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Abstract— This paper addresses the problem of traffic state
estimation (TSE) in the presence of heterogeneous sensors which
include both fixed and moving sensors. Traditional fixed sensors
are expensive and cannot be installed throughout the high-
way. Moving sensors such as Connected Vehicles (CVs) offer
a relatively cheap alternative to measure traffic states across
the network. Moving forward it is thus important to develop
such models that effectively use the data from CVs. One such
model is the nonlinear second-order Aw-Rascle-Zhang (ARZ)
model which is a realistic traffic model, reliable for TSE and
control. A state-space formulation is presented for the ARZ model
considering junctions in the formulation which is important to
model real highways with ramps. A Moving Horizon Estimation
(MHE) implementation is presented for TSE using a linearized
ARZ model. Various state-estimation methods used for TSE in
the literature along with the presented approach are compared
with regard to accuracy and computational tractability with the
help of a numerical study using the VISSIM traffic simulation
software. The impact of various strategies for querying CV
data on the estimation performance is also considered. Several
research questions are posed and addressed with a thorough
analysis of the results.

Index Terms— Traffic state estimation, highway traffic net-
works, second-order models, Aw-Rascle-Zhang model, moving
horizon estimation, connected vehicles.

I. MOTIVATION AND PAPER CONTRIBUTIONS

WITH the large number of vehicles overloading the

transportation systems across the world, problems like

congestion, accidents, and pollution have become common.

As a remedy to such circumstances, control methods such as
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variable speed limits, ramp metering, route control and their

combinations have become quite popular for instance see [1],

[2], [3], and [4].

These methods require the knowledge of the system at all

times to make them work effectively. A popular method for

real-time monitoring of traffic systems is by means of traffic

state estimation (TSE) using dynamic traffic models which

provide a high-fidelity picture of the traffic spatio-temporally

while utilizing data from sensors available throughout the

highway. In general, more data results in better estimates of

the system states. However, since fixed sensors like inductive

loop detectors are quite expensive, they cannot be placed at

short intervals throughout the highway. Connected vehicles

(CVs) offer a potential solution to this problem by providing

additional sources of data relatively free of cost [5]. Here,

we assume that most of the communication between the CVs

and the network operator will take place via existing cellular

networks so there will be no additional costs of building con-

nected highway infrastructure everywhere. As the proportion

of CVs in the traffic rises, CVs will be able to provide useful

data from across the system including both traffic density

and speed. Thus, moving forward, it is imperative to develop

such models that can utilize well different types of data from

both fixed sensors and CVs to perform state estimation and

control.

Traditionally, TSE is performed using first-order traf-

fic models such as the Lighthill-Whitham-Richards (LWR)

model [6], [7]. First-order models are simple to implement

as they only have a single equation which is the conservation

of vehicles to describe the traffic dynamics. They also have

very few calibration parameters, making them a popular choice

for state estimation. However, they only consider equilibrium

traffic conditions, that is, the traffic density (number of vehi-

cles per unit space expressed in vehicles per unit length for

example, veh/km [8]) and traffic flux (number of vehicles that

cross a given point per unit of time expressed in vehicles per

unit time for example, veh/hr [8]) are assumed to follow a

predefined relationship known as the fundamental diagram.

This makes them unable to represent certain non-equilibrium

traffic phenomena like capacity drop which are essential for the

purpose of traffic control [9]. Thus, the use of these models in

traffic control is considered less effective. Second-order traffic

models such as the Payne-Whitham (PW) model [10], [11]

and the Aw-Rascle-Zhang (ARZ) model [12], [13], on the

other hand, can represent non-equilibrium traffic phenomena

with the help of an additional equation to describe the traffic
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dynamics. They are, therefore, considered more realistic than

the first-order models. As a result, these models are not only

good for state estimation but are also reliable for control.

Additionally, second-order models provide a natural way to

incorporate multiple sources of data as they consider both

density and speed to be independent variables. In first-order

models that only consider either the density or the speed

as a variable at a time, any deviation of the speed from

its equilibrium relationship must be considered a part of

the modeling error. Thus, second-order models become a

natural choice for state estimation using CVs. Note that while

Lagrangian (vehicle-based) models of traffic exist [14] which

are arguably more compatible with trajectory-based data from

CVs, here we are using road density and average vehicle speed

information obtained using both CVs and fixed detectors and

not just relying on trajectory based information. Therefore,

we have chosen an Eulerian (location-based) second-order

model over a Lagrangian model besides the above reasons.

In light of the aforementioned discussion, the objective

of this work is to develop a state-space representation of

a reliable second-order traffic model and show the potential

of CV data for TSE under different scenarios. Given this

objective, in the following discussion, we present a literature

review of traffic models used for TSE and studies utilizing

heterogeneous sources of data, followed by a brief discussion

on the estimation methods used.

The most popular model for TSE in the literature is the

first-order LWR model. The simple form of the model with

a minimal number of calibration parameters makes it an

attractive option for large-scale implementation. Some works

that implement a first-order model to perform state estimation

using heterogeneous sensors include [15], [16], [17]. Readers

can also refer to [18] for a comprehensive review of TSE

literature involving first-order models. Due to the known

limitations of first-order models, several studies have also

undertaken state estimation using second-order models such

as in [19], [20], and [21] and the references therein. Most of

these studies use the second-order PW model implemented

in the METANET [22], [23] framework. The PW model

has well-known limitations [9] such as physical inconsistency

under certain heterogeneous traffic conditions which make it

unreliable. A significantly better model is the ARZ model

which retains the benefits of second-order models without

sacrificing the physical consistency of the first-order models.

Despite this, there are very few studies in the literature that use

the ARZ model for state estimation. The work in [24] develops

a state-space formulation for the nonlinear ARZ model and

performs state estimation using Extended Kalman Filter (EKF)

considering both fixed and moving sensors. In [25], the authors

propose a boundary observer for state estimation using a

linearized ARZ model. The study in [26] uses Particle Filter

(PF) for the estimation of traffic states using a modified

ARZ model. However, it is worth noting that none of these

papers considers junctions in the modeling. Modeling the

traffic dynamics at junctions is essential to the modeling of

traffic on real highways which consist of on-ramp and off-

ramp connections. Therefore, unlike past studies, we formulate

herein a state-space model for the nonlinear ARZ model

considering junctions.

Note that the aforementioned studies using second-order

models as well as the present work are different from studies

like [27] which while do consider the speed to be an indepen-

dent variable like the second-order models but consider it to

be known everywhere and at all times using CV data. These

have been categorized as data-driven methods by [18]. In the

current work, unlike [27], we assume a bandwidth restriction

on the data that can be transferred from the CVs to the

network operator which forces data to be available only from

a subset of all segments for estimation while the traffic data on

other segments is considered unknown. Further, the impact of

various strategies associated with the selection of the subset of

segments to query CV data for estimation is also investigated.

Besides [27], several other studies utilize heterogeneous data

sources for TSE. Detailed reviews of the related literature can

be found in [18], [28], and [29]. Most studies focus on data

fusion methods to combine fixed and moving sensor data to

achieve improved estimation performance. Some studies such

as [24] focus on the impact of the penetration rate of CVs

on TSE. To the best of the authors’ knowledge, none of the

studies investigate the impact of different approaches to query

subsets of segments for estimation in a moving sensor setting.

A majority of the model-driven TSE literature either uses

one of the Kalman Filter (KF) variants from among EKF,

Unscented Kalman Filter (UKF), and Ensemble Kalman Filter

(EnKF), or other methods like PF, and observers to perform

state estimation, for instance, see [18], [30], and [31]. While

these methods are computationally attractive, they have certain

limitations with respect to TSE. The primary limitation is that

they do not have an inherent way to deal with state constraints.

Thus, it is possible that the estimates generated from these

methods contain nonphysical values of certain states which

can further cause the process model to collapse.

An estimation method that handles this limitation naturally,

due to its optimization-based structure, is MHE. MHE has

been explored extensively in the general state estimation liter-

ature, for instance in [32], [33], [34], and [35], but not so much

in the TSE literature. In [36] and [37], the authors propose an

MHE formulation for the estimation and control of large-scale

highway networks using the Macroscopic fundamental dia-

gram (MFD). MFD is a network-level traffic model and does

not consider the variation in traffic density on individual

stretches of the highway. Unlike [36] and [37], we investigate

estimating the density throughout the highway stretch. The

study in [38] presents an MHE formulation for traffic density

estimation using the Asymmetric Cell Transmission model

(ACTM). ACTM is based on the LWR model and therefore,

has the drawbacks previously mentioned for first-order models.

Moreover, the work in [38] does not consider moving sensors

from CVs.

Besides the above approaches, a recent paradigm of TSE

explores physics-informed deep learning (DL) [39], [40], [41].

These approaches aim to guide the training of DL-based

models for TSE through physics-based traffic laws, such as

those governing the first and second-order models discussed

above. The traffic model parameters are automatically tuned

as the DL model is trained, thus offering the determination

of accurate traffic flow laws for a given scenario. However,

these approaches suffer from several limitations, including a
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lack of robustness to noisy data and the need for extensive

tuning of training algorithm parameters for individual scenar-

ios, limiting the models’ applicability to real-world use cases.

Interested readers are referred to [42] for a comprehensive

survey on this paradigm of TSE. Compared to these, model-

driven approaches such as the one presented in this work are

favored for real-world applications due to their interpretability

and computational advantage.

Given that, the main research gaps on this topic are

a) the absence of a state-space formulation for a reliable

second-order traffic model with junctions, b) the lack of

exploration of MHE in the context of TSE and comparison

with other state-estimation methods, and c) the absence of an

investigative study on the impact of different strategies for

querying data from CVs for TSE as opposed to fixed sensors.

In what follows, we highlight the main contributions of this

paper:

• We derive a nonlinear state-space formulation for the

second-order ARZ model with junctions in the form

of ramp connections. In that, we present the detailed

dynamic equations of the model. This is a development

over [24] which does not consider junctions in the for-

mulation. The inclusion of junctions adds additional com-

plexity to the model in terms of the nonlinearity which

now comprises of minimum and piecewise functions in

the model. Second-order traffic models are more realistic

than first-order models like the LWR model as they can

capture certain phenomena like capacity drop which are

essential to control applications. The obtained state-space

formulation can thus be used for state estimation as well

as control purposes.

• We consider heterogeneous sensors including both fixed

and moving sensors. The former consists of sensors like

inductive loop detectors while the latter includes CVs.

The state-space description is appended to include the

measurement model which is also nonlinear thus result-

ing in a nonlinear input-output mapping of the system

dynamics.

• We investigate the performance of various state estimation

methods in terms of accuracy and computational tractabil-

ity using the VISSIM traffic simulation software. As a

departure from estimation based on KFs, PF, observers,

and so on, we investigate MHE for TSE. MHE, unlike the

other methods, naturally allows us to include constraints

on the state variables making the problem more practical.

• The impact of moving sensors including CVs on the

performance of TSE is studied under various scenar-

ios including different frequencies of change in sensor

positions, different sensor placement configurations, and

different levels of measurement errors from varying pene-

tration rate of CVs and sensor noise. The estimated states

are examined qualitatively to understand the implication

of moving sensors on TSE.

Paper’s Notation: Let N, R, R
n , and R

p×q denote the set

of natural numbers, real numbers, and real-valued column

vectors with size n, and p-by-q real matrices respectively. S
m
++

denotes the set of positive definite matrices. For any vector z ∈
R

n , ∥z∥2 denotes its Euclidean norm, i.e. ∥z∥2 =
√

z¦z, where

TABLE I

PAPER NOMENCLATURE: PARAMETER, VARIABLE, AND SET DEFINITIONS

z¦ is the transpose of z. Tab. I provides the nomenclature

utilized in this paper.

II. NONLINEAR DISCRETE-TIME MODELING OF TRAFFIC

NETWORKS WITH RAMPS

The objective of this section is to develop a state-space for-

mulation for the nonlinear second-order ARZ model describ-

ing the evolution of traffic density on highways with ramps.

The developed formulation is useful for several control the-

oretic purposes including state estimation and control of

highway traffic.

A. The Aw-Rascle-Zhang Model

In this section, we present the modeling of traffic dynamics

for a stretched highway connected with ramps. To that end,

we use the second-order ARZ Model [12], [13] given by the

following partial differential equations:
∂Ä

∂t
+ ∂Äv

∂d
= 0, (1a)

∂Ä (v + p (Ä))

∂t
+ ∂Ä (v + p (Ä)) v

∂d
= −Ä (v − Ve (Ä))

Ä
,

(1b)
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where t and d denote the time and distance; Ä is shorthand for

Ä(t, d) which denotes the traffic density (vehicles/distance),

and v is shorthand for v(t, d) which denotes the traffic speed

(distance/time). Here, p(Ä) is given by

p (Ä) = v f

(

Ä

Äm

)µ

, (2)

and Ve(Ä) is given by

Ve(Ä) = v f

(

1 −
(

Ä

Äm

)µ)

. (3)

In traffic literature, relationships like (3) are commonly called

the fundamental diagram. The first PDE in the ARZ model

ensures the conservation of vehicles which is also present in

the first-order traffic models. The second PDE which ensures

conservation of traffic momentum is unique to second-order

models and accounts for the deviation of traffic from an

equilibrium position. This equation makes the second-order

models more realistic than the first-order models as it allows

them to represent some non-equilibrium traffic phenomena

such as capacity drop. As second-order models allow traffic

flow to deviate from equilibrium, they also inherently allow

traffic speed to deviate from the equilibrium speed which

allows speed data to be incorporated independent of the

density. With first-order models, any deviation of the speed

from the equilibrium speed would have to be considered a

part of the modeling error. Therefore, second-order models are

more naturally suited to perform estimation using both density

and speed data provided by the fixed sensors and CVs. The

quantity v+ p(Ä) is also called the driver characteristic and is

denoted by the variable w(t, d). The expression Ä(v + p(Ä))

is also called the relative flow denoted by È(t, d) which is

essentially the difference between the actual flow and the

equilibrium flow at any Ä. Notice that in (1), Äv is the flux

of traffic (vehicles/time) which will be denoted by q(t, d),

while Ä(v+ p(Ä))v is the flux of relative flow (vehicles/time2),

also called the relative flux, which will be denoted by Æ(t, d).

Using the relative flow and the two flux, the ARZ model can

simply be rewritten as

∂Ä(t, d)

∂t
+ ∂q(t, d)

∂d
= 0, (4a)

∂È(t, d)

∂t
+ ∂Æ(t, d)

∂d
= −È(t, d)

Ä
+ v f Ä(t, d)

Ä
, (4b)

which can be converted to a state-space equation with Ä and

È as the states.

To represent this model as a series of difference, state-

space equations, we discretize the ARZ Model (4) with respect

to both space and time, also referred to as the Godunov

scheme [43]. This allows us to divide the highway of length L

into segments of equal length l and the traffic networks model

to be represented by discrete-time equations. These segments

form both the highway and the attached ramps. Throughout

the paper, the segments forming the highway are referred to

as mainline segments. We assume the highway is split into N

mainline segments.

To ensure computational stability, the Courant-Friedrichs-

Lewy condition (CFL) [44] given as v f T l−1 f 1 has to

be satisfied. Since each segment is of the same length l,

then we have Ä(t, d) = Ä(kT, il), where i = 1, 2, . . . , N

represents the segment index, and k ∈ N represents the

discrete-time index. For simplicity, we define Ä(kT, il) :=
Äi [k]. The other variables are also defined in the same way,

namely wi [k], Èi [k], qi [k], and Æi [k]. The expressions for the

flux function qi [k] and Æi [k] for Segment i depend on the

arrangement of the segments before and after that segment.

Mathematical expressions for the flux across different types of

segment junctions and those for the traffic demand and supply

functions needed to define the flux are omitted for brevity.

Interested readers are referred to Appendix A of [45] for the

same. Here, the demand of a segment denotes the traffic flux

that wants to leave that segment while the supply of a segment

denotes the traffic flux that can enter that segment.

B. State-Space Equations

The discrete-time traffic flow and relative flow conservation

equations for any Segment i ∈ � can be written as

Äi [k + 1] = Äi [k] + T

l
(qi−1[k] − qi [k]), (5a)

Èi [k + 1]=
(

1 − 1

Ä

)

Èi [k]+ T

l
(Æi−1[k]−Æi [k])+ v f

Ä
Äi [k]

(5b)

Similar equations can be written for ramp segments as well.

Here, qi [k] and Æi [k] take the expressions presented in

Appendix A of [45] depending upon the arrangement of

Segment i with respect to other segments. The state vector

for this system can be defined as

x[k] : =[Äi [k]Èi [k] . . . Ä̂ j [k]È̂ j [k] . . . Ä̌l [k]È̌l [k]. . .]¦

∈ R
2(N+NI +NO ),

for which i ∈ �, j ∈ �̂ and l ∈ �̌. In this work,

we assume that the demand and the driver characteristic

upstream of the first mainline segment are known, that is,

D0[k] = Din[k] and w0[k] = win[k] and the density

downstream of the last mainline segment is also assumed to

be known, that is ÄN+1[k] = Äout [k]. Similarly, the demand

and driver characteristic upstream of the on-ramps and the

density downstream of the off-ramps is also considered to

be known. These values can be obtained using conventional

detectors like the inductive loop detectors placed upstream of

the input segments and downstream of the output segments

of the highway. An approximate value of the demand can

also be obtained using Origin-Destination flow matrices [46]

if available for the given region. Then,

u[k] := [Din[k]win[k]Äout [k] . . . D̂in, j [k]ŵin, j [k] . . .
Ä̌out,l [k] . . .]¦ ∈ R

3+2NI +NO ,

where j ∈ �̂ and l ∈ �̌.

The evolution of traffic density and relative flow described

in (5) can be written in a compact state-space form as follows

x[k + 1] = Ax[k] + G f (x, u), (6)

where A ∈ R
nx ×nx for nx := 2(N + NI + NO) represents

the linear dynamics of the system, f : R
nx × R

nu →
R

nx for nu = 3 + 2NI + NO is a vector-valued function
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representing nonlinearities in the state-space equation and

G ∈ R
nx ×nx is a matrix representing the distribution of

nonlinearities.

The nonlinearities in f are in the form of a minimum of

weighted nonlinear functions of the states and inputs. The

structure of the above-mentioned matrices and functions is

provided in Appendix B of [45]. Next, we discuss the mea-

surement model for the ARZ model which is also nonlinear

in nature.

C. Sensor Data and Measurement Model

We consider two types of sensors in this work, the first is

fixed sensors like the inductive loop detectors, and the second

is moving sensors which include CVs. This study assumes

that it is possible to retrieve density and speed data from both

types of sensors. Two loop detectors installed at opposite ends

of a segment can be used to obtain the traffic density (using

an approach similar to [47]) as well as the average speed

of vehicles on the segment [48]. CVs are known to provide

the current position and speed data for individual vehicles

directly. The average speed of a segment can be assumed to

be the average of the speed data provided by all the queried

CVs in that segment similar to [49]. To obtain density data

from CVs, we assume additional functionality including either

spacing measurement equipment which is available as part

of advanced driver assistance systems [50] or availability of

vehicular ad-hoc networks (VANETs) which allow vehicles to

communicate with each other in a neighborhood around the

queried CV [51]. When assuming the latter it is important to

note the limitation imposed by the communication range of

the vehicles on the maximum cell length for traffic modeling.

In the case of the former, while a cell length limitation may not

be required, sufficient penetration of CVs is necessary on the

segments that are queried for data. The data from the CVs is

sent via cellular network to a network operator who performs

any prior computation if necessary to convert the received

information like the spacing data or neighborhood counts into

density measurements before using them for state estimation.

A measurement error can also be associated with the data at

this point based on the available information on penetration

rate and other factors.

Note that in this setting, both fixed sensors and CVs are

assumed to provide similar data on the density and speed of

traffic on segments. Traditionally, CVs are considered akin to

floating cars which provide only trajectory information at high

sampling rates and with a broader spatial coverage as com-

pared to fixed sensors. However, with the increasing number

of vehicles and devices capable of sending and receiving data

over the internet allowing vehicles and objects to communicate

with each other such as in the case of VANETS, it is

reasonable to expect that CVs could provide data comparable

to fixed sensors in quality and type but superior in spatial

coverage allowing similar data retrieval over the entire road

stretch rather than a few fixed segments. Also, CVs being

multi-functional and mobile require a lower commitment than

fixed sensors.

Figure 1 presents a schematic of the sensors’ placement

on the highway. Among the measurements, density Äi [k] for

any mainline segment i ∈ �, and similarly for the ramps,

Fig. 1. Heterogenous sensors on the highway: fixed sensors represented
by dashed lines across the highway and CVs represented by the solid black
rectangles.

is directly a state and is used as it is, while the velocity vi [k]
can be written in terms of the states as follows:

vi [k] = Èi [k]
Äi [k] − p(Äi [k]).

We define a nonlinear vector-valued measurement function

h(x[k]) which maps the state vector to a corresponding vector

of all possible measurements in the system such that h(x[k]) ∈
R

nx . Note, that here the number of possible measurements is

equal to the number of states in the system. For any mainline

segment i ∈ �, the corresponding measurements are denoted

by h2i−1 and h2i , where the subscripts represent the position

of the element in the measurement function vector. These

represent the density and speed of traffic on the segment,

respectively. As mentioned above, these can be computed

using the states corresponding to Segment i that is x2i−1 and

x2i representing the density and relative flow, respectively, and

are defined as follows:

h2i−1(x[k]) = x2i−1[k], (7a)

h2i (x[k]) = x2i [k]
x2i−1[k] − p(x2i−1[k]). (7b)

The mapping corresponding to the ramp segments can also

be defined similarly. Now, we can define the measurement

vector y[k] ∈ n p[k], where n p[k] is the number of available

measurements from sensors at time k, as follows:

y[k] = C[k]h(x[k])+ ν[k],

where C[k] ∈ R
n p[k]×nx is the observation matrix at time

k describing the availability of measurements from sensors.

Note, that the observation matrix here is variable in time

because of the measurements from CVs which allow data to

be measured from different numbers and positions of segments

with time. Here, ν[k] ∈ R
n¿ [k], n¿[k] = n p[k] lumps all the

measurement errors including the sensor noise into a single

vector.

The above results are important as they allow us to perform

state estimation for traffic systems using the second-order

ARZ model. The state-space equation (6) can also be used

for control purposes using control theoretic approaches from

the literature. In the following section, we discuss a method

for linearization of nonlinear functions which allows us to

apply some linear state estimation methods to the otherwise

nonlinear ARZ model.

D. Linear Model Approximation

The ARZ model specified in Section II-A is nonlinear

due to the presence of the piecewise linear and nonlinear

expressions in the traffic flux and relative flux terms. This

prevents directly using some of the well-known and efficient
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linear state estimation methods from the literature. However,

it is still possible to apply linear state estimation methods

to a linearized version of the ARZ model. Methods such as

Taylor series expansion [52] can be used to obtain a good

linear approximation of nonlinear functions about a suitable

operating point. The detailed equations for linearization are

omitted for brevity. The same can be found in Appendix C

of [45].

Note that linearization is usually associated with reduced

model accuracy and hence worse estimation performance as

compared to using the nonlinear model when the model is

an exact representation of the system. However, when the

process is not exactly governed by the model dynamics,

linearization may not necessarily result in a degradation of

the estimation results. The latter is particularly relevant when

using traffic flow models such as the ARZ model for estimation

as they only focus on the aggregate behavior of traffic and

do not capture the nuances of vehicle-to-vehicle interaction.

A validation study against real-world traffic data similar to [53]

is required to quantify the trade-off between any loss of

accuracy due to linearization versus the reduced computational

load of using linear state estimation compared to nonlinear

estimation. Such an investigation is considered out of the scope

of the present work which mainly focuses on the theory and

examples of using CV data for estimation from the perspective

of linear state estimation.

III. STATE ESTIMATION METHODS

In this section, we briefly discuss the different methods

implemented in this work for TSE using the ARZ model.

A. Moving Horizon Estimation

MHE is an optimization-based state estimation method that

uses measurement data in batches from the most recent time

horizon along with a process model to determine the states

of the system. It involves solving an optimization problem at

every time step of the process with the objective of minimizing

the deviation of the estimated states from the modeled states

as well as from the measurement data. Being an optimization

problem, it is possible to include additional constraints in the

problem such as bounds on the state variables. Depending

upon whether the model is linear or nonlinear, MHE is divided

into linear MHE and nonlinear MHE, both of which have been

well explored in the literature. While linear MHE only requires

solving a linear program or a quadratic program (QP) and

is generally fast and easy to solve using available solvers,

nonlinear MHE involves solving a nonlinear optimization

problem which is both time-consuming and difficult. Since

TSE for control is required to be done in real-time, in practice

it is not always possible to spend enough time in solving

a nonlinear optimization problem. Therefore, in this paper,

we implement a linear MHE approach on a linearized version

of the process model.

Throughout the paper, N is used to denote the size of the

horizon for optimization. For time steps up to N , that is, near

the start of the process, the horizon size is kept equal to the

number of time steps from the initial time up to that time.

The decision variables for the MHE optimization problem at

any time step k are the state vectors from step k − N to

k out of which the vector at step k is considered the final

output for that step. The MHE algorithm implemented in

this work has a similar objective function to [32] with three

components. The first component is known as the arrival cost

which serves to connect the decision variables of the current

optimization problem with the estimates up to the previous

time step. This effectively allows us to consider the impact of

data prior to the current horizon in the estimation process. The

second and third components are penalties on the deviation of

the estimates from the measurement data and the modeled

dynamics respectively. The notations µ,w1 and w2 are used

to denote the weights specifying our relative confidence on the

past data and past estimates, the current measurement data, and

the process model, and can be set by the modeler accordingly.

The goal of the problem is to minimize these errors over the

decision vectors. The remaining implementation including a

thorough description of the decision variables, the objective

function, and the constraints is omitted from the main body

of this article as it does not contribute directly to the results of

this paper. Interested readers are referred to Appendix D and

Appendix E of [45] for detailed implementation and notes on

comparison with other existing MHE algorithms. Algebraic

transformations allow us to write the problem as a convex QP

which can be solved using readily available QP solvers like

CPLEX or MATLAB’s quadprog function. Next, we present

a brief discussion on the usage of KFs for TSE.

B. Kalman Filter Variants and Limitations

KFs are quite popular when it comes to TSE. Since the

traffic process models are nonlinear we cannot use the ordinary

KF, instead, most works use variants of KF designed for

nonlinear systems namely the EKF, UKF, and EnKF. There

is ample literature available on the design of these filters and

their application in TSE, see [18] for references. A common

limitation of the KF variants is that they do not inherently

allow bounds on the state estimates. Since traffic states can

only take values from a particular range, this makes it difficult

to apply the KF variants directly. Instead, some modifications

are required such as manually restricting the states to within

their bounds after the state estimate for any time step is

obtained. Another limitation of the KF variants is that they

assume all errors to be Gaussian. This assumption is not

necessarily true in many cases including the traffic system

which can result in potential errors in state estimation. MHE

naturally overcomes both of these limitations.

In the following section, we discuss the implementation and

results obtained by applying the above-mentioned estimation

methods with the help of a numerical example.

IV. NUMERICAL STUDY USING VISSIM

In this section, we apply the state estimation methods dis-

cussed above namely EKF, UKF, EnKF, and MHE, on a traffic

simulation example generated in VISSIM micro-simulation

software under both fixed and moving sensors to highlight

their advantages and limitations with respect to TSE and

investigate the performance of moving sensors as compared

to fixed sensors.

All the simulations are carried out using MATLAB R2020a

running on a 64-bit Windows 10 with 2.2GHz IntelR CoreTM
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Fig. 2. Schematic diagram of the highway considered in this study.

i7-8750H CPU and 16GB of RAM. We use the quadprog

function in MATLAB to solve the MHE optimization problem.

A. Numerical Study Objectives

The primary goal of this study is twofold- to test the

performance of the state estimation methods discussed in

Section III and to investigate the performance of moving

sensors under various scenarios. In particular, we are interested

in knowing the answers to the following questions:
• Q1: How does the number of fixed sensors on the

highway impact the performance of the various estimation

methods? Which method has the best estimation perfor-

mance across different numbers of fixed segments?

• Q2: How does the state estimation performance of various

methods vary with moving sensors? What is the impact of

different frequencies of change in measurement positions

on the estimation performance?

• Q3: Does the positional configuration of moving sensors

impact state estimation performance?

• Q4: Which state estimation method is more robust to

measurement errors? Do moving sensors impact estima-

tion performance with different levels of data quality due

to factors such as sensor noise and CV penetration rate?
Following is a description of the highway structure used for

this study.

B. Highway Setup and VISSIM Simulation

In this study, we model the highway stretch as shown

in Figure 2 consisting of one on-ramp and two off-ramps.

An additional 100 m of highway stretch is modeled in VISSIM

preceding the shown stretch. While we only perform state

estimation on the latter 900 m and the attached ramps, this

additional stretch of highway modeled in VISSIM provides

us with the system inputs namely the demand upstream of

Segment 1 and the upstream density and speed which are

used to calculate the upstream driver characteristic. A similar

100 m stretch is modeled upstream of the on-ramp as well and

serves the same purpose of providing the exact inputs. We set

the following parameters for the Weidemann 99 car-following

model in VISSIM: CC0 1.50 m, CC1 0.9 s, CC2 4.00 m, CC3

−8.00, CC4 −0.50, CC5 0.60, CC6 6.00, CC7 0.25 m/s2,

CC8 1.00 m/s2, and CC9 1.50 m/s2. The speed limit is set

to 102 km/hr. Under the Godunov scheme, the highway and

ramps are divided into segments of length 100 m each with

a time-step value of 1 s, which satisfies the CFL condition.

Thus, there are a total of 24 states in this highway system.

A traffic jam is introduced in the middle of the highway

stretch to replicate a congested scenario which is more inter-

esting for studying state estimation performance. In VISSIM,

the jam is created with the help of a reduced speed decision

area implemented on Segment 7 of the stretch. The reduction

in traffic speed causes a reduction in flow creating a traffic jam

that travels upstream on the highway. The jam dissipates once

the speed of the reduced speed area is restored. The simulation

scenario replicates the formation and dissipation of a traffic

jam similar to that caused by an incident in the middle of the

stretch. Note that the scenario considered in this work differs

from those considered in previous studies such as in [24]

where congestion travels upstream from the downstream end

of the road stretch where estimation is performed. In that case,

the source of the jam would be captured in the downstream

supply conditions which are input to the system. In the

scenario considered in this paper, the jam originates in the

middle of the stretch. It is therefore not directly captured

by any of the inputs and therefore the process model. The

given scenario is arguably more difficult to estimate due to

the absence of informative inputs to guide the process model.

The ARZ model parameters are selected to keep the simu-

lated state trajectories from the macroscopic model as close to

the VISSIM simulation as possible. The selected values are:

v = 102 km/hr, Äm = 345 veh/km, Ä = 20, and µ = 1.75.

As mentioned before, in this work we do not track individual

vehicles, instead, we consider VANETs formed from CVs

capable of measuring the density and speed of segments apart

from fixed sensors. We consider a high penetration rate of CVs

on the network such that we can query any desired segment for

data. The only constraint we impose is bandwidth constraint

on data transfer which limits the number of segments from

which data can be obtained simultaneously.

C. Observability of the System

To determine the required minimum number and the corre-

sponding placement of sensors, we perform a test of observ-

ability for our system using the concept of Observability

Gramian for discrete-time systems [54]. The method is orig-

inally meant to determine the observability of linear systems.

In this case, we use it to check the observability of the

linearized ARZ model. The observability Gramian is defined

as

W k =
∞
∑

m=0

( Ã
¦
k )

m C̃[k]¦C̃[k] Ã
m

k ,

where Ãk is the coefficient matrix of the linearized state-space

model and C̃[k] is the observation matrix of the linearized

measurement model at time k around a suitable operating

point. The system is considered observable if W k is positive

definite. In this case, since the model parameters change with

time due to changing operating points of linearization, the

Gramian changes with time as well. This can result in a

change in the observability properties. To check if the system

is observable for a given sensor placement, we calculate the

Gramian for each time step over the duration of the simulation.

From this study, we find that to make the system observable,

we need to at least sense the states on the last mainline

segment and on all the off-ramps. Therefore, throughout the

study, we keep fixed sensors on these segments. Any additional

sensors are placed after these segments are populated with

sensors. This is similar to the observations in [27] with respect

to the observability of the model used in that paper. It appears
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to be a common property of traffic models that the states of the

output segments of the network (last mainline segment and off-

ramps) need to be measured to ensure full-observability of the

system. This is not surprising as traffic models share similar

state-update equations and therefore have a similar structure

of the state-space parameters which form the observability

matrix. While the concept of observability can also be used

to determine the optimal sensor placement for state estimation

for any given number of sensors under certain conditions [55],

here we only use it to determine a minimum number of sensors

and their placement. In the following section, we discuss

some nuances of implementing the aforementioned estimation

methods in the current study.

D. Implementation of Estimation Methods

1) Evaluation Metrics: We use the root mean squared error

(RMSE) and the symmetric mean absolute percentage error

(SMAPE) [56] between the estimated and ground truth (simu-

lated on VISSIM) density denoted by RMSEÄ and SMAPEÄ ,

respectively, and those between the estimated and ground

truth speed denoted by RMSEv and SMAPEv , respectively to

evaluate the performance of different methods. These metrics

are defined as follows:

RMSEÄ =

√

√

√

√

1

nx t f

nx
∑

i=1

t f
∑

k=1

(e
Ä
i [k])2, (8)

SMAPEÄ = 100

nx t f

nx
∑

i=1

t f
∑

k=1

|eÄi [k]|
4
Ä
i [k]

, (9)

RMSEv =

√

√

√

√

1

nx t f

nx
∑

i=1

t f
∑

k=1

(evi [k])2, (10)

SMAPEv = 100

nx t f

nx
∑

i=1

t f
∑

k=1

|evi [k]|
4vi [k] , (11)

where t f = 500 sec is the total time of simulation, nx =
N + NI + NO is the total number of segments in the system,

e
Ä
i [k] and evi [k] denote the difference between the actual

and estimated density and speed, respectively for the i th

segment at time-step k, and 4
Ä
i [k] and 4vi [k] denote the

sum of absolute values of the actual and estimated density

and speed, respectively for the i th segment at time-step k.

We do not consider the error in the relative flow states for

evaluation since it is not directly relevant for traffic operators

as compared to density and speed which are fundamental

quantities in traffic. Note that, in this work, SMAPE is selected

over the mean absolute percentage error (MAPE) [24] as

MAPE has no upper bound and can give infinitely large values

when the actual value is close to zero which is possible

with traffic densities and speeds. The SMAPE on the other

hand is bounded and can only assume values from 0% to

100%. While MAPE is easier to interpret than SMAPE,

it is highly unstable in the present scenario and hence not

preferable.

2) Parameter Tuning: In implementing KFs, three parame-

ters need to be set in advance namely the estimate error covari-

ance matrix (P), the process noise covariance matrix ( Q),

and the measurement noise covariance matrix (R). In practical

applications, these matrices are not known in advance or are

difficult to get. In this paper, for all the KF variants, we use

a process noise covariance matrix of the form Q = q Inx

where q ∈ R+ and Inx is an identity matrix of dimension

nx . Similarly, the measurement noise covariance matrix is set

as R = r In p[k] with r ∈ R+ and n p[k] is the number of

measured states at time k. The initial guess for the estimate

noise covariance matrix is taken as P = 10−3 Inx . We set

the values of r and q to 1 which is found to be sufficient.

Marginally better results for the KFs can be obtained in each

case by fine-tuning these matrices but it is avoided as in reality

the real states are not known in advance. In general, algorithms

requiring minimal tuning to achieve a reasonable quality of

state estimates are desirable. For an estimation algorithm, it is

important to determine a set of parameters robust to both traffic

conditions and sensor placement. Here we focus on testing

the algorithms with parameter values that yield reasonable

state estimates across all scenarios, rather than fine-tuning

parameters for individual cases.

Besides these values, there are also some method-specific

parameters such as in UKF and EnKF. We find that fine-tuning

the values of these parameters does not influence the per-

formance of the methods considerably. For UKF, we set the

following values: ³ = 0.1, » = −4, and ´ = 2, and for

EnKF, we set the number of ensemble points to 100. These

values are found to be sufficient for the respective methods.

Interested readers can refer to [57] and [58] for interpretation

of parameters and more detail on implementation of UKF and

EnKF respectively.

For MHE, we set the values of the weights µ = 1, w1 = 1,

w2 = 1, and the horizon length N = 4. Just as with the

KF parameters, fine-tuning MHE parameters is not a focus

of this study, and the same parameter values are used in all

tested scenarios without further tuning. In general, a large N is

considered ideal as it allows the algorithm to track the system

dynamics for a longer duration and also considers more data.

However, this is not necessarily beneficial to estimation if

the process model does not closely follow the real system

states. In that case, particularly with a large weight w2 on

the process model error, the error in estimates can increase

with increasing N as the error due to incorrect dynamics is

amplified. To roughly tune N , we vary the horizon length

from 1 to 10 with different numbers of fixed measurement

segments. It is seen that the best N becomes smaller with

an increasing number of measured segments. Also, a larger

weight on the measurement error improves the results when

there are more sensors. Both these observations are reasonable

since the measurement data in this case is more accurate

than the modeled states and so with sufficient data, increasing

N only deteriorates the estimates by increasing the influ-

ence of the process model. Given a combination of these

reasons, the aforementioned values are found reasonable for

MHE.

3) Re-Scaling to Avoid Numerical Issues: The large differ-

ence in the order of magnitude of the two states, density, and

relative flow, results in numerical issues in both the KFs as

well as in MHE. This is handled by re-scaling the objective

and constraints of the optimization problem in the case of

MHE and by re-scaling the state vector in the case of KFs.
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Fig. 3. Configurations for fixed sensor placement on the mainline segments.
Black boxes depict segments with sensors and white boxes depict otherwise.
Arrows indicate the direction of traffic. The ramp segments containing an
additional 3 sensors are not presented in this figure. The top and bottom
rows present the configuration with a total of 5 and 12 sensors in the system,
respectively.

4) Applying External Bounds on States: The KFs some-

times run into the problem of producing non-physical states

such as negative or extremely large densities and relative

flows. This is an issue for the process model which includes

terms like density raised to fractional power as in (2), which

results in numerical issues and forces the estimation to stop.

Therefore, it is important to bind the estimates from KFs to

only the physical values of the states. In that, we project the

obtained estimates in the case of EKF to a range with a lower

bound of zero on all states, and an upper bound of Äm on

the traffic densities and Ämv f on the relative flows. In the

case of UKF, the sigma points are projected first followed

by the obtained estimate. In the case of EnKF, the ensemble

points are projected within specified bounds. This method of

projecting vectors for EKF and UKF has been shown to fit in

the KF theory mathematically and is among popular methods

mentioned in [59].

We present the results of the study in the following section.

E. Results and Discussion

1) Comparison Under Fixed Sensor Positions: As sen-

sors are indeed costly, it is imperative to determine which

state estimation methods perform better with less number of

sensors, and how the performance varies with the changing

number of sensors. Herein, we test the effect of increasing

the number of fixed sensors on the performance of the four

estimation methods. We do not consider any CVs in this case.

As discussed in Section IV-C, we have a minimum of three

sensors, one on the last mainline segment and one each on

the off-ramps. We also assume that there is always a sensor

on the on-ramp. As we add more sensors we try to keep

them well-distributed across the highway. The placement of

the mainline sensors is depicted in Figure 3. No additional

process noise is added to the state values generated from

VISSIM while a zero mean uniform random noise with a

standard deviation of 1 is added to the sensor measurements.

Figure 4 presents the plots of the evaluation metrics for

each state estimation method. The x-axis presents the number

of additional fixed sensors considered on the highway other

than the sensors on the last mainline segment and ramps.

Figure 4 shows that the performance of all the state esti-

mation methods in terms of density and speed estimation

improves with more additional sensors. Between methods,

the RMSEÄ and SAMPEÄ at different numbers of segments

appear comparable. A difference in performance in favor of

MHE and EKF is observed in terms of RMSEÄ at a small

Fig. 4. RMSEÄ [top left], RMSEv [top right], SMAPEÄ [bottom left], and
SMAPEv [bottom right] with different numbers of fixed sensors.

number of additional sensors but the difference diminishes as

the number of sensors is increased. In terms of RMSEv , MHE

outperforms other methods at all numbers of additional sensors

and is marginally outperformed by EKF at the two highest

numbers of additional sensors. In terms of SAMPEv , MHE and

EKF perform comparably and better than other methods at a

smaller number of additional sensors while all methods show a

comparable performance at a higher number of sensors. While

RMSE values are suitable for quantitative comparison between

estimation methods, we need to compare the trajectories of

the estimated states for a qualitative comparison. Figure 6

presents a 2-dimensional plot of the simulated and estimated

density and speed evolution using MHE on all segments for

the discussed scenario to provide a complete picture of the

traffic evolution for the reader’s reference. Figure 5 presents

the simulated and estimated trajectories for the unmeasured

segments for the case with 4 additional measured segments

using MHE and EKF. The estimated trajectories obtained using

UKF and EnKF are omitted from the plots in the main text to

ensure clarity. The latter is presented in Appendix F of [45]

for interested readers. The trajectories for the other cases of

additional sensors are also omitted for brevity as they do not

add value to the discussion provided in the context of the

presented plots.

While EKF and MHE perform similarly for Segment

8 which does not have congestion, Figure 5e shows that

EKF is not able to estimate the congested density on Seg-

ment 6. It does show a few spikes and a slight gradual

increase in density but overall there is no significant congestion

depicted by EKF. On the other hand, MHE follows the

congested density more closely and also returns to the less

congested ground truth condition once the congestion ends. In

Figures 5a and 5c, MHE estimates congestion on the respective

segments although the congestion is shown to start earlier than

when it actually occurs. This is because the considered model

inputs do not force congestion on any part of the stretch but

one is observed in the measured data for middle segments

from about 100 seconds into the simulation. The correction

applied to the modeled states that are otherwise free-flowing

to replicate the congestion in the measurement data causes

congestion to be depicted earlier in the upstream segments

corresponding to when it first occurs in the downstream

segments rather than when it actually occurs on the upstream

segments. Except for the time of the start of congestion in

the estimated states on upstream segments, MHE is able to
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Fig. 5. Plots of simulated and estimated trajectories for densities [left] (a, c,
e, g) and speeds [right] (b, d, f, h) in the presence of 4 additional fixed
sensors. Rows of figures correspond to the unmeasured Segments 2, 4, 6, and
8 respectively.

TABLE II

COMPUTATIONAL TIME FOR STATE ESTIMATION PER TIME STEP

(1 SEC) OF SIMULATION

replicate well the magnitude of the congestion in terms of

both density and speed which EKF fails to do. The trajectory

plots also explain the closeness of EKF and MHE in terms

of RMSEÄ and the significantly larger difference in RMSEv .

Both MHE and EKF observe a similar deviation from the

actual density, with MHE depicting the congestion to start

earlier while EKF not depicting or only partially depicting the

congestion. As a result, both methods show a close RMSEÄ .

However, since MHE replicates the congestion while EKF

does not, the former results in reduced speeds which are closer

to the actual speeds than the higher ones estimated by EKF

as a result of estimating lower densities. This results in a

significantly smaller RMSEv for MHE as compared to EKF.

On the other hand, since EKF constantly overestimates the

speeds, the denominator of SAMPEv becomes large causing

this metric to be close to its value for MHE despite a larger

absolute error.

The average run times per time step of simulation for the

methods are given in Table II. The run times include the

time from when the data is received along with the informa-

tion about the current observation matrix C[k] to when an

Fig. 6. Comparison of simulated and estimated densities [left] and speeds
[right] obtained from MHE for the mainline segments (1 to 9), on-ramp
segment (11), and off-ramps segments (11 & 12).

estimate is produced. While the computation time of MHE

is significantly higher than the KF variants, it is still only

a fraction of the second and useful for real-time control.

Moreover, the increased compute time can be justified by the

improved estimation performance offered by MHE.

2) Effect of Moving Sensors: CVs can be used to measure

traffic data from different segments over time giving more

flexibility in terms of data collection than fixed sensors.

Here, we test the impact of changing the segments from

which measurements are obtained over time on the estimation

performance of the considered state estimation methods. The

frequency of change in measured segments is also varied and

its impact on the estimation performance is analyzed. The

last mainline segment and all ramp segments are assumed to

have fixed sensors and CVs are used to get data from other

segments. We assume that there is a sufficient penetration of

CVs on the roadway to allow data collection from any segment

on the stretch. However, we assume a restriction on the

bandwidth for data transfer such that density and speed data

collected using CVs can only be transferred from 3 segments

at a time. A fixed bandwidth for data transfer in real-time is a

realistic assumption however a stringent one of 3 segments is

considered here in particular to clearly observe any benefit of

covering different segments over time than fixed sensors which

is difficult to observe if data is collected from several segments

at all times. Hereafter, in the context of moving sensors, the

term measured segment is used to refer to segments from

which data is transferred and used for estimation rather than

where data is collected (which is assumed to be all segments).

Similarly, sensor position is used to refer to the position of

a measured segment ignoring segments where sensors are

present but data is not used for estimation. The initial sensor

positions are the same as the third row from the top in Figure 3

with data being obtained from Segments {1, 3, 7}. The sensor

positions are changed after a fixed duration of time. For this

analysis, the duration is varied from indefinite (equivalent to

fixed sensors) to 1 second (collecting data from a different set

of segments every time step). A systematic update of sensor

positions is utilized such that at every change the segments

immediately following the current segments are selected. For

instance, after Segments {1, 3, 7}, the positions are changed to

Segments {2, 4, 8}. From Segment 8, the position is changed

directly to Segment 1 skipping Segment 9 since Segment

9 already has a fixed sensor. So from Segments {2, 4, 8}, the

positions are changed to Segments {3, 5, 1}, and so on after
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Fig. 7. RMSEÄ [top left], RMSEv [top right], SAMPEÄ [bottom left],
SAMPEv [bottom right] with different duration between changes in sensor
positions. The symbol ‘-’ at the beginning of the x-axis represents the scenario
with fixed sensor locations throughout the simulation.

the duration of change in each case. Figure 7 presents the

plots of the evaluation metrics with increasing frequencies of

changing the position of sensors for the four state estimation

methods.

It is observed that overall for all estimation methods the

value of both RMSEÄ and SAMPEÄ decreases with a decrease

in the duration between consecutive changes in sensor posi-

tions. A majority of the improvement for all methods occurs

with a change duration of fewer than 20 seconds and all

methods converge in RMSEÄ at a change duration of 1 second.

While overall there is an improvement with decreased duration

between changes in sensor position, the trend is not completely

monotonic as the error increases at few values of change

duration. Since on some occasions, the process model may

not be able to capture the traffic dynamics as well as on other

occasions, the estimation error increases if the queried sensors

end up not being at the location where the worse modeled

behavior occurs at a given time. Given a total simulation

duration of 500 seconds, certain values of change duration only

result in a handful of position changes during the estimation

period. In this case, the time in which data is not collected

from segments whose dynamics are not captured well by the

model may also be increased causing the error to increase,

although marginally. With a higher frequency of sensor posi-

tion changes, the error decreases monotonically, as the sensors

send data from all the segments more frequently. The two

metrics show a similar comparative trend between MHE, EKF,

and EnKF while UKF shows a better performance than other

methods in terms of SAMPEÄ . This is primarily because UKF

makes errors at higher actual density values compared to other

methods and also relatively overestimates the densities (similar

to the observations with EKF for SAMPEv in the case of fixed

sensors) both of which lead to larger denominator values and

a smaller percentage error. The corresponding trajectory plots

are presented in Appendix F of [45]. As compared to density,

the values of RMSEv and SAMPEv are less affected by the

variation in frequency of change in sensor positions. Also,

both metrics show a similar trend. In terms of speed, UKF,

EnKF, and MHE only improve marginally compared to values

with fixed sensor positions with the improvement observed

at a change duration of 1 second. EKF, on the other hand,

shows a bigger improvement outperforming other methods

at the same duration between changes. This is similar to

the observation in Figure 4 where EKF performs marginally

Fig. 8. Plots of simulated and estimated trajectories for densities [left] (a, c,
e, g) and speeds [right] (b, d, f, h) in the presence of 3 additional measured
segments with changing positions over time. Rows of figures correspond to
Segments 3, 4, 5, and 6 respectively.

better than MHE when all segments are measured. Overall,

MHE is observed to outperform other methods at all different

durations between changes in sensor positions except when

the positions are changed every 1 second. The simulated and

estimated trajectories for density and speed using MHE for

the cases with fixed sensors, sensor positions changing every

10 seconds and every 1 second are presented in Figure 8 to

observe the qualitative improvement in estimation from using

CVs as sensors.

Out of the plotted segments, Segment 3 is measured in

the fixed sensor case therefore the estimated trajectory from

fixed sensors overlaps well with the real trajectory. The other

three plotted segments are unmeasured in the fixed sensor

case. As expected, the moving sensors result in estimated

densities and speeds that follow the real states more closely

than the fixed sensor case except for Segment 3. Note that

the trajectories estimated using the moving sensors show

oscillations in both density and speed which are a result of

the segment measurements becoming unavailable over regular

intervals. A duration of 10 seconds between changes results

in less frequent but larger oscillation as measurements are

unavailable for more time steps allowing for larger deviations

from the real state. The oscillations in speed estimates are

more profound than those in density plots which can be

attributed to speeds being obtained by a division of the density

and relative flow states and thus being sensitive to changes in

both. Since such oscillations in estimated states are generally

undesirable, a smoothing filter such as a moving average filter

may be applied to the estimated states from the moving sensors
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Fig. 9. RMSEÄ [top left], RMSEv [top right], SMAPEÄ [bottom left], and
SMAPEv [bottom right] with different starting configurations of sensors and
varying duration between changes in sensor positions using MHE. The symbol
‘−’ at the beginning of the x-axis represents the scenario with fixed sensor
locations for the starting configurations in the legend.

to make them more realistic and usable. Plots obtained by

applying a moving average filter with values averaged over

15 time steps are presented in Appendix F of [45].

3) Impact of Segment Selection for Sensing: A limited bud-

get leads to limited bandwidth for data transfer causing traffic

measurement data to be available only for a few segments on

the road at a time. Therefore, it is important to determine

which segments to query for data to obtain the best state

estimates. In this section, we test the impact of querying the

same number of sensors placed with different spacing while

changing the position of sensors. We consider 3 additional

segments with data apart from the fixed sensors on the last

mainline segment and all ramp segments. For this study,

we only consider MHE as it is observed to perform the best

with 3 additional sensors. We consider three scenarios with

different spacing between measured segments such that their

starting sensor positions are {1, 2, 3}, {1, 3, 5}, and {1, 4, 7}.
The duration between the change in the position of segments

is varied in the same way as in Section IV-E2. Figure 9

presents the plots for evaluation metrics for the different

starting configurations of sensors (presented in the legend)

with varying duration between changes in sensor positions

presented on the x-axis.

There is an overall improvement in the estimation perfor-

mance in terms of all metrics with decreasing duration between

changes in sensor position as also observed in Section IV-E2.

Between starting configurations, the configurations with more

uniformly spaced measured segments namely {1, 3, 5} and

{1, 4, 7} perform better than consecutive positions {1, 2, 3}
at all values of time between position changes. Between

{1, 3, 5} and {1, 4, 7}, the latter performs better. The difference

in performance between the configurations decreases as the

duration between position changes is reduced. Compared to the

performance of the uniformly spaced starting configurations,

the starting placement {1, 2, 3} with an x-axis value of above

10 seconds performs worse than when the former is only fixed.

This indicates that a more uniformly spaced positioning of

sensors is always desirable and can even outperform when the

same number of sensors is clustered even if moving to cover

more segments over time.

4) Impact of measurement quality: As sensors are

prone to faults, the sensor noise may change from its

manufacturer-specified value for the sensor from time to

time. At the same time, lower penetration rates of CVs in

different segments can also result in reduced quality of data

measurements. In such scenarios, a method more robust to

measurement errors is considered more reliable. In this section,

we check the impact of changing the measurement quality on

the estimation performance of the four methods. We further

investigate the impact of changing sensor positions on the

estimation performance with different levels of error. The goal

is to see if the performance improvement offered by moving

sensors can offset the deterioration caused by measurement

quality. We set the measurement error equal to a random

noise drawn from a uniform distribution with bounds [−1, 1],
which is standardized and scaled to have zero mean and a

standard deviation of s ∈ R which is varied to replicate

different levels of error. The distribution of noise added to both

density and speed measurement is kept the same. In general,

the measurement error covariance matrix R for the KF variants

is set according to the actual covariance of the noise which

in this case is the diagonal matrix with all diagonal elements

equal to s2. However, in practice, it is difficult to know the

distribution of noise if it is due to varying penetration rates or

unexpected sensor faults. Therefore, in this case, we continue

to use the value of R defined in Section IV-D2. For MHE,

the objective weights and horizon length are also kept the

same. Figure 10 presents the plots of RMSEÄ and RMSEv
against increasing values of standard deviation s for the four

state estimation methods. The plots for SMAPE are omitted

for brevity as they show similar relative trends compared to

the plots for RMSE and do not contribute to the discussion.

The unit of s is the same as the measurements (veh/km for

density and km/hr for speed) but is omitted from the plots as

it represents the standard deviation for noise in both types

of measurements. Three numbers of additional sensors are

considered namely 3, 5, and 7 to present the trend in estimation

error with increasing measurement noise for different numbers

of sensors. For each number of sensors, we take 5 random

seed values and average the metrics over the 5 seeds. From

the plots, it appears that in all the cases, the estimation error

increases with an increase in measurement noise s.

It is observed that the performance of all methods in general

deteriorates with increasing noise in the measurements which

is expected as the data becomes less reliable. The deterioration

in terms of RMSEÄ is more prominent with the increasing

number of sensors. Notice that the performance of the methods

in terms of density does not change much up to s = 20 for the

case with three additional sensors. However, the corresponding

increase in RMSEv shows that the overall estimation per-

formance does indeed deteriorate with increasing noise even

at lower levels of noise. The RMSEÄ does not immediately

increase for 3 additional sensors, because the error is already

quite large to be sensitive to a small increase in noise. The

large increase in the error for UKF is due to large jumps

in the state trajectories that reach their bounds from time

to time at higher noise possibly due to instability issues

with UKF. For MHE, the percentage increase in the error in

density and speed between the lowest and highest noise lev-

els are 66.6%, 50.7%, 316.2% and 151.8%, 236.7%, 360.1%

for 3, 5, and 7 additional sensors, respectively. Note that

the deterioration in performance becomes more prominent in

both density and speed with the increasing number of sensors
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Fig. 10. RMSEÄ [left] and RMSEv [right] with changing s (standard
deviation of added measurement noise) with 3, 5, and 7 additional fixed
sensors in the three rows respectively.

Fig. 11. RMSEÄ [top left], RMSEv [top right], SMAPEÄ [bottom left],
and SMAPEv [bottom right] with changing s (standard deviation of added
measurement noise) with 5 additional measured segments with changing
positions using MHE.

as the performance becomes more directly associated with

available data and thus more sensitive to measurement quality.

Overall, UKF appears to be the least reliable in the presence

of large measurement errors due to instability issues. Also as

observed before, MHE performs better than other methods at

smaller numbers of measured segments at lower error levels

and while it is affected significantly by measurement error,

its performance is still better or comparable to other methods

with large noise. Next, we observe the impact of the changing

sensor positions on the estimation performance in the presence

of noise.

Figure 11 presents the variation in error values for estima-

tion using MHE with changing levels of measurement noise

in the presence of moving sensors similar to the setting in

Section IV-E2. The legend presents the time (in seconds)

between the change in sensor positions using the same position

update logic as presented in Section IV-E2. We consider

5 additional sensors in the configuration presented in Figure 3.

Noise is implemented in the same way as above. The plots for

3 and 7 additional sensors are omitted for brevity. As observed

in Section IV-E2, the estimation performance in terms of

RMSEÄ improves with 20 seconds and further lower duration

between changes in sensor positions while RMSEv only shows

a small improvement at a change duration of 1 second and

performs similar to the case with fixed positions with a change

duration of even 10 and 20 seconds. While the error at

all frequencies of change in sensor position is observed to

increase similarly with increasing noise, the RMSEÄ is con-

sistently smaller for higher frequencies. A change duration of

10 seconds at s = 20 performs equivalent to a change duration

of 20 seconds at s = 0. In terms of RMSEv , there is very

little change/improvement with a change in position. Plots for

SMAPEÄ show a smaller difference in magnitude between the

curves for the same values on the x-axis compared to RMSEÄ .

Qualitative examination of the trajectory plots indicates that

a majority of the errors at longer change duration occur at

higher densities leading to larger denominator values and

hence smaller percentage errors. Also, for certain segments,

the scenarios with longer change duration heavily overestimate

the densities at lower actual density values which further leads

to reduced percentage errors and hence smaller differences

in curves. The trajectory plots can be found in Appendix F

of [45]. Overall, the evaluation plots reiterate that there is

merit in using CVs as moving sensors as the improvement

in performance helps offset the deterioration caused by the

measurement errors.

V. CONCLUSION AND FUTURE WORK

From the previous analysis, we have some preliminary

suggestions regarding the questions posed in Section IV-A

which are as follows:
• A1: As expected, the performance of the state estimation

methods is improved upon increasing the number of

sensors in the system. The performance in terms of

density is similar across methods while MHE outperforms

other methods in terms of estimated speeds.

• A2: The performance of all estimation methods in general

improves with moving sensors as sensors cover more

segments on the highway over time as compared to the

case with only fixed sensors. The variation in performance

is non-monotonic at lower frequencies of change in sensor

positions but a prominent improvement is observed at a

duration of 20 seconds or lower. The improvement in

density is more profound than the improvement in speeds.

• A3: More uniformly spaced segments result in a better

state estimation performance than the same number of

segments placed consecutively in the case of both fixed

and moving sensors. Uniformly placed fixed sensors also

outperform consecutively placed moving sensors up to a

duration of 20 seconds between changes.

• A4: The performance of all methods worsens with wors-

ening data quality that might result from lower penetra-

tion rates of CVs and higher sensor noise. UKF is the

least robust out of all methods and shows abrupt increases

in error compared to other methods with increasing

noise. The impact of quality issues is more prominent

in scenarios with more measured segments which show a

deterioration in performance at lower levels of measure-

ment noise as compared to scenarios with fewer measured

segments. The performance improvement achieved by the

use of moving sensors is able to offset the deterioration

caused by measurement quality to a fair extent showing
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the advantage of using moving sensors under adverse

conditions.
To summarize, we present a state-space formulation for the

nonlinear ARZ model while considering junctions in the form

of ramp connections. Since the ARZ model is nonlinear, it is

not possible to directly apply linear state estimation methods

to it which are considered to be more efficient than nonlinear

methods. We linearize the ARZ model using Taylor series

approximation and use it to implement linear state estimation

such as through linear MHE. We present the formulation for

linear MHE which has not previously been used for TSE and

show that it is a good choice for TSE compared to other

popular methods namely EKF, UKF, and EnKF. We also show

that the use of moving sensors is better for state estimation

compared to fixed sensors and can offset the degradation in

performance caused by reduced measurement quality resulting

from sensor noise and lower penetration rates of CVs. Various

strategies and variations in the selection of segments to obtain

CV data are also investigated.

It is important to note that this study is constrained by a

lack of access to real-world data corresponding to the given

setting. Given the present theoretical demonstration of the

benefits of using mobile CV data sources, a comprehensive

investigation is required to assess the real-world capabilities

of the approach. In particular, it is important to investigate

the technical challenges in ingesting and fusing real-time data

streams from both CVs and fixed sensors, examining their

impact on estimation performance.

Future work will also consider the optimal placement of

sensors considering CVs for TSE. Besides, while the perfor-

mance of the ARZ model against the first-order LWR model

has been studied in prior research [24] which claims the

superiority of the former, some of the newer works [60] have

suggested the possibility of the order of the model being

less significant for TSE in the presence of sufficient data.

Therefore, it would be interesting to carry out a detailed

comparative study between the performance of the ARZ model

and a first-order model under different scenarios specifically

those depicting non-equilibrium conditions under different

sensor placements.
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