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Abstract— This paper addresses the problem of traffic state
estimation (TSE) in the presence of heterogeneous sensors which
include both fixed and moving sensors. Traditional fixed sensors
are expensive and cannot be installed throughout the high-
way. Moving sensors such as Connected Vehicles (CVs) offer
a relatively cheap alternative to measure traffic states across
the network. Moving forward it is thus important to develop
such models that effectively use the data from CVs. One such
model is the nonlinear second-order Aw-Rascle-Zhang (ARZ)
model which is a realistic traffic model, reliable for TSE and
control. A state-space formulation is presented for the ARZ model
considering junctions in the formulation which is important to
model real highways with ramps. A Moving Horizon Estimation
(MHE) implementation is presented for TSE using a linearized
ARZ model. Various state-estimation methods used for TSE in
the literature along with the presented approach are compared
with regard to accuracy and computational tractability with the
help of a numerical study using the VISSIM traffic simulation
software. The impact of various strategies for querying CV
data on the estimation performance is also considered. Several
research questions are posed and addressed with a thorough
analysis of the results.

Index Terms— Traffic state estimation, highway traffic net-
works, second-order models, Aw-Rascle-Zhang model, moving
horizon estimation, connected vehicles.

I. MOTIVATION AND PAPER CONTRIBUTIONS

ITH the large number of vehicles overloading the
transportation systems across the world, problems like
congestion, accidents, and pollution have become common.
As a remedy to such circumstances, control methods such as
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variable speed limits, ramp metering, route control and their
combinations have become quite popular for instance see [1],
[2], [3], and [4].

These methods require the knowledge of the system at all
times to make them work effectively. A popular method for
real-time monitoring of traffic systems is by means of traffic
state estimation (TSE) using dynamic traffic models which
provide a high-fidelity picture of the traffic spatio-temporally
while utilizing data from sensors available throughout the
highway. In general, more data results in better estimates of
the system states. However, since fixed sensors like inductive
loop detectors are quite expensive, they cannot be placed at
short intervals throughout the highway. Connected vehicles
(CVs) offer a potential solution to this problem by providing
additional sources of data relatively free of cost [5]. Here,
we assume that most of the communication between the CVs
and the network operator will take place via existing cellular
networks so there will be no additional costs of building con-
nected highway infrastructure everywhere. As the proportion
of CVs in the traffic rises, CVs will be able to provide useful
data from across the system including both traffic density
and speed. Thus, moving forward, it is imperative to develop
such models that can utilize well different types of data from
both fixed sensors and CVs to perform state estimation and
control.

Traditionally, TSE is performed using first-order traf-
fic models such as the Lighthill-Whitham-Richards (LWR)
model [6], [7]. First-order models are simple to implement
as they only have a single equation which is the conservation
of vehicles to describe the traffic dynamics. They also have
very few calibration parameters, making them a popular choice
for state estimation. However, they only consider equilibrium
traffic conditions, that is, the traffic density (number of vehi-
cles per unit space expressed in vehicles per unit length for
example, veh/km [8]) and traffic flux (number of vehicles that
cross a given point per unit of time expressed in vehicles per
unit time for example, veh/hr [8]) are assumed to follow a
predefined relationship known as the fundamental diagram.
This makes them unable to represent certain non-equilibrium
traffic phenomena like capacity drop which are essential for the
purpose of traffic control [9]. Thus, the use of these models in
traffic control is considered less effective. Second-order traffic
models such as the Payne-Whitham (PW) model [10], [11]
and the Aw-Rascle-Zhang (ARZ) model [12], [13], on the
other hand, can represent non-equilibrium traffic phenomena
with the help of an additional equation to describe the traffic
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dynamics. They are, therefore, considered more realistic than
the first-order models. As a result, these models are not only
good for state estimation but are also reliable for control.
Additionally, second-order models provide a natural way to
incorporate multiple sources of data as they consider both
density and speed to be independent variables. In first-order
models that only consider either the density or the speed
as a variable at a time, any deviation of the speed from
its equilibrium relationship must be considered a part of
the modeling error. Thus, second-order models become a
natural choice for state estimation using CVs. Note that while
Lagrangian (vehicle-based) models of traffic exist [14] which
are arguably more compatible with trajectory-based data from
CVs, here we are using road density and average vehicle speed
information obtained using both CVs and fixed detectors and
not just relying on trajectory based information. Therefore,
we have chosen an Eulerian (location-based) second-order
model over a Lagrangian model besides the above reasons.

In light of the aforementioned discussion, the objective
of this work is to develop a state-space representation of
a reliable second-order traffic model and show the potential
of CV data for TSE under different scenarios. Given this
objective, in the following discussion, we present a literature
review of traffic models used for TSE and studies utilizing
heterogeneous sources of data, followed by a brief discussion
on the estimation methods used.

The most popular model for TSE in the literature is the
first-order LWR model. The simple form of the model with
a minimal number of calibration parameters makes it an
attractive option for large-scale implementation. Some works
that implement a first-order model to perform state estimation
using heterogeneous sensors include [15], [16], [17]. Readers
can also refer to [18] for a comprehensive review of TSE
literature involving first-order models. Due to the known
limitations of first-order models, several studies have also
undertaken state estimation using second-order models such
as in [19], [20], and [21] and the references therein. Most of
these studies use the second-order PW model implemented
in the METANET [22], [23] framework. The PW model
has well-known limitations [9] such as physical inconsistency
under certain heterogeneous traffic conditions which make it
unreliable. A significantly better model is the ARZ model
which retains the benefits of second-order models without
sacrificing the physical consistency of the first-order models.
Despite this, there are very few studies in the literature that use
the ARZ model for state estimation. The work in [24] develops
a state-space formulation for the nonlinear ARZ model and
performs state estimation using Extended Kalman Filter (EKF)
considering both fixed and moving sensors. In [25], the authors
propose a boundary observer for state estimation using a
linearized ARZ model. The study in [26] uses Particle Filter
(PF) for the estimation of traffic states using a modified
ARZ model. However, it is worth noting that none of these
papers considers junctions in the modeling. Modeling the
traffic dynamics at junctions is essential to the modeling of
traffic on real highways which consist of on-ramp and off-
ramp connections. Therefore, unlike past studies, we formulate
herein a state-space model for the nonlinear ARZ model
considering junctions.
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Note that the aforementioned studies using second-order
models as well as the present work are different from studies
like [27] which while do consider the speed to be an indepen-
dent variable like the second-order models but consider it to
be known everywhere and at all times using CV data. These
have been categorized as data-driven methods by [18]. In the
current work, unlike [27], we assume a bandwidth restriction
on the data that can be transferred from the CVs to the
network operator which forces data to be available only from
a subset of all segments for estimation while the traffic data on
other segments is considered unknown. Further, the impact of
various strategies associated with the selection of the subset of
segments to query CV data for estimation is also investigated.
Besides [27], several other studies utilize heterogeneous data
sources for TSE. Detailed reviews of the related literature can
be found in [18], [28], and [29]. Most studies focus on data
fusion methods to combine fixed and moving sensor data to
achieve improved estimation performance. Some studies such
as [24] focus on the impact of the penetration rate of CVs
on TSE. To the best of the authors’ knowledge, none of the
studies investigate the impact of different approaches to query
subsets of segments for estimation in a moving sensor setting.

A majority of the model-driven TSE literature either uses
one of the Kalman Filter (KF) variants from among EKF,
Unscented Kalman Filter (UKF), and Ensemble Kalman Filter
(EnKF), or other methods like PF, and observers to perform
state estimation, for instance, see [18], [30], and [31]. While
these methods are computationally attractive, they have certain
limitations with respect to TSE. The primary limitation is that
they do not have an inherent way to deal with state constraints.
Thus, it is possible that the estimates generated from these
methods contain nonphysical values of certain states which
can further cause the process model to collapse.

An estimation method that handles this limitation naturally,
due to its optimization-based structure, is MHE. MHE has
been explored extensively in the general state estimation liter-
ature, for instance in [32], [33], [34], and [35], but not so much
in the TSE literature. In [36] and [37], the authors propose an
MHE formulation for the estimation and control of large-scale
highway networks using the Macroscopic fundamental dia-
gram (MFD). MFD is a network-level traffic model and does
not consider the variation in traffic density on individual
stretches of the highway. Unlike [36] and [37], we investigate
estimating the density throughout the highway stretch. The
study in [38] presents an MHE formulation for traffic density
estimation using the Asymmetric Cell Transmission model
(ACTM). ACTM is based on the LWR model and therefore,
has the drawbacks previously mentioned for first-order models.
Moreover, the work in [38] does not consider moving sensors
from CVs.

Besides the above approaches, a recent paradigm of TSE
explores physics-informed deep learning (DL) [39], [40], [41].
These approaches aim to guide the training of DL-based
models for TSE through physics-based traffic laws, such as
those governing the first and second-order models discussed
above. The traffic model parameters are automatically tuned
as the DL model is trained, thus offering the determination
of accurate traffic flow laws for a given scenario. However,
these approaches suffer from several limitations, including a
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lack of robustness to noisy data and the need for extensive
tuning of training algorithm parameters for individual scenar-
ios, limiting the models’ applicability to real-world use cases.
Interested readers are referred to [42] for a comprehensive
survey on this paradigm of TSE. Compared to these, model-
driven approaches such as the one presented in this work are
favored for real-world applications due to their interpretability
and computational advantage.

Given that, the main research gaps on this topic are
a) the absence of a state-space formulation for a reliable
second-order traffic model with junctions, b) the lack of
exploration of MHE in the context of TSE and comparison
with other state-estimation methods, and c¢) the absence of an
investigative study on the impact of different strategies for
querying data from CVs for TSE as opposed to fixed sensors.
In what follows, we highlight the main contributions of this

paper:

o« We derive a nonlinear state-space formulation for the
second-order ARZ model with junctions in the form
of ramp connections. In that, we present the detailed
dynamic equations of the model. This is a development
over [24] which does not consider junctions in the for-
mulation. The inclusion of junctions adds additional com-
plexity to the model in terms of the nonlinearity which
now comprises of minimum and piecewise functions in
the model. Second-order traffic models are more realistic
than first-order models like the LWR model as they can
capture certain phenomena like capacity drop which are
essential to control applications. The obtained state-space
formulation can thus be used for state estimation as well
as control purposes.

« We consider heterogeneous sensors including both fixed
and moving sensors. The former consists of sensors like
inductive loop detectors while the latter includes CVs.
The state-space description is appended to include the
measurement model which is also nonlinear thus result-
ing in a nonlinear input-output mapping of the system
dynamics.

« We investigate the performance of various state estimation
methods in terms of accuracy and computational tractabil-
ity using the VISSIM traffic simulation software. As a
departure from estimation based on KFs, PF, observers,
and so on, we investigate MHE for TSE. MHE, unlike the
other methods, naturally allows us to include constraints
on the state variables making the problem more practical.

o The impact of moving sensors including CVs on the
performance of TSE is studied under various scenar-
ios including different frequencies of change in sensor
positions, different sensor placement configurations, and
different levels of measurement errors from varying pene-
tration rate of CVs and sensor noise. The estimated states
are examined qualitatively to understand the implication
of moving sensors on TSE.

Paper’s Notation: Let N, R, R", and RP*Y denote the set
of natural numbers, real numbers, and real-valued column
vectors with size n, al}d. p-by-q .real ma.trices respectively. S’} |
denotes the set of positive definite matrices. For any vector z €
R", ||zl denotes its Euclidean norm, i.e. ||z||» = vz z, where
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TABLE I

PAPER NOMENCLATURE: PARAMETER, VARIABLE, AND SET DEFINITIONS

[[ Notation | Description I

Q the set of highway segments on the stretched highway
Q={1,2,...,N}, N:=19Q]

Qr the set of highway segments with on-ramps
Qr={1,2,..., Ny}, Ny = |Q]

Qo the set of highway segments with off-ramps
0 =1{1,2,...,No}, No := |Q0|

Q the set of on-ramps, 2 = {1,2,...,N;} , Ny = |Q]

Q the set of off-ramps, Q2 = {1,2,...,No}, No = ||

T duration of each time-step

l length of each segment, on-ramp, and off-ramp

pilk], i k], w;lk]

traffic density, relative flow and driver characteristic for
Segment 7 €  at time kT, k € N

qi[k], dilk] traffic flow and relative flux from Segment ¢ € 2 into the
next segment
D;[k], Si[k] demand and supply functions for Segment ¢ € Q

pilk], ilk], s [K]

traffic density, relative flow and driver characteristic for
On-ramp ¢ € 2 at time k7T, k € N

Gi[k], i lk] traffic flow and relative flux from On-ramp 7 € €2 into the
attached highway segment
D;[k], S; k] demand and supply functions for On-ramp i € €2

pilk], i [k], ws k]

traffic density, relative flow and driver characteristic for
Off-ramp ¢ € Q) at time kT, k € N

Gi[k], i k] traffic flow and relative flux from Off-ramp i €

D;[k], S; k] demand and supply functions for Off-ramp i € 2

qi k], ¢i k] incoming traffic flow and relative flux for Segment ¢ € Q

Gilk], di[K] incoming traffic flow and traffic flux for Off-ramp i € Q

Din k], win k] demand and driver characteristic of traffic wanting to
enter Segment 1 of the highway

Pout k] traffic density downstream of Segment N of the highway

Din,i[k]»ﬁ)in,i[k]

demand and driver characteristic of traffic wanting to
enter On-ramp 3 € )

Pout,i[k] traffic density downstream of Off-ramp ¢ €

Bilk] proportion of traffic entering from Segment 7 € 2 into the
next segment at an on-ramp junction, where 3;[k] € [0, 1]

o [k] split ratio for the off-ramp attached to Segment ¢ € €,
where a;[k] € [0, 1]

v free-flow speed

Pm maximum density

o model parameter called relaxation time, where o« € R

¥ fundamental diagram parameter, where v € R}

p(p) pressure function which takes traffic density p as input

Ve(p) equilibrium traffic speed at traffic density p

T

z' 1is the transpose of z. Tab. I provides the nomenclature
utilized in this paper.

II. NONLINEAR DISCRETE-TIME MODELING OF TRAFFIC

NETWORKS WITH RAMPS

The objective of this section is to develop a state-space for-
mulation for the nonlinear second-order ARZ model describ-
ing the evolution of traffic density on highways with ramps.
The developed formulation is useful for several control the-

oretic purposes including state estimation and control of
highway traffic.

A. The Aw-Rascle-Zhang Model

In this section, we present the modeling of traffic dynamics
for a stretched highway connected with ramps. To that end,
we use the second-order ARZ Model [12], [13] given by the
following partial differential equations:

8_,0 8’.;1) =0, (1a)
at  od
dpw+p) dpw+p@Ehv  p—Ve(p)
+ =- :
ot ad T
(1b)
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where ¢ and d denote the time and distance; p is shorthand for
p(t,d) which denotes the traffic density (vehicles/distance),
and v is shorthand for v(¢, d) which denotes the traffic speed
(distance/time). Here, p(p) is given by

Y
pwr=v (L) @
0

m

and V,(p) is given by

Y
Ve(p) = vy (1 - (i) ) . 3)
Pm

In traffic literature, relationships like (3) are commonly called
the fundamental diagram. The first PDE in the ARZ model
ensures the conservation of vehicles which is also present in
the first-order traffic models. The second PDE which ensures
conservation of traffic momentum is unique to second-order
models and accounts for the deviation of traffic from an
equilibrium position. This equation makes the second-order
models more realistic than the first-order models as it allows
them to represent some non-equilibrium traffic phenomena
such as capacity drop. As second-order models allow traffic
flow to deviate from equilibrium, they also inherently allow
traffic speed to deviate from the equilibrium speed which
allows speed data to be incorporated independent of the
density. With first-order models, any deviation of the speed
from the equilibrium speed would have to be considered a
part of the modeling error. Therefore, second-order models are
more naturally suited to perform estimation using both density
and speed data provided by the fixed sensors and CVs. The
quantity v+ p(p) is also called the driver characteristic and is
denoted by the variable w(z, d). The expression p(v + p(p))
is also called the relative flow denoted by (¢, d) which is
essentially the difference between the actual flow and the
equilibrium flow at any p. Notice that in (1), pv is the flux
of traffic (vehicles/time) which will be denoted by ¢(z, d),
while p(v+ p(p))v is the flux of relative flow (vehicles/time?),
also called the relative flux, which will be denoted by ¢ (¢, d).
Using the relative flow and the two flux, the ARZ model can
simply be rewritten as

dp(t,d)  09q(t,d) —o, (4a)
ot ad

oY (t,d) n 99 (t,d) _ _Y(.d) n vfp(t,d), (b)
ot ad T T

which can be converted to a state-space equation with p and
Y as the states.

To represent this model as a series of difference, state-
space equations, we discretize the ARZ Model (4) with respect
to both space and time, also referred to as the Godunov
scheme [43]. This allows us to divide the highway of length L
into segments of equal length / and the traffic networks model
to be represented by discrete-time equations. These segments
form both the highway and the attached ramps. Throughout
the paper, the segments forming the highway are referred to
as mainline segments. We assume the highway is split into N
mainline segments.

To ensure computational stability, the Courant-Friedrichs-
Lewy condition (CFL) [44] given as v le’1 < 1 has to
be satisfied. Since each segment is of the same length [,

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2024

then we have p(¢t,d) = p(kT,il), where i = 1,2,..., N
represents the segment index, and k € N represents the
discrete-time index. For simplicity, we define p(kT,il) :=
pilk]. The other variables are also defined in the same way,
namely w;[k], ¥;[k], gi[k], and ¢;[k]. The expressions for the
flux function g;[k] and ¢;[k] for Segment i depend on the
arrangement of the segments before and after that segment.
Mathematical expressions for the flux across different types of
segment junctions and those for the traffic demand and supply
functions needed to define the flux are omitted for brevity.
Interested readers are referred to Appendix A of [45] for the
same. Here, the demand of a segment denotes the traffic flux
that wants to leave that segment while the supply of a segment
denotes the traffic flux that can enter that segment.

B. State-Space Equations
The discrete-time traffic flow and relative flow conservation

equations for any Segment i € Q2 can be written as

T
pilk +1] = pi[k] + T(Qi—l[k] —qilkD, (5a)

1 T vf
Yilk +1]1={1- z 1//i[k]+7(¢i71[k]_¢i[k]) + T/Oi[k]
(5b)

Similar equations can be written for ramp segments as well.
Here, ¢;[k] and ¢;[k] take the expressions presented in
Appendix A of [45] depending upon the arrangement of
Segment i with respect to other segments. The state vector
for this system can be defined as

x[k1: =[oi k1Y [k] . .. B k1Tk] - . . prlk]g kDL . 1T
c RZ(N+N1+N0),

for which i € Q, j € Q and I € Q. In this work,
we assume that the demand and the driver characteristic
upstream of the first mainline segment are known, that is,
Dolk] = Dijylk] and wolk] = win[k] and the density
downstream of the last mainline segment is also assumed to
be known, that is pyt1[k] = pou:[k]. Similarly, the demand
and driver characteristic upstream of the on-ramps and the
density downstream of the off-ramps is also considered to
be known. These values can be obtained using conventional
detectors like the inductive loop detectors placed upstream of
the input segments and downstream of the output segments
of the highway. An approximate value of the demand can
also be obtained using Origin-Destination flow matrices [46]
if available for the given region. Then,

ulk] := [Din [k win K Pous K] - .. Di, j[k1i j K] ...
Bouralk]...]T € R3*F2Ni+No,
where j € Qandl e Q.

The evolution of traffic density and relative flow described
in (5) can be written in a compact state-space form as follows

(6)

where A € R"™ " for ny := 2(N + N; + Ng) represents
the linear dynamics of the system, f : R"™ x R™ —
R™ for n, = 3 4+ 2N; + No is a vector-valued function

x[k+1] = Ax[k]+ G f(x, u),
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representing nonlinearities in the state-space equation and
G € R™ jg a matrix representing the distribution of
nonlinearities.

The nonlinearities in f are in the form of a minimum of
weighted nonlinear functions of the states and inputs. The
structure of the above-mentioned matrices and functions is
provided in Appendix B of [45]. Next, we discuss the mea-
surement model for the ARZ model which is also nonlinear
in nature.

C. Sensor Data and Measurement Model

We consider two types of sensors in this work, the first is
fixed sensors like the inductive loop detectors, and the second
is moving sensors which include CVs. This study assumes
that it is possible to retrieve density and speed data from both
types of sensors. Two loop detectors installed at opposite ends
of a segment can be used to obtain the traffic density (using
an approach similar to [47]) as well as the average speed
of vehicles on the segment [48]. CVs are known to provide
the current position and speed data for individual vehicles
directly. The average speed of a segment can be assumed to
be the average of the speed data provided by all the queried
CVs in that segment similar to [49]. To obtain density data
from CVs, we assume additional functionality including either
spacing measurement equipment which is available as part
of advanced driver assistance systems [50] or availability of
vehicular ad-hoc networks (VANETS) which allow vehicles to
communicate with each other in a neighborhood around the
queried CV [51]. When assuming the latter it is important to
note the limitation imposed by the communication range of
the vehicles on the maximum cell length for traffic modeling.
In the case of the former, while a cell length limitation may not
be required, sufficient penetration of CVs is necessary on the
segments that are queried for data. The data from the CVs is
sent via cellular network to a network operator who performs
any prior computation if necessary to convert the received
information like the spacing data or neighborhood counts into
density measurements before using them for state estimation.
A measurement error can also be associated with the data at
this point based on the available information on penetration
rate and other factors.

Note that in this setting, both fixed sensors and CVs are
assumed to provide similar data on the density and speed of
traffic on segments. Traditionally, CVs are considered akin to
floating cars which provide only trajectory information at high
sampling rates and with a broader spatial coverage as com-
pared to fixed sensors. However, with the increasing number
of vehicles and devices capable of sending and receiving data
over the internet allowing vehicles and objects to communicate
with each other such as in the case of VANETS, it is
reasonable to expect that CVs could provide data comparable
to fixed sensors in quality and type but superior in spatial
coverage allowing similar data retrieval over the entire road
stretch rather than a few fixed segments. Also, CVs being
multi-functional and mobile require a lower commitment than
fixed sensors.

Figure 1 presents a schematic of the sensors’ placement
on the highway. Among the measurements, density p;[k] for
any mainline segment i € €2, and similarly for the ramps,
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Fig. 1. Heterogenous sensors on the highway: fixed sensors represented
by dashed lines across the highway and CVs represented by the solid black
rectangles.

is directly a state and is used as it is, while the velocity v; [k]
can be written in terms of the states as follows:
vilk] = Vil p(pilk]).
pilk]

We define a nonlinear vector-valued measurement function
h(x[k]) which maps the state vector to a corresponding vector
of all possible measurements in the system such that k(x[k]) €
R, Note, that here the number of possible measurements is
equal to the number of states in the system. For any mainline
segment i € €2, the corresponding measurements are denoted
by hy;_1 and hy;, where the subscripts represent the position
of the element in the measurement function vector. These
represent the density and speed of traffic on the segment,
respectively. As mentioned above, these can be computed
using the states corresponding to Segment i that is xo;_1 and
Xxp; representing the density and relative flow, respectively, and
are defined as follows:

hoi—1(x[k]) = x2;—11k], (7a)
ik
hog ekl = <2 e kD). (7b)
x2i—11k]

The mapping corresponding to the ramp segments can also
be defined similarly. Now, we can define the measurement
vector y[k] € nplk], where np[k] is the number of available
measurements from sensors at time k, as follows:

ylk] = Clklh(x[k]) + v[k],

where C[k] € R"k*nx ig the observation matrix at time
k describing the availability of measurements from sensors.
Note, that the observation matrix here is variable in time
because of the measurements from CVs which allow data to
be measured from different numbers and positions of segments
with time. Here, v[k] € R™K 5 (k] = nplk] lumps all the
measurement errors including the sensor noise into a single
vector.

The above results are important as they allow us to perform
state estimation for traffic systems using the second-order
ARZ model. The state-space equation (6) can also be used
for control purposes using control theoretic approaches from
the literature. In the following section, we discuss a method
for linearization of nonlinear functions which allows us to
apply some linear state estimation methods to the otherwise
nonlinear ARZ model.

D. Linear Model Approximation

The ARZ model specified in Section II-A is nonlinear
due to the presence of the piecewise linear and nonlinear
expressions in the traffic flux and relative flux terms. This
prevents directly using some of the well-known and efficient
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linear state estimation methods from the literature. However,
it is still possible to apply linear state estimation methods
to a linearized version of the ARZ model. Methods such as
Taylor series expansion [52] can be used to obtain a good
linear approximation of nonlinear functions about a suitable
operating point. The detailed equations for linearization are
omitted for brevity. The same can be found in Appendix C
of [45].

Note that linearization is usually associated with reduced
model accuracy and hence worse estimation performance as
compared to using the nonlinear model when the model is
an exact representation of the system. However, when the
process is not exactly governed by the model dynamics,
linearization may not necessarily result in a degradation of
the estimation results. The latter is particularly relevant when
using traffic flow models such as the ARZ model for estimation
as they only focus on the aggregate behavior of traffic and
do not capture the nuances of vehicle-to-vehicle interaction.
A validation study against real-world traffic data similar to [53]
is required to quantify the trade-off between any loss of
accuracy due to linearization versus the reduced computational
load of using linear state estimation compared to nonlinear
estimation. Such an investigation is considered out of the scope
of the present work which mainly focuses on the theory and
examples of using CV data for estimation from the perspective
of linear state estimation.

III. STATE ESTIMATION METHODS

In this section, we briefly discuss the different methods
implemented in this work for TSE using the ARZ model.

A. Moving Horizon Estimation

MHE is an optimization-based state estimation method that
uses measurement data in batches from the most recent time
horizon along with a process model to determine the states
of the system. It involves solving an optimization problem at
every time step of the process with the objective of minimizing
the deviation of the estimated states from the modeled states
as well as from the measurement data. Being an optimization
problem, it is possible to include additional constraints in the
problem such as bounds on the state variables. Depending
upon whether the model is linear or nonlinear, MHE is divided
into linear MHE and nonlinear MHE, both of which have been
well explored in the literature. While linear MHE only requires
solving a linear program or a quadratic program (QP) and
is generally fast and easy to solve using available solvers,
nonlinear MHE involves solving a nonlinear optimization
problem which is both time-consuming and difficult. Since
TSE for control is required to be done in real-time, in practice
it is not always possible to spend enough time in solving
a nonlinear optimization problem. Therefore, in this paper,
we implement a linear MHE approach on a linearized version
of the process model.

Throughout the paper, N is used to denote the size of the
horizon for optimization. For time steps up to N, that is, near
the start of the process, the horizon size is kept equal to the
number of time steps from the initial time up to that time.
The decision variables for the MHE optimization problem at
any time step k are the state vectors from step k — N to
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k out of which the vector at step k is considered the final
output for that step. The MHE algorithm implemented in
this work has a similar objective function to [32] with three
components. The first component is known as the arrival cost
which serves to connect the decision variables of the current
optimization problem with the estimates up to the previous
time step. This effectively allows us to consider the impact of
data prior to the current horizon in the estimation process. The
second and third components are penalties on the deviation of
the estimates from the measurement data and the modeled
dynamics respectively. The notations w, wi and w, are used
to denote the weights specifying our relative confidence on the
past data and past estimates, the current measurement data, and
the process model, and can be set by the modeler accordingly.
The goal of the problem is to minimize these errors over the
decision vectors. The remaining implementation including a
thorough description of the decision variables, the objective
function, and the constraints is omitted from the main body
of this article as it does not contribute directly to the results of
this paper. Interested readers are referred to Appendix D and
Appendix E of [45] for detailed implementation and notes on
comparison with other existing MHE algorithms. Algebraic
transformations allow us to write the problem as a convex QP
which can be solved using readily available QP solvers like
CPLEX or MATLAB’s quadprog function. Next, we present
a brief discussion on the usage of KFs for TSE.

B. Kalman Filter Variants and Limitations

KFs are quite popular when it comes to TSE. Since the
traffic process models are nonlinear we cannot use the ordinary
KF, instead, most works use variants of KF designed for
nonlinear systems namely the EKF, UKF, and EnKF. There
is ample literature available on the design of these filters and
their application in TSE, see [18] for references. A common
limitation of the KF variants is that they do not inherently
allow bounds on the state estimates. Since traffic states can
only take values from a particular range, this makes it difficult
to apply the KF variants directly. Instead, some modifications
are required such as manually restricting the states to within
their bounds after the state estimate for any time step is
obtained. Another limitation of the KF variants is that they
assume all errors to be Gaussian. This assumption is not
necessarily true in many cases including the traffic system
which can result in potential errors in state estimation. MHE
naturally overcomes both of these limitations.

In the following section, we discuss the implementation and
results obtained by applying the above-mentioned estimation
methods with the help of a numerical example.

IV. NUMERICAL STUDY USING VISSIM

In this section, we apply the state estimation methods dis-
cussed above namely EKF, UKF, EnKF, and MHE, on a traffic
simulation example generated in VISSIM micro-simulation
software under both fixed and moving sensors to highlight
their advantages and limitations with respect to TSE and
investigate the performance of moving sensors as compared
to fixed sensors.

All the simulations are carried out using MATLAB R2020a
running on a 64-bit Windows 10 with 2.2GHz Intel® Core™
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Fig. 2. Schematic diagram of the highway considered in this study.

17-8750H CPU and 16GB of RAM. We use the quadprog
function in MATLAB to solve the MHE optimization problem.

A. Numerical Study Objectives

The primary goal of this study is twofold- to test the
performance of the state estimation methods discussed in
Section III and to investigate the performance of moving
sensors under various scenarios. In particular, we are interested
in knowing the answers to the following questions:

e QI: How does the number of fixed sensors on the
highway impact the performance of the various estimation
methods? Which method has the best estimation perfor-
mance across different numbers of fixed segments?

o Q2: How does the state estimation performance of various
methods vary with moving sensors? What is the impact of
different frequencies of change in measurement positions
on the estimation performance?

o 03: Does the positional configuration of moving sensors
impact state estimation performance?

e (4: Which state estimation method is more robust to
measurement errors? Do moving sensors impact estima-
tion performance with different levels of data quality due

to factors such as sensor noise and CV penetration rate?
Following is a description of the highway structure used for

this study.

B. Highway Setup and VISSIM Simulation

In this study, we model the highway stretch as shown
in Figure 2 consisting of one on-ramp and two off-ramps.
An additional 100 m of highway stretch is modeled in VISSIM
preceding the shown stretch. While we only perform state
estimation on the latter 900 m and the attached ramps, this
additional stretch of highway modeled in VISSIM provides
us with the system inputs namely the demand upstream of
Segment 1 and the upstream density and speed which are
used to calculate the upstream driver characteristic. A similar
100 m stretch is modeled upstream of the on-ramp as well and
serves the same purpose of providing the exact inputs. We set
the following parameters for the Weidemann 99 car-following
model in VISSIM: CCO 1.50 m, CC1 0.9 s, CC2 4.00 m, CC3
—8.00, CC4 —0.50, CC5 0.60, CC6 6.00, CC7 0.25 m/s?,
CC8 1.00 m/s?, and CC9 1.50 m/s>. The speed limit is set
to 102 km/hr. Under the Godunov scheme, the highway and
ramps are divided into segments of length 100 m each with
a time-step value of 1 s, which satisfies the CFL condition.
Thus, there are a total of 24 states in this highway system.

A traffic jam is introduced in the middle of the highway
stretch to replicate a congested scenario which is more inter-
esting for studying state estimation performance. In VISSIM,
the jam is created with the help of a reduced speed decision
area implemented on Segment 7 of the stretch. The reduction
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in traffic speed causes a reduction in flow creating a traffic jam
that travels upstream on the highway. The jam dissipates once
the speed of the reduced speed area is restored. The simulation
scenario replicates the formation and dissipation of a traffic
jam similar to that caused by an incident in the middle of the
stretch. Note that the scenario considered in this work differs
from those considered in previous studies such as in [24]
where congestion travels upstream from the downstream end
of the road stretch where estimation is performed. In that case,
the source of the jam would be captured in the downstream
supply conditions which are input to the system. In the
scenario considered in this paper, the jam originates in the
middle of the stretch. It is therefore not directly captured
by any of the inputs and therefore the process model. The
given scenario is arguably more difficult to estimate due to
the absence of informative inputs to guide the process model.

The ARZ model parameters are selected to keep the simu-
lated state trajectories from the macroscopic model as close to
the VISSIM simulation as possible. The selected values are:
v = 102 km/hr, p, = 345 veh/km, 7 = 20, and y = 1.75.
As mentioned before, in this work we do not track individual
vehicles, instead, we consider VANETs formed from CVs
capable of measuring the density and speed of segments apart
from fixed sensors. We consider a high penetration rate of CVs
on the network such that we can query any desired segment for
data. The only constraint we impose is bandwidth constraint
on data transfer which limits the number of segments from
which data can be obtained simultaneously.

C. Observability of the System

To determine the required minimum number and the corre-
sponding placement of sensors, we perform a test of observ-
ability for our system using the concept of Observability
Gramian for discrete-time systems [54]. The method is orig-
inally meant to determine the observability of linear systems.
In this case, we use it to check the observability of the
linearized ARZ model. The observability Gramian is defined
as

o
Wi = (A)"CIkIT CIKIA; .
m=0

where Ay is the coefficient matrix of the linearized state-space
model and C [k] is the observation matrix of the linearized
measurement model at time k around a suitable operating
point. The system is considered observable if W is positive
definite. In this case, since the model parameters change with
time due to changing operating points of linearization, the
Gramian changes with time as well. This can result in a
change in the observability properties. To check if the system
is observable for a given sensor placement, we calculate the
Gramian for each time step over the duration of the simulation.

From this study, we find that to make the system observable,
we need to at least sense the states on the last mainline
segment and on all the off-ramps. Therefore, throughout the
study, we keep fixed sensors on these segments. Any additional
sensors are placed after these segments are populated with
sensors. This is similar to the observations in [27] with respect
to the observability of the model used in that paper. It appears
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to be a common property of traffic models that the states of the
output segments of the network (last mainline segment and oft-
ramps) need to be measured to ensure full-observability of the
system. This is not surprising as traffic models share similar
state-update equations and therefore have a similar structure
of the state-space parameters which form the observability
matrix. While the concept of observability can also be used
to determine the optimal sensor placement for state estimation
for any given number of sensors under certain conditions [55],
here we only use it to determine a minimum number of sensors
and their placement. In the following section, we discuss
some nuances of implementing the aforementioned estimation
methods in the current study.

D. Implementation of Estimation Methods

1) Evaluation Metrics: We use the root mean squared error
(RMSE) and the symmetric mean absolute percentage error
(SMAPE) [56] between the estimated and ground truth (simu-
lated on VISSIM) density denoted by RMSE,, and SMAPE,,,
respectively, and those between the estimated and ground
truth speed denoted by RMSE, and SMAPE,, respectively to
evaluate the performance of different methods. These metrics
are defined as follows:

i Z e/ [k])? ®)

RMSE, =
14 nx Y
i=1 k=1
100 lef [k]|
SMAPE, = )
T naty 2; 271k
Ny
RMSE, = ZZ(e [k])2, (10)
l_lk 1
L [k]|
SMAPEvz ZZ = (1)
nxtf 1 i o

where 7y = 500 sec is the total time of simulation, n, =
N + Nj + No is the total number of segments in the system,
elp [k] and e;’ [k] denote the difference between the actual
and estimated density and speed, respectively for the i'"
segment at time-step k, and Ef [k] and E}’[k] denote the
sum of absolute values of the actual and estimated density
and speed, respectively for the i’ segment at time-step k.
We do not consider the error in the relative flow states for
evaluation since it is not directly relevant for traffic operators
as compared to density and speed which are fundamental
quantities in traffic. Note that, in this work, SMAPE is selected
over the mean absolute percentage error (MAPE) [24] as
MAPE has no upper bound and can give infinitely large values
when the actual value is close to zero which is possible
with traffic densities and speeds. The SMAPE on the other
hand is bounded and can only assume values from 0% to
100%. While MAPE is easier to interpret than SMAPE,
it is highly unstable in the present scenario and hence not
preferable.

2) Parameter Tuning: In implementing KFs, three parame-
ters need to be set in advance namely the estimate error covari-
ance matrix (P), the process noise covariance matrix (Q),
and the measurement noise covariance matrix (R). In practical
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applications, these matrices are not known in advance or are
difficult to get. In this paper, for all the KF variants, we use
a process noise covariance matrix of the form Q = glI,,
where ¢ € Ry and I, is an identity matrix of dimension
ny. Similarly, the measurement noise covariance matrix is set
as R = rInp[k] with r € Ry and nplk] is the number of
measured states at time k. The initial guess for the estimate
noise covariance matrix is taken as P = 10731, . We set
the values of » and ¢ to 1 which is found to be sufficient.
Marginally better results for the KFs can be obtained in each
case by fine-tuning these matrices but it is avoided as in reality
the real states are not known in advance. In general, algorithms
requiring minimal tuning to achieve a reasonable quality of
state estimates are desirable. For an estimation algorithm, it is
important to determine a set of parameters robust to both traffic
conditions and sensor placement. Here we focus on testing
the algorithms with parameter values that yield reasonable
state estimates across all scenarios, rather than fine-tuning
parameters for individual cases.

Besides these values, there are also some method-specific
parameters such as in UKF and EnKF. We find that fine-tuning
the values of these parameters does not influence the per-
formance of the methods considerably. For UKF, we set the
following values: « = 0.1,k = —4, and B = 2, and for
EnKF, we set the number of ensemble points to 100. These
values are found to be sufficient for the respective methods.
Interested readers can refer to [57] and [58] for interpretation
of parameters and more detail on implementation of UKF and
EnKF respectively.

For MHE, we set the values of the weights u = 1, w; =1,
wy = 1, and the horizon length N = 4. Just as with the
KF parameters, fine-tuning MHE parameters is not a focus
of this study, and the same parameter values are used in all
tested scenarios without further tuning. In general, a large N is
considered ideal as it allows the algorithm to track the system
dynamics for a longer duration and also considers more data.
However, this is not necessarily beneficial to estimation if
the process model does not closely follow the real system
states. In that case, particularly with a large weight wy on
the process model error, the error in estimates can increase
with increasing N as the error due to incorrect dynamics is
amplified. To roughly tune N, we vary the horizon length
from 1 to 10 with different numbers of fixed measurement
segments. It is seen that the best N becomes smaller with
an increasing number of measured segments. Also, a larger
weight on the measurement error improves the results when
there are more sensors. Both these observations are reasonable
since the measurement data in this case is more accurate
than the modeled states and so with sufficient data, increasing
N only deteriorates the estimates by increasing the influ-
ence of the process model. Given a combination of these
reasons, the aforementioned values are found reasonable for
MHE.

3) Re-Scaling to Avoid Numerical Issues: The large differ-
ence in the order of magnitude of the two states, density, and
relative flow, results in numerical issues in both the KFs as
well as in MHE. This is handled by re-scaling the objective
and constraints of the optimization problem in the case of
MHE and by re-scaling the state vector in the case of KFs.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on November 27,2024 at 16:46:10 UTC from |IEEE Xplore. Restrictions apply.



VISHNOI et al.: TSE FOR CVs USING THE SECOND-ORDER ARZ TRAFFIC MODEL

3

i

Ll bl Ll

Fig. 3. Configurations for fixed sensor placement on the mainline segments.
Black boxes depict segments with sensors and white boxes depict otherwise.
Arrows indicate the direction of traffic. The ramp segments containing an
additional 3 sensors are not presented in this figure. The top and bottom
rows present the configuration with a total of 5 and 12 sensors in the system,
respectively.

4) Applying External Bounds on States: The KFs some-
times run into the problem of producing non-physical states
such as negative or extremely large densities and relative
flows. This is an issue for the process model which includes
terms like density raised to fractional power as in (2), which
results in numerical issues and forces the estimation to stop.
Therefore, it is important to bind the estimates from KFs to
only the physical values of the states. In that, we project the
obtained estimates in the case of EKF to a range with a lower
bound of zero on all states, and an upper bound of p, on
the traffic densities and p,vy on the relative flows. In the
case of UKF, the sigma points are projected first followed
by the obtained estimate. In the case of EnKF, the ensemble
points are projected within specified bounds. This method of
projecting vectors for EKF and UKF has been shown to fit in
the KF theory mathematically and is among popular methods
mentioned in [59].

We present the results of the study in the following section.

E. Results and Discussion

1) Comparison Under Fixed Sensor Positions: As sen-
sors are indeed costly, it is imperative to determine which
state estimation methods perform better with less number of
sensors, and how the performance varies with the changing
number of sensors. Herein, we test the effect of increasing
the number of fixed sensors on the performance of the four
estimation methods. We do not consider any CVs in this case.
As discussed in Section IV-C, we have a minimum of three
sensors, one on the last mainline segment and one each on
the off-ramps. We also assume that there is always a sensor
on the on-ramp. As we add more sensors we try to keep
them well-distributed across the highway. The placement of
the mainline sensors is depicted in Figure 3. No additional
process noise is added to the state values generated from
VISSIM while a zero mean uniform random noise with a
standard deviation of 1 is added to the sensor measurements.

Figure 4 presents the plots of the evaluation metrics for
each state estimation method. The x-axis presents the number
of additional fixed sensors considered on the highway other
than the sensors on the last mainline segment and ramps.
Figure 4 shows that the performance of all the state esti-
mation methods in terms of density and speed estimation
improves with more additional sensors. Between methods,
the RMSE, and SAMPE,, at different numbers of segments
appear comparable. A difference in performance in favor of
MHE and EKF is observed in terms of RMSE, at a small
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Fig. 4. RMSE, [top left], RMSE, [top right], SMAPE, [bottom left], and
SMAPE, [bottom right] with different numbers of fixed sensors.

number of additional sensors but the difference diminishes as
the number of sensors is increased. In terms of RMSE,, MHE
outperforms other methods at all numbers of additional sensors
and is marginally outperformed by EKF at the two highest
numbers of additional sensors. In terms of SAMPE,,, MHE and
EKF perform comparably and better than other methods at a
smaller number of additional sensors while all methods show a
comparable performance at a higher number of sensors. While
RMSE values are suitable for quantitative comparison between
estimation methods, we need to compare the trajectories of
the estimated states for a qualitative comparison. Figure 6
presents a 2-dimensional plot of the simulated and estimated
density and speed evolution using MHE on all segments for
the discussed scenario to provide a complete picture of the
traffic evolution for the reader’s reference. Figure 5 presents
the simulated and estimated trajectories for the unmeasured
segments for the case with 4 additional measured segments
using MHE and EKF. The estimated trajectories obtained using
UKEF and EnKF are omitted from the plots in the main text to
ensure clarity. The latter is presented in Appendix F of [45]
for interested readers. The trajectories for the other cases of
additional sensors are also omitted for brevity as they do not
add value to the discussion provided in the context of the
presented plots.

While EKF and MHE perform similarly for Segment
8 which does not have congestion, Figure Se shows that
EKF is not able to estimate the congested density on Seg-
ment 6. It does show a few spikes and a slight gradual
increase in density but overall there is no significant congestion
depicted by EKF. On the other hand, MHE follows the
congested density more closely and also returns to the less
congested ground truth condition once the congestion ends. In
Figures 5a and 5c, MHE estimates congestion on the respective
segments although the congestion is shown to start earlier than
when it actually occurs. This is because the considered model
inputs do not force congestion on any part of the stretch but
one is observed in the measured data for middle segments
from about 100 seconds into the simulation. The correction
applied to the modeled states that are otherwise free-flowing
to replicate the congestion in the measurement data causes
congestion to be depicted earlier in the upstream segments
corresponding to when it first occurs in the downstream
segments rather than when it actually occurs on the upstream
segments. Except for the time of the start of congestion in
the estimated states on upstream segments, MHE is able to
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Fig. 5. Plots of simulated and estimated trajectories for densities [left] (a, c,
e, g) and speeds [right] (b, d, f, h) in the presence of 4 additional fixed
sensors. Rows of figures correspond to the unmeasured Segments 2, 4, 6, and
8 respectively.

TABLE I

COMPUTATIONAL TIME FOR STATE ESTIMATION PER TIME STEP
(1 SEC) OF SIMULATION

Method

Computation Time (sec)

EKF
0.002

UKF
0.006

EnKF
0.016

MHE
0.075

replicate well the magnitude of the congestion in terms of
both density and speed which EKF fails to do. The trajectory
plots also explain the closeness of EKF and MHE in terms
of RMSE,, and the significantly larger difference in RMSE,.
Both MHE and EKF observe a similar deviation from the
actual density, with MHE depicting the congestion to start
earlier while EKF not depicting or only partially depicting the
congestion. As a result, both methods show a close RMSE,,.
However, since MHE replicates the congestion while EKF
does not, the former results in reduced speeds which are closer
to the actual speeds than the higher ones estimated by EKF
as a result of estimating lower densities. This results in a
significantly smaller RMSE,, for MHE as compared to EKF.
On the other hand, since EKF constantly overestimates the
speeds, the denominator of SAMPE,, becomes large causing
this metric to be close to its value for MHE despite a larger
absolute error.

The average run times per time step of simulation for the
methods are given in Table II. The run times include the
time from when the data is received along with the informa-
tion about the current observation matrix C[k] to when an
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Fig. 6. Comparison of simulated and estimated densities [left] and speeds
[right] obtained from MHE for the mainline segments (1 to 9), on-ramp
segment (11), and off-ramps segments (11 & 12).

estimate is produced. While the computation time of MHE
is significantly higher than the KF wvariants, it is still only
a fraction of the second and useful for real-time control.
Moreover, the increased compute time can be justified by the
improved estimation performance offered by MHE.

2) Effect of Moving Sensors: CVs can be used to measure
traffic data from different segments over time giving more
flexibility in terms of data collection than fixed sensors.
Here, we test the impact of changing the segments from
which measurements are obtained over time on the estimation
performance of the considered state estimation methods. The
frequency of change in measured segments is also varied and
its impact on the estimation performance is analyzed. The
last mainline segment and all ramp segments are assumed to
have fixed sensors and CVs are used to get data from other
segments. We assume that there is a sufficient penetration of
CVs on the roadway to allow data collection from any segment
on the stretch. However, we assume a restriction on the
bandwidth for data transfer such that density and speed data
collected using CVs can only be transferred from 3 segments
at a time. A fixed bandwidth for data transfer in real-time is a
realistic assumption however a stringent one of 3 segments is
considered here in particular to clearly observe any benefit of
covering different segments over time than fixed sensors which
is difficult to observe if data is collected from several segments
at all times. Hereafter, in the context of moving sensors, the
term measured segment is used to refer to segments from
which data is transferred and used for estimation rather than
where data is collected (which is assumed to be all segments).
Similarly, sensor position is used to refer to the position of
a measured segment ignoring segments where sensors are
present but data is not used for estimation. The initial sensor
positions are the same as the third row from the top in Figure 3
with data being obtained from Segments {1, 3, 7}. The sensor
positions are changed after a fixed duration of time. For this
analysis, the duration is varied from indefinite (equivalent to
fixed sensors) to 1 second (collecting data from a different set
of segments every time step). A systematic update of sensor
positions is utilized such that at every change the segments
immediately following the current segments are selected. For
instance, after Segments {1, 3, 7}, the positions are changed to
Segments {2, 4, 8}. From Segment 8§, the position is changed
directly to Segment 1 skipping Segment 9 since Segment
9 already has a fixed sensor. So from Segments {2, 4, 8}, the
positions are changed to Segments {3, 5, 1}, and so on after
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positions. The symbol ‘-’ at the beginning of the x-axis represents the scenario
with fixed sensor locations throughout the simulation.

the duration of change in each case. Figure 7 presents the
plots of the evaluation metrics with increasing frequencies of
changing the position of sensors for the four state estimation
methods.

It is observed that overall for all estimation methods the
value of both RMSE, and SAMPE,, decreases with a decrease
in the duration between consecutive changes in sensor posi-
tions. A majority of the improvement for all methods occurs
with a change duration of fewer than 20 seconds and all
methods converge in RMSE,, at a change duration of 1 second.
While overall there is an improvement with decreased duration
between changes in sensor position, the trend is not completely
monotonic as the error increases at few values of change
duration. Since on some occasions, the process model may
not be able to capture the traffic dynamics as well as on other
occasions, the estimation error increases if the queried sensors
end up not being at the location where the worse modeled
behavior occurs at a given time. Given a total simulation
duration of 500 seconds, certain values of change duration only
result in a handful of position changes during the estimation
period. In this case, the time in which data is not collected
from segments whose dynamics are not captured well by the
model may also be increased causing the error to increase,
although marginally. With a higher frequency of sensor posi-
tion changes, the error decreases monotonically, as the sensors
send data from all the segments more frequently. The two
metrics show a similar comparative trend between MHE, EKF,
and EnKF while UKF shows a better performance than other
methods in terms of SAMPE,. This is primarily because UKF
makes errors at higher actual density values compared to other
methods and also relatively overestimates the densities (similar
to the observations with EKF for SAMPE), in the case of fixed
sensors) both of which lead to larger denominator values and
a smaller percentage error. The corresponding trajectory plots
are presented in Appendix F of [45]. As compared to density,
the values of RMSE, and SAMPE, are less affected by the
variation in frequency of change in sensor positions. Also,
both metrics show a similar trend. In terms of speed, UKF,
EnKF, and MHE only improve marginally compared to values
with fixed sensor positions with the improvement observed
at a change duration of 1 second. EKF, on the other hand,
shows a bigger improvement outperforming other methods
at the same duration between changes. This is similar to
the observation in Figure 4 where EKF performs marginally
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Fig. 8. Plots of simulated and estimated trajectories for densities [left] (a, c,
e, g) and speeds [right] (b, d, f, h) in the presence of 3 additional measured
segments with changing positions over time. Rows of figures correspond to
Segments 3, 4, 5, and 6 respectively.

better than MHE when all segments are measured. Overall,
MHE is observed to outperform other methods at all different
durations between changes in sensor positions except when
the positions are changed every 1 second. The simulated and
estimated trajectories for density and speed using MHE for
the cases with fixed sensors, sensor positions changing every
10 seconds and every 1 second are presented in Figure § to
observe the qualitative improvement in estimation from using
CVs as sensors.

Out of the plotted segments, Segment 3 is measured in
the fixed sensor case therefore the estimated trajectory from
fixed sensors overlaps well with the real trajectory. The other
three plotted segments are unmeasured in the fixed sensor
case. As expected, the moving sensors result in estimated
densities and speeds that follow the real states more closely
than the fixed sensor case except for Segment 3. Note that
the trajectories estimated using the moving sensors show
oscillations in both density and speed which are a result of
the segment measurements becoming unavailable over regular
intervals. A duration of 10 seconds between changes results
in less frequent but larger oscillation as measurements are
unavailable for more time steps allowing for larger deviations
from the real state. The oscillations in speed estimates are
more profound than those in density plots which can be
attributed to speeds being obtained by a division of the density
and relative flow states and thus being sensitive to changes in
both. Since such oscillations in estimated states are generally
undesirable, a smoothing filter such as a moving average filter
may be applied to the estimated states from the moving sensors
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—’ at the beginning of the x-axis represents the scenario with fixed sensor
locations for the starting configurations in the legend.

to make them more realistic and usable. Plots obtained by
applying a moving average filter with values averaged over
15 time steps are presented in Appendix F of [45].

3) Impact of Segment Selection for Sensing: A limited bud-
get leads to limited bandwidth for data transfer causing traffic
measurement data to be available only for a few segments on
the road at a time. Therefore, it is important to determine
which segments to query for data to obtain the best state
estimates. In this section, we test the impact of querying the
same number of sensors placed with different spacing while
changing the position of sensors. We consider 3 additional
segments with data apart from the fixed sensors on the last
mainline segment and all ramp segments. For this study,
we only consider MHE as it is observed to perform the best
with 3 additional sensors. We consider three scenarios with
different spacing between measured segments such that their
starting sensor positions are {1, 2, 3}, {1, 3,5}, and {1, 4, 7}.
The duration between the change in the position of segments
is varied in the same way as in Section IV-E2. Figure 9
presents the plots for evaluation metrics for the different
starting configurations of sensors (presented in the legend)
with varying duration between changes in sensor positions
presented on the x-axis.

There is an overall improvement in the estimation perfor-
mance in terms of all metrics with decreasing duration between
changes in sensor position as also observed in Section IV-E2.
Between starting configurations, the configurations with more
uniformly spaced measured segments namely {1, 3,5} and
{1,4,7} perform better than consecutive positions {I1,2, 3}
at all values of time between position changes. Between
{1, 3, 5} and {1, 4, 7}, the latter performs better. The difference
in performance between the configurations decreases as the
duration between position changes is reduced. Compared to the
performance of the uniformly spaced starting configurations,
the starting placement {1, 2, 3} with an x-axis value of above
10 seconds performs worse than when the former is only fixed.
This indicates that a more uniformly spaced positioning of
sensors is always desirable and can even outperform when the
same number of sensors is clustered even if moving to cover
more segments over time.

4) Impact of measurement quality: As sensors are
prone to faults, the sensor noise may change from its
manufacturer-specified value for the sensor from time to
time. At the same time, lower penetration rates of CVs in
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different segments can also result in reduced quality of data
measurements. In such scenarios, a method more robust to
measurement errors is considered more reliable. In this section,
we check the impact of changing the measurement quality on
the estimation performance of the four methods. We further
investigate the impact of changing sensor positions on the
estimation performance with different levels of error. The goal
is to see if the performance improvement offered by moving
sensors can offset the deterioration caused by measurement
quality. We set the measurement error equal to a random
noise drawn from a uniform distribution with bounds [—1, 1],
which is standardized and scaled to have zero mean and a
standard deviation of s € R which is varied to replicate
different levels of error. The distribution of noise added to both
density and speed measurement is kept the same. In general,
the measurement error covariance matrix R for the KF variants
is set according to the actual covariance of the noise which
in this case is the diagonal matrix with all diagonal elements
equal to s%. However, in practice, it is difficult to know the
distribution of noise if it is due to varying penetration rates or
unexpected sensor faults. Therefore, in this case, we continue
to use the value of R defined in Section IV-D2. For MHE,
the objective weights and horizon length are also kept the
same. Figure 10 presents the plots of RMSE, and RMSE,
against increasing values of standard deviation s for the four
state estimation methods. The plots for SMAPE are omitted
for brevity as they show similar relative trends compared to
the plots for RMSE and do not contribute to the discussion.
The unit of s is the same as the measurements (veh/km for
density and km/hr for speed) but is omitted from the plots as
it represents the standard deviation for noise in both types
of measurements. Three numbers of additional sensors are
considered namely 3, 5, and 7 to present the trend in estimation
error with increasing measurement noise for different numbers
of sensors. For each number of sensors, we take 5 random
seed values and average the metrics over the 5 seeds. From
the plots, it appears that in all the cases, the estimation error
increases with an increase in measurement noise s.

It is observed that the performance of all methods in general
deteriorates with increasing noise in the measurements which
is expected as the data becomes less reliable. The deterioration
in terms of RMSE, is more prominent with the increasing
number of sensors. Notice that the performance of the methods
in terms of density does not change much up to s = 20 for the
case with three additional sensors. However, the corresponding
increase in RMSE, shows that the overall estimation per-
formance does indeed deteriorate with increasing noise even
at lower levels of noise. The RMSE, does not immediately
increase for 3 additional sensors, because the error is already
quite large to be sensitive to a small increase in noise. The
large increase in the error for UKF is due to large jumps
in the state trajectories that reach their bounds from time
to time at higher noise possibly due to instability issues
with UKF. For MHE, the percentage increase in the error in
density and speed between the lowest and highest noise lev-
els are 66.6%, 50.7%,316.2% and 151.8%, 236.7%, 360.1%
for 3, 5, and 7 additional sensors, respectively. Note that
the deterioration in performance becomes more prominent in
both density and speed with the increasing number of sensors
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as the performance becomes more directly associated with
available data and thus more sensitive to measurement quality.
Overall, UKF appears to be the least reliable in the presence
of large measurement errors due to instability issues. Also as
observed before, MHE performs better than other methods at
smaller numbers of measured segments at lower error levels
and while it is affected significantly by measurement error,
its performance is still better or comparable to other methods
with large noise. Next, we observe the impact of the changing
sensor positions on the estimation performance in the presence
of noise.

Figure 11 presents the variation in error values for estima-
tion using MHE with changing levels of measurement noise
in the presence of moving sensors similar to the setting in
Section IV-E2. The legend presents the time (in seconds)
between the change in sensor positions using the same position
update logic as presented in Section IV-E2. We consider
5 additional sensors in the configuration presented in Figure 3.
Noise is implemented in the same way as above. The plots for
3 and 7 additional sensors are omitted for brevity. As observed
in Section IV-E2, the estimation performance in terms of
RMSE,, improves with 20 seconds and further lower duration
between changes in sensor positions while RMSE,, only shows
a small improvement at a change duration of 1 second and
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performs similar to the case with fixed positions with a change
duration of even 10 and 20 seconds. While the error at
all frequencies of change in sensor position is observed to
increase similarly with increasing noise, the RMSE, is con-
sistently smaller for higher frequencies. A change duration of
10 seconds at s = 20 performs equivalent to a change duration
of 20 seconds at s = 0. In terms of RMSE,, there is very
little change/improvement with a change in position. Plots for
SMAPE, show a smaller difference in magnitude between the
curves for the same values on the x-axis compared to RMSE,,.
Qualitative examination of the trajectory plots indicates that
a majority of the errors at longer change duration occur at
higher densities leading to larger denominator values and
hence smaller percentage errors. Also, for certain segments,
the scenarios with longer change duration heavily overestimate
the densities at lower actual density values which further leads
to reduced percentage errors and hence smaller differences
in curves. The trajectory plots can be found in Appendix F
of [45]. Overall, the evaluation plots reiterate that there is
merit in using CVs as moving sensors as the improvement
in performance helps offset the deterioration caused by the
measurement errors.

V. CONCLUSION AND FUTURE WORK

From the previous analysis, we have some preliminary
suggestions regarding the questions posed in Section IV-A
which are as follows:

o Al: As expected, the performance of the state estimation
methods is improved upon increasing the number of
sensors in the system. The performance in terms of
density is similar across methods while MHE outperforms
other methods in terms of estimated speeds.

o A2: The performance of all estimation methods in general
improves with moving sensors as sensors cover more
segments on the highway over time as compared to the
case with only fixed sensors. The variation in performance
is non-monotonic at lower frequencies of change in sensor
positions but a prominent improvement is observed at a
duration of 20 seconds or lower. The improvement in
density is more profound than the improvement in speeds.

e A3: More uniformly spaced segments result in a better
state estimation performance than the same number of
segments placed consecutively in the case of both fixed
and moving sensors. Uniformly placed fixed sensors also
outperform consecutively placed moving sensors up to a
duration of 20 seconds between changes.

o A4: The performance of all methods worsens with wors-
ening data quality that might result from lower penetra-
tion rates of CVs and higher sensor noise. UKF is the
least robust out of all methods and shows abrupt increases
in error compared to other methods with increasing
noise. The impact of quality issues is more prominent
in scenarios with more measured segments which show a
deterioration in performance at lower levels of measure-
ment noise as compared to scenarios with fewer measured
segments. The performance improvement achieved by the
use of moving sensors is able to offset the deterioration
caused by measurement quality to a fair extent showing
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the advantage of using moving sensors under adverse
conditions.
To summarize, we present a state-space formulation for the

nonlinear ARZ model while considering junctions in the form
of ramp connections. Since the ARZ model is nonlinear, it is
not possible to directly apply linear state estimation methods
to it which are considered to be more efficient than nonlinear
methods. We linearize the ARZ model using Taylor series
approximation and use it to implement linear state estimation
such as through linear MHE. We present the formulation for
linear MHE which has not previously been used for TSE and
show that it is a good choice for TSE compared to other
popular methods namely EKF, UKF, and EnKF. We also show
that the use of moving sensors is better for state estimation
compared to fixed sensors and can offset the degradation in
performance caused by reduced measurement quality resulting
from sensor noise and lower penetration rates of CVs. Various
strategies and variations in the selection of segments to obtain
CV data are also investigated.

It is important to note that this study is constrained by a
lack of access to real-world data corresponding to the given
setting. Given the present theoretical demonstration of the
benefits of using mobile CV data sources, a comprehensive
investigation is required to assess the real-world capabilities
of the approach. In particular, it is important to investigate
the technical challenges in ingesting and fusing real-time data
streams from both CVs and fixed sensors, examining their
impact on estimation performance.

Future work will also consider the optimal placement of
sensors considering CVs for TSE. Besides, while the perfor-
mance of the ARZ model against the first-order LWR model
has been studied in prior research [24] which claims the
superiority of the former, some of the newer works [60] have
suggested the possibility of the order of the model being
less significant for TSE in the presence of sufficient data.
Therefore, it would be interesting to carry out a detailed
comparative study between the performance of the ARZ model
and a first-order model under different scenarios specifically
those depicting non-equilibrium conditions under different
sensor placements.
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