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Abstract— This letter focuses on the problem of traffic state
estimation for highway networks with junctions in the form of on-
and off-ramps while maintaining differential privacy of traffic data.
Two types of sensors are considered, fixed sensors such as inductive
loop detectors and connected vehicles which provide traffic density
and speed data. The celebrated nonlinear second-order Aw-Rascle-
Zhang (ARZ) model is utilized to model the traffic dynamics. The
model is formulated as a nonlinear state-space difference equation.
Sensitivity relations are derived for the given data which are then
used to formulate a differentially private mechanism which adds a
Gaussian noise to the data to make it differentially private. A Moving
Horizon Estimation (MHE) approach is implemented for traffic state
estimation using a linearized ARZ model. MHE is compared with
Kalman Filter variants namely Extended Kalman Filter, Ensemble
Kalman Filter and Unscented Kalman Filter. Several research and
engineering questions are formulated and analysis is performed to
find corresponding answers.

I. INTRODUCTION AND LETTER CONTRIBUTIONS

T
HE rise of connected vehicles (CVs) technology has provided

transportation professionals with additional sources of data to

monitor the state of traffic in real time. While more data produces

better results when used for state estimation and control, it imposes

greater privacy threats on the provider of such data. The location

data provided by CVs can be used by criminals for tracking the ve-

hicles, or identifying and profiling the travelers [1], [2]. Even with

sensors that provide aggregate density and speed data, the privacy

of individual vehicles is not ensured as it is possible to reconstruct

individual trajectories using this data [3], [4]. Rising concern

about data privacy in general has led to development of privacy

preservation algorithms which can be categorized into anonymity

based, obfuscation based and policy based algorithms [2]. Among

these, obfuscation based algorithms such as those which add noise

to the data are preferred for tackling location based privacy issues.

Such algorithms can be used to ensure differential privacy (DP) [5]

of data. DP is a strong notion of privacy that guarantees the

safety of individuals’ records when publicly sharing aggregate

information from databases. In context of roadway traffic, DP

preserves the location privacy of individual vehicles, both CV and

non-CV, when publicly sharing traffic state estimates [6], [7].

Introducing DP to traffic data however deteriorates the quality of

data which could result in a trade off between the level of privacy

and estimation accuracy. Since different state estimation algo-

rithms work with different assumptions and approximations, there

is reason to believe that some algorithms work better than others
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when it comes to differentially private state estimation. Therefore

it is important to identify such techniques that can produce high

quality state estimates while ensuring necessary levels of privacy.

Past works on differentially private traffic state estimation

(TSE) use variants of the Kalman Filter (KF) namely Extended

KF (EKF) [6] and Ensemble KF (EnKF) [7] to perform state

estimation. KFs are known to suffer from certain issues including

the absence of state constraints and required assumptions on

the distribution of the noise. A technique which traditionally

overcomes these drawbacks is Moving Horizon Estimation

(MHE) [8] which is unexplored in the context of differentially

private TSE. Therefore, in this work we implement MHE for

differentilly private TSE and compare its performance with EKF,

EnKF and Unscented KF (UKF) [9]. Note that unlike [10] which

proposes a privacy preserving MHE to ensure privacy of the

estimates produced using non-private data, here we consider that

the received data itself is private and use a more traditional MHE

formulation. This allows for privacy from the source of data itself.

Also, unlike the past studies which use a first-order traffic model,

here we use the second-order Aw-Rascle-Zhang [11], [12] model.

Second-order models can reproduce certain real-world traffic

phenomena like capacity drop which makes them more suitable

for estimation and control purposes. Additionally, we also model

junctions which adds more complexity to the model.

Besides, the past work assumes that the speed and density data

is obtained from fixed locations on the highway while here we

use CVs to obtain data from different parts of the highway.

The overall flow of processes in this study is as follows:

sensors collect aggregate density and speed data and add privacy

preserving noise it. This data is then sent to the network operator

who uses it along with a traffic model to perform TSE to obtain

density and speed estimates for the road stretch.

Given that the main research gap on this topic is the absence of

a comparative study between different state-estimation techniques

for TSE using a second-order model in the presence of DP, we

highlight the main contributions of this letter:
• We present a nonlinear state-space formulation for the

second-order ARZ model with junctions. The state-space

description is appended to include the measurement model

which is also nonlinear.

• We derive sensitivity relations for the measured density and

speed data. These relations are important for developing

differentially private mechanisms that add a Gaussian noise

of certain variance to the data to ensure DP.

• The performance of various state estimation techniques is

investigated in terms of accuracy using the SUMO traffic

simulation software in the presence of privacy preserving

additive noise. As a departure from estimation based on KFs,

we also investigate MHE for TSE.

The letter is organized as follows. Section II presents the

state-space formulation for the ARZ model and the measurement
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model. Section III presents the definitions associated with DP,

the sensitivity relations for the data and the differentially private

mechanism. It also presents the MHE formulation for TSE.

Section IV presents a case study carried out using a realistic traffic

simulation software. The letter is concluded by summarizing the

results and discussion along with the scope of future work.

II. NONLINEAR ARZ TRAFFIC DYNAMICS MODEL

This section presents a state-space formulation for the nonlinear

second-order ARZ model [11], [12] describing the evolution of

traffic density on highways with ramps. Second-order traffic mod-

els, unlike their first-order counterparts, consider traffic density and

speed to be independent variables which offers a natural way to in-

corporate both density and speed data provided by the fixed sensors

and CVs. While other second-order models exist and have been

used for TSE in the past [13], these models unlike the ARZ model

face certain limitations [14] such as physical inconsistency under

heterogeneous traffic conditions which makes them unreliable.

To represent the model as a series of difference, state-space

equations, we discretize the ARZ model with respect to both

space and time, also referred to as the Godunov scheme [15].

This allows us to divide the highway and the attached ramps

into segments of equal length l and time into steps of equal

duration T . The segments forming the highway are referred to as

mainline segments and those forming the ramps are called ramp

segments. Throughout the letter, Ω,Ω̂, and Ω̌ denote the set of

mainline, on-ramp and off-ramp segments respectively such that

N := |Ω|,NI := |Ω̂| andNO := |Ω̌|.
The model consists of two states for each segment namely the

traffic density (vehicles per unit distance) denoted by Äi[k], where

k is the index of the time step and i is the index of the segment, and

the relative flow (vehicles per unit time) denoted by Èi[k]. The dis-

crete time traffic density and relative flow conservation equations

for any Segment i∈Ω can be written for any time step k as

Äi[k+1]=Äi[k]+
T

l
(qi−1[k]−qi[k]), (1a)

Èi[k+1]=
Ä−1

Ä
Èi[k]+

T

l
(ϕi−1[k]−ϕi[k])+

vf
Ä
Äi[k]. (1b)

Here, qi[k] and ϕi[k] denote the quantities traffic flow and relative

flux leaving Segment i∈Ω at time step k, and vf denoting the

free flow speed of a segment, and Ä are parameters of the ARZ

model. Similar equations can be written for ramp segments as

well. Mathematical expressions for qi[k] and ϕi[k] can be written

using the expressions for certain other quantities namely the

demand (D[k]), supply and driver characteristic (w[k]) which are

not presented in this article for brevity. These quantities are given

as nonlinear functions of the states and inputs defined similar to

[16]. The state vector for this system can be defined as

x[k] :=[Äi[k] Èi[k] ... Ä̂j[k] È̂j[k] ... Ä̌l[k] È̌l[k] ...]
¦

where x[k] ∈R
2(N+NI+NO) and i ∈Ω, j ∈ Ω̂ and k ∈ Ω̌. The

variables with ·̂ are associated with the on-ramps and those with

·̌ are associated with off-ramps. The input vector is defined as,

u[k] :=[Din[k] win[k] Äout[k] ... D̂in,j[k] ŵin,j[k]... Ä̌out,l[k] ...]
¦

where u[k]∈R
3+2NI+NO , j∈Ω̂ and l∈Ω̌.

The evolution of traffic density and relative flow described in

(1) can be written in a compact state-space form as follows

x[k+1]=Ax[k]+Gf(x,u), (2)

where A ∈R
nx×nx for nx := 2(N +NI +NO) represents the

linear portion of the dynamics of the system,f :Rnx×R
nu →R

nx

where nu=3+2NI+NO is a vector valued function representing

nonlinearities in the state-space equation, and G ∈ R
nx×nx

is a matrix representing the distribution of nonlinearities. The

nonlinearities in f are in the form of minimum of weighted

nonlinear functions of the states and inputs. The structure of the

above mentioned functions are similar to those presented in [16].

The modeling approach can be applied to roads with any number

of lanes given the maximum density is adjusted based on the

number of lanes. Next, we discuss the measurement model which

is also nonlinear in nature.

We consider two types of sensors, fixed sensors like the

inductive loop detectors and CVs. This study assumes that it

is possible to retrieve aggregate density and speed data for road

segments from both these sensors. Such data can be obtained from

fixed sensors directly using techniques such as in [17]. With CVs,

the average speed of a segment is assumed to be the average of

the speed of all the queried CVs in a segment similar to [18]. To

obtain density data from CVs, we assume additional functionality

like spacing measurement equipment available in advanced driver

assistance systems [19] or availability of vehicular ad-hoc networks

(VANETs) which allow vehicles to communicate with each other

in a neighbourhood around the queried CV [20]. A sufficient

penetration of CVs is necessary on the segments which are queried

for data. The spacing data or neighbourhood counts can then be

converted to density measurements before adding the privacy

preserving noise to them and sending them to a network operator

to perform estimation.

Among these measurements, density Äi[k] for any mainline

segment i∈Ω, and similarly for the ramps, is directly a state and

is used as it is, while the speed vi[k] can be written in terms of

the states as follows:

vi[k]=
Èi[k]

Äi[k]
−p(Äi[k]),

where p(·) is called the pressure function and is defined as part of

the ARZ model framework. We define a nonlinear measurement

function h(x[k]) such that

h2i−1(x[k])=x2i−1[k], and h2i(x[k])=
x2i[k]

x2i−1[k]
−p(x2i−1[k]).

Now, we can define the measurement vector y[k] as

y[k]=C[k]h(x[k])+ν[k], (3)

where C[k] is the observation matrix at time k describing

the availability of measurements from sensors. Note, that

the observation matrix here is variable in time because of

the measurements from CVs which are taken from different

segments at different times. At any time k, np[k] is the number

of measurements. Here, ν[k]∈R
nν[k],n¿[k]=np[k] lumps all the

measurement errors including the sensor noise into a single vector.

In the following section we discuss some definitions related to

differential privacy with respect to the traffic data, the dynamics

(2), and the measurement model (3).
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III. DIFFERENTIAL PRIVACY OF TRAFFIC DATA AND MHE

Making the data differentially private is considered as an

adequate measure against privacy attacks such as unwanted

tracking of vehicles and identifying individuals based on location

data. While certain cryptographic methods maintain privacy by

preventing attackers from reading the data, under the possibility

that the attacker finds a way to read it, differential privacy adds

another layer of defense which statistically guarantees that

individual’s records cannot be extracted from the data set. It

also allows sharing of estimates obtained from this data with

third-parties keeping the same guarantee. DP is achieved by

processing the data through differentially private mechanisms

which are functions that take entire data sets as input and produce

a differentially private output. In the following sections we discuss

some definitions that are needed to formally define DP.

A. Adjacency and DP

DP is defined in terms of adjacent data sets. Mathematically,

adjacency is defined as a binary symmetric relation denoted by

Adj on a space of data sets, sayD, such that for d,d′∈DAdj(d,d′)
holds if and only if d and d′ differ by the data of a single individual.

In this work, we consider two spaces of data sets, the traffic density

data sets and the traffic speed data sets which are composed of

the average vehicle density and average vehicle speed values from

several road segments and several time steps. Two data sets from

either of these spaces are said to be adjacent if they differ by the

trajectory of a single vehicle. With this definition of adjacency,

a differentially private mechanism can be defined similar to [7] as,

LetD be a space of data sets, and let (R,M) be a measurable

space where M is a Ã-algebra on R. Let ϵ,¶g0. A mechanism

M :D→R is (ϵ,¶)−differentially private if for all d,d′∈D such

that Adj(d,d′), we have

P(M(d)∈S)feϵP(M(d′)∈S)+¶,∀S∈M (4)

This means that the distribution of the outputs produced by the

mechanismM on any two adjacent data sets is very close which

makes it difficult to determine which data set was used as input by

looking at the output of the mechanism. Thus, attackers are unable

to extract individual specific information from the mechanism’s

output. Releasing this output instead of the original data protects

individual’s privacy against attacks.M is therefore said to provide

(ϵ,¶)-DP to the data. Smaller values of both ϵ and ¶ provide higher

privacy. In this work, we assume that such a privacy preserving

mechanism is applied to the density and speed data collected by

the fixed sensors and CVs at the source and the output is sent to

the network operator.

An important property [6] which allows the network operator to

use this data for state estimation and control while maintaining the

DP guarantee is called resilience-to-post-processing. According

to this property, if another mechanism is applied to the output of a

differentially private mechanism, the obtained result will have the

same DP guarantees as the initial output. In context of this work,

the mechanism applied after receiving the differentially private

outputs from the sensors is the estimation process. Thus, the final

state estimates are also differentially private.

To write the mechanisms capable of producing differentially

private outputs, we need to first define sensitivity relations for the

two types of data sets.

B. Sensitivity relations

The sensitivity of a function is defined as the maximum differ-

ence in the value of the function produced by two adjacent data sets.

In this work we are concerned about the sensitivity of data coming

from the traffic sensors. Since both the type of sensors considered

in this study provide the same two type of data, that is the segment

density and speed, we do not have a separate sensitivity relation

for CV data than for fixed sensor data. Specifically, we care about

the Euclidean norm between adjacent data sets, that is, ∥ρ−ρ̃∥2
and ∥v− ṽ∥2 where ρ,ρ̃ and v,ṽ are any two adjacent pairs of

density and speed data respectively. We can write

∥ρ−ρ̃∥22=
∞
∑

k=0

np[k]
∑

i=1

|Äi[k]−Ä̃i[k]|2

where Äi[k] represents the density measured at the ith density

sensor at time step k. Largest sensitivity value occurs when the

differentiating vehicle passes all the sensors at different times in the

two data sets. Since the density of a segment can be defined as the

number of vehicles per unit length of the segment, the density mea-

surements in the two data sets can be assumed to differ by
1

l
when

the differentiating vehicle is present on a measured segment in one

data set and absent in the other as the difference is caused by a sin-

gle vehicle being present or absent on that segment. The total time

during which the density for a segment differs between the two

data sets at any such instance can be approximated based on the

average time spent by a vehicle on that segment. Let this average

time be denoted by Tavg, which can be approximated using past

CV data for that stretch or by using a simulation-based approach as

in [7]. Here Tavg for all segments is assumed to be the same but in

practice a different Tavg can be computed for different segments to

get a better approximation of the sensitivity. At all other times the

measured densities would be the same in both the data sets. Then,

∥ρ−ρ̃∥22=
∞
∑

k=0

np[k]
∑

i=1

|Äi[k]−Ä̃i[k]|2f
Np
∑

i=1

2Tavg

(

1

l

)2

, (5)

=⇒∥ρ−ρ̃∥2f
1

l

√

2NpTavg=:∆Ä, (6)

where Np is the maximum number of sensors on the highway

stretch at any time and ∆Ä is the sensitivity of the density data sets.

Similarly, for speed measurements we can write

∥v−ṽ∥22=
∞
∑

k=0

np[k]
∑

i=1

|vi[k]−ṽi[k]|. (7)

The effect of the absence or presence of a single vehicle in

the segment on the average speed of that segment can be

approximately captured indirectly with the help of the equilibrium

speed-density relationship of the ARZ model [11], [12] given as

Ve(Ä)=vf

(

1−
(

Ä

Äm

)µ)

, (8)

which relates the equilibrium speed Ve of a road segment with the

density of that segment. Here, Äm denoting the maximum density

of a segment, and µ are parameters of the ARZ model. We can

replace the speeds in the right hand side of (7) with the expression

in (8) with µ=1 and simplify it to get
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|vi[k]−ṽi[k]|=
∣

∣

∣

∣

vf
Äm

(

Äi[k]−Ä̃i[k]
)

∣

∣

∣

∣

. (9)

Then using the same idea as for the density, we can write

∥v−ṽ∥2f
vf
Äml

√

2NpTavg=:∆v, (10)

where ∆v is the sensitivity of the speed data sets. Here, µ=1 is

chosen arbitrarily to simplify the expression (9) to a known con-

stant value. Though µ varies between 1 and 2 [16] (10) serves as a

good upper bound in most cases since Ä lies between quarter to one-

third of Äm under normal flow conditions. The sensitivity ∆v can

be modified under specific scenarios using empirical tests or using

a traffic simulation approach as in [7]. In general, ensuring a real-

istic value of the sensitivity avoids a large privacy-utility trade off.

C. Differentially private mechanisms

Using the sensitivity relations from the previous section, we can

implement a Gaussian Mechanism [6] which ensures (ϵ,¶)−DP.

Let K = Q−1(¶) for Q(x) =
1√
2Ã

∫∞

x
e−u2/2du, and

»¶,ϵ =(K+
√
K2+2ϵ)/(2ϵ), then a mechanism publishing the

sequence Ǟ=Ä+wÄ wherewÄ are zero mean iid Gaussian random

variables with variance »2¶,ϵ∆Ä is (ϵ,¶)-differentially private. Here

Ä is the measured density data and Ǟ is the differentially private

output produced by the mechanism which will be sent to the

network operator.

Similarly, a mechanism publishing the sequence v̄ = v+wv

where wv are zero mean iid Gaussian random variables with

variance »2¶,ϵ∆v is also (ϵ,¶)-differentially private. Here v is the

measured speed data and v̄ is the differentially private output of the

mechanism. For the mechanisms defined here, the output itself is a

data set which will henceforth be called differentially private data.

In the next section, we discuss the MHE approach applied for TSE

using the differentially private data produced by the mechanisms.

D. Moving horizon estimator under DP

The objective of this article is to investigate the TSE

performance using ARZ model when considering differentially

private data coming from the fixed sensors and CVs. To do so,

here we implement a linear MHE approach using linearized

versions of the process and measurement models obtained using

a first-order Taylor series approximation. Throughout this section,

N denotes the size of the horizon for optimization.

1) Decision variables and objective function: The decision

variables for the optimization problem solved at time step k
are the state vectors from time step k − N to k denoted by

xk[t] ∀ t∈ [k−N,k]. From the obtained solution we set the final

value of the vector xk[k]=xk[k]. The objective function at time

step k∈ [N+1,∞] is denoted by J[k] :=J and is given as

J= µ||xk[k−N ]−x[k−N ]||2+w1

k
∑

i=k−N

||y[i]−(C̃ixk[i]+c2i)||2

+w2

k−1
∑

i=k−N

||xk[i+1]−(Ãixk[i]+Biu[i]+c1i)||2. (11)

Here, x̄[k − N ] is a prediction of x[k − N ] based on a

previously obtained state estimate and is expressed as

x̄[k−N ]=Ax̂[k−N−1]+Gf(x̂[k−N−1],u[k−N−1]). (12)

The notation y[i] defines the data vector at time i∈ [k−N,k],
Ãi,Bi and c1i are parameters of the linearized state-space

equation ∀ i ∈ [k−N,k− 1], and C̃i and c2i are parameters

of the linearized measurement model ∀ i ∈ [k − N,k]. Here,

Ãk, Bk and c1k are computed at (xo, u[k]) where xo =
∑k−1

i=k−1−Nxk−1[i]/(N+1), C̃k and c2k are computed at xo.

2) Constraints and optimization problem: The problem only

consists of the upper and lower bounds on state values as follows

xminfxk[i]fxmax,∀ i∈ [k−N,k] (13)

where xmin = 0⃗, and xmax =
[Äm Ämvf Äm Ämvf ··· Äm Ämvf ]

T . The above objective

and constraints are used to write the following optimization

problem
minimize

xk[k−N],...,xk[k]
J[k], subject to (13). (14)

The objective function J[k] can also be expressed as a sum

of quadratic and linear terms of the state vectors. Defining zk

by concatenating the decision variables from (14) such that

zk=[xk[k−N ]T xk[k−N+1]T ··· xk[k]]
T , we can write the

optimization problem (14) in standard form as follows

minimize
zk

zT
kHzk+qTzk, subject to zminfzkfzmax (15)

where H ∈ R
(N+1)nx×(N+1)nx and q ∈ R

(N+1)nx consist

of the coefficients of the quadratic and linear terms in

the objective respectively. zmin = [(xTmin)×(N+1)]
T and

zmax=[(xTmax)×(N+1)]
T denote bounds on zk. It can be shown

that H is a positive definite matrix which makes (15) a convex

quadratic program (QP) that can be solved efficiently using readily

available QP solvers like CPLEX or MATLAB’s quadprog

function. Hence, problem (15) is computationally tractable.

IV. CASE STUDY USING SUMO

In this section, we apply the implemented MHE along with

EKF, UKF and EnKF, on a traffic simulation example generated

in SUMO which is an open source the traffic micro-simulation

software to compare their performance while keeping the data

differentially private. All the simulations are carried out using

MATLAB R2019b running on a 64-bit Windows 10 with

3.6GHz IntelR CoreTM i7-7700 CPU and 65GB of RAM. We

use the quadprog function of MATLAB to solve the MHE

optimization problem.

The main idea of this case study is to test the performance

of the state estimation techniques under different conditions of

privacy. In particular, we are interested in knowing the answers

to the following questions:

• Q1: How does the number of CV-segments impact the state

estimation performance of each technique while ensuring

DP of data?

• Q2: What is the impact of the level of privacy on the state

estimation performance of each technique?

A. Highway and sensor setup

In this study, we model a highway stretch of length 1.5 km with

two on-ramps at 0.3 and 0.9 km from the start and two off-ramps

at 0.6 and 1.2 km from the start. Additional 100 m segments

are modeled in SUMO before all the entry points and following

all the exit points of the highway whose data serves as input
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for the system. We use the Weidemann 99 car-following model

with default parameters. The ARZ model parameters are calibrated

using simulated data from SUMO. The selected values are v=102
km/hr, Äm=333 veh/km, Ä=60, and µ=2. Under the Godunov

scheme, the highway and ramps are divided into segments of

length 100 m each with a time-step value of 1 s, which satisfies the

CFL condition. The segment mean speeds are provided directly

by SUMO while the segment densities can be computed from the

vehicle count data provided by SUMO for each segment. There are

a total of 38 states in this highway system consisting of 15 mainline

segments and 4 ramps. Since the local state-space dynamics for

segment-type combinations as in (1) are the same irrespective of

the overall structure, the state estimation performance here should

be representative of the performance in general.

We force a congestion on the highway to create an interesting

scenario for comparison of TSE methods. The mainline demand is

kept as 2050 veh/hr throughout except between 200-400 sec when

it is increased to 6050 veh/hr owing to say a rush hour. The on-

ramp demands are kept as 320 veh/hr and 300 veh/hr respectively.

A variable speed sign is implemented in SUMO to emulate a

situation where an accident has occurred on Segment 11 of the

highway mainline. The maximum allowed speed for this segment

is artificially reduced to 10.08 km/hr between 200-400 sec and

50.95 km/hr between 400-500 sec.

Throughout the case study, the fixed sensors are assumed

to be placed on the output segments of the network which is

necessary to make the system observable. We assumes that there

is a sufficient number of CVs on the highway to obtain the density

and speed values of decent quality from any road segment. We

also assume that we can only query a limited number of CVs at

a time due to bandwidth constraints. At every time step we select

a subset of segments to obtain data from. In the case study, we

select a set of segments at the beginning and update it after every

four time steps. At every update, the current segments in the set

are replaced by segments right ahead of them. The last mainline

segment is replaced by the first mainline segment. Note that a

better method to select CVs for querying may be available but

is not explored here. No measurement noise is added to the data

apart from the privacy preserving noise.

B. Implementation of estimation techniques

a) Parameter tuning: In this work, for all the KF variants,

we use diagonal process and measurement noise co-variance

matrices of the form Q=qI and R=rI where q,r∈R+ and I

in each case is an identity matrix of appropriate dimensions. The

initial guess for the estimate noise co-variance matrix is taken as

P =10−3I. We manually tune q and r for different arrangements

of sensors and different privacy levels based on the minimization

of the root mean squared error (RMSE) of estimated states. The

weights in the MHE objective function are also similarly tuned.

Regarding other parameters, for UKF [9], we set the following

values: ³= 0.1,»=−4 and ´ = 2, for EnKF [21], we set the

number of ensemble points to 100, and for MHE, we set N to

10. These values are found to be sufficient for the respective

techniques except wherever specified.

b) External bounds in KF: The KFs can produce negative

values of the states which are not allowed in the process model

(2). It results in numerical issues and forces the estimation to stop.

Fig. 1. RMSE for (a) density [top] and (b) speed [bottom] with increasing
number of CV-segments while considering (1,0.05)-DP.

To avoid this estimates are projected to within physical bounds.

In case of UKF, the sigma points need to be individually bounded

with a lower bound greater than zero to avoid numerical issues

within UKF. This method of projecting vectors for EKF and UKF

has been shown to fit in the KF theory mathematically and is

among the popular methods mentioned in [22].

c) Choice of comparison metrics: Parameter tuning is done

using the RMSE of the estimated states. However, since the

relative flow does not hold a direct significance for professionals,

we chose to compare the techniques based on the RMSE of

density and speed which have more general value.

C. Results and discussion

1) Impact of number of CV-segments: Here, we test the impact

of increasing the number CV-segments on the performance of

different state estimation techniques. We vary the number of CV-

segments from 5 to 11 while keeping them as far apart as possible.

Exact arrangement is omitted for brevity. Privacy preserving noise

is added to the measurement values based on the mechanism in

Section III-C to make the data (1,0.05)-differentially private. Fig.

1 presents the plot of RMSE for the estimated density and speed

for each of the techniques. The computation time per time step of

simulation for EKF, UKF, EnKF, and MHE are 0.06, 0.026, 0.040,

and 0.045 seconds respectively. These include the time taken from

receiving the data to producing the estimate for one time step.

It is observed that the estimation performance for all the

techniques improves with increasing number of CV-segments

which is expected. EnKF sometimes has more variation in

consecutive RMSE values as compared to other techniques which

can be attributed to the associated randomness. Overall, EnKF

performs the worst while UKF performs the best, closely followed

by both MHE and EKF in case of density estimation and EKF

in case of speed estimation. It is interesting that MHE falls behind

EKF in case of speed estimation. This comparison in performance

is also observed in the following tests. This is mentioned here to

avoid repetition later. Fig. 2 presents a plot of the actual versus

estimated density values obtained using UKF, EKF and MHE.

2) Impact of DP parameters: Privacy in this study depends on

two parameters ϵ and ¶ which have their own significance in the

DP definition. In this section, we test the impact of varying these

parameters on the state estimation performances. We keep the

same configuration of fixed sensors as in the previous section while
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Fig. 2. Traffic densities x[k] obtained from SUMO along with estimates from
EKF denoted by x̂EKF[k], UKF denoted by x̂UKF[k], and MHE denoted by
x̂MHE[k] while considering (1,0.05)−DP and 7 CV-segments evenly spaced
on the highway stretch.

Fig. 3. RMSE for densities with changing ϵ while keeping ¶=0.05.

Fig. 4. RMSE for densities with changing ¶ while keeping ϵ=1.

the number of CV-segments is fixed to 5. Fig. 3 and Fig. 4 present

the variation in RMSE values for density for each technique with

changing epsilon keeping a constant ¶=0.05, and changing delta

keeping ϵ=1 respectively. The plots for speed in both cases are

very similar to density and are omitted for brevity. The co-variance

matrices are tuned as necessary to obtain the best performance.

All the techniques show a similar variation in performance with

respect to privacy changes. It is observed that the impact of ϵ is

more profound than that of ¶ when both are varied between respec-

tive reasonable bounds. Specifically, the variation in performance

is small over the full range of selected ¶ values. On the other hand,

the variation is small for ϵ values above 1, but the performance

quickly worsens as we approach 0. While more research might be

needed under various scenarios, from the obtained results it can be

stated that it is possible to increase the level of privacy to a certain

extent without worrying about much additional degradation of

estimation quality. Beyond that point, a trade-off would be more

apparent and should be considered more seriously.

3) Discussions and preliminary answers: We provide some

preliminary suggestions regarding the questions posed earlier in

this section:
• A1: State estimation error decreases with an increase in the

number of CV-segments. UKF outperforms the other meth-

ods in both density and speed estimation while EnKF’s per-

formance is the worst. EKF and MHE perform comparably.

• A2: All the techniques show similar variation in performance

with change in privacy levels. In general, ϵ has more

influence on the estimation quality than ¶.

A drawback of the present study is that it assumes that both the

CVs and fixed sensors provide the same measurement values for a

segment if present simultaneously. This may not always be true and

a reliable approach for data integration may be needed. Studying

the data integration problem considering different aggregate mea-

surements from sensors or using trajectory data from CVs for state

estimation and its impact on privacy are possible future directions

of work. Also, while not studied in this work, the advantage of

MHE in implementing arbitrary relations between states which

are otherwise un-modeled in the dynamics can also be explored.
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