon 

fixation
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Figure 1: Diagram showing the placement of the 4 x 50 m transects within the Net Primary 

Productivity (NPP) T-east and T-west sites at the Jornada Experimental Range. The dashed grey 

line represents transect 1 and transect 2 in the NPP sites. Both the T-east and T-west NPP sites 

are laid out in the same fashion. Hollow circles indicate ½” rebar stakes marking the corners of 

the 70 m x 70 m site. Solid black circles indicate ⅜” rebar stakes which lay out the interior of the 

NPP sites. The diagram was redrawn from Dr. Pietrasiak’s Jornada notification of proposed 

research study # 467, (2016). 

Figure 2: Diagram indicates the 50m x 4m transect with the 10m buffer. The solid light blue line 

marks the LPI location within the plot. Solid black circles indicate ⅜” rebar stakes which locate 

the interior sections in the NPP sites.  The diagram was redrawn from Dr. Pietrasiak’s Jornada 

notification of proposed research study # 467, (2016). 

Figure 3. A redrawn plot of a test and reference spectra of a two-band image following Kruse et 

al. (1993).  

Figure 4: Field reflectance scans of bare soil, grass, shrubs, DBC, and LBC from both NPP sites.  

In T-East (right), Bare soil has the highest reflectance values followed by LBC with the second 

highest overall values. Shrubs are the third highest with a pronounced peak around 780-930 nm.  

Grasses and DBCs have the lowest recorded reflectance values. T-West (left) scans show similar 

results, but shrubs have the second highest reflectance value over LBCs. 
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Figure 5:  Bar chart of the T-East and T-West NPP sites comparing the average percent cover 

from both LPI and SAM methods.  

 

Figure 6: Pseudo color composite of T-West and T-East NPP sites orthorectified hyperspectral 

full reflectance images. Represented by three bands located in the Red (band 110, 640.74nm), 

Green (band 69, 549.97nm), and Blue (band 33, 470.28nm) color spectrum. 
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INTRODUCTION 

 

Over a billion people live in and depend on arid and semiarid ecosystems that are 

experiencing increasing water scarcity, human population growth, desertification, and land use 

degradation reinforced by the effects of climate change (Rodríguez -Caballero et al. 2017; 

Maestre et al. 2012). These are a few of the principal driving factors focusing land managers and 

environmental scientists to promote research that increases our understanding of our arid 

ecosystems. Drylands cover a vast expanse of land estimated at approximately 40% of the 

Earth’s terrestrial surface (Masestre et al. 2012) and are believed to contain 10 x 1015 g C 

illustrating the need to understand the controls of carbon fluxes within these biomes (Saugier et 

al. 2001). These systems are not barren wastelands void of flora and fauna but are often 

characterized by high biodiversity, providing unique habitats for many organisms from large 

herbivores to complex and diverse vegetation structures, and biological soil crusts (BSC). 

Biological Soil Crust is a complex community of bacteria, cyanobacteria, algae, fungi, 

lichens, and mosses that occur on or near the soil's surface (Belnap et al. 2016). Globally, 

communities of BSC are estimated to cover approximately 12% of the earth's terrestrial surface 

(Rodríguez -Caballero et al. 2018) and dominate 40-100% of the open grounds surface in 

drylands (Ferrenburg et al. 2017; Caballero et al. 2017; Belnap et al. 2016). BSCs are currently 

estimated to contain 56 x 1012 g C held in cyanobacterial (light BSCs) in arid and semiarid 

regions (Garcia-Pichel et al. 2003). In ecosystems where water and available nutrients limit 

vascular plant cover (Belnap et al. 2016), BSC performs critical ecosystem services such as soil 
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aggregation, carbon fixation, nitrogen fixation, evaporation, water infiltration, and the air-to-soil 

gas exchange (Pietrasiak et al. 2013; Rodríguez -Caballero et al. 2014). These BSC communities 

are often distributed in a heterogenous patchwork across the landscape where their diverse 

community structures differ in their degree of influence on ecosystem functions (Pietrasiak et al. 

2013; Belnap et al. 2016; Caballero et al. 2017). These diminutive communities are increasingly 

being recognized to have global-scale ecological impacts on the climate, carbon, nitrogen, and 

hydrological cycles (Rozenstein et al. 2017). However, accurate measurements of BSC’s 

coverage, nitrogen fixation rates, and effects on the carbon cycle are currently limited.  

The C-fixation rates of BSCs are dependent on the species type and abundance within the 

crust (Grote et al. 2010). It is currently believed that changes to climate and land use practices 

are negatively impacting BSCs by converting later succession stage crust to early successional 

stages leading to lowered drylands system’s C-fixation rates (Housman et al. 2006). This 

observed trend has the potential to add up to large amounts of carbon not being sequestered from 

the atmosphere exacerbating the effects of climate change. To determine how the carbon cycle 

and BSCs may change in the future facing the increasing variable climate requires an accurate 

and efficient means of detecting species composition and density of BSC.  

Over the last few decades, a great deal of effort has been spent identifying and mapping 

BSCs using traditional fieldwork density assessment methods which have proved to be costly, 

time-consuming, and to have difficulties determining species composition in the field (Karniel et 

al. 1999; Chen et al. 2005; Weber et al. 2008; Chamizo et al. 2010).  The vast expanses of 

drylands, the high heterogeneity of BSC distribution, and their vulnerability to physical 
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disturbance is leading scientists to turn to remote sensing to collect data on these communities 

(Chamizo et al. 2010). Aerial surveys via drone or satellite imaging have shown promising 

results in detecting BSC’s community distribution and species composition without further 

leading to site degradation.  

The use of remote sensing techniques for mapping BSCs was first recognized by Wessels 

and Van Vuuren in 1986 who used satellite imagery of Landsat Thematic Mapper 3 (Bands 4, 5, 

7) to identify lichen-moss dominated BSCs in the Namib Desert. Shortly after, O’Neil described 

the spectral characteristics of BSC’s local absorption feature of chlorophyll a at (675 nm) and 

noted BSCs spectral response to wetting in 1994 (O’Neil et al. 1994). Since this initial 

application, many studies have promoted BSC identification techniques using remotely sensed 

data (Karnieli et al. 1999; Chen et al. 2005; Weber et al. 2008; Chamizo et al. 2010; Rodríguez et 

al. 2014; Rozenstein et al. 2017). BSC’s communities have been distinguishable due to organic 

components found within the crust (phycobilin, chlorophyll, cellulose, lignin, starch, and wax) 

(Rozenstein et al. 2017; Rodríguez et al. 2014). The reflectance of BSC is explainable by 

absorption features due to (0.430 μm) phycobilin in cyanobacteria, (0.680 μm) chlorophyll, 

(1.720 μm) cellulose and lignin, (2.080 μm) starch, lignin, and wax, and (2.309 μm) humic acid, 

wax, and starch (Rozenstein et al. 2017). These components enable biocrust to be distinguishable 

from the heterogenous cover types prominent in dryland ecosystems. However, detection rates of 

BSCs using remote sensing tools are highly affected by environmental conditions (Chen, et al. 

2020). When BSCs are dry they exhibit a spectral response similar to bare soil and when 

sufficient water is present they conduct photosynthesis and appear plant-like (Weber et al. 2008; 
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Rozenstein et al. 2017). The spectral signature of BSC under these wet conditions can be like 

that of higher plants, producing high values in the NDVI (Rozenstein et al. 2017), which has led 

to misinterpretation of ecosystem productivity and vegetation dynamics (Karnieli et al. 1999). 

Other spectral commonalities show that when dry there is an overall lower reflectance value of 

BSC when compared to the soil (Chen et al. 2005; Karnieli et al. 1999) suggesting that when 

using multispectral data during the rainy season is it important to examine the red and red edge 

bands region to estimate biocrust more accurately cover (Chen et al. 2020). Correctly timing 

sampling to early spring following the rains before annuals have germinated and the perennials 

are still dry (Chen et al. 2020), can lead to higher success in distinguishing BSC coverages.  

Initially, remote detection of BSCs used low to moderate-resolution satellite imagery like 

Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS) (Rodriguez et al. 2014; 

Weber et al. 2016). This can be problematic as BSCs generally co-occur with vegetation and can 

lead to mixed reflectance pixel values. Although satellite remote sensing is useful for large-scale 

BSCs cover assessments, newer high-resolution 3-band multispectral sensors on unmanned aerial 

systems (UASs) have recently been used successfully to map BSCs in Southeastern Utah at finer 

scales (Havrilla et al. 2020). However, multispectral sensors do not provide the same level of 

spectral resolution as hyperspectral sensors and only provide data in the visible region of the 

electromagnetic spectrum. This makes it difficult for multispectral sensors to discern the organic 

components and fine reflectance differences of BSCs. Hyperspectral sensors, which have 

hundreds of continuous bands and can examine larger areas within the electromagnetic spectrum, 

may currently be the best-suited method for remote detection of BSCs. 
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Hyperspectral and multispectral sensors have both been used to effectively map BSC 

distribution and to distinguish different successional stages across a heterogenous landscape 

(Havrilla et al. 2020; Weber et al. 2008). Using reflectance values through the visible, near-

infrared (NIR), and short-wave-infrared electromagnetic ranges show good results and has led to 

the development of multiple classification indices including the Crust Index, Biological Soil 

Crust Index, Continuum Removal Crust Identification Algorithm, and Crust Development Index 

(Rodriguez et al. 2017).  

The primary goal of this research was to quantify the abundance and distribution of 

biocrust at two unique research sites.  These sites represented two different ecological vegetation 

states of shrub encroachment (high and low) in a historically warm season grassland system. We 

investigated the utility of a UAV-mounted hyperspectral sensor to measure the spatial cover of 

BSCs in a shrub-dominated vs. predominantly grassland site located in the Chihuahuan desert, 

Southern New Mexico. Then subsequently incorporate C-fixation rates from local BSC 

communities to estimate the mean annual C-fixation rates for BSCs within our research plots.    
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METHODS 

Site description 

The study area was located in the Chihuahuan desert ecosystem of southern New Mexico, 

USA, within the 101,000-hectare Jornada experimental range. The regional climate of the study 

area is semiarid with a long-term mean annual precipitation of (245.1 mm) with a standard 

deviation of (85.0 mm) (Havstad et al. 2006). The primary land use at the Jornada is long-term 

research focused on increasing the sustainability and resilience of multiple land use techniques in 

modern-day semi-arid rangelands. This includes livestock production, ecological restoration, 

vegetation monitoring, and managing ecosystem change. This study focused on two sites that are 

part of Jornada’s Net Primary Productivity (NPP) plots. Both sites are approximately 1315 m 

above sea level. These sites represent undisturbed (ungrazed) ecosystems and were selected for 

their quality BSC communities. 

To explore BSC community differences relating to vegetation structure and ecological 

state change, two locations representing different points of grassland-to-shrubland transition 

were selected for comparison. Site 1, hereafter called T-east, is a shrub encroached historical 

grassland site dominated by Flourensia cernua DC. (Tarbush), Muhlenbergia Porteri Scribn 

(Bush muhly), Bouteloua eriopoda Torr. (Black grama), and Scleropogon brevifolius Phil. 

(Burro grass). The soil surface is a fine sandy loam (SoilWeb 2022). Site 2, hereafter called T-

west is a minimally shrub encroached historical grassland site dominated by Flourensia cernua 

DC. (Tarbush), and Scleropogon brevifolius Phil. (Burro grass). The soil surface is a fine sandy 
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loam. (SoilWeb 2022). Vegetation identification came from historical site data provided by the 

Jornada. 

The T-East and T-West NPP sites are located on the boundary of a historical grassland 

ecosystem being encroached by shrubs from the East. T-East has notably higher shrubs and 

fewer graminoids than T-West. This successional process is referred to as an ecological state 

transition and can be seen in Figure 6. This provided a unique opportunity to measure the 

different vegetative state's effects on remote sensing detection rates of the NPP site's BSCs 

communities.  

Transect data collection 

In February 2022 we established four (two in each of the NPP sites) 50 m transects, with 

a 10m buffer to avoid edge effects (These are referred to as transect 1 and transect 2 

respectively) within each of the T-west and T-east sites. Figure 1 indicates the location of the 

transects within the study sites. A detailed schematic of the transect design is shown in Figure 2. 

The line point intercept (LPI) method was employed to quantify the percent cover of BSCs and 

vegetation within the transects (Herrick et al. 2018). To create the transects, a measuring tape 

was stretched the length of the 50 m transect and a pin flag was dropped every 0.25 m. The 

ground cover was recorded as 1 of 5 cover classes at each pin-flag fall (bare soil, shrubs, grasses, 

dark biocrust (DBC), and light biocrust (LBC). This resulted in 200 observations of ground cover 

along each transect. Following field observation, the cover classes were converted to the 

percentage of ground cover for each transect (Herrick et al. 2018).  
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Figure 1: Diagram showing the placement of the 4, 50 m transects within the Net Primary 

Productivity (NPP) sites at the Jornada Experimental Range. The dashed grey line represents 

transect 1 and transect 2 in the NPP sites. Both the T-east and T-west NPP sites are laid out in 

the same fashion. Hollow circles indicate ½” rebar stakes marking the corners of the 70 m  x 70 

m site. Solid black circles indicate ⅜” rebar stakes which lay out the interior of the NPP sites.  
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Figure 2: Diagram indicates the 50m x 4m transect with the 10m buffer. The solid light blue line 

marks the LPI location within the plot. Solid black circles indicate ⅜” rebar stakes which locate 

the interior sections in the NPP sites.  The diagram was redrawn from Dr. Pietrasiak’s Jornada 

notification of proposed research study # 467, (2016). 

In-field spectral reflectance measurement  

The spectral signatures of DBC, LBC, bare soil, grasses, and shrubs were measured using 

an Analytical Spectral Devices (ASD) FieldSpec-IV spectroradiometer backpack scanner during 

UAS hyperspectral collection. The FieldSpec-IV measured reflectance between 350-2500 nm. 

The device's spectral sampling bandwidth was 1.4 nm between 350-1000 nm and 1.2 nm 

between 1001-2500 nm. The sensor was fitted with a 3° field of view (FOV) attachment. The 

senor was held approximately 20 cm above the sample for the soil surface scans (bare soil, DBC, 



 
 

10 
 

LBC) (area scanned 1.05 cm2), and 50 cm for the vegetation scans (shrubs, grasses) (area 

scanned 2.62 cm2) at nadir to ensure a consistent sampling technique for each sample class. Bare 

soil scans were taken from the pathway leading into the NPP sites. LBC scans were identified 

due to the darkened greenish hue prominent in the sites after the recent rains. Small soil plugs 

were excavated and examined to verify whether a developed crust was present or absent prior to 

sampling. The measurements were taken with clear sunny conditions between 12:54-1:12 pm for 

T-east plots, and 1:24-1:42 pm for T-west transects MST. Each scan was taken as an average of 

25 individual scans, and the samples were collected in reflectance format. Twenty sample scans 

were collected for the dark biocrust, light biocrust, and grasses while ten sample scans were 

collected for the shrub and bare soil for a total of 70 sample scans. The FieldSpec-IV was 

calibrated using a white reference panel every five samples to account for atmospheric change. 

This sampling design was chosen due to the highly heterogeneous nature of BSC’s composition 

(Pichel et al. 2016). 

Unmanned Aerial system data collection 

A two-hundred and seventy band hyperspectral image was collected on October 11, 2022 

for both transects at both sites using a Headwall Nano hyperspectral sensor (12 mm lens) 

mounted on DJI Matrice 600 Pro hexacopter with a Ronin-MX Gimbal kit. The Headwall nano 

sensor collected 270 spectral bands in the VNIR range (400-1000 nm) of the electromagnetic 

spectrum at a frame rate of 300 Hz. The spectral band sampling width was 2.2 nm between 400-

1000 nm. Prior to the flights, we located the ends of the flight lines by measuring out 6 m east of 
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the rebar stakes (numbers 15, 21, 36, 42 in Fig. 1). Temporary pin flags were placed at these 

points and the GPS coordinates were recorded. These GPS coordinates were used in the UgCS 

mission control flight planning software to guide the UAV along the transect path. Additionally, 

during this time white reference panels were placed at both ends of the transect in line with the 

pin flags, and ground targets were located around the transects rebar stakes on the Western edge 

of the transect. The soil surface conditions during this time were damp due to a light rain shower 

during the night or from heavy dew. Reliable precipitation measurements were not available for 

this period of time. 

Immediately before data collection the Headwall Nano hyperspectral camera was 

calibrated using a Spectralon® Diffuse Reflectance panel. This was done to ensure consistent 

reflectance values between sampling events. The flights were conducted between 10:28 am MST 

for the T-east site, and the last flight concluded at 12:13 pm MST for T-west. The average 

sustained altitude during the flight was 30 m. The wind speed during the flight times was low; 

approximately 0.45-2.24 ms-1 at the ground surface. Cloud conditions were clear during the 

flights.  

After the aerial images were collected and downloaded using Headwalls Hyperspec®III 

software. We performed two pre-processing steps with the hyperspectral data. First, the gps.imu 

data file that was recorded with the imagery was corrected using Trimble Applanix Postpac UAV 

software. This corrected the GPS flight points by offsetting them using nearby permanent base 

stations. Lastly, the aerial imagery was orthorectified using Headwalls SpectralView® software. 
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The orthorectification process stretched the hyperspectral image over a digital elevation model 

(DEM) accounting for the topographic variability within the site. The DEM had a 1m resolution 

and was acquired using the U.S. Geological Survey’s EarthExplorer web application (USGS 

EarthExplorer, 2022). The mosaicked hyperspectral aerial image's resolution (ground sampling 

distance) was approximately 1.84 cm per pixel. 

Image classification 

Spectral Angle mapper (SAM) was used to classify pixels into one of five cover classes 

using the aerial hyperspectral imagery and the FieldSpec-IV field scans. SAM is a supervised 

spectral classification model that uses a multidimensional angle to match imagery spectra to 

reference spectra (Kruse et al. 1993). The algorithm determines the spectral similarity between 

the reference spectra and image spectra by treating them as vectors in space with dimensionality 

equal to the number of bands (Petropoulos et al. 2010). SAM compares the angle between the 

reflectance spectra kernels (FieldSpec-IV .asd scans) to each pixel within each band 

simultaneously. The smaller the angle between the spectra the closer the match. Pixels greater 

than a specified maxim angle threshold would not be classified (Kruse et al. 1993) (Figure 3). 

This study used 0.10 rad as the threshold. The SAM classification assumes that the data is in 

reflectance format and is relatively insensitive to illumination and albedo effects (Shafri et al. 

2007). This, paired with the SAM’s ability to rapidly map spectral similarities between image 

spectra and reference data in hyperspectral images, makes it a valuable tool for hyperspectral 

image classification. 
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The SAM supervised classification process was implemented as follows. In the 

Environment of Visualizing Images (ENVI) software version 5.6 (64-bit), we imported the aerial 

hyperspectral imagery for the four transects. Using the quick statistics tool located in the data 

manager. We examined the histogram of all 270 bands' digital reflectance numbers to determine 

where to trim the beginning and end bands that contained the highest variability. Spectral 

trimming is a preprocessing tool aiming to improve the spectra’s quality by removing some of 

the bands before using them for qualitative analysis. It is a common step in preprocessing 

hyperspectral images to remove wavelength ranges with high signal-to-noise ratios (Wadoux et 

al. 2021). To remove the bands, we used the spectral subset option found in the Spectral Angle 

Mapper (SAM) tool to keep the region between 479.1370 - 919.684 nm for classification. The 

next step was to create a region of interest (ROI) using the ROI polygon tool and the ruler 

function to pull measurements off the ground targets located around the rebar markers to select 

only the transect area for classification. The ROI was selected using the spatial subset option 

found under the SAM classification tool parameters. 
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Figure 3. A redrawn plot of a test and reference spectra of a two-band image following Kruse et 

al. (1993).  

Method Comparison 

A comparative analysis was used to examine the correlation of the 5 ground cover class 

percentages between the LPI transect measurements and the SAM classification. To do this we 

compared the difference in ground cover estimates (LPI observations and SAM’s estimations) to 

assess the classification accuracy. This methodology was chosen as a more traditional ground 

truthing process was not permitted inside the long-term NPP sites which have strict access 

restrictions to protect the 33 year old study sites.  

A Chi-Square test of independence was used to determine if the SAM cover estimates 

and LPI cover measurements were independent of one another. If the results show the cover 
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estimates are not independent from one another one could conclude the LPI observations 

matched the SAMs estimates with a 95% probability. A Chi-Square goodness-of-fit test was 

performed by transect to test whether the SAM cover estimates matched the observed probability 

from the LPI measurements.  Lastly, a nonparametric Wilcoxon signed-ranked pairs analysis was 

used to determine the difference between the matched pairs between the SAM estimates and LPI 

measurements. The Wilcoxon p-value indicates the probability that the null hypothesis is true 

and that both populations are the same. The closer the value is to 1 the more likely the matched 

pairs of the five ground cover classes are not significantly different. Inversely the closer to zero 

the p-value is the less probable the 5 matched pairs are from the same population and are 

different. All statistical analyses were performed using RStudio version 4. 2. 0. (2022-04-22 

ucrt) and statistical significance was set to 0.05. 

Carbon Fixation 

Biocrust sampling for carbon fixation rates was conducted from May through July 2020 

approximately 500 m Southeast of the NPP plots by Mikaela Hoellrich. Two 30m transects were 

established forming an “X” at 15 m. Along these transects, 25 samples for each of the five BSCs 

types were collected (light cyanobacteria/algal, dark cyanobacteria/algal, phycolichen 

Clavascidium, cyanolichen Peltula, and moss biocrust) (Hoellrich, 2021). A total of 125 samples 

were collected from the site (5 samples from each of the five BSCs types and x5 for 

replications). The maximum annual average carbon fixation results of 5 BSC classes were 

combined into the two functional groups light (LBC) and dark (DBC) cover classes to match the 
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aerial survey (Table 3). The LBCs class represented the light cyanobacteria/algal BSCs. The 

DBCs class included the dark cyanobacteria/algal, phycolichen Clavascidium, cyanolichen 

Peltula, and moss BSCs groups. 

CO2 exchange measurements were made using portable photosynthesis instruments in the 

laboratory. This was done by cutting the BSCs with a 1.6 x 1.7 cm cookie cutter and wetting the 

BSCs to field capacity using distilled water. Then the BSCs were placed under low light 

conditions for 5 different light incubation time intervals (30 mins, 2 hrs, 6 hrs, 12 hrs, and 24 

hrs). Afterwards, the BSCs were placed into the LI-COR chamber where carbon fixation 

measurements were recorded under ambient temperature conditions for the 5 light periods. To 

account for BSCs carbon fixation diversity among the different species only the highest average 

fixation rates recorded from the five replicates light periods were compared. Average maximum 

yearly carbon fixation estimation rates were then calculated for each BSC type (Equation 1). 

This was done using 45 days of mean precipitation > 0.01 inches recorded in El Paso, TX 

(NOAA, 2019) to account for the potential window for BSC activity in the field. It’s well known 

that biocrust is only active during times when water is available and needs to be considered when 

determining annual rates of carbon fixation (Weber et al. 2008). For a detailed description of the 

methodology refer to Hoellrich (2021).  

 

The annual rate of C-fixation rate for maximum net fixation was calculated using the modified 

equation from (Hoellrich, 2021):  
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Equation 1:  

Where FBSC represents the maximum carbon fixation rates (μmol CO2 m-2 s-1) for light or dark 

BSC, t equals the annual total seconds per year for 12 hours of sunlight a day (43,200 seconds), r 

represents the number of days experiencing greater than 0.254mm of rainfall (45 days), n  

represents the conversion from grams of CO2 to μmol of carbon (1 mol CO2/1x106 μmol CO2)*(1 

mol C/1 mol CO2)*(12 g/1 mol C) 

 

The total maximum annual carbon fixation rates for each of the transects in the NPP sites were 

estimated using Equation 2. 

 

  

Where  represents annual carbon fixation rates for LBC or DBC and p represents the 

proportion of ground coverage as measured from LPI or estimated from hyperspectral imagery.  

 

RESULTS 

LPI transects 

LPI transect measurements are presented in Table 1. LBCs were the most abundant cover 

type across both NPP sites with an average cover of 42.1%. LBC’s average cover estimates were 

higher in T-East than T-West (48.2% and 36.1% respectively). The overall difference in light 

BSCs cover estimates was similar between the NPP sites (12.1%) and within the NPP sites where 
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the transects average difference was 12.4% (8.8% for T-East and 16.0% for T-West). DBC 

average coverage was 20.5% for both NPP sites but was more abundant in T-East than T-West 

(25.0% and 15.9% respectively). Within each NPP site, DBC cover differed between transects by 

2.1% and 0.3% for T-East and T-West respectively which was substantially smaller than the 

difference between NPP sites (9.2%) 

LPI measured average bare soil cover was 9.9% for T-East (within site difference = 

3.9%) and 23.8% for T-West (within site difference = 5.9%). Measured grass cover was 11.8% 

for T-East (within site difference = 11.0%) and 23.6% for T-West (within site difference = 9.3%) 

and average shrub cover was measured to be 5.1% for T-East (within site difference = 3.9%) and 

0.6% for T-West (within site difference = 0.4%).  

 

Table 1:  LPI measurements and the SAM estimates. The classes represent the five ground cover 

classes within the NPP plots. The LPI column is the measured ground cover percentage by class. 

The SAM column is the estimated ground cover percentage by class. The difference column 

shows the difference between the LPI% and the SAM% values.  Negative numbers indicate 

higher SAM estimates than LPI measurements by SAM and positive values are lower estimates 

than LPI measurements. Zero indicates no difference.  
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Field Reflectance Spectra 

Reflectance spectra of BSC, bare soil, and vegetation showed differences in overall 

reflectance values and in unique spectral features but showed little difference between the two 

NPP study sites (Figure 4).  All the cover classes range between 15% - 40% reflectance. LBC 

spectra exhibited higher reflectance than DBC, but bare soil had the highest overall reflectance 

values.   
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Figure 4: Field reflectance scans of bare soil, grass, shrubs, DBC, and LBC from both NPP sites.  

In T-East (right), Bare soil has the highest reflectance values followed by LBC with the second 

highest overall values. Shrubs are the third highest with a pronounced peak around 780-930 nm.  

Grasses and DBCs have the lowest recorded reflectance values. T-West (left) scans show similar 

results, but shrubs have the second highest reflectance value over LBCs. 

 

SAM estimates 

SAM cover estimates are presented in Table 1. LBC cover was among the most abundant 

cover types on both NPP sites with a total average LBC cover of 39.0% for both sites. The 

estimated average LBC cover was highest for T-East at 65.8% (within site difference of 1.1%) 

and 12.2% for T-West (within site difference of 8.4%). Average LBC cover varied more between 

NPP sites (53.6% difference) when compared to within site differences (1.1% for T-East and 

8.4% for T-West). The estimated average DBC cover was higher for T-East at 15.7% (within site 
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difference of 2.9%) than the 9.1% cover estimate for T-West (within site difference of 6.09%). 

Average DBC cover varied more between NPP sites (6.6% difference) when compared to 

transects within a site where differences again are smaller and ranged from 2.9% and 6.09% (for 

T-East and T-West respectively). 

Average estimated bare soil cover was higher at T-West at 23.0% (within site difference 

of 15.5%) than the 2.9% cover estimates for T-East (within site difference of 0.23%). The 

estimated average shrub cover was higher for T-West at 2.8% (within site difference of 2.6%) 

than the 1.1% estimate for T-East (within site difference of 0.3%). The estimated average grass 

cover was higher for T-West at 52.9% (within site difference of 1.9%) than the 14.4% for T-East 

(within site difference of 1.7%). Grasses had the highest predicted cover class area for T-West 

followed by bare soil and LBC.  

 

LPI & SAM comparison 

Both LPI measurements and SAM estimates demonstrated that LBC was one of the most 

abundant cover classes (Figure 5). The average LPI measured LBC cover was 42.1% and the 

average SAM estimates were 39.0%. The LPI observed average LBC was highest for T-East at 

48.16% and 36.1% for T-West compared with the estimated SAM average LBC for T-East at 

65.84% and 12.2% for T-West (difference of 17.7% for T-east and 23.9% for T-West).  

The average DBC was lower than LBC across both sites with the total average LPI 

observed equaling 20.5% and the total average SAM estimated equaling 12.4%. The LPI 

observed average DBC was highest for T-East at 25.0% and 15.9% for T-West compared with 
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the estimated SAM average DBC for T-East at 15.7% and 9.1% for T-West (difference of 9.3% 

for T-east and 6.8% for T-West). 

The LPI observed average bare soil was lower for T-East at 9.9% and 23.8% for T-West 

compared with the estimated SAM average bare soil for T-East at 2.9% and 23.0% for T-West 

(difference of 7.0% for T-east and 0.8% for T-West). The LPI observed average grasses were 

lower for T-East at 11.8% and 23.7% for T-West compared with the estimated SAM average 

grasses for T-East at 14.5% and 52.9% for T-West (difference of 2.7% for T-east and 29.2% for 

T-West). The LPI observed average shrub was highest for T-East at 5.1% and 0.6% for T-West 

compared with the estimated SAM average shrub for T-East at 1.1% and 2.8% for T-West 

(difference of 4.0% for T-east and 2.2% for T-West). 
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Figure 5:  Bar chart of the T-East and T-West NPP sites comparing the average percent cover 

from both LPI and SAM methods.  

 

The Chi-Square test for independence p-value was 0.2202 which suggests there is not 

enough evidence to conclude that LPI measurement and SAM estimates are independent or 

significantly different from one another. The Chi-Square goodness of fit results show the SAM 

estimates do not occur at the probabilities expected from the LPI measurements (Table 2), all 

results are <0.001). 

 

Table 2: Chi-Square goodness of fit test’s p-values comparing the SAM estimates from the LPI 

observed values. 

 

The nonparametric Wilcoxon signed-ranked pairs analysis for all the matched cover class 

pairs between the LPI measurements and the SAM estimates for T-West had a p-value of 0.7987, 

V = 30.5. T-East’s matched pairs signed-ranked pairs had a p-value of 0.9188, V =29. 
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Carbon fixation measurements 

The maximum average fixation rate for BSC was 4.56 μmol CO2 m-2 s-1 for LBC and 

5.21 μmol CO2 m-2 s-1 for DBC (Hoellrich, 2021).  The annual LPI measured total fixed CO2 or 

LBCs ranged from 7,672.45 g CO2 yr-1 to 10,264.69 g CO2 yr-1 depending on the site. The 

difference between sites was 2,592.24 g CO2 yr-1. In comparison, the SAMs estimated range of 

carbon fixation was between 2,600.73 g CO2 yr-1 and 14,006.79 g CO2 yr-1 between sites. The 

difference between sites was 11,406.06 g CO2 yr-1. The annual total fixed grams of CO2 for 

DBCs using the LPI observed coverage values ranged from 3,860.05 and 6,083.06 g CO2 yr-1 

with a difference of 2,223.01 g CO2 yr-1. In comparison the SAM’s estimated range was 2,203.51 

and 3,821.21 g CO2 yr-1 with a difference of 1,617.70 g CO2 yr-1.  

Table 3:  Average estimates of the maximum annual carbon fixation rates for LBC and DBC 

(Hoellrich, 2021). 

 

 

Table 4:  Estimated total annual fixed grams of CO2 yr-1 for LBC, and DBC using LPI and SAM 

for both NPP sites. 
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DISCUSSION  

We found that Hyperspectrally-derived DBC cover was always less than the LPI 

measurements. This is likely because the DBC at the NPP sites were found to co-occur in close 

proximity to shrubs which obscured the aerial sensor’s view of DBCs. These patches of dark 

BSCs were observed during fieldwork and the pattern of their preference to occur under the 

northeastern sides of the shrubs was noted. This pattern can be viewed in aerial imagery for T-

East (Figure 6). Physical and biological benefits of the relationship between shrubs and DBCs 

can include lower temperatures during times of extreme heat, protection from physical 

disturbances, higher amount of available nutrients, and longer access to water during rain events 

(Weber et al. 2008). This proximal relationship between the dark BSCs and the shrubs made it 

more difficult to discern BSCs from vegetation cover using the UAV hyperspectral sensor.  

The relationship between the LBCs and the shrubs was opposite the DBCs. The LBCs 

were more prominently observed in the interspaces between the vegetation while performing the 

LPI. This caused SAM to estimate a higher average LBC ground cover in the T-East NPP site. 
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The T-East site contained large interspatial gaps between the vegetation prompting higher 

estimated LBCs cover when compared with the observed LBCs.  Inversely T-West’s light BSC 

coverage values had the lowest detection rate due to the high density of grasses and shrub 

vegetation cover. 

The grass cover class was estimated higher by SAM in almost every transect except for 

T-East transect 1.  Conversely, the shrub's SAM estimated cover values were underestimated in 

both NPP sites. This could have been the result of setting our SAM thresholds to favor the BSC 

detection over vegetation cover.  It would be beneficial to be able to detect BSC and vegetation 

cover types equally to determine how much the vegetative community affects BSC detection. 

Accurate detection of all the cover types would be needed to determine if historical grasslands to 

shrubland state transitions alter BSC communities. This would allow for inferences to be made 

about the influence of climate change on BSC communities while determining the effects of 

shrub encroachment.   

The Wilcoxon sign ranked pairs test indicated the SAM estimates were more accurate for 

T-East than for T-West. These results seem to correlate with the vegetation field conditions 

previously mentioned above. The T-West NPP site’s vegetation was denser and obscured more 

of the soil’s surface. In contrast, the vegetation at T-East had higher shrub densities, but lower 

grass coverage which resulted in more of the soil’s surface area being detectable from the aerial 

sensor.  
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Figure 6: Pseudo color composite of T-West and T-East NPP sites orthorectified hyperspectral 

full reflectance images. Represented by three bands located in the Red (band 110, 640.74nm), 

Green (band 69, 549.97nm), and Blue (band 33, 470.28nm) color spectrum. 
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BSC's Carbon fixation capacity 

The average estimates of the annual carbon fixation rates for light BSCs were 4.56 µmol 

CO2 m-2 s-1 and 5.21 µmol CO2 m-2 s-1 for the dark BSCs (Hoellrich, 2021).  These two fixation 

rates appear to be closer in magnitude than the existing but limited BSC fixation rates from the 

Chihuahuan Desert system (Grote et al. 2010; Housman et al. 2006), who reported C-fixation 

rates of 1.93 μmol CO2 m-2 s-1 in LBC and 3.49 μmol CO2 m-2 s-1 in DBC under ideal moisture 

and temperature conditions (Grote et al. 2010).  The estimated C-fixation rates from Hoellrich 

(2021) are both higher than Grote's (2010) findings and could be the result of different laboratory 

methodologies. It’s generally believed that rates of C fixation by light BSCs are generally low 

(approximately 1 µmol CO2 m-2 s-1 m2 s1), due to their lower overall biomass and chlorophyll 

content (Garcia-Pichel and Belnap, 1996), and is limited by lower amounts of light penetrating 

the sub-soils surface region which they occupy (Lange, 2003). Contrarily, dark BSCs contain 

lichens and mosses with greater biomass and reside on the soil surface allowing for 

photosynthetic rates greater than 10 µmol CO2 m-2 s-1 (Lange, 2003; Housman et al. 2006).  It is 

well established that the rates of carbon fixation in the same biocrust type can vary largely across 

different ecosystems and are often highly localized (Grote et al., 2010; Pietrasiak, 2012; Miralles 

et al. 2018) The rates are dependent on several abiotic factors like water and temperature which 

are highly variable between deserts (Grote et al. 2010).  

Because the LBC SAM area estimates were higher than the LPI measurements for T-

East, the total annual LBC carbon fixation rates were 36.4% higher than when using area derived 
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from the LPI measurements.  Comparatively, the DBC fixation rates from SAM were 37.2% 

lower than LPI for T-East. Both LBC and DBC for the T-west site were lower (66.1% and 42.9% 

respectively) when compared to carbon fixation rates using the LPI methodology.  

Measurement Uncertainty  

The cover estimates and C fixation rates suggest that substantial differences exist 

between ground (LPI) and aerial (SAM) measurement methodologies for detecting BSC in 

drylands. In addition to the physiological attributes of BSC (e.g., DBC occurring under shrubs), 

these differences can be partially explained by measurement uncertainties which confound 

definitive comparisons between methods. While it was difficult to calculate quantitative 

uncertainty, the following sections discuss possible, and likely common, sources of measurement 

uncertainty when using hyperspectral imagery to measure BSC cover. The most common sources 

of uncertainty occur from temporal conditions, biological behavior of biocrust, operator error and 

variable weather conditions. 

Temporal conditions 

Seasonality strongly influences the ability to remotely detect BSC. This includes the 

vegetative community and the BSC communities themselves. The structure of vegetation 

communities can change seasonally in drylands significantly. The ground surface is most visible 

when higher-order plants are senesced during the winter months, early spring, or before the 

arrival of the monsoon rains. However, during this time bare soil, dry BSCs, and vegetation can 
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exhibit similar spectral characteristics (Karnieli et al. 1999). The most favorable temporal 

conditions for detecting BSC are following the first rain event after enough time has passed to 

enable BSCs to become active but, before the leafing and growth of trees, shrubs, perennials, or 

annuals (Weber et al. 2008). This can be challenging because drylands are known to have 

irregular growing seasons due to unpredictable rainfall patterns and frequent periods of drought 

(Smith et al. 2019). Some of our measurement uncertainty may be because our field sampling 

and image acquisition occurred during the Fall of 2022, due to equipment problems, after the 

shrubs and grasses had leafed out following the summer monsoons.  

Biological behavior of biocrust  

Another source of difficulties encountered in remotely sensing BSC is their biological 

behavior. BSC’s are often referred to as cryptograms because they withdraw into the soil when 

conditions become too dry. This effectively hides the BSC under the soil and makes it very 

difficult to determine their spatial coverage and community structure. This is often why LBC 

reflectance values will resemble bare soil (Chen et al. 2005; Karnieli et al. 1999). This can 

potentially be mitigated by timing image acquisition immediately following precipitation events. 

Additionally, as discussed above DBC tends to prefer to grow in close proximity to shrubs. This 

is a principal concern when measuring BSC in drylands dominated by shrubs (Havrilla et al. 

2020). It can be challenging to account for BSCs growing under the shrub’s canopy cover when 

using passive sensors. It is difficult to see how passive remote sensing could overcome this 

limitation.  
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 Operator error  

A common example of operator error is the wearing of different colored clothes during 

different field spectra measurement campaigns. Surprisingly, bright and dark clothing can 

influence the reflectance values of the objects of interest (Havrilla, et al. 2020), or result in 

inconsistent field calibration of the sensor system before data collection. Additionally, spectral 

measurements from different vertical angles or cardinal directions can also result in increased 

reflectance variability. This can lower the quality of the training data and reduce the overall 

effectiveness of the post-classification process. Generally, this source of uncertainty can often be 

minimized if the operator of the spectral measurement device (e.g., field spec) ensures that the 

FOV attachment is consistent during measurement.  

Variable weather conditions 

As previously mentioned, the timing of sampling is critical to the successful mapping of 

biocrust. Ideal sampling conditions include clear skies, sunny weather settings, and low wind 

speeds (Rodriguez et al. 2014; Karnieli et al. 1999; Havrilla et al. 2020; Weber et al. 2008; Chen 

et a. 2005). When using passive sensors, it is best to sample during low wind and clear 

atmospheric conditions. Examples of poor atmospheric conditions can include high amounts of 

suspended particulates like smoke, dust, and water (humidity). High concentrations of these in 

the atmosphere are known to interfere with the transmission of energy.  Cloud cover can lead to 

changes in reflectance values and cause problems during calibration techniques. Unfortunately, it 

is sometimes difficult to time image acquisition for both optimal biological behavior (after a rain 
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event) and optimal weather conditions which can be windy and cloudy up to several days after a 

rain event. 

Future research: 

Advancements in remote sensing technology paired with reduction of cost are making it 

easier for scientists to collect data on the environment. Examples like Havrilla et al. (2020) 

which used a consumer-grade multispectral camera to map biocrust show that successful remote 

sensing of BSCs can be performed at a low cost. Hyperspectral sensors have also notably 

dropped in cost substantially over the last decade, with major improvements made to the sensors, 

GPS, UAV’s, collection software, and processing software. However, there are still many 

improvements necessary before UAV-mounted hyperspectral sensor systems and software 

packages are off-the-shelf ready for BSC detection. One highly anticipated improvement would 

be the hyperspectral imagery post-processing step. Hyperspectral image analysis is currently 

limited to a few software programs which are expensive and have limited manipulation tools. 

Lastly, with advances in technology and lower costs of equipment. Thermal infrared (TIR) and 

high-resolution LIDAR are being incorporated into the remote detection of BSCs. TIR sensors 

can penetrate cloud cover, collect data within shadows, and can even be used to collect data at 

night (Rozenstein et al. 2017). These sensor systems could be paired with multispectral or 

hyperspectral sensors which could aid in BSC coverage detection under low height shrubland 

ecosystems.   
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CONCLUSION 

This research investigated the utility of a UAV-mounted hyperspectral sensor to measure 

the spatial cover of BSCs in shrub-dominated and predominantly grassland sites and compared 

results to ground-based measurements. Subsequently, this research used cover estimates and C-

fixation rates from local BSC communities to estimate the mean annual C-fixation rates for light 

(LBC) and dark (DBC) BSCs within the two research plots.  

Results indicate large differences between ground-based and hyperspectral-based 

estimates of BSC cover. Hyperspectral imagery classification tends to estimate greater LBC and 

lower DBC cover than ground-based measurement. These differences translated into large 

differences in estimated carbon fixation rates. These differences appear to be mostly attributable 

to hyperspectral measurement uncertainties because of vegetation structure and the biological 

behavior of BSC as well as image acquisition timing. DBC were predominantly located under 

shrubs which made remote detection of DBC difficult in the shrub dominated plot. While LBCs 

were located in shrub interspaces, and hence were more easily detectable in the shrub site, the 

denser grass cover in the grassland site made the detection of LBCs more difficult. It is possible 

that the complications of vegetation structure and BSC behavior on hyperspectral BSC detection 

could have been mitigated had hyperspectral imagery been collected during optimal conditions. 

Optimal conditions for BSC detection occur shortly after the first rain event following a 

prolonged dry period when BSCs have become active but before the rapid growth of shrubs and 

grasses obscures BSC. 
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While UAV platforms are an attractive tool for determining the spatial distribution of 

BSC because they can cover large areas without causing physical degradation to BSC 

communities, this investigation suggests that UAV-based hyperspectral detection of biocrusts in 

arid rangelands may not be as accurate as ground-based measurements.  
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