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Abstract

This study proposes a new method for computing transpiration across an eddy covariance
footprint using field observations of plant sap flow, phytomorphology sampling, uncrewed
aerial system (UAS) digital image processing, and eddy covariance micrometeorological
measurements. The method is applied to the Jornada Experimental Range, New Mexico
where we address three key questions: (1) How do daily summer transpiration rates of
Mesquite (Prosopis glandulosa) and Creosote (Larrea tridentate) individuals of different ages
compare? (2) How can the contributions of plants of varying sizes and ages be integrated for
terrain-wide transpiration estimates? (3) What is the contribution of transpiration to total
evapotranspiration within the eddy covariance footprint? Data collected from June to October
2022, during the North American Monsoon season, include hourly evapotranspiration and
precipitation rates from the Ameriflux eddy covariance system (US Jo-1 Bajada site) and sap
flux rates from heat-balance sensors. We used plant biometric measurements and supervised
classification of RGB imagery to upscale from the patch- to footprint-scale estimations. Our
results show that Mesquite’s average daily summer (JJAS) transpiration is about 2.9 mm/day,
while Creosote’s is 1.7 mm/day. A proportional relationship between the plant’s horizontal
projected area and the number of water flow conduits was extended to the eddy covariance
footprint via UAS data. The summer transpiration to evapotranspiration ratio (T/ET) was
0.52, increasing to 0.83 following significant precipitation in September 2022. Further testing
of this method is needed in different regions to validate its applicability. With appropriate

adjustments, it could be relevant for other areas with similar ecological conditions.
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Chapter 1

Introduction & Background

Partitioning evapotranspiration (ET) is crucial for comprehensively understanding the water
balance across diverse ecosystems, including those in arid conditions, complex terrain, or under
intense anthropogenic influence [64]. By discerning the individual contributions of evaporation
(E) from soil and wetted surfaces and transpiration (T') from vegetation, researchers can better
parameterize land surface-atmosphere models and understand the relationships between soil
moisture, atmospheric demand, carbon fluxes, and stocks.

ET partitioning is particularly interesting in arid and semi-arid regions where water
scarcity is a pressing issue and vegetation succession is undergoing [62]. While ET in dryland
ecosystems has been successfully estimated using the Bowen Ratio [14, 36, 61] and open path
Eddy Covariance techniques, the effects of changes in ecohydrological processes overtime
on the partitioning of ET fluxes (e.g. Creosote bush expansion), remain poorly understood
[41, 52]. However, it has been suggested that combining micro-meteorological (Bowen ratio
or eddy covariance data), eco-physiological (sap-flow or isotopic measurements), hydrological
(micro-lysimeters, tensiometers) and high-resolution remote sensing methods would allow for
ET partitioning approximations [76, 78, 60].

Since most summer precipitation (P) events in dryland ecosystems are relatively few
and modest in the northern Chihuahuan desert (i.e. southwestern USA; [51]), only the
top few centimeters of the soil are typically saturated after rain showers, and the water is
quickly consumed by soil evaporation (E) and shallow-root plant transpiration (T) due to

the high atmospheric demand for water [6, 27, 59]. However, deeper soil moisture infiltrated



after stratiform winter and spring precipitation or intense, but rare, summer convective
thundershowers is associated with higher contributions of T [37]. Previous research has
shown that T/ET tends to be high after isolated, individual intense summer precipitation
events [57, 69]. Another factor that controls the partitioning of ET is the depth of the soil
horizon. The presence of indurated and spatially-continuous caliche (CaCO3) layers limits
deep (> 1m) water flow [15, 47] which favors shallow water accumulation (above and around
the root-zone layer) and, therefore, vegetation water use for long periods [70]. In synthesis,
despite other contributing factors, in arid and semi-arid regions, the frequency and strength
of the precipitation pulses, the presence of a calcium carbonate horizon, and the spatial
distribution and type of plant individuals affect the vertical distribution of soil moisture and
consequently, the partitioning of ET [42, 35].

Inputs and outputs of water (e.g., P, E, T, and runoff R) to and from these ecosystems
are intrinsically related to the soil-vegetation carbon budget. In the minutes following
precipitation, there is a piston-like sudden release of volatile carbon from the soil [13, 18]
that is then followed by a slower-pace increase in vegetation carbon capture via net plant
productivity [27]. Unfortunately, data on the partitioning of ET and carbon exchange
characteristics at an adequate temporal and regional scale are insufficient to understand these
critical ecosystem transient states [60], and this is why information on how and when plants
use soil moisture is still required [7, 52].

Only a few empirical studies have measured T/ET in semiarid shrublands over short
periods due to the high cost associated with equipment maintenance and data retrieval [45]
and their results present a wide range of estimations [54]. Long-term T/ET ratios in drylands
are typically lower than 0.5, but in wetter climates, they can reach up to 0.7 [5]. However,
daily rates by species individuals have rarely been estimated. [17] conducted a study in a
semiarid northeastern Colorado shortgrass steppe from May 1999 to October 2001 using a
basic isotopic mass balance technique. The sum of total T and E losses was comparable to
the actual ET determined from a nearby Bowen ratio energy balance system. The amount

of water lost by evaporation (E/ET) varied depending on when precipitation inputs were



received; it ranged from zero to roughly 40% during the growing season and up to 90% during
the dormant season. [38] used commercially available gauges to determine the daily and
seasonal water use of three-year-old Chardonnay plants in New Deal, Texas, to evaluate the
applicability of the stem heat balancing method. According to their findings, the stem flow
gauges’ accuracy ranged from 5% to 10% of the daily transpiration amount as determined by
gravimetric measurements. Inter-plant transpiration variability was significantly decreased
when the area of its leaves normalized the total sap flow of each plant. [61] measured whole
plant T using the heat balance, sap flow method, ET, and net ecosystem exchange (NEE)
of CO, using the Bowen ratio approach. They discovered that E outnumbered T at the
onset of the rainy season. E peaked and began to fall quickly after rain events once the rain
started, while T often reached its peak hours (or sometimes days) following E and began to
decrease subsequently, with T values proportional to the size of the precipitation pulse. An
overarching observation is the lack of generalizing methods for extending individual plant T
measurements over larger areas like those of eddy covariance footprints or ecosystem regions
where the individual observations can be used as representative of the entire community
dynamics.

The objectives of this study are to (1) find out how the dominant Mesquite (Prosopis
glandulosa) and Creosote bush (Larrea tridentata) vegetation species, typical of the dryland
southwestern United States use water under different summer weather conditions and to
(2) propose and test an Unmanned Aerial System- (UAS) based method to scale up T/ET
measurements over an eddy covariance footprint. This research uses a sap flux network
of sensors installed in different-age Mesquite and Creosote individuals and measures their
branch distribution, aiming to establish a biometric relation between T and branch density
that serves as a basis to scale up an individual plant to their footprint-scale activity via UAS
RGB imagery. Auxiliary variables from a nearby micro-meteorological station (i.e., ET and
P) are also used. The T rate differences between Creosote and Mesquite might vary due to
plant root depth, branch diameter, rainfall amounts, and water use efficiency (carbon fixed

per water loss rates). With a better understanding of plant responses to precipitation and



soil moisture changes, it will be easier to explain the effects of global climate change and
vegetation succession on semiarid ecosystems. The results from this research will help in land
surface and hydrologic model calibration and validation efforts and are expected to serve as a

standard method for ET partitioning at the eddy covariance footprint.



Chapter 2

Study Area

This research was conducted at the Jornada Experimental Range (JER) within the eddy
tower footprint of the Ameriflux Bajada (US-Jol) site in southern New Mexico (USA) in the
northern range of the Chihuahuan desert (Figure 2.1). Roughly, the JER comprises 200,000
hectares of land within New Mexico’s Dona Ana County. Within the study site (Figure
2.1a), vegetation is dominated by mixed shrublands, including honey Mesquite (Prosopis
Glandulosa) and Creosote shrub (Larrea Tridentata) [66, 2]. Outside the study area, desert
grasslands intermix with the shrubs [43]. The JER climate is characterized by a mean annual
air temperature of 15 °C and an average annual precipitation of 233 mm (1991-2020) [4]. The
lowest annual precipitation on record was 77.0 mm in 1953, and the highest was 507.2 mm
in 1984. During the North American Monsoon season (JAS), the average diurnal minimum
and maximum temperatures oscillate between 13°C and 36°C, with more than 50% of total
annual precipitation occurring during these months. Details about the eddy footprint area
(Figure 1a), such as mean elevation, soil textural types, terrain, and vegetation characteristics,

are presented in Table 3.1.
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Figure 2.1: (a) Ameriflux Bajada (US-Jol) eddy covariance flux footprint computed
from the climatological approximation by [34] on an RGB raster image
from the growing season (summer) of 2022. The outermost red contour
line of the source area represents the region that contributes to the
ET flux 10% of the time. Successive inward contour lines represent
increments of 10% to the ET total flux up to 90%. The image also
includes the location of the eight sapflow sensors (yellow box). (b)
Location of the Chihuahuan desert and Jornada Experimental Range
(JER) within the southwestern U.S.



Chapter 3

Material & Methods

3.0.1 Micrometeorological Measurements

This study’s data analysis period is from June 1% to September 30" of 2022. At US-Jol,
P, ET, and other micro-meteorological and energy fluxes are continuously measured with
quality control assurance JAnthony. P is continuously measured with a Texas Electronics
Campbell Scientific tipping bucket rain gauge (TE525-L15-PT) while latent heat flux (AE)
with an open-path gas analyzer (LI-7500 LICOR) sensor. The ET rate is then retrieved by
converting energy AE (W.m™2) to equivalent water flux (mm.day~!) by using the latent heat
of vaporization and density of water at the prescribed temperatures. All micrometeorological

data are aggregated in daily steps.

3.0.2 Plant Sapflux Measurements and Transpiration Values

Besides the micrometeorological measurements of the US-Jol tower, a sapflow network of
eight sensors was installed in May 28 of 2022 to develop this study. Previous studies have
successfully used these types of sensors, including in arid and semi-arid regions [68, 65, 33].
Eight EXO sap flow (SGEX) devices manufactured by Dynamax, Inc. were installed within the
US-Jol eddy footprint on four Mesquite and four Creosote bushes in a sub-area (approximately
10 m x 10 m size), 85 m east of the US-Jol eddy tower (see Figure 2.1 and Figure 3.1).
Sap sensor installations were performed on plant individuals of different ages, including

young and mature, and aimed to represent the observed range of species within the whole
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Table 3.1: US-Jol eddy footprint areal characteristics including terrain, soil textu-
ral types, and vegetation [71]

Characteristic Values

Elevation Range (m) Min=1,376 m , Max=1,443 m
Areal Creosote Coverage 27%

Areal Mesquite Coverage 59%

Bare Soil Coverage 14%

Average Creosote Height < 1.5m

Average Mesquite Height < 2m

Soil Textural Types Sandy Loam & Silt Loam
Caliche Layer Depth Variable from 0 cm to 60 cm

eddy footprint (Figure 3.1). Figure 3.2 illustrates the typical sensor installation on a study
branch (b) in a Mesquite individual at an arbitrary measurement height (H). Such a height,
H that varied from 1 m to 1.25 m above ground, was determined individually for each tree
according to the recommendations of the sap sensor manual to guarantee a minimum branch
diameter to avoid malfunctioning. Installations required careful procedures as indicated by
the system user manual. The selected stems were first cleared out with a pointed knife to
prevent interference during the installation. Then, sandpaper was used to remove the stem’s
decaying bark to improve the sensors’ contact with the cambium layer. Stems were then wiped
with a paper towel and sprayed with canola oil to prevent sensors from adhering. The next
stage was to wrap and stretch the double velcro to secure the heater stick’s upper and lower
thermocouple sections. Soft Gore-Tex material was used to prevent rainfall from penetrating
the stem. The next layer of protection consisted of an insulating ring and reflective insulation
material to prevent solar radiation from damaging stems [79]. At the top and bottom of the
sap flow-installed stem, wire ties and tape were used to secure it. A data logger and a 12V,
100 Ah deep cycle battery were also installed to maintain the system continuously powered,
along with a 75-85 Watt solar panel to provide energy to the system under sunlight. After
installation, sensors were set to record heat fluxes at 1-min intervals (At) and then averaged

and stored at 30-minute time steps on a Campbell Scientific CR1000X datalogger. Heat



fluxes measured by the system are then converted into water flux (F in g) using equation (1)

as suggested by [56, 1].

P — Qv — Qr
F = 1
cp - AT (1)
Where:
F = Total mass of sapflow transport (g) across the

measuring branch b during time interval At.
P, = Power input to the stem from the heater (W).
@), = The vertical or axial heat conduction through
the stem (W).
@Q)» = Rate of heat transfer through radiation (W).
¢, = Specific heat of water (J/g-° C).

AT = Temperature increase of sap (°C).

During the measurement period, the M4 and C4 sapflow sensors malfunctioned due
to extremely dry conditions, causing abnormally hot and prolonged periods without data.
However, the other plant individuals recorded data correctly. Consequently, the malfunctioning
sensors (M4 and C4) were excluded from the analysis. This type of sensor malfunctioning
has been reported in previous studies during extremely dry conditions [8].

Sapflux sensors provide the total water flow across the branch diameter. This value has to
be expressed per plant individual, assuming that the mass flux is approximately equal across
all plant branches of the same individual for the same instant of time ¢, as suggested by [72].
Thus, equation (2) was derived to compute T3;* as the daily total 7' (g/d) of vegetation
individual type i (e.g., Mesquite, M or Creosote C) and number j (e.g., 1, 2, 3, 4). Note that
the next set of equations (2 through 8) provides a time series of values for each time step t at
daily temporal resolution.

-
T T ﬁb;‘sz‘j @

ij
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Where,
TP = Measured daily transpiration (g/d) along branch b

of plant 7.

¢;; = Average branch diameter (mm) at sensor height, H
of plant ij (constant during the study).

N;; = Number of branches (at sensor height, H of plant

ij (constant during the study).

b

7; = Diameter (mm) of branch b of plant ij where the

sapflow sensor is installed (constant during the study).

A precision caliper was used to determine gzﬁi-’j and compute the distributions of all other ¢;;
across the measurement height H. With T3, values derived (in g/d), a subsequent relationship
was derived to express this water mass flux as a water depth rate (T;; in mm/d) dividing by
the density of water, the typical Leaf Area Index (LAIL;) of Mesquite and Creosote and the

horizontally projected ground surface area (A;;) that a tree occupies ([23] (equation 3).

T I 3
v puwAij LALj )
Where:
T = Daily transpiration (g/d) of plant ij.
Puw = Density of water (0.001 g/mm; constant).
Aij = Horizontal ground projection in mm? of plant ij

(constant during the study).
LAI; = Leaf Area Index of plant ¢j (constant during the

study but different for M and C).

11



Figure 3.2: Schematic of a typical Mesquite bush sensor installation at branch ”b”
of diameter ¢;; (qf)ﬁ-’j) and other branches at the same height H. This
H varies for each plant but roughly ranges from 1 m to 1.25 m above
ground. Nj;; is the total number of branches of different diameters ¢
at height H. i is the tree type (i.e., M or C), and j is the tree number
(e.g., 1,2,3 and 4). Installations at all Mesquite and Creosote individuals
mimic this description

A;; was measured using low-altitude UAS imagery of each of the eight studied individuals.
Since this study did not measure leaf area directly, values were obtained from results reported
in the literature. According to several consulted studies [16, 58, 28] LATI of Chihuahuan
desert Mesquite and Creosote individuals can vary depending on several factors, including
the specific species, age, and environmental conditions. In general, the LAI for Mesquite
trees ranges from about 1 to 3, and Creosote’s between 0.5 and 2. Both species, particularly
Mesquite, undergo leaf growth during the summer monsoon season due to higher temperatures
and more water availability from the summer rains. Literature estimates provide Mesquite
with LAT values ranging from 2 to 3 and Creosote between 1 to 1.5 ([23]. Since equation

(3) needs a single value for both M and C, LAI,;;=2.5 and LAI+;=1.25 were selected to

12



represent the typical conditions of summer in the Chihuahuan desert.

3.0.3 Individual Plant to Footprint Transpiration Rates

The areal extrapolation of the individual plant transpiration estimations (T;;) via the sapflow
network to the eddy tower footprint (T, ), where u is either Mesquite or Creosote and v is
the tree number within the footprint, was conducted by understanding: (A) the inter-plant
variability of the term Ti»’j/ qbg’j across the days, (B) the density function of ¢;; at each sensor
level H for each of the eight sampled plants that allow to come up with a reasonable estimate
of g_zﬁij, (C) The plant’s horizontal projected areas A,, that can be estimated via UAS remote
sensing, and (D) A biometric relation between N, and A,,.

(A) and (B) were determined when resolving the terms of equations (2) and (3) via the
sapflow measurements and biometric characteristics of the sapflow patch. To resolve (C)
and (D), small UAS flying 120 m above the ground during the growing season resulted in
3 c¢m pixel resolution images of the US-Jol eddy covariance footprint. The images were
then mosaicked and geo-rectified using Agisoft Metashape. The resulting single image was
then classified using a supervised methodology in ArcGIS Pro to obtain two single classes:
Mesquite and Creosote. This classified image also allowed the measurement of A,, as an
attribute of each tree individual reflecting their age and other biometric characteristics. Along
with the UAS flights, ground manual sampling was conducted to find N, for 33 (16 M
and 17 C) individuals within the 70% source contribution contour line shown in Figure 1
as representative of the footprint vegetation to find a relationship between N,, and A,
(measured via UAS imagery).

Equation (4) was then applied to each plant individual of the classified image within
the 10% source contribution area of Figure 1 at a daily time step for the study period.
The ratio T?, /¢ was taken as the mean T flux value per unit branch for all measured
Mesquite or Creosote individuals within the sapflow network patch for each time step t (i.e.,
mean[T?;/¢l;]). So this mean[T};/¢?;] corresponds to two time series computed from the

J J

three independent measurements for Mesquite or Creosote species for each daily time step t

13



using equation (3).

T&)&%vAhv

T = 4
PuwAuw LAL, @
Where:
T = Daily transpiration (g/d) of plant uv.
Do = Average branch diameter (mm) at sensor height,

H of plant uv (constant during the study).

U = Tree type where 1 is M and 2 is C.

v = Tree number.

Tt /@b, = Mean [Z::j] for M (u=i=1) or C (u=i=2).

Ny = Number of branches at height H for individual

uv(constant during the study).
Puw = Density of water (0.001 g/mm?; constant.)
Ay = Horizontal projection of ground covered area

of plant uv in mm? (constant during study).
LAIL,, = Leaf Area Index of plant uv (constant

for M and C during study).

With all T, estimations, an arithmetic average is computed following equation (5) to

find out the total transpiration (T in mm/d) within the eddy footprint.
2 nmnc

T:%ZZTM (5)

u=1 ov=1

14



Where,
T = Total daily transpiration (mm/d) within footprint.

n = Total number of trees of all species within footprint.
u = Tree type. u=1 is M and u=2 is C.
v = Tree number.

ny; = Total number of M individuals within footprint.

nc = Total number of C individuals within footprint.

Finally, equations 6 and 7 are used to understand the contribution of mesquite (M) or

creosote (C) individually to the total daily T.

Tu=—> Tus 6
. 1 &<

T, = — T 7
c nCZc (7)

Where,

Ty = Daily T rate contribution for M over footprint.
T = Daily T rate contribution for C over footprint.
ny; = Total number of M individuals within footprint.
ne = Total number of C individuals within footprint.
u = Tree type. u=1is M and u=2 is C.
v = Tree number.
T, = Transpiration rate of M individual v.

Tc, = Transpiration rate of C individual v.
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Chapter 4

Results

4.0.1 Biometric Measurements of Sapflow Patch Plants

Figure 4.1 (a and b) shows the fitted frequency distributions of plant branch diameters (¢;;)
at measurement height H for the 4 Mesquite (M) and 4 Creosote (C) individuals with sapflow
sensors. The mean values (q_sz) of these diameters are provided in Table 2. The data indicate
that Mesquite individuals have branch diameters ranging from 6.8 mm to 18.3 mm, while
Creosote individuals range from 5.1 mm to 12.3 mm. Among the Mesquite plants, M3 has the
thinnest branches, whereas M1, M2, and M4 have thicker branches with narrower distribution
spreads compared to M3. On the other hand, C individuals present slightly smaller mean

diameter values (compared to all M), but their distributions appear more similar in terms of

data dispersion around the mean.
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Figure 4.1: Probability density functions of the branch diameters, ¢;;, at the sensor
measurement height (H) for the (a) four Mesquite and (b) four Creosote
observed individuals

Table 4.1 presents the values of plant biometric features related to equations (2) and (3)

for the sap flow-installed M and C plant branches. The branch diameter ranges with sensor

b
ij

installation (¢?;) are 14.6 mm to 18.2 mm for M and 9.2 to 11.4 mm for C. These values are
slightly larger than the average branch diameter values q_bij (Table 4.1, column 3) at height H
(Figure 3.2) as suggested by the sensor manual to avoid overheating.

The ground projected areas A;; (Table 4.1) appear similar across M and C individuals
and perhaps related to age [46, 75] with values ranging from 0.62 m? to 2.8 m? for M and
1.16 m? to 2.0 m? for C. The largest areas are occupied by M1 (2.8 m?), M4 (2.15 m?), C1
(2.0 m?) and C3 (1.92 m?). Finally, the number of branches at height H (IV;;) illustrates
values ranging from 14 to 20 for M and 20 to 28 for C. Therefore, although C individuals
tend to have a smaller diameter, the number of branches tends to be higher on average at

measurement height H compared to M individuals.
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Table 4.1: Plant biometric features for the sap flow-installed sensors at #j plants.
M means Mesquite, and C means Creosote (see Figure 3.1 for further
spatial details).

Plant | ¢?; (mm) | ¢;; (mm) | A (m?) | Ny
M1 16.2 12.9 2.8 20
M2 14.6 12.3 0.94 16
M3 17.2 10.6 0.62 14
M4 18.2 17.5 2.15 17
C1 9.5 8.9 2 28
C2 9.2 7.8 1.16 25
C3 10.3 7.9 1.92 22
C4 11.4 9.9 1.27 20

4.0.2 Transpiration Rate Per Unit Branch Diameter

Figure 4.2 (a and b) illustrates a time series with precipitation (P; mm/d) and the ratio
Té’j / gzﬁfj (g/mm.d; see equation 2) for each of the six observed trees (recall that M4 and
C4 sensors suffered malfunctioning). Overall, Tz’j / qﬁg’j responds to precipitation inputs in
the subsequent days after the water inputs (note the sustained increase after the early
September Monsoonal events in Figures 4.2 (a and b)). Figure 4.2(a) indicates that the three
M individuals present similar Ti?j / qﬁi-’j with M1 and M3 more alike. Throughout the entire
summer season, M2 displayed lower T?j / ¢§’j values in comparison to M1 and M3, except by
some days when peaks were observed in M2, possibly due to temporary sensor malfunctioning
or perhaps root-zone plant water access in the absence of significant recorded precipitation.
Similarly, C individuals (Figure 4.2(b)) present consistent (but lower than M) T? /¢! values

across the summer with increases after the September Monsoonal events. Overall, C2 and C1

present higher values than C3 over the measurement period.

4.0.3 Transpiration Rate Per Ground Covered Leaf Area

Figures 4.3 (a and b) show the behavior of plant transpiration T;; (mm/d) for the sap
flow-observed M (Figure 4.3(a)) and C (Figure 4.3(b)) individuals. The time series were
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sapflow-observed M and C tree branches during study period.
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obtained after applying equation (3) with the values from Figure 4.2 and Table 4.1. Overall,
the average daily T rates for the different individuals during the four months (JJAS) of 2022
are Ty =1.6 mm/d, Tyo=4.0 mm/d, Tp;3=3.2 mm/d, Tg;=2.1 mm/d, Trz=1.6 mm/d and
Tes=1.4 mm/d. Average transpiration values for the 3 M (T);;=2.9 mm/d) plants appear to
be 1.7 times higher (on average) than those of C plants (T¢;=1.7 mm/d). This ratio appears
to be mostly equal during the June to August period (drier conditions) when Ty;=2.4 mm/d
while Tej= 1.3 mm/d (T, /Tc;=1.8). On the other hand, when the strongest monsoon
precipitation events appear in September, Ty5=5.3 mm/d, Ty;3=4.8 mm/d while Ty, =2.2
mm,/d. For Creosote, the September storm showers resulted in a more significant increase in
transpiration to Tge=2.5 mm/d Tp3=2.2 mm/d and Ty = 4.3 mm/d. Across the month of
September (rainier period) Tys;/Tcj=1.4 mm/d, which means that overall after precipitation
occurs, Creosote bush increases their transpiration rates more significantly than Mesquite.
C1, which has the highest number of branches across the C individuals (N¢1=28), appears
to have the most significant T values across the C individuals during the drier and storm
periods, sometimes approaching the M1 transpiration rates. The T,/ rates are the lowest of
the 3 M individuals, perhaps due to the tree’s low branch density per unit ground surface

area.

4.0.4 Footprint-Scale Transpiration Rates

The areal estimation of total footprint transpiration used the UAS-derived RGB image shown
in Figure 4.4 and the entire eddy covariance flux footprint (up to the 10% contribution area)
illustrated by the contour lines of Figure 4.4. The number of M and C individuals within
the footprint is 425 and 360, respectively. From the total footprint area, M and C cover
57% and 22%, respectively. Therefore, bare soil accounts for 21% of the surface footprint
source area. These values are close to the ones reported in Table 3.1. To resolve equation (4)
for the eddy footprint, N, was estimated by finding a relationship with A,, (from Figure
4.4) within the 70% source area contour via the manual branch counting of 17 M and 17 C

randomly-selected individuals at the same height H above the ground (Ha1 m). Figure 4.5
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illustrates a proportional pattern between N,, and A,, that was approximated by near-linear
relationships with a coefficient of determinations (R?) above 0.85. Overall, Creosote plants
show smaller covered areas (0.5 m? < Ag, < 1.3 m?) than Mesquite (1.2 m? < Ajyz, < 3 m?)
while the number of branches is slightly higher for C (18 < N¢,, < 27) than M (15 < N¢, <
24). Furthermore, the slope of the relationship between these two variables (N, vs A,,) is
higher for Creosote individuals.

Given the relative homogeneity of stem diameters across individuals of the same species,
as shown by Table 4.1 and Figure 4.2, it was decided that ¢, should be taken as the mean
value per species. So, for Mesquite, ¢,,, = 13.6 mm, while for Creosote ¢, = 8.6 mm.
Concerning the TZ’; / qbi-’j to be applied to each of the wv trees, the results shown in Figure 5
support the selection of an average rate for all trees of the same species per time step t, as
described in section 2.4. Based on the inputs mentioned above, T, was computed for every
tree within the 10% contour of Figure 4.4 (i.e., the largest possible source footprint area),
and after applying equations (4) and (5), results are shown in Figure 4.6.

Besides the time series of daily T (mm/d) values, Figure 4.6 also illustrates total daily
P (mm/d) and the eddy-covariance measured ET (mm/d) values with commonly accepted
error envelopes of 15% above and below the measurements [48, 12]. The total P during the
JJAS summer period of 2022 was 168.1 mm, while the total ET was 140.2 mm and T= 73.4
mm. Therefore, for this period, ET/P= 0.83, T/ET=0.52, and E/ET= 0.48. Figure 9 also
illustrates T values with an error envelope given by the uncertainty in T;; computed as the
mean absolute error of the variability introduced from Figure 4.3 (intra-individual variability)

and the range of summer typical LAI values (2 < LAI,;; < 3 and 1 < LAl < 1.5; [23]).
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Figure 4.4: Supervised classification of UAS-obtained RGB image at 3 cm pixel
resolution within the eddy footprint area of the US-Jol eddy covariance
tower. The two main vegetation classes shown are Mesquite (red color)
and Creosote (blue color). The outermost green contour represents the
10% (percent of the time) vapor flux source area, while subsequent inner
contours represent increments of 10% in temporal contribution to total
eddy-measured ET.
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suggested with 20% uncertainty envelopes.
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Figure 4.6: Mean daily precipitation P (mm/d), footprint evapotranspiration ET
(mm/d) from the Ameriflux US_Jol eddy covariance system and tran-
spiration T (mm/d) as computed from equations (4) and (5). The red
and green envelopes around the estimated values represent the expected
uncertainty as described in section 3.4.

Figure 4.6 shows that transpiration (T) is almost always below evapotranspiration (ET)
and its error envelopes. It can be observed that the immediate response of ET to precipitation
(P) events primarily comes from evaporation (E), while T shows delayed responses due to
vegetation’s slower access to water in the root zone, which can take several hours to days after
the main storm events. However, once vegetation accesses root-zone water, T accounts for a
more significant portion of ET while E is already experiencing a recession. During June, July,
and August, with relatively low precipitation inputs (P=73.6 mm), ET values average 1.04
mm/day, while T averages 0.50 mm/day (T/ET=0.47). After the more intense precipitation
events in early September (P=94.5 mm for the entire month), the mean ET values rise to
1.43 mm/day, and T rises to 1.19 mm/day (T/ET=0.83) on average from September 1 to
September 30",
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Chapter 5

Discussion

This paper introduces and develops a methodology for estimating transpiration values across
an eddy covariance footprint through the use of an in-footprint sapflow observation patch, the
measurement of essential plant biometric features (i.e., typical branch diameter distributions
and number of branches), and a low-altitude footprint ortho-photo. The method is applied
to a (mostly homogeneous) fetch region with dominant Mesquite and Creosote bush species
in the Jornada Experimental Range of the Chihuahuan Desert in southern New Mexico,
United States. The results are assessed in terms of the total measured ET and analyzed
regarding the precipitation inputs and the contribution of each plant species to the total T.
Despite striving to come up with a physically-sound and practical method that incorporates
high-resolution UAS imagery to scale measurements up from a smaller vegetation sap flux
patch to the eddy covariance footprint region, the method relies on several assumptions that
might pose limitations for its further use in other regions, but that can definitely encourage
further tests and subsequent studies:

1. The different plant ages and sizes of the observed sapflow patch are representative of
the footprint’s plant distribution. This premise was confirmed after ground inspection of a
representative sample of plant individuals within the 70% footprint that comprised individuals
of different ages and sizes. Such a sampling method allowed to determine the best location
of the monitored sapflow patch (Figure 1 and Figure 2). 2. Total sapflow transport values
per plant (g/d) are proportional to the diameter and number of branches across each plant

individual of different ages. This assumption implies that all live branches at the same
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measurement height (H) are transporting sap at similar rates [3, 30] per unit branch cross-
sectional area so that if this rate is multiplied by the number of branches, a total mass of sap
transport per plant will be obtained.

3. To convert from mass flux (g/d) to depth rate (mm/d in Equation 3) the method needs to
divide by the ground covered area of the plant and its Leaf Area Index. This mathematical
artifact significantly simplifies the process. Sap flow rate measures the volume of water
moving through plant tissues, but to estimate the actual transpiration rate and the amount
of water loss through plant leaves per unit area, the expression needs to account for the total
area of the canopy and the density of leaves. By dividing the sap flow rate by the ground
surface area, the equation adjusts for the spatial scale of measurement, and dividing by LAI
adjusts for the leaf density, providing a more accurate estimate of transpiration per unit
area. This approach ensures that the resulting transpiration rate reflects the true water loss
through plant foliage, helping to understand better water use efficiency.

4. There is a relationship between the number of branches at the same (hypothetical) sapflow
measurement height H and the plant’s ground projected area that can be extended to most
(if not all) plants within the eddy footprint. The number of branches at a given sap flow
measurement height H often indicates a plant’s horizontal canopy coverage, which directly
influences its transpiration rate. More branches generally correlate with a larger canopy
area and, consequently, a higher transpiration rate, assuming other factors are constant
21, 49, 77, 32, 44].

5. Time series of values representing plant transpiration per unit plant diameter per species
type are indispensable for accurately accounting for species-specific differences in transpiration
within the eddy covariance footprint because these time series data provide critical insights
into how various plant species contribute differently to overall water vapor fluxes. Plants of
different species exhibit distinct physiological and structural characteristics that influence
their transpiration rates, such as variations in leaf area, stomatal density, and hydraulic
efficiency [22, 11, 50, 20, 39]. Additionally, using not one but several sapflow sensors across

individuals of the same species is fundamental to understanding the physiologic and structural
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differences among individuals of the same species but of different ages (or sizes) that allow
capturing intra-species variability in transpiration rates.

The results obtained by this method (primarily synthesized in Figure 9) illustrate that T
values (including their uncertainty envelopes) appear mostly below the measured eddy-flux
ET values across the summer period, which fulfills the condition that T < ET. Additionally,
consistent with previous studies [29, 74|, evaporation (E) dominates evapotranspiration (ET)
(E/ET=53%, T/ET=47%) when precipitation is scarce. After the summer monsoon events,
transpiration (T) becomes the dominant contributor (T/ET=83%, E/ET=17%). Overall,
across the North American summer monsoon season of 2022, our experiments concluded that
both T and E contributed similarly to the whole ET water flux (T/ET=52% and E/ET=48%).
This finding agrees with [63, 19, 55, 73] that support that roughly half of the water loss due
to evapotranspiration is from plant transpiration, with the other half primarily from soil
evaporation.

Several studies have attempted to partition evapotranspiration (ET) within the eddy
covariance (EC) footprint region, including integration with remote sensing and modeling [24],
energy flux partitioning from latent heat flux and sensible heat flux, catchment water balance
[26, 31] and sapflow transects in adjacent areas [9] or via the measurement of LAI, FPAR
(photosynthetically-active radiation) and vegetation fractional cover (FVC) [53, 80]. The
latest often employs remote sensing data and mathematical modeling to estimate fractional
vegetation cover (FVC) and LAI, which are then used to differentiate between the components
of ET. For example, algorithms combining remote sensing data with regression methods, such
as the random forest regression method, have shown reliable results in estimating FVC, which
can be crucial for accurate ET partitioning [40]. Within the model-based approaches that
include remote sensing data, a typical approach is to split ET according to the vegetation

(FVC) and bare soil (FBC) fractions that are then used to find T and E (see Equations 8 and 9)

T =FET x FVC (8)
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E=FETxFBC or E=FET-T (9)

If equations 8 and 9 were used in this study, the values found for T and E for the entire mea-
surement period would be T=140.2 mm™*(0.57+0.22)=110.6 mm and E=140.2mm™*0.21=29.4
mm. With these values, T/ET = 79% and E/ET = 21%, which results in T/ET much higher
than estimated here. The T/ET = 79% can be thought of as the maximum potential T (T
overestimation) without LAI or hydraulic water transport considerations per plant species.

Despite the presented limitations, to the best of our knowledge, the novelty of this work
can be summarized as follows:

1. Several previous studies have conducted field measurements across transects [9], used
understory plant species in temperate forests [53|, or combined species-specific data to improve
accuracy in estimating ET at larger scales [80]. However, our method is the first to measure
transpiration across an eddy footprint region using both inter- (two species) and intra- (six
individuals) species sapflow rate measurements. This approach accounts for variability in
physiological, hydraulic, and atmosphere-soil-plant interactions. Additionally, it transforms
water mass flux rates to water depth rates using evaporative areal equivalences. These
equivalences are measured by the Leaf Area Index and the ground-covered area for each
plant.

2. The use of UAS to scale up sapflow hydraulic measurements for estimating transpiration
(T) within an eddy footprint area is novel. Previous efforts with UAS had only produced
high-resolution ET mapping [25, 67], or estimated ET via thermal and visible bands [10].
Our approach uniquely leverages UAS technology to enhance the accuracy of T estimations
within the eddy footprint.

Finally, the results of this research are relevant and foundational in the new era of
generative artificial intelligence for several reasons. Firstly, accurate partitioning into its
components—transpiration (T) and evaporation (E)—provides high-quality training data for

machine learning models, enhancing their predictive accuracy. This detailed data helps us
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understand the underlying biophysical processes, leading to better model generalization across
different environments. Furthermore, it enables the development of more precise and scalable
ET models, critical for managing water resources, optimizing agricultural practices, and
assessing ecosystem health in the face of climate change. By leveraging artificial intelligence,
these partitioned observations can be integrated with satellite and UAS data to produce
high-resolution, real-time ET estimates, thereby improving decision-making and resource

management.
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Chapter 6

Summary

This thesis presents a novel method for estimating transpiration within an eddy covariance
footprint. By integrating plant sap flow measurements, phytomorphology sampling, UAS
digital image processing, and micrometeorological data, valuable insights are gained into
water use dynamics in arid ecosystems. Here are the key conclusions from their findings:

1. The average daily summer transpiration rates for Mesquite (Prosopis glandulosa) and
Creosote (Larrea tridentata) were approximately 2.9 mm/day and 1.7 mm/day, respectively.
The study also found that the transpiration to evapotranspiration (T/ET) ratio was 0.52
during the summer, which increased to 0.83 following significant precipitation events in
September 2022.

2. The impact of precipitation on evapotranspiration dynamics was notable. During
periods of scarce precipitation, evaporation and transpiration rates were similar (E/ET=53%,
T/ET=47%). However, following summer monsoon events, transpiration became the dominant
contributor to evapotranspiration (T/ET=83%, E/ET=17%), indicating that vegetation
accesses root-zone water more significantly post-precipitation.

These findings are crucial for understanding plant responses to precipitation and soil
moisture changes, which are vital for explaining the effects of global climate change and
vegetation succession in semi-arid ecosystems. The study’s results are valuable for land
surface and hydrologic model calibration and validation efforts, providing a standard method
for ET partitioning at the eddy covariance footprint level.

Looking forward, the developed method can be applied to other regions with similar
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ecological conditions, with appropriate adjustments. The integration of UAS data with
artificial intelligence to produce high-resolution, real-time ET estimates holds promise for

improving decision-making and resource management in the face of climate change.
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