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ARTICLE INFO ABSTRACT

Keywords: A new rheological formalism based on the ideas of recovery is presented. Our new formalism contains
Nonlinear viscoelasticity recoverable and unrecoverable contributions to arbitrary deformations. The introduction of the two displace-
Theory

ment gradients leads to two distinct measures of strain and strain rates, which highlights the importance of
performing recovery experiments. Having established the new formalism, we show the benefits of this way
of thinking by performing transient step strain and startup shear recovery measurements in a wide range of
shear strains and shear rates on a model viscoelastic solution. With recovery, we show clear similarities in
the material behavior between the two test protocols. The resultant recovery material functions — recoverable
modulus and flow viscosity — allow the development of a new constitutive model, which consists of nonlinear
elastic and viscous functions, along with a retarded viscous term. The predictions of the model are compared
favorably with the experimental data, including responses to extremely large step strains. These observations
allow us to revisit the transient entanglement length, relaxation time, and damping function based on the idea
of recovery rheology. The present findings suggest a clear correlation exists between microstructural evolution
and recoverable and unrecoverable components and provide a new direction for the exploration of the relation
between recovery material functions and material responses under different dynamic flows.

Rheological measurements
Constitutive model
Wormlike micelles
Time-resolved rheology

1. Introduction The development of viscoelastic constitutive models started from

the studies of polymeric systems, given their remarkable viscoelastic

Complex fluids continue to be heavily used in the food industry,
biological applications, electronic and optical devices, and the plastics
industry, among others [1]. The microstructures of complex fluids
under different thermal and deformation histories affect their rheolog-
ical responses [1]. Complex fluids are not readily classified as either
Hookean elastic solids nor Newtonian viscous fluids. Instead, complex
fluids have mechanical properties that are intermediate between the
two, making them viscoelastic. At infinitesimal deformations, complex
fluids approach the two extreme cases characterized by the classical
theories of elasticity and hydrodynamics. The theory of elasticity con-
cerns the recoverable storage of energy of solids and relates the stress
to infinitesimal strains. In comparison, the theory of hydrodynamics
focuses on the energetically dissipative viscous properties of liquids that
relate stresses to shear rates linearly [2]. Complex fluids are able to
simultaneously store and dissipate energy, giving rise to the complexity

mechanical properties. Extensive discussions of polymeric dynamics
have been presented [2-6]. To study the dynamics of complex fluids,
researchers often start with generalized Newtonian fluid dynamics and
continuum assumptions to make general mathematical modeling and
analysis feasible. Theories have been proposed to describe the local
behavior of the motion at points in the continuous medium [7]. The
local dynamics of the material points are characterized by the local
configurations, which are represented by the deformation functions.
Two classical deformation functions are typically relied on to de-
scribe the deformation: the deformation gradient tensor [1,4,8] and
the displacement gradient tensor [6,9]. Both functions quantify the
transition of an infinitesimal line in a solid body, and the identity ma-
trix mathematically relates the two functions. A typical representation

of their transient responses. Various rheological constitutive models
have been developed to describe the relations between stress, strain,
and time related to industrial processes [2]. The development of such
constitutive relations heavily impacts the design of rheological proto-
cols for obtaining relevant model parameters and predicting material
behaviors.
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of the displacement gradient tensor can be referred to the work by
Tschogel in Section 1 [6]. The relative changes in displacement of the
infinitesimal line between a reference time ¢ and the current time ¢’ are
represented by the strain tensor. The rates of change in displacement
of the infinitesimal line between the reference time ¢ and the current
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time 7' are used to define the velocity gradient tensor and rate-of-
strain tensor [2]. This understanding has influenced the development
of most rheological models and shaped the discussion of designing
and performing rheometric experiments. The reference configuration
invoked when deriving the strain and rate of strain tensors is usually
taken at a reference time ¢ = 0 in which the material is unrotated and
unstretched [10,11].

While viscoelastic liquids behave as viscous liquids under steady
flow conditions, they also have properties of elastic solids, and they
have long been known to recover some or all of the acquired defor-
mation upon load release [12-16]. The idea of recovery rheology was
proposed by Weissenberg [17] to link recoverable strain with normal
stresses and shear stress. Philippoff [18] later studied the correlation
of recoverable shear strain with properties of polymer solutions, and
Reiner [19] even regarded the recoverable deformation as the defi-
nition of strain. The separation of recoverable strain allowed Reiner,
as commented by Oldroyd, to “isolate, for separate treatment, linear-
ity, parametric non-linearity, deformational nonlinearity and tensorial
non-linearity in equations of state” [20]. Recent work has shown
promising correlations between mechanical properties of materials,
including polymer-like micelles [21-23], yield-stress materials [24—
26], and thixotropic materials [27] observed under applications of
different deformations and microstructural evolution using recoverable
strains determined by constrained recovery measurements.

A constrained recovery measurement involves application of a stress
or strain to a material initially at rest and in a stress-free state. Weis-
senberg referred to this state as the “ground state” of the material,
though we prefer the language of being in a state of global or local
equilibrium. After application of the stress or strain protocol for an
experimental time 7, ,, a step often referred to as the recovery step is
applied, in which the shear stress is removed, as depicted in Fig. 1(a).
It is important to notice that the constrained part of the recovery
step means that only the shear stress is set to zero, while the other
components of the stress tensor are allowed to evolve. The material
remains constrained in the geometry at a fixed height under shear
deformation. During the recovery step, the material is allowed to drift
back into equilibrium, which may or may not be the same state from
which it was initially perturbed. The amount of strain recovered in this
stress-free step is the recoverable strain, which is a function of two
times, the time during which the initial protocol ran and the time under
constrained recovery, .. (x> ty)- Similarly, the position the material
recovers to is the unrecoverable strain, which is a function of the
same twWo times ¥y (fexps trec)- 10 this paper, we will generally use the
ultimate recoverable and unrecoverable Strains y,,.(t) = V,ec(foxps trec
©0) and Ve (1) = Vunree(texps trec = ). Recovery rheology acknowledges
two distinct and measurable strain components, and therefore also
identifies two shear rates representing the rates at which strain is
acquired recoverably and unrecoverably, 7,..(t) and 7,,,..(?).

Because the definitions used in traditional rheology allow for (or
require) the reference state to be defined by the observer, we refer to
this as the anthropocentric view. In contrast, recovery rheology ‘asks’
the material where the new reference state is at each moment. We
use the greek yliké, meaning material to refer to recovery rheology as
being ylikécentric, removing the importance from choices made by the
observer and placing the emphasis on the determination of material
equilibrium states.

Previous investigations have already shown that the final equilib-
rium state reached by the material after releasing the load to zero is
not necessarily the same as the initial state. A general treatment must
therefore allow for the movement of the equilibrium state. The concept
of recovery can be visualized as presented as Fig. 1(b) when considering
the shear deformation of a cube of material at the reference time ¢, with
the same concept applied at the later time #’. The cube can be displaced
to a new state defined by material equilibrium properties alone after
releasing the stress. Given that inelastic fluids display no recovery, the
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Fig. 1. Illustration of constrained recovery protocol (a) left: stress versus time and right:
shear strain versus time for a given stress/stress-controlled deformation applied for a
period of 0 < < experimental time ,,, and subsequent unloading of the material (shear
stress o = 0). Representation of recovery rheology (b) when considering the shearing
deformation of a material cube and selecting the reference time ¢ as an example.

formalism of the displacement gradient tensor based on fluid dynamics
does not account for the recovery of strain.

To address the potential incompleteness that exists in the conven-
tional definition of the displacement gradient tensor, we go back to
the observation that viscoelastic liquids display recovery and invoke
the idea that where the material recovers to is the new equilibrium
state. Oldroyd defined the equilibrium state as the state obtained
if any material motion is instantaneously stopped, and the stresses
remaining at zero velocity were reduced reversibly to zero [28]. The
idea of the stress-free material equilibrium state has been explored in
solid mechanics, mainly for materials that exhibit elasto-viscoplastic
deformation in dynamic loading [29]. In that case, the stress-free state
resulting from the unloading process is referred to as the interme-
diate configuration, separated from either the reference or current
configurations. However, this stress-free state is somewhat fictitious
in plastic solids due to the heterogeneous micromechanical structure
that results from an inability of all material points to reach stress-
free states simultaneously [29]. The relevant mathematical derivations
for distinguishing elastoplastic and viscoplastic behaviors following
the multiplicative decomposition of deformation gradient tensor [30,
31] do not have any physical meaning because of the fictitious in-
termediate configuration. The idea of multiplicative decomposition
has recently been utilized for modeling the yield-stress fluids and a
complete 3-dimensional form of the kinematic hardening model was
proposed [32]. The intermediate structural space is associated with
the Mandel stress [33], with the setup that the reference state is the
undeformed body, and the current state is the deformed body.

Rajagopal and co-workers have published a series of papers on de-
veloping a general thermodynamic framework to model the behaviors
of viscoelastic fluids that are isotropic [34], and anisotropic [35] based
on deformation gradient tensor. Later, they extended the framework to
model the fiber-spinning process [36]. In their thermodynamic frame-
work, the “current” natural configuration, which can be represented
by the stress-free configuration, was introduced with respect to current
time . The presence of the natural configuration gave rise to two
deformation gradient tensors that describe the mapping from “current
natural configuration” to the current configuration and from reference
configuration to “current natural configuration”, respectively, in theory
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development [34,35]. Limited discussions were presented on how to
transfer theoretical understandings into experimental design.

In this paper, we attribute the natural configuration as the stress-
free material equilibrium state and recognize that both the reference
and current configurations have corresponding stress-free states. The
schematic is shown as Fig. 2 in Section 2. The allowance removes any
specific choice regarding where to define the reference configuration
from the experimenter. Rather, we allow the material to reveal its
new equilibrium. For large deformations imposed over long times,
which closely resemble industrial processing conditions, using the ini-
tial configuration as the reference state lacks clear meaning due to the
fading memory of the material [9]. This representation can be found
in Fig. 1(b), where we draw clear distinctions between initial or rest
configuration and reference configuration. The two stress-free states
introduce two displacement gradient tensors with physical meanings
that allow clear distinctions regarding elastic and viscous contributions
in a transient manner.

Acknowledging the two components of the strain and the rate is
more than an analytical step in theory development. It means that
experiments are required that are capable of determining both compo-
nents. While modern rheological protocols vary the total strain or rate
in different manners, a subtle but important change can be made to
them that allows researchers to know the evolution of both components
of the strain and rate. The change necessitates an iterative experimental
paradigm that determines how far from equilibrium materials are at
any given moment during a prescribed protocol, and to where the
equilibrium state has moved. The results of such experiments provide
more detailed data than traditional experiments that determine bulk
behaviors in terms of the composite parameters. These more detailed
data sets can, in turn, be used to construct new constitutive models.

Many constitutive models can be represented by mechanical analogs
comprised of combinations of springs and dashpots [5]. The Maxwell
and Kelvin-Voigt models are the simplest descriptions of viscoelastic
liquids and solids. The Maxwell model can be represented by a Hookean
spring and a Newtonian dashpot in series, and the Kelvin-Voigt model
can be represented by a spring and a dashpot in parallel. While the
Maxwell and Kelvin—Voigt models account for some behaviors, they are
over-simplifications of the dynamic behavior of many complex systems,
which require more complicated models, such as the Graham, Likht-
man, and Milner, McLeish (GLaMM) model [37]. As we show in this
work, recovery rheology provides more information than traditional
approaches, simultaneously allowing for more detailed comparisons to
constitutive models to be made, as well as the development of new
models.

Recovery rheology requires revision of the definitions of material
functions. In recovery rheology, recoverable strain is due to elastic
processes while unrecoverable strain is due to plastic or viscous pro-
cesses. Because only one of these is associated with elastic properties,
recovery rheology has one natural modulus, the recoverable modulus,
G,ee» [21,22,38] which is defined as the ratio of the stress to the
ultimate recoverable strain,

o(t)
J’rec(t) '

It can be seen from Eq. (1) that the recoverable modulus is the
inverse of the recoverable compliance, J,(¢), which is also known as
the steady state compliance from creep tests. While only the recover-
able strain is associated with elastic processes, both recoverable and
unrecoverable strain rates lead to viscous responses. These definitions
are direct analogies to the Maxwell and Kelvin-Voigt models. Based on
the rates at which recoverable and unrecoverable strain are acquired,
Tree AN yprec, We define the flow viscosity, #/,,, and the retardation
Viscosity, 7.,

o(®)

Nriow(®) = - ,
f o ylmrec(t)

Groe() = (€8]

@
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and
o(t)
Frec(®)
Recent works [21,22] have reported observations of the recov-
erable and unrecoverable contributions in soft matter systems. It is
been shown that the recoverable modulus and flow viscosity, G,,. and
Nyi0ws €an be directly related to microstructural evolution throughout
rheological tests that probe linear and nonlinear behaviors.

3

Hper (1) =

In this work, we also pay attention to the relaxation time and
the damping function. The relaxation time, 4, is the characteristic
timescale for the material to relax from the deformed state to the
equilibrium state [4]. The relaxation time can be determined from the
frequency at which the dynamic moduli cross in an oscillatory test
carried out in the linear viscoelastic regime. It remains an open ques-
tion as to how to define a relaxation time characterizing the dynamics
of viscoelastic materials under large or nonlinear deformations. For
example, Yamamoto proposed a rate-dependent relaxation time spec-
trum to describe nonlinear viscoelastic phenomenon [39]. However,
this approach requires a rational form of the relaxation spectrum to
be given beforehand. The damping function, A(y,), was first introduced
by Wagner to generalize the rubber-like liquid theory that is used for
describing polymer fluids [8] by correcting the assumption that the
flow does not affect the rate of deformation [40]. Following network
disentanglement theories, the damping function is defined physically
as the survival probability of the network after imposing a step strain,
depending only on the deformation [41]. When the damping function
is close to 1, the imposed deformation is small and the network remains
largely intact. In this circumstance, the network undergoes nearly
purely elastic deformation, and the process is entirely recoverable. By
contrast, when the damping function approaches 0 at the very largest
deformations, entanglements are removed, and no network exists in
the system [42]. We take another look at these two material functions
from the perspective of recovery rheology for generalizing viscoelastic
responses in both linear and nonlinear regimes under the application
of different deformations.

In the current study, we revisit the definition of the displace-
ment gradient tensor to incorporate the recoverable behaviors observed
by viscoelastic materials. This revised construction takes the yilkd-
centric view of deformation by acknowledging the existence of the
material equilibrium stress-free state and provides a framework to un-
derstand both linear and nonlinear material responses in the language
of recovery rheology.

After a discussion of the displacement gradient and the connection
to recovery material metrics, we present detailed step strain and startup
shear recovery measurements for a wide range of strain amplitudes
and shear rates on a model viscoelastic material and observe clear
correlations between the two distinct test protocols. On the basis of our
recovery rheology experimental results, we propose a new constitutive
model and compare its predictions to the experimental observations.
We also revisit the concepts of relaxation time and damping functions
based on the concepts of recovery rheology to infer more information
on the microstructural changes leading to deviations from the linear
response.

The work is summarized as follows: In Section 2, we revisit the
definition of the displacement gradient tensor, which is then applied
to design the constrained recovery experimental protocols in Section 3,
along with the outline of material preparation (Section 3.1) and ex-
perimental procedures (Section 3.2). The results of the experiments are
discussed in Section 4, including the viscoelastic characterizations (Sec-
tion 4.1), the development of a constitutive model based on recovery
material functions determined from two recovery measurements (Sec-
tion 4.2), and, finally, the revision in concepts of relaxation time and
damping function in the framework of recover rheology (Section 4.3).
Finally, conclusions are presented in Section 5.
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2. Reconstruction of the displacement gradient tensor

We combine the traditional construction of displacement gradient
tensor and the experimental observations of viscoelastic fluids to de-
velop the reconstruction as represented in Fig. 2. The set of the unit
vectors X;, X, X3 is used to define the position vectors in the Carte-
sian coordinate. At some reference time #, two infinitesimal material
particles X, and X, are separated by a relative distance represented by

X, X, =dr,. 4

Each of the particles has a stress-free equilibrium state given by
X, and X,,, respectively. These are the points each particle would
recover to if all stresses were removed. If the whole material body is
at equilibrium, the material particles and their equilibrium positions
will coincide. The distances from each particle to their associated
equilibrium states are

X1 X1e =drep1is Xoe Xy = dropy;. %)
The displacement between X, and X,, is given by
XleXZe = dreo,i' (6)

In Egs. (5) and (6) and for the rest of this discussion, we use sub-
scripts f and o to represent displacement from and displacement of the
equilibrium state. Because neither particle is aware of the equilibrium
state of the other, no position vectors can be drawn between the pairs
X; and X,,, or X, and X;,. At the current time ¢/, in configuration
By, the two particles have become displaced to new locations X and
X} owing to the application of load experienced by the continuum
medium, with the new relative distance

X/X] = dr). @

The two stress-free equilibrium states are also displaced, to new
positions X| and X} . The relative distances from particles to their
equilibrium states are now

Tl — g
X\ X, =dr

! !’ _ /
ef1i» X2 Xa = dry s ®)

The relative distances between two X and X}, are denoted by

! ! _ /
XleXZe - dreo,i' (9)

Here, the motion of the equilibrium state from time ¢ to ¢ is the
primary concern. The directions of each position vector only serve to
provide the mathematical representations of the vectors. For X {e and
X, as seen in Fig. 2, we have

XleX{e = uea,i(reo,i)’ (10)
and
XZeX;e = ueo,i(rea,i + dreo,i)' (11)

We further have

/
eo,i

uea,i(reo.i) + dr = dreo,i + ueo,i(reo,i + dreo,i)’ (12)

which can be arranged to

dr’

eo,i

= dreo,i + uea,i(rea,i + dreo.i) - ueo,i(reo,i)' (13)

By assuming infinitesimal deformation, we use Taylor’s series to

expand the term u,,;(r,,; + dr

eo,i eo,i )

r eo,i )

uea,i(

or, eo,j (14)
+ higher order terms,

ue()j (reo,i + dreo,i) = ueo,i (rea,i) + dreo,j

in which the higher order terms can be ignored. Finite strain requires
a more complicated formalism to account for nonlinear responses, and
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Fig. 2. Displacement of the reconstructed displacement gradient tensor after
incorporating traditional definition and experimental observation in continuum motion.

the mathematical derivations at the condition of finite deformations are
not the focus of this paper.

We replace the u,,;(r,,; +dr,,;) term in Eq. (13) with the truncated
form shown in Eq. (14), and we obtain

aueo,i(

eo,j areo ; ’

reo,i)

dr’ . = dr,; +dr

eo,i

(15)

which relates the relative displacement between material equilibrium
state, dr! ., in the deformed body to the displacement in the unde-

formed boydy, dr,,;, through

ou _ Oyy i (16)

Feo.j 6xj

eo,i (r eo,i)

0

The further simplification, presented as the right-hand side

of Eq. (16), is done by realizing the components of x g constitutes the
o .
Yol form a second-order

coordinates of r, The nine components

eo,j*
tensor, which we call the displacement gradiejnt tensor of the stress-
free equilibrium state. The detailed displacement gradient tensor that
describes the displacement from the stress-free state is derived in the
supplementary material, returning the general equation

ax, 20t ar —ar,, ] = dx, 2 17
Xyt |l —drey] = x5 an
J J
after following the simplification done in Eq. (16). The term
[dr’ ;= dryy ] is now written in the form of a displacement gradient
ef.i ef,i
tensor, which gives
u,, : ou, s ; ou.
dx; =24 g g, —L = gy S0 as)
! ox; ! ox; T ox;

As can be seen in Eq. (18), the traditional displacement gradient
tensor %, which we refer to as the total displacement gradient tensor,
is a sum of the displacement gradient tensor of the equilibrium state
a:ii'i, and displacement gradient tensor from the equilibrium state
du(,fﬁ,»

0x;
be ‘decomposed into two component shapes not only the formalism

we use, but also changes our approach to making measurements of
viscoelastic material behaviors. It highlights the merits of constructing
constitutive models to take the two displacement gradient tensors into
consideration. Further, the two displacement gradient tensors imply the
existence of two velocity gradient tensors that define two rate of strain
tensors and two strain tensors.

The physical interpretations of the two displacement gradient ten-
sors can be explored by considering the Hookean elastic solids and

. The conclusion that the total displacement gradient tensor can
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Newtonian viscous fluids cases. For a Newtonian viscous fluid that dis-
plays no recovery when loads are removed, the stress-free equilibrium
states are always identical to the location of the two material points.
That is, the unrecoverable contribution represents the displacement of
the equilibrium state. For a Hookean solid whose elasticity allows it
to return to its reference configuration after releasing the load, the
recoverable contribution is represented by the displacement tensor
from the equilibrium state. The strain tensors are then obtained in the
normal way by decomposing the three displacement gradient tensors
into symmetric and antisymmetric parts as

ou; 1 (0w Ou; 1 (ou Ou;

—==—+—=)+=z—-=—), 19
ox; 2 (0xj 0x; 2 \ox; ox; (19)
auea,i — l <aueo,i + a”leo,j> + l <aueo,i _ auea.j > , (20)
ox; 2\ ox; 0x; 2\ ox; 0x;

Oty ; _ 1 <6uef’,~ N 6uef,j> N 1 <0uef,,- B Outyy . @1
ox; 2\ ox; ox; 2\ ox; 0x;

We denote the symmetric part as the displacement gradient of
the body free of rotation or translation and is the infinitesimal strain
tensor [6]. The three displacement gradient tensors give rise to three
strain tensors, which are

1 0141. 0uj
===+ =) =y=7,, 22
Vij 5 <0xj ox; V= "Yiot (22)
1 [ OUep;  Olgy
7e0,[j = E < a;il + ?f) = Yunrec» (23)
1 [ Ouep; Olgr;
Yefij = 5 (W + ox )" Vrec: (24

Following Eq. (18), we also conclude that

Yiot = Yunrec + Yrec: (25)

Eq. (25) underlines that the strain, or the total strain, can be
decomposed into a sum of recoverable and recoverable contributions.
Taking derivatives with respect to time of the three strain tensors allows
us to determine the (symmetric) rate of strain tensors as

inj 1 {9y an
yoo=— == —4+— | =7, 26
MiT T T2 <0x ;o 0x > . 26)
. d}’eo,ij 1 aUea,i aer,j .
Yeoij = dr = 5 ( axj + axi > = Yunrec> 27)
dyef ij 1 aUefi aUefj
S Ho_ 2 : )=y . 28
Yef.ij dr D) < ox; + ox; ) Yrec (28)

Following the rule of linearity, the summation returns

Tiot = Vunrec + Vrec> (29)
where

v = = %’ (30)
Ueo,i = g = dlf;to’i s (31
Uefi =Uep; = % (32)

The total shear rate is therefore the sum of the unrecoverable and
recoverable shear rates.

3. Experiments
3.1. Materials
All experiments were performed on surfactant solutions of 3.2 wt %

of cetylpryridinum chloride (CpyCl, Spectrum Chemical) in a 100 mM
sodium chloride solution (NaCl, Sigma-Aldrich) with a molar ratio
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Fig. 3. Demonstrations of iterative (a) step strain with recovery and (b) startup of
steady shear with recovery protocols. In each case, the same initial condition is applied,
either as a constant strain or constant strain rate, and the duration of this step is
iteratively lengthened, allowing us to map the recoverable and unrecoverable strains
as a function of experimental time.

of sodium salicylate (NaSal, Sigma-Aldrich) to CpyCl of 0.5. Such a
wormlike micellar (WLM) system falls into the semi-dilute regime [43,
44], making it a model system for studying the reversibly entangled
polymeric systems [45-47]. All materials were used as received without
further purification. The solution was prepared by firstly adding the
required amount of the NaSal into the pre-made NaCl solution followed
by CpyCl. All contents were gently mixed and left for at least 48 h
before experiments to ensure the solution was homogeneous before
performing any rheological measurements.

3.2. Viscoelastic characterizations

Rheological measurements were performed using an Anton Paar
Modular Compact Rheometer (MCR) 702 in a single-drive mode. The
electrically commutated motors allow measurements under strain-
controlled and stress-controlled modes on one device [48]. This device
provides a reliable switch between strain-controlled step strain and
startup shear and stress-controlled recovery steps within the order of
milliseconds. Linear viscoelastic (LVE) spectra of WLM are determined
by oscillatory shearing at a small strain amplitude (y, = 0.063), which
is within the moduli-independent regime determined from strain am-
plitude sweeps. The procedures for performing step strain and startup
shear recovery tests are shown in Fig. 3. A given shear strain repre-
sented in Fig. 3(a) or a given shear rate shown in Fig. 3(b) is applied to
the system, followed after some time by zero shear stress, allowing the
material to reach its equilibrium state at a time of interest. To eliminate
any inertia effect for the startup shear recovery measurements, we
apply a zero-shear rate step (y, = 0) for a short time r = 0.06 s as an
intermediate step between the shearing and zero-stress states [22]. The
zero-shear rate step shows a negligible effect on material responses. To
map out the recoverable and unrecoverable responses throughout the
entire experimental period, we iterate the process varying the duration
of the experiment each time before going to the zero-stress state. All
experiments use a cone and plate geometry with a radius of 50 mm
and an angle of 2° with a smooth surface at a temperature of 22 °C.
Consistent results and gap distance have been found from all replicates,
without slip affecting the measurements. An evaporation hood was
applied to minimize solvent evaporation. All rheological properties
were collected via Anton Paar’s RheoCompass software.

4. Results and discussion
4.1. Characterization results

We present the LVE responses of the WLM in Fig. 4. For angular
frequencies, @ < 10 rad/s, the response is well characterized by a

single-mode Maxwell model with a relaxation time calculated from
the crossover frequency 4 = 1/w, = 0.71 + 0.042 s, an elastic plateau
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Fig. 4. Viscoelastic characterization of the 3.2 wt% /0.76 wt% CpyCl/NaSal solution
at 22 °C (a) frequency-dependent storage (filled symbol) modulus G’ and loss (opened
symbol) modulus G” and (b) steady shear flow curve.

Table 1
Properties of WLM solution as defined by the linear viscoelastic
measurement and steady shear flow curve.

Parameter Symbol Value
Relaxation time A 0.71 + 0.042 s
Elastic plateau modulus G‘,’V 23.4 + 1.45 Pa
Zero-shear viscosity o 16.6 Pa - s
Retardation viscosity n, 0.062 Pa - s

modulus GS, = 23.4 + 1.48 Pa, and a zero-shear viscosity 7, = AGS, =
16.6 Pa - s. Good agreement is found between our data and values
reported elsewhere [45]. The zero-shear viscosity obtained from the
oscillatory data is consistent with the low-rate plateau value deter-
mined from the steady shear characterization as shown in Fig. 4(b). The
observation of an upturn in G” at high frequencies arises from the local
Rouse motion or “breathing” of the shortest chains [49]. To capture the
upturn, the single-mode Maxwell model can be amended by adding a
solvent viscosity #,. The solvent viscosity is reported to be negligibly
small by 7,/n, = O(107) [50]. We attribute this solvent viscosity to a
retardation viscosity n, as it accounts for the retarding effects at high
frequencies. At short timescales or high frequencies under the imposi-
tion of small deformation, the network resists rearrangement, including
rotation and extension of strands, and the dynamics are dominated
by elastic properties [51]. Moreover, as we show later in Section 4.2,
the retardation viscosity calculated from the LVE measurement shows
quantitative agreement with the retarded dashpot value analyzed from
the analytic equation of the Kelvin—Voigt model [52,53]. The numerical
values of the characterization values are tabulated in Table 1.

The flow curve obtained from steady shearing at low shear rates
exhibits Newtonian behavior characterized by the zero-shear viscosity,
which is consistent with the value extrapolated from the oscillatory LVE
responses. At shear rates higher than the inverse of the relaxation time,
that is, when Ay > 1, the system shear-thins, and the steady shearing
data can be well described by the inelastic Cross model, as shown in
Fig. 4(b) [49]. The Weissenberg number, Wi, is conventionally defined
as the product of the relaxation time and shear rate [54,55] and
represents a normalized strength of the flow. When Ay > 1, the micellar
solution shows non-Newtonian behavior.

In Fig. 5, we show the stress relaxation behaviors of the WLM system
after being subjected to a series of step strains with a wide range of
amplitudes. The underlying assumption of the step strain is that the
desirable strain amplitude is applied instantaneously to the material
at + = 0 [6]. However, due to instrument limitations, the imposed
strain amplitude is delayed by 0.2 s before reaching the desirable value
and remaining constant as shown in Fig. 5(a). Therefore, all time-
resolved results presented in Section 4.2 are collected at times longer
than 0.2 s to ensure accuracy of the imposed desirable strain. The time-
resolved and strain-dependent relaxation modulus G(t, y,) is displayed
in Fig. 5(b). In the limit of small strain amplitudes (y, <« 1), the
relaxation modulus is independent of the applied strain, which allows
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Fig. 5. Stress relaxation as a function of experimental time after applying a wide
range of strain amplitudes at + = 0 to a material initially at rest state. (a) Strain
amplitude y, versus time. (b) Relaxation modulus G(y,.t) = o(t,7y)/y, versus time.
(c) Normalized relaxation modulus G(y,,1)/[Gh(y,)] versus time, where the damping
function is determined as A(y,) = G(y,,1)/G(t). (d) The damping function A(y,) versus
applied strain amplitude.

it to be written as G(t) = o(t)/y,. In this small deformation limit, the
relaxation modulus decays in a single exponential manner, showing
Maxwellian behavior G(1) = G(I)V exp(—t/4), in which the elastic plateau
modulus and the relaxation time are the same as those tabulated in
Table 1.

Once the applied strain amplitudes are within the nonlinear regime
(7o > 1), the relaxation modulus is time- and strain-dependent, G(t, 7)) =
o(1)/7,- At times longer than the relaxation time, all relaxation modulus
curves exhibit similar exponential decay, and a vertical shift leads to
a superposition of all curves obtained from various amplitudes. The
superposition is clearly shown in Fig. 5(c) after scaling the relaxation
modulus by the vertical shift factor known as the damping function,
h(yy) [42], with reference curves obtained in the linear viscoelastic
limit. For times shorter than the relaxation time, the behavior strongly
depends on strain amplitude. The full relaxation mechanisms are well
described by the Doi-Edwards tube model as a combination of chain
retraction at shorter time and reptation at longer time [8]. Once the
experimental time is longer than the retraction time, the relaxation
modulus can be factored into time- and strain-dependent terms as
G(t,yy) = Gh(yy), suggesting the principle of time-strain separa-
bility. This separability was first identified experimentally in various
polymeric systems by Einaga et al. and Osaki et al. [56,57]. The
experimental damping function is plotted in Fig. 5(d) as a function of
the strain amplitude. The damping function is not as strain-softening
as predicted by the Doi-Edwards model. The deviation has previously
been explained as an incomplete retraction during reptation. That is,
retraction increases the stiffness of the damping function [8]. With the
inclusion of partial retraction, Larson’s nonaffine model [8] predicts

h(y,) = Yo%, (33)

g
1+ %

with a fitted value ¢’ = 0.33, close to the values reported elsewhere in
the literature for the same system [45].

4.2. Development of constitutive model

After performing the step strain and startup shear recovery mea-
surements in the transient manner as shown in Fig. 3, we calculate the
recoverable modulus and flow viscosity, G,,. and 7, using Egs. (1)-
(2). The data obtained from step strain recovery is represented in
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Fig. 6. Time-resolved recovery measurements at 22 °C for recoverable modulus
Groo(t) = 0(t,70)/Vec(t) and flow Viscosity 1, (1) = (1, 79)/Vunrec(t) determined from
(a)~(b) step strain recovery and (c)-(d) startup shear recovery tests. Dark yellow
regions between dotted lines represent the standard deviation of the elastic modulus
G‘,)V obtained from linear viscoelastic measurements. A gray area is used as a visual aid
for showing which portions of data are used for fitting analysis.

Figs. 6(a)—(b) and the data collected from the startup shear recovery is
shown in Figs. 6(c)—(d). Similar test protocols were performed in [22]
at only one linear strain amplitude and two strain rates. In this paper,
we performed the two test protocols at a wide range of shear strains and
rates in both linear and nonlinear regimes to investigate the material’s
responses fully. We show the time-resolved recoverable modulus and
flow viscosity as functions of the recoverable strain and unrecoverable
rate. Viscous flow is represented by the flow viscosity and elastic
deformations are described by the recoverable modulus. The large
error bars found at small recoverable strains (7,,, ~ O(107%)) and
unrecoverable shear rates (7,,,.,. ~ O(1072)) arise from dividing two
small values. The linear material properties are labeled to compare with
the recovery material functions obtained at small recoverable strains
and unrecoverable shear rates. The steady shear flow curve is also
shown in Figs. 6(a) and 6(c) to serve as a comparison. In the step strain
tests, the largest unrecoverable rates and recoverable strains correspond
to the earliest times of the test.

As can be seen from Figs. 6(a) and 6(c), the unrecoverable flow be-
havior observed in step strain experiments at different strain amplitudes
and steady shear start-up at different shear rates matches the behavior
of the steady state flow curve. That is, there is a direct and remarkable
equivalence between the response to step strain behavior and the steady
state flow curve. In the traditional analyzes that are based on the total
strain and total rate, the transient stress observed in a step-strain test is
said to be due to an evolving (Hookean) elastic modulus, 6(7) = G(t)y,.
Similarly, in a steady shear start-up experiment, the transient stress is
said to be due to an evolving (Newtonian) viscosity, o(¢) = n*(¢)7. This
underlying assumption has led to the development of a constitutive
model for analyzing small and large amplitude oscillatory shear [58].
Responses from the two test protocols are therefore difficult to compare
as the common metrics associated with each test have different units.
The assumption that all transience is tied to either a modulus or a
viscosity, and not both, neglects the simultaneous contributions of
recoverable strains and unrecoverable rates. When viewed from an
ylikécentric perspective in terms of the recovery metrics implied by the
formalism presented in Section 2, it becomes clear that transient stress
responses can be caused by both elastic and viscous effects, allowing
for direct comparison across different deformation protocols. The clear
comparison between the tests we present in Fig. 6 can be explained
simply by noting that the viscous curves shown in (a) and (c) represent
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Table 2
Modeling parameters for recoverable modulus G,,. and flow viscosity
171, ODtained for the WLM under step strain and startup shear recovery

measurements.
Parameter Symbol Value
N1 Cross model prefactor a 0.83 + 0.5
1710 Cross model power index b 1.02 + 0.165
G,,. Cross model prefactor ¢ 0.71 + 0.44
G,,. Cross model power index d 1.31 £ 0.35

the unrecoverable contributions alone, while the elastic curves shown
in (b) and (d) represent the recoverable contributions.

The similarities between the trends depicted by recovery material
functions and recovery measurements are obvious, even though the two
test protocols are drastically different. What we can see from both tests
is that the WLM solution displays both (recoverable) strain-softening
and (unrecoverable) shear-thinning. That is, the recoverable modulus
decreases with increasing recoverable strain and the flow viscosity
decreases with increasing unrecoverable shear rate. At small recover-
able strains and unrecoverable shear rates, the recoverable modulus
and flow viscosity are equal to the plateau modulus and the zero-
shear viscosity for the two protocols, indicating the close proximity to
equilibrium. The step strain protocol applies a theoretically discontin-
uous but practically continuous deformation to the material and allows
the material to relax. The deformation therefore switches from being
recoverable to unrecoverable. In contrast, the startup shear applies con-
tinuous deformation to the material. Regardless of the different types of
deformation applied in the step strain and startup shear recovery tests,
we determine uniform behavior from an ylikécentric perspective.

The material behavior in terms of the recoverable modulus and flow
viscosity are well described by Cross-type functions [59]. To represent
the shear-thinning flow viscosity, we replace the total shear rate, y,, by
the unrecoverable shear rate, 7,,,..,

"o

1 + (aj/unrec)b .

The parameters a and b in Eq. (34) are material properties. The
parameter a implies the degree of shear dependence on the structural
breakdown, and b is the flow index. To describe the strain-softening
behavior of the recoverable modulus, we again make use of the Cross
model, but replace the unrecoverable shear rate, 7,,,.., with the recov-
erable strain, y,,., and the zero-shear viscosity by the plateau modulus,

'Iflow(}./lmrec) = (34)

0
N
L+ () 2

Here, the parameters ¢ and d take on similar interpretations to «
and b in Eq. (34). A similar strain-dependent model was proposed for
cohesive suspensions [60], but with a reliance on the total strain rather
than the recoverable strain that is our focus here. As shown in Fig. 6,
the (unrecoverable) shear-thinning and (recoverable) strain-softening
descriptions, presented by the thick solid lines, match the recovery
material functions well. The agreement implies the applicability of the
descriptions is insensitive to the type of deformation. The numerical
values of the model parameters used for generating the fits are identical
within the standard deviations and are shown in Table 2.

To make the most of our experimental data, we also pay attention
to the creep ringing response during the recovery steps, which was
not studied in [22] and is a result of a coupling between the elas-
ticity and the inertia of the system. The observation of a decaying
envelope clearly indicates that using the shear-thinning and strain-
softening contributions, as displayed in Egs. (34) and (35), will be
insufficient to provide complete interpretations for all the behaviors
observed. An additional viscous term is needed to account for the
decaying oscillations. We use the ringing solution for a Kelvin-Voigt
element [52,53] to analyze the zero-stress recovery step to calculate the

GI'CC (yrec ) =
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retardation viscosity #,,,. The solution written in terms of parameters
defined in recovery rheology is

y(trec) = YreeX

A (36)
[1 — e Areclree [cos(a),ect,ec) + = sin(a),ectm)” .
wrec
. . rel b eo
In Eq. (36), t,,. is the recovery time, v,,, = é, Appe = %,
Groch
and w,,, = \/ =2 — A2, . I represents the sum of the geometry and

instrument inertia returned by the calibration protocol performed by
the RheoCompass software, and b,,, is a geometry factor that for a
cone-and-plate geometry with cone angle @ is 2z R?/3tan(9). Eq. (36)
is further rearranged to

t rec

|- Y(ree) _ oA

rec

rec [COS(“’rectrec) + SIN(@yect o) (37)

yrec rec

to allow for easier extraction of the retardation viscosity directly from
the slope A, after performing the linear regression in a semilog plot.

The resultant retardation viscosity as a function of recovery time
found from step strain recovery and startup shear recovery test is shown
in Figs. 7(a) and 7(b), respectively. A constant value is found across a
range of strain amplitudes and shear rates tested. The retardation vis-
cosity obtained from step strain recovery 7w’ is 0.058 Pa-s and the one
collected from startup shear recovery 7’1" is 0.081 Pa-s. The retarda-
tion viscosity extracted from analyzing the creep-ringing phenomenon
is nearly identical to the retardation viscosity found from fitting the
high frequency responses of the loss modulus in the LVE frequency
sweep. We attribute the small differences to batch-to-batch variations
in sample concentrations. Aside from allowing us to determine the
retardation viscosity for the two recovery measurements, the creep
ringing response proves the Cross-type function for the strain softening
recoverable modulus we proposed in Eq. (35). The oscillatory parts
collected from the step strain and startup recovery are represented in
Figs. 7(c) and 7(d). The waveforms are both frequency- and amplitude-
modulated, especially for the larger step strain tests. As the recoverable
strain decreases, the frequency increases and the oscillation recovers
to its equilibrium value seen in the linear regime. Since frequency is
directly proportional to the recoverable modulus as shown in Eq. (36),
a similar relationship exists between the recoverable strain and the
recoverable modulus, precisely captured in Figs. 6(b) and 6(d).

The ylikécentric observations afforded by our recovery rheology
protocols in the linear and nonlinear regimes lead us to the devel-
opment of a new constitutive model. Our model is similar to the
retarded-Maxwell model, which has provided molecular interpreta-
tions of polymeric systems undergoing deformations [51]. Our model
captures linear as well as nonlinear responses by incorporating the
nonlinear elastic and viscous functions shown in Egs. (34) and (35).
The complete formalism of our model is

" Y . 1+ C?’i,c - Cdy:lec + Hret 7 — (,)_nflow + n"e’+
flow 0 1+ Cyd Grec 0 Grec

rec

(38)

d . . bh—1
- 1+ cFfee = cd¥f _ Mret D unrec T arec
1+cyd Groe 1+ayb '

rec unrec

Previous efforts have introduced only one nonlinear element to gen-
erate complex behavior. For example, the White-Metzner model [61]
replaces the constant viscosity with a nonlinear function that depends
on the second invariant of the deformation tensor. Nonlinear elastic
behaviors have also been used and are well discussed in terms of the
finite extensible elastic (FENE) model [62]. Few studies have created
models that consist of both nonlinear elastic and viscous terms to
replicate the creep and stress relation of polymeric solutions [63,64].

The predictions of the model are compared with the time-resolved
material responses in Fig. 8. Derivations of the model expressions used
can be found in the supplementary material. The comparisons for step
strain recovery measurements are shown in Figs. 8(a)-(c), and for
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Fig. 7. Retardation viscosity obtained for step strain in (a) and (c) and startup shear
in (b) and (d) recovery tests for strain amplitudes and shear rates ranging from linear
to nonlinear regimes. Comparison of waveforms at two different experiment times for
the highest strain amplitude (c) and strain rate (d).

the startup shear recovery measurements, the results are compared
in Figs. 8(d)-(f). Even though the magnitudes of the nonlinear strain
amplitude differ by a factor of 5, the maximum recoverable strains
achieved at the earliest times only differ by a factor of about 2, as
can be found in Fig. 8(b). The small difference suggests that elastic
energy stored in the stretched WLM strands has an upper limit. Similar
phenomena are observed in the startup shear experiments, in which all
strain is recoverable at the earliest time, and the unrecoverable strain
dominates the long-time behavior, as represented in Figs. 8(e) and 8(f).

The predictions of our model show excellent agreement with the ex-
perimental data for the step strain recovery scenario, even at the largest
nonlinear strain amplitude of y, = 7. For the startup shear, the model
captures the nonlinear responses well up to shear rate of 2.63 1/s.
The model does not predict stress overshoots and so deviates from the
experimental data when the shear rate exceeds y =2.63 1/s. Higher
shear rates y >2.63 1/s, are not explored due to the complexity from
the presence of shear-banding [46]. Despite its simplicity, our model
provides accurate predictions of nonlinear rheological data collected
from different types of deformations, including very large step strains.

One of the benefits of recovery rheology allowing for transient
material parameters is the ability to clearly identify the governing
physics. In the case of the WLMs studied here, it is well known that in
the fast-breaking limit they behave as an entangled polymeric system
with uniform molecular weight. As in polymeric network theory, the
plateau modulus provides insight into the molecular weight between
entanglements, and therefore how tightly knitted the network is. We
have already established an equivalence between the recoverable and
plateau moduli and now look to how the entanglement of the network
is affected by the shear protocols we have investigated here.

The transient entanglement length /, ,, representing a chain length
between two entanglements, allows us insight into the influence of
deformations on the microstructure of the WLM network. Under the
assumptions of good solvent conditions, and making the mean-field
approximation [43], the entanglement length /, is [41]

I, ~B3p72, (39)

In Eq. (39), the correlation length ¢ is calculated from the relation
¢ ~ (kyT/GO)'/3, in which G is the elastic plateau modulus, and b
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exp

is the persistence length of the WLM, which is typically assumed to be
15 nm for CPy/Sal [43]. To determine how the entanglement length
changes during experimental times, we revise Eq. (39) by replacing the
constant elastic plateau modulus by the time-varying recoverable mod-
ulus, ¢ ~ (k,T/G,,.)"/3. The data of the transient entanglement length
as a function of experimental time is shown in Fig. 9. In step strain
experiments, the temporal network is initially perturbed elastically. The
network then adjusts to the new condition as time progresses. If the im-
posed strain amplitude is within the linear region (y, < 1), the network
is weakly perturbed, and the transient entanglement length remains
constant. For large strain amplitudes (y, > 1), the network experiences
enforced topological changes and the transient entanglement length
is expected to increase. In such a case, the transient entanglement
length will be inversely proportional to time since the step, as seen in
Fig. 9(a). The transient entanglement length is plotted as a function of
recoverable strain in Fig. 9(c). In a similar manner to non-Newtonian
flow behavior occurring at rates in excess of 1/a from Eq. (34), the
topological changes, as shown by the deviation of the equilibrium
entanglement length found at the lower limit, occur at recoverable
strains around 1/¢ determined from the recoverable modulus, as shown
in Eq. (35).

In the case of startup shear, if the shear rate imposed is large (Wi
> 1), the response will deviate from linearity, and WLM strands are
gradually moved apart. The idea is supported by the data of Fig. 9(b)
in which the transient entanglement length is shown to increase with
increased straining. Similar behavior is found when plotting the tran-
sient entanglement length as a function of recoverable strain as shown
in Fig. 9(d). The steady-state value of the transient entanglement length
at small shear rates and small step strains is calculated to be 0.14 pm,
close to the literature value /,;, (~ 0.13 pm) reported for similar
concentration of the same WLM system [45].

strain and (b) startup shear, and transient entanglement length /,, versus recoverable
strain y,,. obtained for (c) step strain and (d) startup shear recovery tests in wide range
of strain amplitudes y, and shear rates .

4.3. Discussions of material properties

The first material property we will discuss is the relaxation time [2,
5]. The recovery rheology metrics and the construction of our model
lead us to define an instantaneous relaxation time as

1 (t) _ nflow(t) + rlrct(t) » r’flow(t)
ree Grec(t) Grec(t) .

Because of the small value of the retardation viscosity found from
analyzing the creep-ringing response, we can neglect it and simplify the
relaxation time to be the ratio of the flow viscosity to the recoverable
modulus. As has been discussed previously, the temporal network
formed by the WLM strands disentangles when large strains or shear
rates are applied. For large step strains, WLM strands are disentangled
by the large strain and then re-entangle as a function of experimental
time. For startup of steady shear, WLM strands disentangle as more
strain is applied over time. Therefore, there is a need to account
for the dynamic changes in timescale with respect to the transient
configuration. Since the flow viscosity and the recoverable modulus are
ratios of the same total stress to the unrecoverable shear rate and the
recoverable strain, Eq. (40) can be rewritten completely in terms of
measured deformation metrics as [22,55,65]

(40)

~ rlflow _ Yrec

~ =

}'rec G

—. (41D
rec yunrec

The recovery rheology relaxation time shown in Eq. (41) is the
same as the one that White defined when introducing the Weissenberg
number for the first time [55]. From analysis of the equation of motion
for a second-order fluid, White noted the presence of a dimensionless
group he called the Weissenberg number,

Wi=J,0,U/L, (42)

where J, is the steady state compliance, o, = [, G(s)ds = n, is the
zero-shear viscosity, and U and L are a characteristic velocity and
length. Recalling that J, = y,,./o is the inverse of the recoverable
modulus defined in Eq. (1), @, = 1y = 6/7 = 6/Vunrec in the limit
7 — 0, and that U /L is an unrecoverable strain rate, provides for some
illuminating simplifications. If we take the common interpretation that
the Weissenberg number is the product of a relaxation time and a shear
rate, Wi = Af, then A = Jly = (rec/0) X (0/Tunree) = Tree/Tunree 3
presented in Eq. (41). One further simplification, that U/L = 7,,ec
shows that the Weissenberg number is the recoverable strain, Wi =
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A7 = Wree/ Tunree) X Vunree = Yrec- RECOVeEry rheology and the ylik6centric
perspective are therefore central to rheological formalisms.

The relationships between the recovery rheology relaxation time
and recoverable strain and unrecoverable shear rate are shown in
Fig. 10 for the two recovery measurements, along with the model
predictions.

It is apparent from the data in Fig. 10 that for both step strain and
startup shear measurements, the recovery rheology relaxation time de-
creases with increasing recoverable strain and unrecoverable shear rate,
resembling both the experimental data and the Cross-type behaviors
built into the model. This simple model shows that relaxation occurs
faster in the nonlinear regime than in the linear regime. Assuming a
constant relaxation time to calculate a Weissenberg or Deborah num-
ber (where the Deborah number nondimensionalizes the experimental
time, De = 4/t,,,) may therefore not describe experimental data
well, as soft systems may exhibit faster relaxation rates further from
equilibrium, as shown here.

The ideas of recovery rheology are also important to consider in
the definition of the damping function. As discussed in Section 4.1,
the damping function, A(y,), is usually defined as the ratio of the
nonlinear relaxation modulus, G(t,y,), to the linear version, G(r). The
decaying trend of the damping function in the limit of large strain
amplitudes is typically interpreted in terms of the destruction of the
network. In general, the damping function, A(y,?), is strain- and time-
dependent, even though it is defined initially to obey the principle of
time-strain separability. Investigations of the time-dependent form have
been summarized by Rolén-Garrido and Wagner [66].

To rewrite the damping function based on the idea of recovery
rheology, we use the fraction of the recoverable strain in the total
strain amplitude. The new definition follows the physical meaning
suggested by Wagner and Meissner as the survival probability of the
network [42], which is represented as Eq. (43),

yrec(lexp’ V())
noo

As the new damping function approaches unity, when the recov-
erable strain is identical to the applied strain amplitude, the elastic
energy of the system remains unchanged, and the network is barely
perturbed. At the other extreme, when the new damping function

hnew = h(y()’ texp) = (43)
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damping function versus time in which reduced factor ry is determined with rz, =
[Py (Ags texp) / e (texp)]- (€) Reduced factor rp ), and traditional damping function h(y,)
versus strain amplitudes.

, versus experimental time 7

new

approaches zero, the majority of the strain applied is unrecoverable,
implying that the network has been destroyed under large straining.
When the system undergoes large deformation, the elasticity of the net-
work decreases due to disentanglement. This definition of the damping
function directly accounts for the unrecoverable contribution. Because
recoverable strain varies with time, this damping function depends
on both time and strain amplitude. A similar finding was previously
reported that the modulus evolved in the re-entanglement process,
showing consistent behavior without the need to invoke the damping
function. This result implies the damping function is not required to
account for decreases in elasticity [21].

We show in Fig. 11 the new damping function, h,,,, at strain
amplitudes imposed in the step strain experiments. All new damp-
ing function curves collected at small strain amplitudes exhibit the
same decaying trends. Once the strain amplitude is large enough to
elicit nonlinear responses, the new damping function is time- and
strain-dependent, as shown in Fig. 11(a). The new damping function
shows identical behaviors to the traditional nonlinear relaxation mod-
ulus. If we borrow the same idea of determining the conventional
damping function, we end up with a superposition of all curves at
longer experimental time after applying a vertical shift factor, rg .
In Fig. 11(b), the time-dependent behavior at longer experimental
time and the strain-dependent response, represented by the different
decreasing slopes at shorter experimental time, follow the principle of
time-strain separability. However, the new damping function varies in
time as well. It is instructive to compare the resultant vertical shift
factor with the traditional damping function, which is also a vertical
shift factor, and the comparison is shown in Fig. 11(c). Both qualitative
and quantitative similarities are observed between the vertical shift
factor and traditional damping function. The pioneering work of Einaga
investigated a similar comparison in shift factor determined from the
relaxation modulus and recoverable strain [56] without introducing
the concept of damping function. Instead, Einaga’s work has set forth
the experimental validation of the principle of time-strain separability.
The time-dependent property enforces the new damping function to
deviate from the original definition of the principle. Moreover, the
consideration of recoverable strain provides us with opportunities to
define transient damping functions for other tests, such as the startup
shear. The transient damping function obtained from the startup shear
measurement is shown in the supplementary material. Distinct time-
and strain-dependent regions can be seen after vertically shifting all
the curves with reference to the linear transient damping function.

5. Conclusions

We have explored the implications of a formalism that acknowl-
edges the phenomenon of recovery from a theoretical, experimental,
and modeling perspective. This formalism acknowledges the existence
of recoverable strain for the displacement gradient tensor and ulti-
mately for the formal definitions of strain and strain rate. The assump-
tion that any past state chosen by the experimenter can be taken as
a reference state, what we refer to as the anthropocentric view, is true
only for generalized Newtonian fluids that display no recovery when
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forces are removed. By giving primacy to the material equilibrium
state, taking the material-centric or ylikdcentric view, we are led to the
definition of two distinct strains, and two distinct strain rates. This
acknowledgment allows us to revise the concept of the displacement
gradient tensor, and we show that the traditional measure is composite
and can be decomposed into two tensors related to the displacement
from the equilibrium state and displacement of the equilibrium state.
The physical meanings for each of the newly derived displacement
gradient tensors are directly linked to the recoverable and unrecov-
erable contributions. The traditional definitions of strains and strain
rates are therefore shown to be sums of recoverable and unrecoverable
components, ]/(t) = 7rec(t) + Yunrec(t)5 )/ = j/rec(t) + 7unrec(t)'

The new formalism highlights the need for recovery measurements,
which we perform for a range of different shear protocols. The recovery
rheology results naturally lead to the development of a new constitutive
model that contains nonlinear functions for describing elasticity and
viscosity. We performed step strain and startup shear recovery on the
CpyCl/NaSal WLM system at various strains and shear rates within the
linear and nonlinear regions. The recovery material functions — the
recoverable modulus and flow viscosity — were investigated, and Cross-
type relations were proposed to characterize the material responses.
The retardation viscosity was calculated from the creep-ringing solution
of the Kelvin—Voigt element. Despite being based on measures that
represent the decomposition of the total strain and rate at infinitesimal
deformations, the model shows excellent quantitative agreement with
experimental data even for the very largest step strain tests. The
favorable predictions support the idea that the decomposition is also
applicable for finite deformations.

Definitions of instantaneous relaxation times and damping functions
are presented in the framework of recovery rheology. The relaxation
time is well approximated by the ratio of the flow viscosity to the
recoverable modulus, due to the small value of retardation viscosity.
The instantaneous relaxation time is shown to be dependent on both
recoverable strain and unrecoverable shear rate. Defining the damping
function in terms of the recoverable strain suggests the possibility of de-
termining damping functions in other types of deformation beyond the
traditionally used step strain experiments. Characterization of network
dynamics to experimental protocols other than step strain tests can
therefore be carried out in a consistent manner with the new functions.
These findings, and the general principles of recovery rheology provide
an enticing avenue to pursue to more deeply understand material
responses under nonlinear deformations.
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