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How many autonomous vehicles are required to
stabilize traffic flow?
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Abstract—The collective behavior of human-driven vehicles
(HVs) produces the well-known stop-and-go waves potentially
leading to higher fuel consumption and emissions. This paper
investigates the stabilization of traffic flow via a minimum
number of autonomous vehicles (AVs) subject to constraints
on the control parameters aiming to reduce the number of
vehicles on the road while achieving lower fuel consumption and
emissions. The unconstrained scenario has been well-studied in
recent studies. The main motivation to investigate the constrained
scenario is that, in realistic engineering applications, lower
and upper bounds exist on the control parameters. For the
constrained scenario, we optimally find the minimum number
of required AVs (via computing the optimal lower bound on the
AV penetration rate) to stabilize traffic flow for a given number
of HVs. As an immediate consequence, we conclude that for a
given number of AVs, the number of HVs in the stabilized traffic
flow may not be arbitrarily large in the constrained scenario
unlike the unconstrained scenario studied in the literature. We
systematically propose a procedure to compute the optimal lower
bound on the AV penetration rate using nonlinear optimization
techniques. Finally, we validate the theoretical results via numeri-
cal simulations. Numerical simulations suggest that enlarging the
constraint intervals makes a smaller optimal lower bound on the
AV penetration rate attainable. However, it leads to a slower
transient response due to a dominant pole closer to the origin.

Index Terms—Autonomous vehicles, Constrained control, Sta-
bility of linear systems, Traffic control, Transportation networks.

I. INTRODUCTION AND PAPER CONTRIBUTIONS

HE collective behavior of human-driven vehicles (HVs)

produces the well-known stop-and-go waves potentially
leading to undesirable higher vehicle fuel consumption and
emissions. Thus, the stabilization of traffic flow via au-
tonomous vehicles (AVs) has attained great attention in traffic
flow control [1]-[11] as it can significantly smooth the stop-
and-go waves and improve the efficiency of vehicle fuel
consumption and emissions. In [12], developing a general
framework for car-following models, various linear stability
concepts (e.g., string stability [13]) along with the correspond-
ing linear stability analyses are detailed. For a linearized car-
following model around a uniform flow equilibrium state,
string stability is equivalent to the system with no increasing
(i.e., unstable) eigenmodes, that is, the linearized dynamics is
said to be string stable if infinitesimal perturbations do not
amplify and the system remains close to the equilibrium [1],
[12].
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In [1], [3], the authors have shown that via a single AV,
in the absence of noise (ideal circumstance), traffic flow can
be stabilized. In an experimental study conducted by [2], it is
experimentally verified that a single AV can control the flow
of 20 HVs around it, with significant reductions in velocity
standard deviation, excessive braking, and fuel consumption.
Considering the optimal-velocity (OV) model [14], the authors
in [4], [5], have proved that the mixed vehicular platoon
consisting of a single AV and multiple HVs is not completely
controllable, but is stabilizable and synthesized Ho optimal
state feedback controller to actively mitigate undesirable traffic
perturbations. Built upon general nonlinear car-following dy-
namics, the authors in [6] have formulated an optimal control
problem (Bolza problem) aiming to minimize vehicle speed
perturbation. Following [6], taking advantage of a min-max
approach, they have derived an optimal feedback control law
for AVs in the presence of cyber-attacks in [7]. In [8], based
on the general functional form of car-following dynamics,
the authors have proposed effective additive AV controllers
with provable speed profile tracking convergence along with
safety and string stability enabling sufficient conditions. In
[15], a thorough comparative analysis has been conducted
among ten AV algorithms in the literature in terms of diverse
performance metrics like time to stabilize, maximum headway,
vehicle miles traveled, and fuel economy. A comprehensive
literature review of AV control can be found in [16]. In a
recent thorough experimental study [9], a live traffic control
experiment involving 100 vehicles near Nashville, Tennessee
was conducted to implement various controllers to smooth
stop-and-go traffic waves. In that study, AVs were simulated in
multiple scenarios to evaluate their effect on traffic congestion.
In [17], leveraging deep reinforcement learning (RL) methods,
the authors have presented a modular learning framework to
improve the quality of traffic congestion alleviation via RL-
based controllers compared to the model-based alternatives
and to potentially equip the real-time advisory (RTA) systems
accordingly [18].

On one hand, in the absence of noise (ideal circumstance),
traffic flow can be stabilized via a single AV by employing a
high-gain controller with a sufficiently high gain [1] while in a
more realistic scenario, controller gains are constrained by the
lower and upper bounds affecting the speed of the transient re-
sponse. Although the authors in [3] have considered a bounded
search space of the physically realizable AV controller gains
solely for the numerical simulations, the corresponding lower
and upper bounds of the bounded search space and the rational
driving constraints (RDC) [12] are not systematically incorpo-
rated into the theoretical setup of the optimization problem.
On the other hand, by systematically incorporating the lower



and upper bounds on the controller gains, the authors in [11]
have proposed a constrained version of an unconstrained CAV
platoon H, optimal controller synthesis [10] with an ultimate
application to the mixed vehicular platoons consisting of both
HVs and AVs.

Research Question. Motivated by the high-gain controller
limitation in [1] and taking into account a more realistic gain-
constrained scenario similar to the one considered by [11], one
can pose the following two-part question for a mixed vehicular
platoon consisting of both HVs and AVs:

QI1: (i) Can we systematically stabilize traffic flow via

AVs subject to the lower and upper bounds on the control
parameters? (ii) If the answer is yes, what is the minimum
number of required AVs to that end?
Paper Contributions. Throughout this paper, considering the
second-order car-following model utilized by [1], we aim to
answer QI thoroughly. The main contributions of the paper
can be listed as follows:

o Considering a circular road with a single lane, no ramps,
and uniform conditions, we consider a constrained ver-
sion (incorporating the lower and upper bounds on the
control parameters) of an unconstrained problem on sta-
bilizing traffic flow via autonomous vehicles [1] aiming
to answer Q1.

o The theoretical contributions are threefold: (i) derivation
of necessary and sufficient conditions for the string stabil-
ity criterion, (ii) parameterization of the rational driving
constraints (RDC) [12] and the box constraints (encoding
the lower and upper bounds on the control parameters),
and (iii) derivation of the optimal lower bound on the AV
penetration rate.

o« We present a procedure to compute the optimal lower
bound on the AV penetration rate using nonlinear op-
timization. As an immediate consequence, for a given
number of AVs, the number of HVs in the stabilized
traffic flow may not be arbitrarily large in the constrained
scenario unlike the unconstrained scenario studied in [1].
Finally, we validate the theoretical results via numerical
simulations. Numerical simulations suggest that enlarging
the constraint intervals makes a smaller optimal lower
bound on the AV penetration rate attainable. However, it
leads to a slower transient response due to a dominant
pole closer to the origin.

e We also introduce an H..-based measure to quantify the
string stability quality and employ a greedy algorithm to
obtain a sub-optimal distribution of the AVs to reduce the
string stability conservatism.

Paper Organization. The remainder of the paper is structured
as follows: Section II details the vehicle dynamics (both human
and autonomous vehicles) and states the problem to be studied.
Section III elaborates on (i) deriving necessary and sufficient
conditions for the string stability criterion, (ii) constructing
parameterization of the RDC and box constraints, and (iii)
deriving the optimal lower bound on the AV penetration rate.
Section IV presents a procedure to compute the optimal lower
bound on the AV penetration rate followed by the numerical
simulations to assess the validity of the theoretical results.
Finally, Section V concludes the paper with a few concluding
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remarks including some future directions. Paper notation is
presented in Appendix A.

II. VEHICLES DYNAMICS AND PROBLEM STATEMENT

We consider a circular road with a single lane, no ramps,
and uniform road conditions. The main reasons for this choice
are as follows [1]: (i) it does not require the consideration of
boundary conditions, (ii) it corresponds to an infinite straight
road setup (i.e., n — oo and scaling L  n) with %-periodic
traffic dynamics (n: Number of vehicles, L: Road length,
and v := 7*: AV penetration rate, m: Number of AVs),
(iii) it has a record of experimental instabilities [19] enabling
the calibration of model parameters, and (iv) it facilitates
the theoretical derivations due to the periodicity. Tab. I in
Appendix B summarizes traffic flow dynamics quantities. Let
us assume the following ordering of the vehicles: vehicle 741
precedes (leads) vehicle 7 for j € N,, (for j = n, vehicle
n + 1 is defined as vehicle 1). In this paper, similar to [1],
we limit our attention to the case of near-equilibrium flow
(i.e., local stabilization). Then, for such near-equilibrium flow,
collision avoidance is automatically resolved by ensuring the
local string stability subject to small perturbations [1] and
systematically incorporating the rational driving constraints
(RDC) [12]. Vehicles can be categorized into two types: (i)
human-driven vehicles (HVs), and (ii) autonomous vehicles
(AVs). Then, we accordingly have N,, = Zyy U Zay with
|IH\/| =n —m and |IA\/| =m.

A. HVs dynamics

For each HV, we consider the following second-order car-
following dynamics:

i(t) = f(hy(t), (), 0;(1)), § € Ty ey

Among many examples, one important example of a car-
following dynamics describable by (1), is the optimal-velocity-
follow-the-leader (OV-FTL) model [1], [20].

Considering dynamics (1) under small perturbations from

the equilibrium flow, we obtain the following linearized dy-
namics:

G5 (t) = ar(yj+1(t) — y; (1)) — a2uy(t) + asujva(t),  (2a)

Oé1:ﬂ 704228—.'}C —ﬁ 70(3:8—.'}( , (Zb)
Oh; eq Ohj leq 9 eq Ohj leq

Jj € Inv. (2¢)

For linearized dynamics (2), Vj € Zyv, the following standard
assumptions hold [1]: the acceleration of vehicle j is reduced
when (i) the spacing h;(t) decreases, (ii) the relative velocity
h;(t) decreases, or (iii) the vehicle’s velocity v;(t) increases.
Such risk aversion criteria imply the following rational driving
constraints (RDC) [12]: a; > 0, a2 > a3, and as > 0. To
determine the poles associated with linearized dynamics (2),
one can take the Laplace transformation from (2) leading to
the following transfer function:

D £1C) N

T;(s) : o (s) F(s;a)

as3s + a1

_— 3
s2 4+ ans + o (3a)

» J €Inv,
where a := [a1 043}T denotes the system parameters
vector. Remarkably, the Hurwitz stability of transfer function
F(s; ) is equivalent to the simultaneous satisfaction of «; >
0 and as > 0.
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B. AVs dynamics

Similarly, for each AV, we consider the following second-
order car-following dynamics:

i(t) = g(hy (1) (1), v;(1)), J € Tav. @

Considering dynamics (4) under small perturbations from the
equilibrium flow, we obtain the following linearized dynamics:

§5 () = Br(yj+1(t) — y;(t)) — Bouy(t) + Bauja(t),  (5)
dg dg dg dg

= — 5 = — _— 5 3 = — 3 Sb

B1 o, .. B2 Dy oo~ B0 . B3 o .. (5b)

J € Iav. (5¢)

Likewise, for linearized dynamics (5), Vj € Zav, the following
standard assumptions hold [1]: the acceleration of vehicle j is
reduced when (i) the spacing h;(t) decreases, (ii) the relative
velocity h;(t) decreases, or (iii) the vehicle’s velocity v;(t)
increases. Such risk aversion criteria imply the following RDC
[12]:

ﬂ1>05 52_ﬂ3>07 B3>O (6)

Similarly, to determine the poles associated with linearized
dynamics (5), one can take the Laplace transformation from
(5) leading to the following transfer function:

Y;(s) B3s + B :
Ti(s) = =212 — G(s;8) = =220 G e Tay, (7
J(S) 1/}‘+1(8) (8 6) 32"’/323"'61 J € Lav ( a)
where § := [ﬁl B2 Bg}T denotes the control parameters

vector. Remarkably, the Hurwitz stability of transfer function
G(s; B) is equivalent to the simultaneous satisfaction of 81 >
0 and B2 > 0.

C. Problem statement

One can obtain the linearized dynamics associated with the
mixed vehicular platoon consisting of both HVs and AVs by
simply augmenting the HVs linearized dynamics (2) and AVs
linearized dynamics (5) as follows:

(2a), (2b),
(5a), (5b),

J € Inv

. . (®
VESINY

Linearized dynamics : {
A mixed vehicular platoon with linearized dynamics (8) is
said to be string stable if infinitesimal perturbations do not
amplify and the system remains close to the equilibrium [1],
[12]. The formal mathematical definition of string stability can
be expressed as follows:

Definition 1 (String Stability): A mixed vehicular platoon
with linearized dynamics (8) is said to be string stable if all
of its eigenmodes lie on the left half plane C~ := {s € C :
R(s) <0}.

Let us assume the following lower and upper bounds on the
control parameters vector 3:

BL<PL< B By<Po<Py, Bi<Py< Py (%a)
Note that 0 < A holds for all i € {1,2,3}. Similarly, we
use the following notations: 3 := [ﬂi s ﬂé]T and B% .=

[Bi‘ By ﬁg} " in the sequel where needed. Throughout this
paper, we mathematically investigate the following problem:

Problem 1: Given a mixed vehicular platoon with linearized
dynamics (8), the RDC (6), and the lower and upper bounds
(9) on the control parameters vector (3, find the optimal 5*
for which traffic flow can be stabilized with an optimally
minimum AV penetration rate.

III. STRING STABILITY WITH AVS

This section is comprised of the following three main parts:
(i) derivation of necessary and sufficient conditions for the
string stability criterion, (ii) parameterization of the RDC and
the box constraints (encoding the lower and upper bounds
on the control parameters), and (iii) derivation of the optimal
lower bound on the AV penetration rate.

A. Necessary and sufficient conditions for the string stability
criterion

Considering (3) and (7), and according to the periodicity of
the circular road, we have

I1 Ti(s) = F(s; )" " G(s; p)™ = 1.

JEN,

(10)

Note that the eigenmodes of linearized dynamics (8) are the
2n roots of (10). The 2n roots of (10) lie in a curve C :=
{s € C:|F(s;)|'77|G(s; B)[" = 1} where v := 2 denotes
the AV penetration rate. A sufficient string stability condition
can be formulated as C C C~. Let us define the following
fractional-order transfer function:

H,(s) := F(s;0)" " "G(s; B)7. (11)

To ensure the string stability of linearized dynamics (8),
it suffices to consider C C C~ and equivalently impose
|H,(w)|] < 1 for all w € R (ie., ||Hy(s)]|oc < 1) which
is equivalent to the following string stability criterion [1]:

(1 =7)Da(w) +vDp(w) <0, Vw € R, (12a)
) ) 1 adw? + o

Do(w) = In(|F (w3 0)]) = 7 In Tt )’ (12b)
._ = L Biw?® + B

Dg(w) :==In(|G(w; B)|) = 5 In (ngz @ -5 (12¢)

As stated by [1], we have

|Fw;a)] <1, Vw €R <= A, >0, (13a)

A, = =201 + a3 — a3, (13b)

|G(uw; B)| <1, Vw e R <= Ag >0, (13c¢)

Ag = =201 + B3 — f3. (13d)

Note that equivalences |F(w;a)| < 1 <= Dy(w) <0
and |G(w; B)] <1 <= Dg(w) < 0 simply hold as we
respectively have D, (w) := In(|F(w;a)|) and Dg(w) =
In(|G(w; B))).

Without loss of generality, we can only consider the case
of w > 0 as w? = (—w)? holds. One can verify that in the
case of A, < 0, we have

Dy(w) >0, we(0,vV-Ay)
Sign of Dy (w) : { Do(w) =0, we{0,v/=A,} . (14)
Dy(w) <0, we (vV—Ay, )



Now, we are ready to state the main result of this paper.
Proposition 1: Consider the worst-case scenario for which

the HVs dynamics violate |F(ww; )] < 1 for some w € R.

The string stability criterion (12) holds for 3 if and only if

Ag >0, (152)

1 * pp—
v 2 ma J (ﬁ) =

hold for 8 where I, and J(w;p3) denote (0,v/—A,) and

DBE ;’ respectively. Moreover, J*(3) in (15b) can be com-

puted as follows:

inf{J(w;B) :w e ly}, (15b)

2
7(8) = min { 22 T B)lees | (160
o CdJ(wip) | AT (w;B)
J = {w el,: T 0, 12 > O}. (16b)
Proof: See Appendix C. ]

It is noteworthy that merging (15b) and v < 1 implies that the
necessary condition J*(3) > 0 must hold for any 3 satisfying
the stability condition (15a). We emphasize that J*(3) in (15b)
is only defined for fs satisfying the stability condition (15a).

B. Parameterization of the RDC and box constraints

Let us define the following notations: By := {8 € R3 :
(6) holds for B}, By := {8 € R® : (15a) holds for 3},
and B3 = {8 € R3 : (9) holds for 3}. Proposition 1
expresses the necessary and sufficient conditions on 3 and ~
to ensure the string stability criterion (12) holds. Specifically,
it states 3 € Bs must hold. However, we need to additionally
impose 3 € By N Bs according to the setup in Problem 1
as the RDC (6) and the lower and upper bounds (9) on the
control parameters [ﬁl B2 ﬁ3] must be satisfied. The set
of the control parameters 81 2 53; satisfying the RDC
(6) and the string stability condition (15a), i.e., B1 N Bay, can
be parameterized via the parameters [p q r} as

2

=pg+ L -,

5 a7

B3(p) = p, B2(p,q)

where p > 0, ¢ > 0, and » > 0 hold.
In the following proposition, we systematically incorporate

the box constraints (9) into the parameterization (17).
Proposition 2: The parameters [p q r] in (17) satisfying
box constraints (9) can be parameterized via the parameters

(V1 2 3] as

=p+gq, filp,g,r)

p=p1)=(1—1v1)p' +vip*, (18a)
q=a(¥r,¥2) = (1 — )y, +¥aqy,, (18b)
r=r(y1,P2,9s) = (1 — s)rl, v, + Vs, v, (18¢)
with

p' = max{e, B3}, (18d)
p* = min {85, 85 — e, \/83* — 281}, (18¢)
dhy = max {e, 85— p(v1) \/p(¥1)? + 26 —p(v1)}. (18D
qy, = B2 —p(¥1), (18g)

2
Ty = MAX {Qp(l/n)q(z/m o) + M - ﬂ?} (18h)
2

Ty e = P(Y1)a(r,b2) + Al ¥a)” B, (18i)

2
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where ¢; € [0,1] holds for all ¢ € {1,2,3} and ¢ > 0
is an infinitesimal value. Moreover, 55 > € and (3%

>
max {26, Bé +€,4/ 52 + Qﬁi} must hold as necessary con-

ditions for 8' and S%.

Proof: See Appendix D. [ ]
In (18), we can opt the form of ;s via an arbitrary sigmoid
function, e.g., the logistic function

$(1) =1/(1+e™°7),

where ( > 0 represents the logistic growth rate. Such a
choice is reasonable as we need a one-to-one mapping be-
tween (—oo,00) and (0,1) for parameterization. Some other
sigmoid function choices for the ¢(7) can be built upon the
hyperbolic tangent function tanh(x) = (e*—e™*)/(e*+e7%),
the arctangent function arctan(x), and the error function
erf(x) := (2/y/7) [i e dt to name a few. Combining
(17) and (18) along with sigmoid function (19), we state the
following corollary.

Corollary 1: The control parameters [$1 32 (3] satis-
fying the RDC (6), the string stability condition (15a), and the
box constraints (9), i.e., any member of the set B N Bz N Bs,
can be parameterized via the parameters [91 02 93] as

19)

B3(01) = p(o(61)), (20a)
B2(01,02) = p(6(01)) + alé(61), #(02)), (20b)
B1(01,02,03) = p(6(01))a(p(61), #(02))

4 OSSO (450,), 0(60).0(62)).  200)

where 0; € R holds for all i € {1, 2,3}, ¢() denote the logistic
function in (19), and p(), g(), and r() represent the same
functions expressed in (18).

We use the following notations: 6 := [6’1 02 93}T and

B(0) := [B1(61,02,03) Ba2(61,62) 53(91)]—r

where needed.

in the sequel

C. Optimal lower bound on the AV penetration rate

Built upon the parameterized stabilizing control parameters
vector 5(6) characterized by (20) in Corollary 1, we state the
following corollary.

Corollary 2: Consider the worst-case scenario for which
the HVs dynamics violate |F'(w; )] < 1 for some w € R.
Solving the following optimization problem:

J*(B(0 21
max J*(5(0)), 2D
for 6* and denoting the optimal parameterized stabilizing
control parameters vector by 3(0*), the AV penetration rate is
optimally lower bounded by

¥ > 1/(J +1), (22)

where J** < oo denotes the optimal value associated with the
optimization problem (21).

According to Corollary 2, we derive the optimal lower
bound on the AV penetration rate to stabilize traffic flow. It
is noteworthy that the optimal lower bound ﬁ in (22)
implicitly depends on the human-driven vehicle dynamics «
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and the lower and upper bounds on the control parameters /3
and S“ affecting the AV dynamics. Moreover, denoting the
number of AVs and the number of HVs by Nay and Ny,
respectively, (22) is simply equivalent to any of the following
equivalent inequalities:

Navy > [Nuv/J*],
Nuv < [J™Nav]|.

(23a)
(23b)

Given Nyv, (23a) presents the optimal minimum number of
the required AVs to stabilize traffic flow. Equivalently, given
Navy, (23b) presents the optimal maximum number of HVs
for which traffic flow can be stabilized. As an insightful
observation for the special case of Nay = 1, we observe that
(23b) implies that Ny < |J**| should hold, that is, for a
given number of AVs, the number of HVs in the stabilized
traffic flow may not be arbitrarily large in the constrained
scenario unlike the unconstrained scenario studied in [1]. In
other terms, if Ngy > | J**| 4+ 1 holds, then traffic flow may
not be stabilized with a single AV in the constrained scenario
unlike the unconstrained scenario studied in [1].

As a summary, Corollary 1 will be utilized as a cornerstone
to characterize the set of the control parameters [61 B2 63]
satisfying the RDC (6), the string stability condition (15a), and
the box constraints (9), i.e., 31 N By N B3 via the parameters
[61 62 63]. Such parameterization facilitates the compu-
tation of the optimal value J** in optimization problem (21)
stated by Corollary 2. The proposed method minimizes the AV
penetration rate leading to a reduced number of vehicles on the
road. To achieve more traffic control objectives (e.g., demand
serving efficiency) in addition, one can mathematically model
the desired objective function or incorporate the corresponding
constraints into the current state-space model and then solve
the newly formulated optimization problem to obtain the new
optimal controller gains accordingly.

IV. NUMERICAL SIMULATIONS

This section presents Procedure 1 to compute the optimal
lower bound on the AV penetration rate. Then, we assess
the validity of the theoretical results by conducting numerical
simulations in MATLAB R2024a. In Procedure 1, we utilize
the MATLAB built-in function fminsearch() (developed
based on Nelder— Mead simplex method [21]) as our nonlinear
optimization solver to solve (21) for 6* along with 6y as
an initial 6. Appendix E presents an alternative approach to
compute the optimal lower bound on the AV penetration rate.
Appendices F and G provide more insights on string stability
conservatism and extra observations via additional numerical
simulations, respectively.

To test the theoretical results, built upon the utilized
numerical setup associated with the OV-modeled HVs dy-
namics in [4], we consider the following numerical setup:
a = [037 15 09] with A, = —0.4450 < 0,
i.e., the worst-case scenario for which the HVs dynam-
ics violate |F(w;a)] < 1 for some w € R. Given the
lower and upper bounds on the control parameters as 3! =
[0.01 0.01 0.01] and 8* = [2 2 2]', and running

Procedure 1, we get 3(6*) = [0.01 2 0.01]T for which

Procedure 1: Optimal lower bound on the AV pene-
tration rate finder

1 Input: o, 8!, *.

2 Compute J*(3) via (16).

3 Construct J*(5(0)) via the parameterization (20).
4 Initialize # with an initial 6, namely 6.
5
6
7

Solve (21) for 6* along with 6y as an initial 6.
Compute J** via J** = J*(5(6%)).
Output: 1/(J** +1).

J** =184.9594 and ]*;H = 0.0054. Given Nay =1, (23b)
implies that Ny < [184.9594x 1| = 184 should hold, that is,
for a single AV, the number of HVs in the stabilized traffic flow
may not be larger than 184 in the constrained scenario unlike
the unconstrained scenario studied in [1]. Given Nyy = 400,
(23a) implies that Nay > (%] = 3 should hold, that
is, traffic flow may not be stabilized with a single AV in the
constrained scenario unlike the unconstrained scenario studied
in [1].

To investigate the effects of the lower and upper bounds
on the control parameters (9) on the optimal maximum num-
ber of HVs for which traffic flow can be stabilized (23b)
with a single AV, we consider the following two scenarios:

(i) B = [0.01 0.01 0.01}T, pr = [i i z‘f,i €

, , , T
{1,...,300}, and (i) B = [10“2%“1 105 10“2%“1} ,
i€ {1,...,301}, g* = [2 2 2}T. For the first scenario,

running Procedure 1 for ¢ € {1,...,300}, we obtain Fig I
(on the left) visualizing the dependency of | J**(5%)] on GY.
As Fig 1 (on the left) depicts, the larger the upper bound 3%,
the larger number of HVs in the stabilized traffic flow can be
maintained. For the second scenario, running Procedure 1 for
1 € {1,...,301}, we obtain Fig 1 (on the right) visualizing
the dependency of | J**(5])] on Bi. As Fig 1 (on the right)
depicts, the smaller the lower bound Bi, the larger number of
HVs in the stabilized traffic flow can be maintained. Although
maintaining the larger number of HVs in the stabilized traffic
flow is desired (for the larger values of 3% in the first scenario
depicted by Fig. 1 (on the left) and the smaller values of 3}
in the second scenario depicted by Fig. 1 (on the right)), it
leads to a slower transient response due to a dominant pole

“Paty Ba B W closer to the origin. Particularly, in the second
scenario, note that the smaller values of B{ correspond to
less risk aversion according to the RDC (6) encoding the risk
aversion criteria.

400
1000
2300 =
£, 200 g 500
100 0
0 100 200 300 0 0.5 1
By B

Figure 1. First scenario: dependency of |J**(8%)] on 8% (Left). Second
scenario: dependency of | J**(8!)] on B! (Right).



V. CONCLUDING REMARKS

In this paper, we answer QJ, posed in Section I, as follows:
(i) The answer is yes. We can systematically stabilize traffic
flow via AVs subject to the lower and upper bounds on the
control parameters using nonlinear optimization techniques (as
utilized in Procedure 1). (ii)) We optimally find the minimum
number of required AVs (via computing the optimal lower
bound on the AV penetration rate) to stabilize traffic flow for
a given number of HVs. Such optimal lower bound on the
AV penetration rate implicitly depends on the HV dynamics
and the lower and upper bounds on the control parameters
affecting the AV dynamics. As an immediate consequence,
we observe that in the case of a constrained scenario, unlike
the unconstrained scenario [1], an arbitrarily large number of
HVs may not be stabilized with a given number of AVs (e.g.,
a single AV considered in [1]). In other terms, a given number
of AVs (e.g., a single AV) may become insufficient to stabilize
traffic flow for a sufficiently large number of HVs. The current
paper is a primary research work. We highlight that a huge
gap exists between the primary theoretical results and the
practical situation in reality due to the idealized conditions
and assumptions made through the theoretical derivations.

Future Directions: More practical simulations with nonlin-
ear models and large perturbations would give us a more
realistic understanding of the proposed method. Then, it can
be considered a pertinent practical future research direction.
Another potential future direction could be generalizing the
theoretical results to the case of multi-lane mixed vehicular
platoons via hybrid system stability analysis techniques similar
to the ones employed by [22].
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APPENDIX A
PAPER NOTATION

We denote the Laplace domain variable by s. We represent
the real and complex numbers sets by R and C, respectively.
To show the real part and absolute value of a complex number
z, we use R(z) and |z|, respectively. We use ¢ to denote
the imaginary unit v/—1. We use U and N to show the set
union and intersection, respectively. For a set S, the symbols
|S], inf S, and min S, denote the cardinality, infimum, and
minimum of set S, respectively. We show the d-dimensional
vector of all zeros and all ones by 0y and 1,4, respectively.
We use [.] and |.| to represent the ceiling function and the
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floor function, respectively. For a scalar transfer function 7'(s),
we denote its Hoo norm by [|T'(s)||e which is defined as
1T(8)]oo := sup |T'(xw)|. We represent the remainder after

division (modulo operation) by mod(a, b) (when we divide a
by b).

APPENDIX B

TRAFFIC FLOW DYNAMICS QUANTITIES

Tab. I summarizes traffic flow dynamics quantities.

Table 1
SUMMARY OF TRAFFIC FLOW DYNAMICS QUANTITIES
Notation Definition
L Road length
n Number of vehicles
m Number of AVs
n—m Number of HVs
== AV penetration rate
Np Index set associated with vehicles:
{17 ) n}
Iav Index set associated with AVs
Tuv Index set associated with HVs
t Time
x;(t) Position along the road (defined modulo L)
of the j-th vehicle at time ¢
v;(t) :=a;(t) | Velocity of the j-th vehicle at time ¢
aj(t) ;== Z;(t) | Acceleration of the j-th vehicle at time ¢
h;(t) Spacing of the j-th vehicle at time ¢:
zj41(t) — z;(t)
hj(t) Relative velocity of the j-th vehicle at
time t: S'Cj+1(t) — i‘j (t)
Teq(t) € R™ Equilibrium position
Veq(t) € R™ Equilibrium velocity
Goq = On Equilibrium acceleration
heq = %ln Equilibrium spacing
y;(t) Infinitesimal position difference deviation of
the j-th vehicle at time ¢: x;(t) — Toq(t)
u;(t) Infinitesimal velocity difference deviation of
the j-th vehicle at time t: v; () — veq(t)

APPENDIX C
PROOF OF PROPOSITION 1

We consider the worst-case scenario for which the HVs
dynamics violate |F(w;a)] < 1 for some w € R, ie
|F(w;a)| > 1 or equivalently D, (w) > 0 holds for some
w € R. Thus, A, < 0 holds according to (13a) and (13b).
Then, to ensure the string stability criterion (12) holds for
B, we must have Dg (w) <0 for all w € R or equivalently
Ag > 0 according to (13c) and (13d). Since A, < 0 holds,
we have D, (w) > 0 for w € [, according to (14). For w € 1,
by dividing both sides of (12a) by 7D, (w), we get

l—1< —Dﬁ(w) = J(w;B), wel,.

< (24)
v Da(w)
Taking the infimum from the right-hand side of (24), we get
(15b).
It can be verified that
lim —D =0, lim D,(w)=0, 25
gy ~PR) =0, iy, Dale) @59
dD dD,
fim _*P8) _ 0, lim ADa(w) _ 0, (25b)

w—0t dw w—0t dw

PDs(w) _ Ag

2D, A,
5 lim J:—z, (25¢)
1 1

w—0*t dw?

hold. According to (25) and applying L'Hbpital’s rule [23],
we get

lim J(w: §) = lim,, o+ —% a? Ag 26)
im J(w; = —.
w0+ lim,, o+ % A
We also have
lim ~ —Dg(w
lim  J(w; B) = —22¥ "8 a ):oo. 27)

w—V AL

1imw_)\/_—a7 D, (w)
Considering the limiting behavior of J(w;#3) on interval
boundaries (i.e., (26) and (27)) and critical points of J(w; ),
and constructing J defined by (16b), J*(5) in (15b) can be
computed via (16a).

APPENDIX D
PROOF OF PROPOSITION 2

Imposing box constraints (9) to the parameterization (17),
we get

B <p<pBY, (28a)

By <p+4q<pBy, (28b)
2

Bi<pa+ T -r<B (280)

We have r» > 0. Also, we can consider p > 0 and ¢ > 0 as
p > e and g > €, respectively, for an infinitesimal € > 0. Then,
(28) along with p > €, ¢ > €, and r > 0 implies that

e <p, (29a)
B3 <p, (29b)
p < B, (29¢)
p< By —e, (29d)
p<\/BY -2, (29)
€ <q, (29f)
By —p <q, (29¢)
\/p?+28L —p <q, (29h)
q< By —p, (291)
0<r, (29j)

q2
pq + 5 B <r, (29k)
r < pq + — -4, (291

hold. Notice that (29h) is obtained from the combination of
(29j) and (291). Precisely, imposing the non-negativity of the
quadratic polynomial %qz + pg — B} subject to p > 0, ¢ > 0,
and B} > 0, we observe that 2¢* 4+ pg — 81 > 0 holds if and
only if ¢ > /p? + 28} —p holds. Also, (29d) is obtained from
the combination of (29f) and (29i). Similarly, (29e) is obtained
from the combination of (29h) and (291). Thus, utilizing (29),
the p, ¢, and r in (17) satisfying the box constraints (9) can
be parameterized as (18). Moreover, we have

(292),(29¢) = B3 > ¢,



(292),(29d) = BY > 2,
(29b),(29d) = By > B, + ¢,

(29b),(29%¢) —> By > /B4 + 2.,

which completes the proof.

APPENDIX E
AN ALTERNATIVE APPROACH

Alternatively, built upon the parameterization (20) and
defining

KNHV7NAV(S;B) = F(3§O‘)NHVG(S§B)NA\/,

for any [ satisfying the stability condition (15a), we can
construct the following H..-based optimization problem:

V*(B) := min{Nay : Alleo <1},

for a given value of Nyv. Then, we can compute the optimal
minimum number of the required AVs to stabilize traffic flow
by solving the following optimization problem:

V= min V*(5(0)),

(30)

HKNHV NAV( (31)

(32)

for 6. To compute V*(8) in (31), we can utilize a bisection
method. To implement (31), we can utilize the MATLAB built-
in functions t £() and getPeakGain() (developed built upon
[24]). Note that since getPeakGain() cannot compute the
Hoo norm of H,(s) in (11), we are unable to choose H.(s)
over K nyy, Nay(8;8) in (30). To solve (32) for 6, we can
utilize fminsearch() as our nonlinear optimization solver.
Then, we can compute V** via V** = V*(5(6)). Note that
V** = [Npv/J**] holds. Equivalently, for a given value
of Nay, a similar approach can be used to compute the
optimal maximum number of HVs for which traffic flow can
be stabilized. Unlike J*(3) in (15b) that takes real values,
observe that V*(3) in (31) takes positive integer values and
as a result, solving (32) for 0 becomes more challenging and
it may rely on the quality of the initialization.

APPENDIX F
STRING STABILITY CONSERVATISM

We emphasize that all the theoretical derivations in this
paper are built upon the string stability criterion (12) equiv-
alently obtained from a sufficient string stability condition
C C C~. Consequently, the resulting theoretical bounds have a
level of conservatism. In [3], for a single-lane highway setup
with a single AV, the authors have chosen a string stability
condition ||T]77(s)|lcc < 1 as a formal mathematical definition

of string stalbility (different from the eigenmode-based string
stability definition in Definition 1). Although such a string
stability condition is similar to ||H,(s)||cc < 1 associated
with the string stability criterion (12), no conservatism occurs
for a single-lane highway setup unlike a circular road setup

considered in this paper as ||[[T:(s)]lc < 1 is not a sufficient

K3
condition for a single-lane highway setup.
Since the theoretical derivations are agnostic to the distribu-
tion of the AVs in the mixed vehicular platoon, one expects to

IEEE CONTROL SYSTEMS LETTERS, IN PRESS, NOVEMBER 2024

obtain string stability regardless of the distribution of the AVs.
However, for the case of m > 1, the choice of the distribution
of the AVs can potentially affect the quality of the obtained
string stability. To quantify such a quality, one can define the
following quantity as an H..-based measure:

n—1 n 14+mod(j+i—2,n)
X(Zav) = ZZ | H T35l oo-
j=21i=1 k=1

Note that for k € Zay and k ¢ Ty, we have Ty (s) =
and Ty (s) = F(s; «), respectively.
Moreover, considering the following optimization problem:

X(Zav), (33)

G(s; 8)

min
ZavCNy,|Zav|=m
one can search for a sub-optimal distribution of the AVs,
namely Is'i}) optimal * i employing a greedy algorithm to

reduce the string stability conservatism.

APPENDIX G
ADDITIONAL NUMERICAL SIMULATIONS

To empirically validate Corollaries 1 and 2, considering the
eigenmode-based definition of the string stability in Definition
1, we include the visualizations of the eigenmodes for the
scenarios (i) No AV (m = 0), and (ii) Single AV (m = 1) with
n = 185 in Fig. 2. As Fig. 2 demonstrates, the platoon with
no AV is string unstable (due to the 15 paired unstable eigen-
modes strictly located on the right half plane) while replacing
one of the HVs with a single AV (optimally designed by
Procedure 1) has successfully stabilized the platoon (because
all the eigenmodes lie on the left half plane).

0.01 0.02
R(s)

-2 -1 0 0

Figure 2. The visualizations of the eigenmodes for the scenarios (i) No AV
(m = 0), and (ii) Single AV (m = 1) with n = 185.

——j =2 (HV)
—i=1(aV)

0 2000 4000 6000
t [second)]

0 5000
t [second]

Figure 3. The location deviation trajectories of the n — 1-th and the 2-nd
vehicles (HVs) and the 1-st vehicle (AV) for the case of a single AV considered
by Fig. 2. (An initial perturbation of magnitude 1 at n-th vehicle’s location
(HV) is applied.)

To showcase the stability obtained by utilizing the single
AV, running the simulations with an initial perturbation of
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magnitude 1 at n-th vehicle’s location (HV), we plot the
location deviation trajectories of the (n — 1)-th and the 2-
nd vehicles (HVs) and the 1-st vehicle (AV) in Fig. 3 for the
case of a single AV considered by Fig. 2.

Running Procedure 1 with @ = (037 1.5 O.Q}T,
pl= [0.8 0.8 0.8}, gY = [2 2 25 we get 8(0*) =
[0.8 2 0.8]T for which J** = 5.4898 and %H =
0.1541. Choosing Nay = 5, (23b) implies that Nygyv <
|5.4898 x 5| = 27. Then, choosing (m,n) = (5,32) and
solving (33) via a greedy algorithm, we obtain the sub-optimal
distribution of the AVs Zhn, ~°P"™ = (1,917 21,25}
visualized by Fig. 4.

’*“

27 AVO TN

I “

[ 4 N
t b}
{
AV 17 AV 1y
L Y }
\ AV 21 ¢

~ p

S AV2S

>

Figure 4. The visualization of the sub-optimal distribution of the AVs
T3y TP = {1,9,17,21,25). HV: red, AV: blue.
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