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Abstract

Remote sensing methods are commonly used to assess and monitor ecosystem conditions 
in drylands, but accurate classification and detection of ecological state change is 
challenging due to sparse vegetation cover, high spatial heterogeneity, and high inter-annual 
variability in production. We evaluated whether phenological metrics are effective for 
distinguishing ecological states using imagery from near-surface camera (PhenoCam) and 
satellite (Harmonized Landsat 8 and Sentinel-2, hereafter HLS), and how effectiveness 
varied across wet and dry rainfall years. We analyzed time series over 92 site-years at a 
desert grassland site in southwest New Mexico. Rainfall was a driver of phenological 
response across all ecological states, with wet years correlating with later start of season, 
later peak, higher peak greenness, and shorter growing season. This rainfall response was 
strongest in sandy shrub-invaded grasslands. PhenoCam estimated significantly earlier start 
of season than HLS for gravelly shrubland states, and earlier end of season than HLS for 
sandy shrub-invaded grassland states. We propose integrating seasonal metrics from high-
frequency PhenoCam time series with satellite assessments to exploit phenological 
differences across variable rainfall years, improve monitoring efforts in drylands, and 
capture the timing and strength of peak greenness for grass-dominated ecological states as 
an indicator of ecological state change.

MAIN TEXT

1. Introduction
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Drylands, which are estimated to cover over 40% of Earth’s land surface [1], are 
ecologically important as they provide habitat to many native organisms, support crop 
production, serve as forage for livestock and wildlife, and contribute significantly to global 
atmospheric carbon dioxide (CO2) regulation [2, 3]. Because of their low-fertility soil, 
unpredictable rainfall, and history of unsustainable land use, dryland ecosystems are highly 
susceptible to ecological state change [4]. Particularly concerning are shifts towards less 
biologically productive ecological states due to climate change and land use [4, 5, 6]. 
Ecological state-and-transition models (STM) provide a framework that helps landowners 
and managers identify ecologically vulnerable locations and manage them in a way designed 
to mitigate or even reverse degradation [7, 8, 9]. The foundation of an STM is spatially-
explicit information based on composite soil, landscape position, and annual rainfall that 
designate the ecological site. Ecological site and state concepts are hierarchical, where 
ecological sites are defined by the static components of soil properties, landform, and 
climate, while ecological states represent the dynamic components of vegetation 
composition and diversity within a given ecological site. 

An ecological state change of primary concern is the shift from perennial grasslands to 
shrublands [10, 11]. This state change has implications for CO2 uptake and carbon storage 
in biomass and soil in widespread rangeland ecosystems due to differences in physiognomy, 
rooting depth and structure, phenology, and soil erosion potential [12, 13]. Grass species 
phenology and productivity have been shown to be more sensitive to rainfall than co-
existing deeper-rooted shrub species [14, 15, 16, 17]. The degree to which species-level 
responses are observable via composite spectral responses depicted via satellite remote 
sensing (land surface phenology) is still debated [18].

Remote sensing data collected using sensor platforms ranging from near-surface cameras to 
airborne and satellite systems with repeated observations are essential for monitoring land 
surface condition [19] as well as estimating primary production [20]. Evaluations of 
ecological state change via remote sensing methods lag behind those for conservation and 
land use change (see [21]). Integrating data across remote sensing platforms is essential to 
capture ecological form and function in highly heterogeneous and variable dryland 
ecosystems [22]. Ground- or field-based data and perspectives provide a critical link 
between remote sensing and assessments of state change that can support the judicious use 
of resources to implement practices to mitigate or slow processes causing ecological state 
change [23].

Most remote sensing applications in drylands involve moderate to coarse resolution satellite 
image time series such as MODIS, Landsat, and Sentinel-2, and the harmonized Landsat 8 
and Sentinel-2 (HLS) data product. Applications include mapping fractional cover [24, 25, 
26, 27], ecological sites using hyper-temporal satellite time series [28], rangeland condition 
[19], land surface phenology monitoring and biomass [29, 30]. Studies combining daily, 
near-surface camera imagery (hereafter, ‘PhenoCam’) with 16-day satellite remote sensing 
imagery in drylands demonstrate the need for assessing metrics at multiple intervals in space 
and time [31, 32]. Due to differences in spatial and temporal resolution, satellite remotely 
sensed estimates of phenology do not always agree with near-surface measurements [32, 
33, 34]. Disagreements between near-surface and satellite measurements may be 
exacerbated by issues of low vegetation cover, species composition (e.g., grass versus 
shrub) and high spatial and temporal variability in arid environments [3], as satellite 
measurements do not consistently detect green-up onset at low percentages of fractional 
cover [18].
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Near-surface remote sensing data that have been available for dryland locations in the 
southwestern U.S. since 2014 have been used to quantify species and land surface 
phenology [15, 17, 32]. Data derived from PhenoCam time series images on the PhenoCam 
Network are more finely resolved than 30-m pixels in HLS time series, depict daily patterns 
in vegetation greenness, and are available on every continent [35]. Near-surface PhenoCam 
time series can potentially fill gaps in less-frequent, moderate resolution satellite time series 
for phenology monitoring, albeit with a few limitations [15]. Phenological metrics from 
satellite remote sensing have been coupled with ground-based measurements in a New 
Mexico desert grassland to reveal species-specific patterns in correspondence [15, 
32].  Browning et al. [15] found that PhenoCam estimates for start of season for Bouteloua 
eriopoda, a C4 stoloniferous perennial grass, were not detected until grasses reached 25% 
foliar cover, which could occur up to 60 days after plants produced new green culms (stems 
and leaves). Conversely, PhenoCam estimates for start and end of season for Prosopis 
glandulosa, a C3 deciduous shrub, were within 7 days of field-observed start of season 
denoting production of new leaves.

Precipitation is the primary driver of aboveground biomass and productivity in this water-
limited ecosystem with multi-year dry and wet periods differentially affecting grass and 
shrub biomass [14]. High inter-annual variability in precipitation timing and amount 
negatively affects grassland productivity, thereby decreasing resilience of grass-dominated 
states, whereas shrub productivity may increase following grass loss [36]. In water-limited 
arid ecosystems, it is important to consider plant responses during both resource-rich wet 
periods and intervening resource-limited dry periods [37, 38]. Currier and Sala [17] 
experimentally manipulated rainfall variability and estimated start and end of season for 
Bouteloua eriopoda grass and Prosopis glandulosa shrub using near-surface remote 
sensing. While precipitation was the primary driver of grass green-up and senescence, shrub 
green-up and senescence were insensitive to precipitation. In an analysis of phenology data 
over 23-years at the same site, Browning et al. [16] observed shrub green-up in March in 
over 65% (or 59) site-years spanning 1993 and 2015. Conversely, grass green-up was 
bimodally distributed across months with drought years associated with later green-up for 
grasses. There may be insight from differential responses to drought between grass and 
shrub species.

This study aimed to explore whether the presence of herbaceous productivity exhibits 
distinguishing phenological characteristics that can serve to monitor ecosystem function and 
identify ecological state change in drylands. To achieve this goal, we used remotely sensed 
image time series data from PhenoCam and HLS to derive phenological metrics and 
examine differences in ecosystem response between grass- and shrub-dominated ecological 
states in an arid rangeland.

We aimed to answer the following questions: 
1. Do different ecological states exhibit distinct patterns expressed through phenological 

metrics? Do phenological metrics differ as derived from PhenoCam and HLS time-
series?

2. Do ecological states with herbaceous productivity (or grass-dominated ecological states) 
show unique phenological properties compared to shrub-dominated ecological states? If 
yes, are differences equally discernable across both image platforms - PhenoCam and 
HLS?
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3. For each ecological state, does precipitation affect how these phenological patterns are 
expressed?

Based on previous research of shrub and grass phenology, we expected that shrub-
dominated and grass-dominated state classes would exhibit differences in phenology, and 
that those differences would be discernible using PhenoCam GCC and HLS EVI [15]. With 
respect to rainfall, we expected that grassy or grass-dominated states would exhibit greater 
inter-annual variability in phenological metrics, with later green-up and lower EVI 
amplitude in drought years, while shrub-dominated states would exhibit more consistent 
phenological responses across wet and dry years [16, 17].

2. Materials and Methods

2.1 Study Design
This study considered 12 different locations in southern New Mexico, representing 4 
different ecological state classes. We used near-surface camera imagery and satellite 
imagery to obtain vegetation greenness time-series at 12 sites across multiple years between 
2014 and 2022. Based on these time-series data, we calculated phenological metrics for each 
site-year. We identified site-years as wet, dry, or average as described in Section 2.3. We 
used ANOVA models to test for differences in phenological response across ecological 
state, imaging sensor, and rainfall. Each of these data collection, processing, and analysis 
steps is discussed in more detail in the following sections.
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Fig. 1. Study design and analysis flowchart.

2.2 Study Site

This study was conducted on the Jornada Experimental Range (JER) in southern New 
Mexico, a 300 square mile outdoor laboratory established in 1912 and administered by the 
U.S. Department of Agriculture Agricultural Research Service [39]. This research focused 
on the twelve locations within the JER that contribute data to the PhenoCam network (Fig. 
2). Long-term mean annual rainfall between 1915 and 1995 is 245.1 mm with 50% 
occurring during the months of July, August, and September.  The mean air temperatures 
range between 3.8° C in January and 26.0° C in July [40].
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Fig 2. Map of twelve PhenoCam locations on the Jornada Experimental Range in southern 
New Mexico at the northern extent of the Chihuahuan Desert (gray outline) in inset image 
on bottom left. Grid on the bottom right shows wet, average, and dry year labels at 
PhenoCam sites from 2014-2022, based on total spring and summer precipitation (April 1 
through September 30) across rain gauges in the JER.
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Sandy soils in the study area are undergoing state change characterized by shrub 
encroachment into grasslands formerly dominated by Bouteloua eriopoda (black grama) 
with sub-dominant Muhlenbergia porteri (bush muhly) and Sporobolus flexuosus (mesa 
dropseed) perennial grass species. The deciduous shrub Prosopis glandulosa (honey 
mesquite) has increased in dominance on sandy soils, while, on gravelly soils, shrub 
encroachment is more advanced, leading to homogeneous shrublands dominated by the 
evergreen Larrea tridentata (creosote bush) [11, 41].

All ecological site and state classifications were determined using field-collected data. 
Within the twelve study sites, we considered four ecological state classes on two ecological 
sites that represent varying degrees of shrub encroachment with either honey mesquite or 
creosote bush present at all locations. This amounted to 12 PhenoCam locations across four 
ecological states, which included: deciduous shrub-invaded grassland on sandy soils (4 
locations), grassy deciduous shrubland on sandy soils (2 locations), deciduous shrubland on 
sandy soils (4 locations), and evergreen shrubland on gravelly soils (2 locations). Grass-
dominated states have more grass and less shrub biomass than shrub-dominated states with 
more exposed bare ground. See Table 1 and Fig. 3 for details and PhenoCam images for the 
study locations. 

Table 1. PhenoCams on the Jornada Experimental Range (JER) in southern New Mexico 
used in this analysis through 2022. Ecosystem Dynamics Interpretive Tool (EDIT) code 
refers to ecological site descriptions for MLRA 42B (Southern Rio Grande Rift), LRU 42BB 
[42]. Links to associated ecological site descriptions are provided in Supp. Table S1.

Camera 
Number

PhenoCam Name Ecological 
Site

EDIT Ecological 
Site Code

Ecological 
State

Dominant 
Species

Years 
of 
Data

1 ibp Sandy R042BB012NM Shrub-
invaded 
grassland

Black 
grama, 
honey 
mesquite

9

2 jergrassland Sandy/
Shallow 
sandy

R042BB012NM/
R042BB015NM

Shrub-
invaded 
grassland

Black 
grama, 
honey 
mesquite

3

3 jergrassland2 Sandy R042BB012NM Shrub-
invaded 
grassland

Black 
grama, mesa 
dropseed, 
honey 
mesquite

1

4 NEON.D14.JORN.DP1.00033 Sandy R042BB012NM Shrub-
invaded 
grassland/
grassland

Black 
grama, 
honey 
mesquite

5

5 jernovel Sandy R042BB012NM Grassy 
shrubland

Honey 
mesquite, 
bush muhly

3

6 jernovel2 Sandy R042BB012NM Grassy 
shrubland

Honey 
mesquite,

1
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bush muhly

7 jernort Sandy R042BB012NM Shrubland Honey 
mesquite

8

8 jernwern Sandy/
Sandy 
loam

R042BB012NM/
N/A

Shrubland Honey 
mesquite

5

9 jershrubland Sandy R042BB012NM Shrubland Honey 
mesquite

3

10 jershrubland2 Sandy R042BB012NM Shrubland Honey 
mesquite

1

11 jerbajada Gravelly R042BB010NM Shrubland Creosote 
bush

8

12 jersand Gravelly 
sand

R042BB024NM Shrubland Creosote 
bush

8
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Fig. 3. PhenoCam images collected at twelve sites in the JER on 1 September 2022.

We used the primary site description for two sandy ecological sites with secondary 
ecological site descriptions (2 and 9 in Table 1). Locations identified as predominantly 
gravelly ecological sites (11 and 12) were also analyzed together as gravelly ecological sites. 
Direct links to the EDIT digital database for site descriptions can be found in Supp. Table 
S1.

2.3 Precipitation
To consider precipitation as a factor in our analysis, we evaluated greenness responses from 
two platforms across four ecological state classes for wet, dry, and average years between 
2014 and 2022. The long-term mean (1989 - 2022) annual rainfall across selected rain 
gauges in the JER is 253 ± 74 mm, as calculated by monthly precipitation measurements 
from standard rain gauges located near PhenoCam sites [43, 44]. 

We examined seasons of precipitation to identify the best precipitation measure to use to 
model the phenological metrics from PhenoCam and HLS imagery (see next section); this 
analysis was done using R version 4.4.1 [45, 46]. Four seasons of precipitation were 
considered: winter (January 1-March 30), spring (April 1-June 30), summer (July 1-
September 30), and fall (October 1-December 31); as well as several combined seasons: 
winter-spring, spring-summer, summer-fall, and total annual rainfall. For each of the three 
responses (start of season, peak, and end of season) we used separate linear regression 
models to model the relationship with the eight candidate measures of precipitation. We 
assessed model fit with the second-order Akaike Information Criterion (AIC) [47] and 
considered models within 2 AICc units of each other to not perform significantly better. In 
addition to the eight regression models for each response, we also included a null model in 
each candidate model set to serve as a benchmark for assessing model fit. Total spring and 
summer precipitation was correlated with the greatest number of phenological metrics, and 
was used in this study as a measure of the wetness or dryness of each growing season.

Estimates of cumulative spring and summer precipitation at each of the sites were 
determined by summing the monthly precipitation from the nearest rain gauge for each site. 
In months where “trace” amounts of precipitation were recorded, a value of 5 mm was used 
for the calculation. Spring and summer precipitation were compared to the long-term mean. 
Each site-year was considered a dry year if the spring-summer rainfall was more than 0.5 
standardized mean differences below the long-term mean, and a wet year if the spring-
summer rainfall was more than 0.5 standardized mean differences above the long-term 
mean. All site-years within 0.5 above or below the long-term mean were considered 
average.

The long-term mean spring and summer rainfall, calculated across all sites from 1989-2022, 
was 171 ± 64 mm. There was considerable variability across rain gauges within and across 
years. 2020 was the only year for which all site-years were classified as dry, although most 
sites received low rainfall in years 2018 through 2020 (Fig. 2).

2.4 Remotely Sensed Annual Herbaceous Biomass
We obtained estimated annual herbaceous biomass data from version 3 of the Rangeland 
Analysis Platform (RAP; [24, 48, 49]).  RAP uses Landsat normalized difference 
vegetation index (NDVI) to estimate annual net primary productivity of annual and 
perennial forbs and grasses to 30m pixels across the contiguous United States.  To obtain 

D
ow

nloaded from
 https://spj.science.org on July 18, 2024



  Journal of Remote Sensing                                        Manuscript Template                                                                        Page 10 of 
30

biomass estimates at our PhenoCam locations during our period of interest (2014-2024) 
we averaged RAP pixels whose centroid occurred within a 45m buffer surrounding each 
Phenocam location. We then used a linear model to assess the effects of precipitation (dry, 
average, or wet), ecological state, and their interaction on annual biomass.

2.5 Time-Series Data
This study considered both near-surface digital camera imagery obtained from the 
PhenoCam network [50], and harmonized Landsat 8 and Sentinel-2 (HLS) satellite imagery 
[51]. The collection and processing of these data are described in the sections below.

2.5.1 PhenoCam Data
PhenoCam data for the 12 locations were obtained from the PhenoCam Network 2.0 [50]. 
At each of the 12 locations, a networked digital camera (StarDot Netcam SC 1.3 4 MP 
[StarDot, Buena Park, California, USA]) mounted approximately 6 m above the ground at 
a view angle of 20 degrees from the horizontal collects red, green, and blue (RGB) images 
every 15 minutes between 10 AM and 4 PM local time. Cameras were established at 
different times between 2013 and 2022 (Table 1).

A region of interest (ROI) containing a significant portion of the landscape was defined for 
each study site. For every image, the average canopy greenness, as defined by the green 
chromatic coordinate (GCC), was calculated over all of the pixels contained within the 
landscape-level ROI. GCC is given by the following equation:

𝐺𝐶𝐶= 𝐺/(𝑅+ 𝐺+ 𝐵) (1)
where R, G, and B are the average green, red, and blue reflectance values recorded by the 
camera [52]. Because the PhenoCams do not collect near-infrared (NIR) information, 
commonly-used vegetation indices like the Normalized Difference Vegetation Index 
(NDVI) and Enhanced Vegetation Index (EVI) cannot be calculated from these data. From 
the raw GCC values, the 90th percentile of the GCC was calculated over a 3-day moving 
window, as shown in Fig. 6 of [52]. Using the 90th percentile of GCC and smoothing to a 
3-day window helps reduce random noise in the GCC time-series that can occur due to 
variation in illumination conditions [50]. To obtain the final time-series data used in the 
analysis, the phenocamr R package was used to generate daily, smoothed GCC from the 3-
day data. This package uses an iterative method to detect and filter out spurious GCC 
values due to bright events like rain or snow, and an AIC-based methodology to find and 
the optimal locally estimated scatterplot smoothing (LOESS) window [53].

For each site-year, growing seasons and their associated phenological metrics were 
identified using a modified version of the algorithm used by Bolton et al. to detect land 
surface phenology from harmonized Landsat 8 and Sentinel-2 (HLS) imagery [54]. The 
search window for candidate growing seasons within a site-year was defined as the 24-
month period centered around that calendar year. Candidate growing season peaks within 
the search window were identified using the findpeaks function of the pracma R package 
[55]. In an iterative process starting with the smallest peak and ending with the largest 
peak, candidate peaks were eliminated if they occurred within 30 days of a larger peak or 
if the difference between the peak GCC and the pre- or post-peak minimum GCC was less 
than 35% of the total variation in GCC over the 24-month search window. Once valid 
peaks were identified, the days of pre- and post-peak minimum GCC (within 1 year of the 
peak) were identified and used to estimate start and end of season dates. The start of 
season (SOS) was the first day of the year after the pre-peak minimum when GCC was 
greater than or equal to 25% of the difference between peak GCC and pre-peak minimum 
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GCC. The end of season (EOS) was the last day of the year prior to the post-peak 
minimum when GCC was greater than or equal to 25% of the difference between peak 
GCC and post-peak minimum GCC. Although this method is similar to the threshold 
method used in other studies to determine SOS and EOS [15, 33], it differs slightly in that 
it is able to identify site-years where no growing seasons or multiple growing seasons 
occurred. SOS, EOS, and day of year (DOY) of peak were recorded for each valid 
growing season identified in each site-year. Instances of no peak or multiple peaks within 
a site-year were also recorded. For PhenoCam GCC, there were three site-years with no 
growing season: cameras 1 and 4 in 2018, and camera 2 in 2022. There were six site-years 
with two growing seasons: camera 5 in 2019, camera 4 in 2020, camera 3 in 2022, and 
camera 12 in 2016, 2019, and 2020 (Supp. Fig. S1).

2.5.2 Harmonized Landsat 8 and Sentinel-2 Data
The Harmonized Landsat 8 and Sentinel-2 (HLS) project is a NASA-produced data product 
consisting of 30 m multispectral surface reflectance every 2-3 days. Images from the 
Landsat 8 Operational Land Imager (OLI) are resampled into the 30 m Sentinel-2 tiling 
system and images from the Sentinel-2 Multispectral Instrument (MSI) are sampled into the 
30 m Sentinel-2 tiling system and adjusted to the Landsat 8 spectral response function to 
create a combined image time-series that draws from Landsat 8, Sentinel-2A, and Sentinel-
2B [54]. The HLS v2.0 L30 and S30 data products [56, 57], available over the study site 
from 2016-2022, were used for this analysis.

All HLS images for the 13SCS tile were downloaded and used to construct individual site 
time-series consisting of the 9-pixel square centered on each PhenoCam. Time-series data 
were cleaned using the Quality Assessment (QA) layer; pixels containing high aerosols, 
cloud, cloud shadow, or adjacent cloud were removed from the time-series. Enhanced 
Vegetation Index (EVI) values for each site were calculated using the cleaned data by 
averaging the 9 EVI pixels to represent a measure of canopy greenness over time. The 
equation for EVI is given below:

𝐸𝑉𝐼= 2.5 ×
𝑁𝐼𝑅 ― 𝑅

𝑁𝐼𝑅+ 6𝑅 ― 7.5𝐵+ 1 (2)
where R, B, and NIR are the red, blue, and near-infrared reflectance values. Although GCC 
was also considered, EVI was chosen over GCC for a couple of reasons. First, vegetation 
indices like EVI [30], 2-band EVI (EVI2) [34, 54], and NDVI [15, 24, 27, 28, 29, 33] are 
commonly used in MODIS, Landsat, and HLS vegetation analyses, while indices like GCC 
are less commonly used. Even in comparisons between satellite and PhenoCam, it is typical 
for phenological metrics derived from satellite EVI, EVI2, or NDVI to be compared with 
phenological metrics derived from PhenoCam GCC [15, 32, 33, 34]. Second, HLS-derived 
EVI values showed the greatest dynamic range over the growing season, compared to NDVI 
or GCC.

To obtain the final time-series data used in the analysis, locally estimated scatterplot 
smoothing (LOESS) with a span of 0.03 was used to estimate daily, smoothed EVI from 
the cleaned data. SOS, day of peak EVI, and EOS for all site-years were estimated using 
the same methods used for the PhenoCam data. In addition to these metrics, the value of 
peak EVI was recorded for each growing season. As with PhenoCam, instances of no peak 
within a site-year were recorded. For HLS EVI, there were eight site-years with no 
growing season: cameras 10 and 11 in 2016, cameras 1-4 in 2018, and cameras 2 and 3 in 
2022. There were no site-years with multiple growing seasons recorded.

2.6 Statistical Analysis
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We used ANOVA models to test for differences in four phenological responses: SOS, EOS 
DOY of peak GCC or EVI, and growing season length (GSL) for PhenoCam and HLS 
data. For site-years where multiple growing seasons were identified, we used the earliest 
SOS, latest EOS, and greatest peak and reported these instances by ecological state. Due to 
sample size imbalance between the sensors we used separate linear models for each sensor-
response combination. We modeled ecological state (3-4 levels, depending on the sensor), 
spring-summer rainfall (three levels), and their interaction as fixed effects and included a 
random effect for sensor when possible.

To assess differences between sensors we calculated the pairwise difference for each year 
the two sensors had in common, then used linear models to assess the effects of ecological 
state, rainfall, and their interaction on these differences. We used the emmeans R packages 
[58] to calculate least squares means and compare them with the Sidak method.  For all tests 
we used a significance level of 0.05.

3. Results

3.1 Remotely-Sensed Annual Herbaceous Biomass

Fig. 4. Least-squares means and standard errors in model-based estimates of herbaceous 
biomass across different ecological states and rainfall amounts. Means with the same letter 
are not statistically different at ɑ = 0.05.

Herbaceous biomass increased with increasing grass cover and with increasing rainfall (Fig. 
4). After accounting for rainfall, estimates of herbaceous biomass by state were 709 ± 32 
kg/ha for sandy shrub-invaded grassland, 398 ± 46 kg/ha for sandy grassy shrubland, 88 ± 
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33 kg/ha for sandy shrubland, and 203 ± 45 kg/ha for gravelly shrubland. The sandy shrub-
invaded grassland state, which has the highest percentage of grass cover, had a significantly 
higher annual herbaceous productivity than other ecological states. The sandy grassy 
shrubland state, which has the second highest percentage of grass cover, had a significantly 
higher annual herbaceous productivity than the sandy shrubland state. In addition, although 
herbaceous biomass at all states increased with increasing rainfall, sandy shrub-invaded 
grassland and sandy grassy shrubland showed the most significant differences in herbaceous 
biomass between wet and dry years.

3.2 Phenological Patterns Across Ecological States

Fig. 5. Least-squares means and standard errors of model-based estimates of SOS and EOS 
across different ecological states for HLS (left) and PhenoCam (right). Within a plot, means 
with the same letter are not statistically different at ɑ= 0.05.

With ecological state as a main effect, ANOVA models found that the most significant 
phenological differences across ecological states were in estimates of EOS (HLS: p = 
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0.0005; PhenoCam: p < 0.0001) and peak value of EVI (p < 0.0001). In addition, estimates 
of growing season length showed significant differences across ecological states (HLS: p = 
0.0397; PhenoCam: p = 0.0064), likely driven by SOS (HLS only) and EOS (HLS and 
PhenoCam). Estimates of SOS showed significant differences across ecological states only 
for HLS data (p = 0.0002; Fig. 5a). In the HLS data, the gravelly shrubland state had a later 
EOS than other states. In the PhenoCam data, the sandy shrub-invaded grassland state had 
an earlier EOS than other states in non-dry years (Fig. 5b). Finally, in the HLS data, the 
gravelly shrubland state had a later start of season than other states (Fig. 5a). This differs 
from the PhenoCam data, in which all ecological states have a similar SOS. In general, there 
was a lot of overlap in phenological timings measured across different ecological states, as 
well as a high amount of variability within each state class. Some of this variability may be 
explained by other factors, such as rainfall.

3.3 Phenological Patterns Across Wet, Dry, Average Years
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Fig. 6. Least-squares means and standard errors in model-based estimates of SOS, peak 
timing, EOS, and growing season length across different rainfall amounts for HLS (left) and 
PhenoCam (right). Within a panel, means with the same letter are not statistically different 
at ɑ= 0.05.
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With rainfall as a main effect, ANOVA models found significant differences across nearly 
all estimates of phenological metrics: SOS (HLS: p < 0.0001; PhenoCam: p = 0.0002; Fig. 
6a), peak DOY (HLS: p < 0.0001; PhenoCam: p = 0.0005; Fig. 6b), EOS (PhenoCam: p = 
0.0102; Fig. 6c), and growing season length (HLS: p < 0.0001; PhenoCam: p < 0.0001; Fig. 
6d), and peak value of EVI (p = 0.0014).

Dry years led to earlier SOS, earlier peak, and longer growing season for all states except 
sandy grassy shrubland (Fig. 6). Wet years led to an earlier EOS across all states, although 
the differences between dry-year and wet-year EOS were only statistically significant for 
sandy shrub-invaded grassland. The peak value of EVI across all states increased with 
increasing spring-summer rainfall, which matches the trend in increasing herbaceous 
productivity (Fig. 4).

3.4 Phenological Patterns Across Rainfall and Ecological States
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Fig. 7. Least-squares means and standard errors in model-based estimates of SOS, EOS, 
growing season length, and peak value of EVI across different ecological states and rainfall 
amounts for HLS (left) and PhenoCam (right). Within a panel, means with the same letter 
are not statistically different at ɑ= 0.05.
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The sandy shrub-invaded grassland state was most affected by spring and summer rainfall, 
presumably attributed to herbaceous biomass that showed the highest value in wet years 
(Fig. 4). Sandy shrub-invaded grassland state demonstrated clear and distinct differences 
between wet and dry years for SOS (Fig. 7a), EOS (Fig. 7b), growing season length (Fig. 
7c), and peak value of EVI (Fig. 7d).

The sandy shrub-invaded grassland state during dry or average rainfall years also comprised 
all but one of the site-years in which no growing season was detected. For the PhenoCam 
data, no growing season was detected in locations 1 and 4 in 2018 (dry year for both) and 
location 2 in 2022 (average precipitation, but significantly lower than the previous year). 
For the HLS data, no growing season was detected in locations 2 and 3 in 2018 (dry year 
for both) and 2022 (dry year for location 3, average precipitation for location 2, but 
significantly lower than the previous year), and location 10 in 2016 (average precipitation, 
but lower than surrounding years). Except for location 10, which is sandy shrubland, all 
site-years with no growing season were sandy shrub-invaded grassland states. Three of the 
six instances where two growing seasons were detected in PhenoCam data were also grass-
dominated states in dry years: location 5 (sandy grassy shrubland) in 2019, location 4 (sandy 
shrub-invaded grassland) in 2020, and location 3 (sandy shrub-invaded grassland) in 2022.

3.5 Phenological Patterns Across Sensors
Estimates of SOS (p = 0.0011) and EOS (p = 0.0091) differed between HLS and PhenoCam 
across different ecological states. For gravelly shrubland states, HLS estimated a later SOS 
(168 ± 10) than PhenoCam (110 ± 10), particularly in non-dry years (Fig. 6). PhenoCam 
and HLS estimates of EOS also differed slightly across different states; sandy shrubland 
sites had an earlier EOS for HLS (336 ± 4) than for PhenoCam (342 ± 7), while sandy shrub-
invaded grassland and gravelly shrubland sites usually had a later HLS-estimated EOS 
(sandy shrub-invaded grassland: 329 ± 4; gravelly shrubland: 355 ± 5) compared to 
PhenoCam (sandy shrub-invaded grassland: 304 ± 4; gravelly shrubland: 329 ± 4).

Comparisons between several of the gravelly shrubland site-years are shown in Supp. Fig. 
S2. For gravelly shrubland states, the PhenoCam data show small early-season bumps in 
GCC that are less pronounced in the HLS EVI for these sites. These differences in relative 
peak magnitude may be due to differences between the spectral indices. GCC has a lower 
dynamic range compared to EVI; it tends to saturate at higher levels of canopy greenness, 
and also reaches its minimum value before vegetation has finished senescing [52]. The 
estimates of peak DOY also differed between HLS and PhenoCam for a number of sites. 
These differences can be explained by the phenological curves for these years (Supp Fig. 
S3); all had a long period of near-peak greenness.

4. Discussion 
In this study, we evaluated the ability of two remotely sensed image time series to detect 
differences in ecosystem function between different ecological states in arid rangelands. We 
quantified differences between phenological metrics calculated from PhenoCam and HLS 
time-series across different states, focusing on whether grass-dominated states express 
phenological patterns differently from shrub-dominated states. We also examined how 
growing-season phenology for all states differed between wet and dry years.

The unique contributions of this work are multiple. First, this study has a greater geographic 
scope compared to previous studies doing similar work; while other researchers have used 
remotely sensed imagery to evaluate dryland phenology [15, 17], they considered plants 
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within a single location rather than at multiple locations. Second, this study considers 
phenological responses at the landscape level, rather than at the level of individual plants. 
Evaluating landscape responses at multiple locations allows for a stronger, more compelling 
comparison between PhenoCam- and satellite-derived time-series data, since most satellites 
are not able to resolve individual plants. Finally, this study considers a higher spatial and 
temporal resolution satellite image source - HLS. While an increasing number of studies are 
using HLS for broader-scale land-surface phenology monitoring [54] or even for rangeland-
specific mapping and monitoring [27], most studies like this one that compare phenology 
across multiple sensors have used coarser spatial resolution or less frequent satellite imagery 
than that of HLS [31, 32].

4.1 Phenological Patterns Across Ecological States
Ecological site and state affected estimates of EOS timing and growing season length in 
both datasets, and SOS timing and peak value of EVI in HLS data. In most cases, sandy 
shrub-invaded grassland states were the most distinguishable from other ecological states.

For PhenoCam specifically, sandy shrub-invaded grassland states had an earlier end of 
season than sandy or gravelly shrubland states in non-drought years. Sandy shrub-invaded 
grassland states also had a shorter growing season in non-drought years, driven by the earlier 
end of season. This finding is consistent with prior research on the green-up response and 
growing season length of shrubs and grasses at the JER [17]. The creosote bush-dominated 
gravelly shrubland states (11 and 12 in Fig. 3) proved more difficult to distinguish from 
other states, as there was a large spread in start of season estimates from both sensors, as 
well as disagreement between PhenoCam and HLS on the mean SOS timing for these site-
years. The difficulty in estimating phenological metrics for the gravelly shrubland states is 
attributed to the evergreen nature of creosote bush, which maintains a baseline level of 
greenness throughout the year and often displays subtle shifts in greenness in response to 
deep soil moisture [59].

From the HLS data, the peak value of EVI varied across ecological states. Sandy shrub-
invaded grassland states exhibited a much higher value of EVI than either type of shrubland 
site during wet years (Fig. 7d), which is consistent with the higher ground cover percentage 
of grasses compared to shrubs (visible in Fig. 3) as well as the documented grass 
responsiveness to rainfall [17, 60]. Sandy shrubland states demonstrated the lowest peak 
values of EVI across all rainfall conditions.

4.2 Phenological Patterns Across Wet, Dry, Average Years
Combined spring and summer precipitation was strongly correlated with estimates of start 
of season, growing season length (driven by start of season), and peak timing for time-series 
data derived from both PhenoCam and HLS. Across nearly all states and both sensor types, 
SOS and peak DOY occurred later during wet years and earlier during dry years, and EOS 
occurred slightly earlier during wet years. Although an earlier start of season during dry 
years seems counter-intuitive, we attribute it to the method of calculating start of season 
based on a threshold of 25% of the peak value. Drier years tended to have smaller peaks in 
GCC or EVI relative to baseline values, meaning that the VI threshold required to reach 
25% of the scaled maximum was lower in dry years than in wet years and therefore easy to 
reach with even small increases in greenness. Even after eliminating peaks below the 
minimum required magnitude, most study locations still showed significant year-to-year 
variation in peak greenness.
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For HLS data, the peak value of EVI was higher on average in wet years than in dry years. 
This difference in peak EVI between wet and dry years was most significant in sandy shrub-
invaded grassland states and second most significant in sandy grassy shrubland states, which 
corresponds with precipitation-driven increases in herbaceous biomass for these grass-
dominated states. 

While we found promising correlations between total spring-summer precipitation and 
phenology, we acknowledge limitations in our analysis that are common with studies of 
vegetation dynamics in water-limited systems. First, precipitation in this region is highly 
spatially heterogeneous, meaning that precipitation measured at a rain gauge over 2,000 m 
away from a PhenoCam may not be representative of the rainfall at that PhenoCam location. 
Second, our labels of wet, dry, and average depended only on spring and summer rainfall. 
While this decision was based on a statistical analysis that showed high correlation between 
spring-summer rainfall and multiple phenological metrics, precipitation events outside of 
the spring and summer months influence soil water recharge that can influence phenology 
more for deeper-rooted species such as shrubs. For example, winter precipitation was found 
to be correlated with shrub SOS and peak timing in this study, and has also been linked to 
grass green-up by other researchers [17]. Additionally, multiple studies suggest that soil 
moisture - which is influenced by precipitation seasonal timing and temperature (which both 
affect evaporation), and size of precipitation events (which determines depth of water 
penetration into the soil) - may be more important than total precipitation for influencing 
vegetation greenness and productivity [13, 59, 61, 62]. Given these complexities, it is likely 
that exploring the link between precipitation and phenology using a moderate- to fine-
resolution gridded data product for precipitation might yield additional or more refined 
insights.

We also show that plant communities can exhibit multiple greening and browning cycles in 
a year. Precipitation responses likely contributed to the multimodality in the phenology, 
which were particularly visible in grass-dominated (i.e., sandy shrub-invaded grassland, 
sandy grassy shrubland) states during dry years (e.g. Supp. Figure S1). Grass-dominated 
ecological states were also clearly conspicuous, with rapid increases in greenness in wet 
years (see Fig. 7c and 7d).

4.3 Ecological State Interactions with Rainfall and Sensor
4.3.1 Sandy Shrub-Invaded Grassland

Sandy shrub-invaded grassland states appeared to respond most strongly to spring-summer 
rainfall, with differences of 134.7 ± 24.9 days (PhenoCam) or 106.7 ± 20.7 days (HLS) 
between mean SOS estimates for wet and dry years, differences of 58.2 ± 11.8 days 
(PhenoCam) or 29.5 ± 10.0 days (HLS) between mean EOS estimates for wet and dry years, 
and differences of 193.0 ± 30.1 days (PhenoCam) or 136.2 ± 23.8  days (HLS) between 
mean growing season length estimates for wet and dry years. These differences are greater 
than for any other ecological state (Fig. 7). This finding is consistent with our understanding 
that dryland grasses are more responsive to short-term changes in water availability than 
shrubs, due in part to differences in root structure [17, 63]. The effect of spring-summer 
rainfall on peak value of EVI was also most pronounced in sandy shrub-invaded grassland 
sites, with a mean peak value of 0.590 ± 0.0187 in wet years and a mean peak value of 0.327 
± 0.0295 in dry years. These statistics do not include dry years in which no growing season 
was detected, which comprised the majority of no-peak site-years and tended to have even 
lower peak EVI. This confirms prior work indicating that growing-season precipitation is 
more important to the photosynthetic activity of grasses than shrubs at arid sites [32]. The 
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dynamic nature and positive response to rainfall can be an effective indicator of herbaceous 
productivity, which is confirmed by the high RAP estimates of herbaceous biomass for 
sandy shrub-invaded grassland states (Fig. 4).

4.3.2 Sandy Grassy Shrubland
Due to a low sample size, sandy grassy shrubland states were only analyzed using HLS data. 
These states diverged slightly from other ecological states in terms of SOS, which was latest 
during average rainfall years (Fig. 7), and peak timing, which was similar across all rainfall 
years. Although these differences may be due to differences in ground cover and 
productivity, it is much more likely that these differences are due to a low sample size for 
this state, which consisted of two study sites with only two wet site-years during the period 
of HLS coverage. When looking at the herbaceous biomass estimates (Fig. 4), which cover 
two additional years and add two more wet site-years to the analysis, the sandy grassy 
shrubland state appears to be in line with other ecological state responses to rainfall. It is 
expected that with a greater number of site-years for this state, its responses to rainfall would 
fall somewhere between those of sandy shrub-invaded grassland and sandy shrubland, in 
line with the different amounts of grass cover for each of these ecological states.

4.3.3 Sandy Shrubland
In general, sandy shrubland states appeared to respond least strongly to spring-summer 
rainfall, with statistically insignificant differences between wet- and dry-year estimates of 
SOS, EOS, growing season length, and peak value of EVI. As discussed in Section 4.1.2, 
some of this may be due to the choice of spring and summer rainfall for the precipitation 
metric - rainfall during other times of the year, like winter, may be more influential for shrub 
phenology than for grass phenology [17]. However, some of this lack of response to spring 
and summer rainfall may be due to lower overall peak greenness and productivity in 
mesquite shrubland sites compared to grassier sites (Figs. 4 and 7).

4.3.4 Gravelly Shrubland
PhenoCam and HLS estimates of start of season diverged for gravelly shrubland states, with 
HLS estimating a later start of season than PhenoCam (Fig. 7). For these creosote bush-
dominated gravelly shrubland sites, later satellite SOS may be due to a combination of 
factors. First, differences in spatial resolution between sensors - the 30-m HLS pixels 
contain more bare ground than the PhenoCam photos, leading to a higher spatial variability 
overall and a potentially less pure greenness signal [3]. Second, creosote bush is evergreen, 
exhibiting a baseline level of greenness throughout the year that makes growing season 
green-up events more difficult to detect [59]. Finally, there are differences between EVI and 
GCC. GCC tends to saturate at high values of canopy greenness [64], meaning that the 
smaller early-season peaks in greenness present in the gravelly shrubland time-series are 
more prominent relative to the larger later-season peaks for GCC, compared to EVI. Studies 
looking at GCC suggest that changes in GCC correspond to changes in canopy structure at 
the start and end of the growing season [65], and changes in leaf color and pigmentation 
when gaps in the canopy are unchanging [65, 66]. Meanwhile, EVI is sensitive to leaf 
structure and changes in leaf area index (LAI) [67, 68], which continues to increase until 
late spring for evergreen plants. Peak EVI and herbaceous productivity for gravelly 
shrubland states were greater than for sandy shrubland states, but less than for sandy shrub-
invaded grassland.

4.4 Implications and Future Work
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Wet years yielded significant differences in phenological response for all ecological states 
- with later SOS, later peak, higher peak value of EVI, and shorter growing season length. 
Sandy shrub-invaded grassland states with the highest amount of grass cover exhibited the 
greatest differences in peak EVI, SOS, and EOS between wet and dry years. We also found 
that rapid spikes and high peaks in image time series to be a reliable indicator of the presence 
of grass or herbaceous productivity, a pattern that was clearest in wet years (Fig. 7c and 7d). 
We propose that presence of spikes in productivity, high peak vegetation index values, and 
shorter growing seasons in wet years can be used to identify grass species presence  in 
conjunction with other remote sensing data. Coupling these proposed indicators with field 
assessments can enhance capabilities to identify ecological state change and monitor 
ecosystem function (e.g., higher or lower productivity). The “high peak” property in 
greenness can potentially serve as an indicator of herbaceous productivity in the context of 
multiple years. 

Due to differences in rainfall response between states, it is easiest to use phenological 
metrics to distinguish between grass-dominated (e.g., shrub-invaded grassland and sandy 
grassy shrubland) and shrub-dominated (e.g., shrubland) states during periods of above-
average rainfall [32]. During periods of drought, however, using phenological metrics to 
distinguish between grass- and shrub-dominated states is more challenging due to the 
already low dynamic range in arid rangeland vegetation greenness. The high year-to-year 
variability and significant overlap between phenological metrics for different ecological 
states, especially during dry years, may make it difficult to discern ecological site and state 
based only on remotely sensed phenology [69, 70]. However, by comparing metrics across 
different sensors, or by looking at the same site over a period of multiple years, we can 
improve our ability to discern between ecological function and phenology at different 
locations.

In the future, we would like to refine the hypotheses and algorithms to capture and evaluate 
the higher level of dynamism in grass-dominated states, which would require longer time 
series and ideally involve additional sites. In order to evaluate time-series spikiness, we 
would consider additional phenological metrics, like slope of green-up and senescence, as 
well as cumulative or integrated measures of greenness. In addition, we plan to explore 
quantitative methods to characterize the shape of the phenological profiles and use those to 
discern between different ecological sites and states.

4.5 Conclusions
Global drylands are susceptible to ecological state change. With added pressure from 
climate, these vast and often remote dry landscapes require remote sensing methods to 
detect and ideally ameliorate abrupt state change. We examined the utility of greenness 
time series from PhenoCams and satellite to determine whether grass-dominated 
ecological states exhibited distinguishing phenological properties, and how phenological 
metrics differed across platforms and between wet, average, and dry rainfall years. There 
were three notable findings from this study. Metrics for start and end of season for 
evergreen shrubland states were difficult to estimate because their year-round greenness 
makes seasonal changes in photosynthetic activity difficult to discern relative to the 
baseline value. Patterns in phenological metrics from PhenoCam and HLS time series 
were similar with greater detail in PhenoCam time series. There were interactions between 
ecological states and rainfall years, indicating differential responses to rainfall variability. 
Deciduous mesquite shrublands on sandy soils were insensitive to rainfall amount. Grass-
dominated ecological states exhibited the strongest phenological responses to wet rain 
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years via higher peak greenness, later start of season and shorter growing season. Rapid, 
high peaks in greenness were attributed to grass or herbaceous responses. These properties 
can be used as indicators of grass productivity and indicators of ecological state change in 
drylands.
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