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Industrial agriculture since the middle of the 20th century has provided bountiful food, but it has also altered and
degraded soil physical, chemical, and biological properties on a continental scale. To combat this situation,
sustainable agricultural practices are advocated, as well as retiring or “rewilding” some soils from agriculture and
letting them revert to natural conditions for preserving biodiversity. Many scientific disciplines (biological,
pedological, agricultural) are playing roles in sustainability. Soil classification can also play a role since its
function is to group soil properties into soil types and create maps that show soil patterns across the landscape. In
addition, classification is based largely on the genesis of diagnostic properties. Each diagnostic property has an
evolutionary history resulting from factors — pedogenic processes — soil properties. Understanding a soil’s
genesis not only enables us to understand what soils are today, and which ecosystem and soil health functions
they perform, it also enables us to know what they were in the past based on chronosequences and soil memory,
and what they will likely become in the future. If, for example, a residual soil shallow to limestone bedrock (e.g.,
Leptosols, or Lithic Hapludalfs) is plowed, remains uncovered by vegetation, and is allowed to erode to bedrock,
it is neither sustainable nor regenerative. If, on the other hand, a soil with a mollic horizon (e.g., Chernozem or
Mollisol) that formed in deep loess with no restrictive layers is allowed to erode causing it to lose carbon,
moisture storage capacity, and favorable structure, it can regain its sustainability and become regenerative
through proper management, such as cover crops and conservation tillage. Similar examples can be found for
soils worldwide that illustrate the role classification can contribute to soil sustainability and regenerative ca-
pacity at the landscape scale.

as purifying water, reducing flooding, decomposing organic matter,
sequestering carbon, and providing habitat for medicinal plants and

1. Introduction

Industrial agriculture involving large-scale, intensive production of
crops has increased food production worldwide by technological ad-
vances in fertilizers, pesticides, herbicides, irrigation, farm machinery,
plant breeding, and molecular biology. These advances when combined
with monocultural practices have led to biodiversity loss, pollution, the
emergence of new pests, erosion, and soil physical and chemical
degradation. Thus, we are now faced with the challenge of maintaining
high yields and securing food production, while at the same time
conserving or improving soils that provide vital ecosystem services, such

pollinators (e.g., Pretty, 2018; Al-Kaisi and Lal, 2020).

Sustainable and regenerative agriculture address the challenge of
maintaining yields with the goal of not harming the environment. By
definition, sustainable agriculture “conserves land, water, and plant and
animal genetic resources, and is environmentally non-degrading, tech-
nically appropriate, economically viable and socially acceptable” (FAO,
2014a) and has many connections to broader sustainable development
goals (UN-SDG, 2023). Regenerative agriculture aims to go beyond the
“do no harm” principles of being “non-degrading” to being “enhancing”
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(Burgess et al., 2019). It involves (1) minimizing or avoiding tillage, (2)
eliminating bare soil, (3) encouraging plant diversity, (4) water perco-
lation, (5) integrating on-farm livestock and cropping operations, and
(6) minimizing pesticides and synthetic fertilizers (Lal, 2020; Newton
et al., 2020; Giller et al., 2021; O’Donoghue et al., 2022).

Understanding soil’s role in agriculture using soil classification can
be traced back 3500-4000 years to ancient Greece and Chinese societies
(Brevik and Hartemink, 2010), still farther to 10,500 years ago with the
first domestication of plants (Zohary et al., 2012), and still farther yet to
perhaps 100,000 years ago when humans began to exert ochre (a natural
clay earth pigment) for art (Domingo and Chieli, 2021). Numerous pa-
pers have been written on understanding soil’s role in agriculture using
soil classification. The main purpose of the soil survey program in the US
dating to the 1890s, for example, was to predict how specific soils would
respond to management (Soil Survey Staff, 1951). In addition, recent
treatises pertinent to the theme of linking soil classification and sus-
tainable agriculture include papers by McBratney et al. (2014), Yusnita
et al. (2020), Rossiter (2021), and Bouma et al. (2022). The purpose of
this article is to illustrate not only how an understanding of soil classi-
fication can contribute to developing sustainable management practices
in agriculture (i.e., conveying what a soil is and where it occurs across a
landscape), but also as a forecasting tool for predicting what a soil is
likely to become.

2. Soil classification: what a soil is now, what it was, and what it
is likely to become

How can understanding soil classification be used as a tool for sus-
tainable agriculture? By “tool,” we mean “a device used to carry out a
particular function” (NOAD, 2023). The particular function, in this case,
is grouping data by soil type, mapping those soil types across the land-
scape, and predicting how a soil will respond to management decisions.
The core idea consists of knowing what a soil is now (taxonomically),
what it was in the past, and what it is likely to become in the future
under different management decisions. What a soil is now is based on its
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current properties. What a soil was in the past can be inferred based on
processes operating today (uniformitarianism) combined with chro-
nosequences and soil memory (Targulian and Goryachkin, 2004).
Combining the present and past provides a trajectory for making pre-
dictions about the future (Fig. 1).

Linking classification to management requires an answer to the
question: How much change due to management must occur before the
classification changes? A classification should not, for example, change
after plowing the soil. Still, there must be a threshold beyond which
management practices are significant enough to merit a new classifica-
tion. To address this question the concepts of genoforms and phenoforms
have been introduced (Droogers and Bouma, 1997). Similar to biology’s
genotype and phenotype, the genoform is the genetically defined soil
series, while the phenoform is the result of different types of manage-
ment. In their study in the Netherlands, three different phenoforms were
formed as a result of different management in one soil series (the
genoform). Further analysis of the concept recognized that phenoforms
are not only variants of the genoform resulting from different manage-
ment, their differences must be persistent enough that substantial
management interventions are necessary to change them (Rossiter and
Bouma, 2018).

2.1. “What a soil is now”

What a soil is now taxonomically is based on its quantitatively-
defined diagnostic features. Examples of diagnostic features that con-
trol how a soil functions and have bearing on sustainable agriculture
include the andic, argic, calcic, duric, fragic, gypsic, mollic, natric,
petrocalcic, petrogypic, plinthic, spodic, umbric, and vertic. These
diagnostic properties are used as classification building blocks in the
World Resource Base system (IUSS Working Group WRB, 2022), Soil
Taxonomy (Soil Survey Staff, 1999, 2022), and many other soil classi-
fication systems worldwide (Krasilnikov et al., 2009).

Diagnostic physical properties that have bearing on sustainable
agriculture include bulk density, linear extensibility, coarse fragments,

Conversion to
Agriculture

Genoforms

Fig. 1. Illustration of the development of a soil profile consisting of the formation of the Cr horizon produced by the weathering of bedrock (R), formation of a clay-
enriched Bt horizon, accumulation of organic litter atop the profile (O), and the admixing of humus with mineral material (A). Conversion to agriculture results in the
loss of the O horizon and transformation of the A horizon to the Ap plowed layer. With erosion, Bt material is incorporated into the Ap of a shallower profile to
bedrock. With sustainable agriculture, the profile from former times is preserved. With rewilding, new organic litter is deposited on the relict Ap horizon. Only one
new genoform (a genetically defined soil series) has been produced which resulted from management that allowed excessive erosion. Phenoforms are variants of the
genoform resulting from different management, but are still the same series. Horizon symbols from Soil Science Division Staff (2017).
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sand, silt, clay, and water retention. Chemical properties used in the
definitions of diagnostics include cation exchange capacity, extractable
acidity, base saturation, pH, nitrate concentration, calcium carbonate
equivalent, gypsum content, anhydrite content, electrical conductivity,
exchangeable sodium percentage, sodium absorption ratio, organic
carbon, phosphate retention, and extractable aluminum, iron, and sili-
con. Additionally, mineralogy and field measurements of horizon color,
thickness, and topography (e.g., tonguing) are used in the definitions of
diagnostics.

The numerous ways diagnostic features can be combi-
ned—combinatorics—create classification systems capable of enormous
versatility. Once classified, the suitability and limitations of a soil can be
predicted for a multitude of land use interpretations (Table 1). Those
especially applicable to sustainable agriculture include the fragile soil
index, farmland classification, national commodity crop productivity
index, non-irrigated and irrigated capability classes, ecological site
names, potential for damage by fire, and predictions of crop yields in
irrigated and non-irrigated management systems.

Despite the versatility of modern classification systems, more work is
needed to quantify how soils pertain to sustainable agriculture. The ef-
fects of tillage, for example, which can change soil diagnostic features,
should be expressed in soil classification (Yaalon and Yaron, 1966;
Michéli et al., 2016). Toward this end, the WRB “terric” qualifier fits
well for Anthrosols (i.e., soils “with long and intensive agricultural
use”). The proposed Artesols Order (i.e., soils that form in “human--
altered soils or in human-transported material” (Galbraith, 2020) could
be enhanced to cover the classification needs for sustainable soils, such
as terraced soils that have been sustainably used for centuries (Sandor,
2006; Boixadera et al., 2016; Itkin et al., 2022). Since many, if not most,
soils have been impacted by humans, there is much opportunity in the
classification systems to quantify the degree of alteration from their
natural state (Calzolari and Filippi, 2016; Yassoglou et al., 2017; Cullu
et al., 2018; ICGC, 2018; Monger et al., 2015; Poggio et al., 2021). To-
ward this goal, the genoform and phenoform combined with soil clas-
sification make much progress in articulating the impact of management
on soils (Fig. 2).

2.2. “What a soil was in the past”

What a soil was in the past can be understood using two methods:
chronosequences and soil memory. Chronosequences enables us to look
backward and forward in time by holding constant the soil forming
factors except time (Jenny, 1941; Buol et al., 1973). That is, we cannot
travel in time, but we can travel in space and observe how progressively
older soils have increasingly greater pedogenic development. “Soil
memory” allows us to look back in time by analyzing “palimpsest-wise”
and “book-wise” memory which is based on the sequence: factors —
pedogenic processes — soil properties (Targulian and Goryachkin, 2004;
Targulian and Bronnikova, 2019). Palimpsest-wise memory stores in-
formation about environmental factors in the solid phase of horizonated
soil bodies. For example, a C-horizon parent material is transformed into
a Bk horizon by the obliteration of sedimentary stratification and pre-
cipitation of pedogenic carbonate (Fig. 3). Book-wise memory stores
information as layer-by-layer deposition of sediments. Once the factors
and processes are established, inferences can be made about what that
soil is likely to become under different management practices.

2.3. “What a soil is likely to become”

What a soil is likely to become is based on its evolutionary trajectory.
This is the essence of using soil classification as a tool for predicting the
consequences of management practices on sustainable agriculture and
forestry. Having been converted to agriculture and experienced degra-
dation, a soil’s evolutional trajectory will take different paths depending
on management decisions (Fig. 1). If erosion continues to alter and
degrade soil, then harm to the environment as sediment source, loss of
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Table 1

Soil classification is used to evaluate a soil’s suitability, limitation, or potential
for a variety of land uses. Suitability and limitation ratings, for example, are
given below for multiple soil-use categories in the USDA-Soil Survey system

WEB SOIL SURVEY, 2022.

SOIL USE CATEGORY

SOIL USE CATEGORY

Building Site Development

Corrosion of Concrete

Corrosion of Steel

Dwellings With Basements

Dwellings Without Basements

Lawns, Landscaping, and Golf Fairways

Local Roads and Streets

Shallow Excavations

Small Commercial Buildings

Solar Arrays, Ballast Anchor Systems

Solar Arrays, Soil-based Anchor Systems

Unpaved Local Roads and Streets

Construction Materials

Gravel Source

Roadfill Source

Sand Source

Source of Reclamation Material

Topsoil Source

Disaster Recovery Planning

Catastrophic Mortality, Burial

Catastrophic Mortality, Incinerate

Catastrophic Mortality Disposal, Pit

Catastrophic Mortality Disposal, Trench

Clay Liner Material Source

Composting Facility - Subsurface

Composting Facility - Surface

Composting Medium and Final Cover

Emergency Disposal by Shallow Burial

Emergency Land Application of Milk

Rubble and Debris Disposal

Land Classifications

Conservation Tree and Shrub Group

Ecological Classification ID

Ecological Classification Name

Farmland Classification

Hydric Rating by Map Unit

Irrigated Capability Class

Irrigated Capability Subclass

Natl. Commodity Crop Productivity Index

NH Forest Soil Group

Nonirrigated Capability Class

Nonirrigated Capability Subclass

Septic Tank Absorption Fields

Sewage Lagoons

Soil-Based Residential Wastewater Disposal
Ratings (VT)

Soil Health

Agricultural Organic Soil Subsidence

Soil Response to Biochar

Farm and Garden Composting

Fragile Soil Index

Limitations for Aerobic Soil Organisms

Organic Matter Depletion

Soil Surface Sealing

Soil Susceptibility to Compaction

Surface Salt Concentration

Vegetative Productivity

Crop Productivity Index

Forest Productivity

Forest Productivity (Tree Site Index)

Towa Corn Suitability Rating CSR2 (IA)

Minnesota Crop Productivity Index

Range Production (Favorable Year)

Range Production (Normal Year)

Range Production (Unfavorable Year)

Yields of Irrigated Crops (Component)

Yields of Irrigated Crops (Map Unit)

Yields of Non-Irrigated Crops (Component)

Yields of Non-Irrigated Crops (Map Unit)

NRCS Ecological Site ID

NRCS Ecological Site Name

Order of Soil Survey

Soil Moisture Class

Soil Moisture Subclass

Soil Temperature Regime

Land Management

Construction Limitations for Roads
Drought Vulnerable Soils

Erosion Hazard (Off-Road, Off-Trail)
Erosion Hazard (Road, Trail)
Fencing, Post Depth 24 Inches
Fencing, Post Depth 36 Inches
Ground Penetrating Radar

Harvest Equipment Operability
Juniper Encroachment Potential
Mechanical Site Preparation (Deep)
Mechanical Site Preparation
Potential for Damage by Fire
Potential for Seedling Mortality
Soil Rutting Hazard

Soil Suitability for Industrial Hemp
Suitability for Hand Planting
Suitability for Log Landings
Suitability for Mechanical Planting
Suitability for Roads

USFS - Road Construction
Windthrow Hazard

Military Operations

Excavations for Vehicle Fighting
Helicopter Landing Zones

Vehicle Trafficability, Wet Season
Recreational Development

Camp Areas

Off-Road Motorcycle Trails

Paths and Trails

Picnic Areas

Playgrounds

Sanitary Facilities

Daily Cover for Landfill

Sanitary Landfill (Area)

Sanitary Landfill (Trench)

Waste Management

Disposal of Wastewater by Irrigation
Disposal of Wastewater by Rapid
Infiltration

Land Application of Sewage Sludge
Manure and Food-Processing Waste
Overland Flow of Wastewater
Slow Rate Treatment of Wastewater
Water Management
Embankments, Dikes, and Levees
Excavated Ponds (Aquifer-Fed)
Infiltration Systems, Deep
Infiltration Systems, Shallow
Irrigation, General

Irrigation, Micro (Above Ground)
Irrigation, Micro (Subsurface Drip)
Irrigation, Sprinkler (Close Drops)
Irrigation, Sprinkler (General)
Irrigation, Surface (Graded)
Irrigation, Surface (Level)

Pond Reservoir Areas

Retention Systems, Lined
Retention Systems, Unlined
Subsurface Water, Outflow Quality
Subsurface Water System
Subsurface Water Performance
Surface Water ManagementSystem
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(a) Climate Change
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(b) Erosion of Soils with Hardpans
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filaments|nodules

GENOFORM PHENOFORM NEW
GENOFORM

Time

Riparian | Irrigated agriculture

forest without drainage system

Gypsic Aquisalid/
Gypsic Sodic

‘ Aquic Torrifluvent/
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(e) Catastrophic Forest Fires

(f) Stone Wall Terraces

GENOFORM
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Time -
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forest fires wildfires
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Fig. 2. Examples of soil change expressed as genoforms, phenoforms, and classification caused by management decisions and environmental change pertinent to soil
sustainable agriculture. Classification is given in both Soil Taxonomy/World Resource Base systems.

carbon storage, and loss of filtering capacity will continue, and crop
yields will decline as the soil functionality declines. This will put the
farmer at a competitive disadvantage economically and reduce the
additional benefits that soil provides to human communities. If, on the
other hand, soil degradation is halted by sustainable agricultural prac-
tices, then harm to the environment will decline, crop yields will be
maintained, and the farmer will not be subjected to a competitive
disadvantage as the result of soil degradation. Still further, if a soil is
allowed to return to its natural state (“rewilding”) to regain functionality
and provide habitat for biodiversity, then its profiles will return to a

natural state in equilibrium with its environment.

Thus, based on classification, a soil’s response to management and
environmental changes can be predicted. Fig. 2(a), for example, shows
the predicted response of a soil to climate change when the boundary
separating the semiarid prairie from the humid forest migrates across a
soil resulting in a change in the A-horizon (epipedon) and the formation
of carbonates (Buol et al., 1973; Seager et al., 2018; Monger, 2014). In
this case, new genoforms and soil taxa develop. Fig. 2(b) shows the
response when a soil with a fragipan in a deciduous forest is converted to
row crops leading to severe erosion that makes the soil unusable for
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200 pn}mf

Fig. 3. Multi-scale images of terrace soils in northeastern Spain. In contrast to the typical genoform — phenoform sequence, this example starts with the phenoform
and progresses to new genoforms. (a) Steep terracescape dating to the 1500 s and 1800s when the walls were constructed (Itkin et al., 2022). (b) Terrace soil profile
showing the incipient development (coloring, structure) typical of many Mediterranean soils. (¢) Biogenic development of calcium carbonate at the hand specimen
scale, (d) Appearance of biogenic carbonate at thin section scale, and (e) Biogenic carbonate in crossed-polarized light showing its needle-fiber morphology

interpreted to be fungal in origin.

agriculture (Ditzler et al., 1994; Graveel et al., 2002). A phenoform
develops, but the classification remains the same. Fig. 2(c) shows the
long-term accumulation of pedogenic carbonate in a soil beneath a
desert grassland that was overgrazed in the late-1800s leading to severe
wind erosion and coppice dune formation (Gile et al., 1966; Gile, 1966).
Fig. 2(d) shows the effect of converting a riparian forest to irrigated
agriculture without installing a drainage system to remove accumu-
lating salts (Burrow, 2002). Fig. 2(e) shows the response of soils to
natural forest fires versus catastrophic wildfires resulting from improper
forestry management (Certini, 2005). Fig. 2(f) shows a soil developing
behind a stone-wall bench terrace (Itkin et al., 2002). Rather than
beginning with a genoform, this soil begins with a phenoform through
anthropogenic deposition, thickening (soil aggradation) and neopedo-
genesis of human-altered and transported soil. Natural post-depositional
pedogenesis form a Bw horizon and later a Bk horizon resulting in new
genoforms. When stone-wall bench terraces are built on preexisting soil,
both terrace and natural soils form one soil system. This soil, rather than
degrading, can be sustainable for centuries and even millennia.

3. Soil classification as a tool for sustainable forest
management, restoration, and ecosystem service provision

Soil classification has long been recognized as a relevant tool to
differentiate and define forest site productivity, guidance for forest
management, or quantify the impact on forest management activities
(Fisher, 1928; Veatch, 1924). Soil Taxonomy, for example, is designed to
organize, consolidate, and systematically group major trends in domi-
nant quantifiable soil properties into discernable categories relevant to
land management. Thus, soil classification systems provide maximum
information on soil properties in a simplified form that can be used to
differentiate and delineate soils in the landscape and plan management

operations for different objectives (Fig. 4). The relevance of soil infor-
mation and soil classification to define forest sites or examine relation-
ships between soils, forest types, site productivity, and management
effects is recognized among forest managers (Craigg et al., 2015). In fact,
since the first publication in 1945, there has been an exponential in-
crease in the amount of forest soil research focused on soil surveys
(Knoepp et al., 2019).

Forest land intensification and the growth of exotic monoculture tree
plantations have increased pressure on fragile soil resources and
heightened the need to integrate soil information into forest site clas-
sification systems and management decision trees (Louw, 2016). It is
well known that disturbances from intensified forest operations can
significantly affect soil carbon and nutrient pools with relevant conse-
quences to forest productivity and soil functions (James et al., 2021;
Jurgensen et al., 1997). Crovo et al. (2021), for example, evaluated
contrasting soil types (taxonomic orders) to test the differential response
of deep soil nutrient stoichiometry to natural temperate forest conver-
sion into exotic pine forest plantations. They reported that the change
magnitude of C, N, P pools and their stoichiometric relations to this land
use was significantly determined by soil type. Similarly, Premer et al.
(2019) found that the response of different soil nutrients to intensive
whole tree harvest depended on soil type (i.e., soil series) and that the
effect on exchangeable soil cations was especially susceptible in some
soil types.

Despite the relevance of classification to predict the response of soils
to management this is rarely reported in many countries. For example,
only a few forest restoration practitioners and researchers have
adequately reported soil type or classification when evaluating soil re-
covery (Gatica-Saavedra et al., 2022). The latter limits the ability of
restoration scientists and practitioners to truly evaluate and monitor
forest ecosystem recovery. In addition, the lack of soil information
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Fig. 4. Synthesis of soil properties information in soil classification and use for relevant soil use interpretation related to multiple forest management objectives.

impedes cross-comparison or result extrapolations.

Soil taxonomic classifications have been emphasized as an essential
variable to predict soil carbon storage distribution, sequestration po-
tential, and other ecosystem services provision at the landscape scale.
For example, soil taxa information can be used to discriminate the
spatial distribution of SOC and provide a basis for sampling design
stratification (Wills et al., 2013). Shaw et al. (2015) found that incor-
porating soil taxonomic classification into the SOC density prediction
model for forest soils in Canada could significantly enhance the model’s
ability to explain SOC distribution. They used redundancy analysis to
report that the soil subgroup explained the largest proportion of the
variance (18 %), more than any other considered variable (e.g., domi-
nant forest species-genus and species). Similarly, Dalsgaard et al. (2016)
found that modeled soil carbon density predictions can be significantly
improved by including WRB soil taxonomic groups and drainage classes
in Norwegian forests. This was attributed to the ability of these two
parameters to capture dominant soil development and processes like
podzolization and subsurface saturation that tend to increase carbon
density in these soil systems.

Soil classification is also relevant for decision-making and account-
ing for nature’s contribution or ecosystem services (ES) provision.
Mikhailova et al. (2021) examined different approaches to quantify
pedodiversity and ES quantification using soil taxa. They estimated that
Mollisols had the highest organic and inorganic carbon storage midpoint
value in the USA, equivalent to US$7.78 T, considering both the social
cost of carbon (US$ 42 Mg emitted CO3 1y and CO5 emission avoidance
by storage. These ES estimations help synthesize and translate soil sur-
vey information into metrics that can be more easily used by
decision-makers, planners, and forest managers to assess better the ef-
fect of land use and intensification in ES.

4. Conclusions

Most of the world’s arable soils have been altered by human activ-
ities (Lal, 2007). Some soils are so severely degraded that agriculture is
no longer possible (Fig. 5). Other soils, though degraded, have a high
regenerative capacity, such as the soils formed in deep loess. In both
cases, soil classification can contribute to sustainable agriculture as a
tool for developing a denotative and connotative language that syn-
thesizes soil properties and displays those properties on maps. This, in
turn, enables us to describe a soil’s suitability and limitations for many
uses at the landscape scale. In addition, soil chronosequences and soil
memory not only tell us about what a soil is now, they help us under-
stand what it was in the past, and what it is likely to become in the future

Fig. 5. Syrian landscape with shallow soils and exhumed bedrock no longer
suitable for agriculture as the result of severe erosion that occurred centuries
ago. Photo by Jim Richardson from Mann (2008).
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under various management practices.

Despite their relevance, soil classification and genesis are underu-
tilized for sustainable and regenerative agriculture at local and global
scales. At local scales, they can be used to help farmers select and
manage their best soils for growing crops under a changing climate,
prevent degradation, restore soil health, and maintain habitat for
biodiversity. At global scales and in a warming climate, soil classifica-
tion and genesis can be used to predict where the most suitable soils for
agriculture will be located and distinguish those from soils that should
be devoted to habitat for biodiversity and ecosystems services.

For sustainable forest management and restoration, soil information
is critical for properly defining goals and achieving objectives and
monitoring metrics. Likewise, soil classification is an exceptional tool
that condenses and groups numerous complex soil properties into
unique hierarchical categories relevant to forest management. In addi-
tion, soil classification provides a basis for categorizing, identifying, and
delineating distinct soil bodies in the landscape. A more ecosystemic
perspective of forest management and restoration should always
consider the information compiled by soil classification to derive in-
terpretations and determine soil-based forest management units. This
approach could allow managers and planners to more appropriately
evaluate the impacts of forest operations, forest degradation, and land-
use intensification on soils.
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