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Abstract—The problem of detecting the presence of a signal
that can lead to a disaster is studied. A decision-maker collects
data sequentially over time. At some point in time, called the
change point, the distribution of data changes. This change
in distribution could be due to an event or a sudden arrival
of an enemy object. If not detected quickly, this change has
the potential to cause a major disaster. In space and military
applications, the values of the measurements can stochastically
grow with time as the enemy object moves closer to the target. A
new class of stochastic processes, called exploding processes, is
introduced to model stochastically growing data. An algorithm
is proposed and shown to be asymptotically optimal as the mean
time to a false alarm goes to infinity.

I. INTRODUCTION

In the problem of quickest change detection (QCD), a
decision maker collects a sequence of measurements. The
values in the sequence are seen as a realization of a stochastic
process. It is assumed that the law of this stochastic process
initially follows a distribution that is believed to be normal.
At some point in time, called the change point, the statistical
properties of the measurements or the law of the process
changes. The goal of the QCD problem is to detect this
change in distribution as quickly as possible while avoiding
many false alarms [1]-[3]. The most common change point
model is the abrupt and persistent change model [4]-[9]. In
this model,the law of the process abruptly changes at the
change point and persists with that new law forever. For
example, in Fig. 1, we have plotted the mean values of a
sequence of Gaussian random variables. At the change point
(80 in the figure), the mean abruptly changes from O to 4
and stays at 4 forever.

In some military and space applications, the post-change
law can have an exploding nature. Space scientists are
concerned with the detection of debris or other hazardous
objects approaching a satellite and destroying it (see Fig. 2).
As the target object rapidly approaches the satellite, the mean
of the measurements will have an exploding nature as shown
in Fig. 3. Another classical example is enemy object detection
in military applications. As a missile approaches a target or
a torpedo approaches a submarine or ship, the values of the
measurements are expected to increase with time.
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Fig. 1: Classical abrupt change point model.
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Fig. 2: Space scientists are concerned with debris or other
hazardous objects approaching a satellite and destroying it.
A missile (or torpedo) can quickly approach a target (or sub-
marine) and destroy it. Source: https://images.google.com/.
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Fig. 3: In some space or military applications, the post-
change measurements can have an exploding effect (linear,
super-linear, or sublinear). The values of measurements can
stochastically increase as the enemy object comes closer.



In this paper, we propose a new class of stochastic
processes to capture the stochastically growing nature of a
process. We then obtain an optimal algorithm for detecting
a change in distribution in this new class of processes.

II. MODEL AND PROBLEM FORMULATION
A. Data Model

We introduce a new class of stochastic processes defined
to model exploding nature of the post-change process:

Definition 1: We say that a process {X,, },>1 with densi-
ties { fn }n>0 is an exploding process if

1) {X,} are jointly independent,

2) X ~ fn 1, VTL

3) f"”’é(;”) is increasing in z, Vn. We use f, < fn+1 to

denote this monotone likelihood ratio (MLR) order.

If fny1 = fn, for all n, then we get an independent
and identically distributed (i.i.d.) process. Note that MLR
dominance implies stochastic dominance [10]:

/Oo fn(m)dx < /OO fn+1(l’)d$, Y, n.

B. Change point model

We assume that before change, data is i.i.d. with density
g < fo, and after change, an exploding process with sequence
{fn}n>0 of densities. Mathematically, there is a discrete-time

v such that
X, ~ 9,
fr—v

Here we have used the notation X ~ f to denote that the
random variable X has law f. Note that the post-change
density of an observation depends on the location of the
change point v. Our goal is to detect this change as quickly
as possible, subject to a constraint on the rate of false alarms.

Vn < v,
Vn > v.

C. Problem Formulation

To solve the change detection problem, we are interested
in two popular minimax formulations for the quickest change
detection. To state the formulations, we define, for 1 < v <
o0, E, as the expectation when the change occurs at time v.
We consider the problem formulation of Lorden [11]:

min  sup ess sup E,[(T — v+ 1)T|Xy,..., X, 1],
T v>1
subj. to  Ex[7] > 7,
ey

where ~ is a constraint on the mean time to a false alarm.
We will also consider the formulation of Pollak [12]:

min sup E,[r —v|T > ],
Toovzl (2)
subj. to  Euo[T] > 7,

where again v is a constraint on the mean time to a false
alarm.

III. CANDIDATE ALGORITHM: EXPLODING CUMULATIVE
SUM ALGORITHM

We propose to use the following exploding Cumulative
Sum (EX-CUSUM) statistic for change detection:

_ - fik(X5)
Wn = 11%1]?%(71 L log m (3)
fi—re(Xi)

The term )., 1 Sixy is the log-likelihood ratio of
the observations between post-change and pre-change distri-
butions, conditioned that the change occurs at time k. Since
we do not know the change point, we take the maximum of
all possible values at time n, i.e., 1 <k < n.

In the above statistic, note that the likelihood ratio of an
observation X; at time ¢,

fiek(X5)
g9(Xi) 7

depends on the relative distance ¢ — k between time 7 and
the hypothesis & of the change point. It is because of this
reason the EX-CUSUM statistic is not a special case of the
generalized CUSUM statistic of Lai [6].

To detect the change in law from i.i.d. with law g to
an exploding process {f,}, we stop the first time the EX-
CUSUM statistic is above a threshold A:

=inf{n >1: W, > A}. “4)

We select the threshold A to control the rate of false alarms:
the higher the threshold, the smaller the mean time to a false
alarm E.[7e.] (this fact will be formally proved below).

Our goal in this paper is to characterize conditions under
which the EX-CUSUM algorithm is asymptotically optimal
for Lorden’s and Pollak’s problems in (1) and (2).

IV. ASYMPTOTIC LOWER BOUND ON THE PERFORMANCE

A. Lai’s Asymptotic Lower Bound

In [6], Lai reported a general minimax theory for the
quickest change detection. We first review it and discuss its
limitations.

It is assumed in [6] that the pre-change densities are

fo(Xi|X1,...,X;_1) at time ¢ and the post-change densities
are f1(X;|X1,...,X;—1) giving us the log-likelihood ratio
Xl Xq, ..., X,_
Zizlogfl( X 1).
Jo(Xi| X1, .., Xio1)

Note that the densities are general conditional densities
allowing for data dependence but are not a function of the
hypothesis on the change point (as defined in the paper). Lai



showed that if Z;s are such that there exists an information
number [ > 0 satisfying

v+t
. S
lim sup ess sup P, <I{1§ag<2:Zz >I(1+0)n

n—oo ;,>1

&)
Xla s ?Xl/—l) = 07
then we have the universal lower bound as v — oo,
min sup ess sup E,[(T — v+ 1)T|Xy,..., X, 1]
T v>1
> min sup E [Tt —v|T > v
= minsup B[r—vjr 2] (©)
lo
> f”(l +o(1)).

Here the minimum over 7 is over those stopping times
satisfying E[7] > 7. Lai further showed that under certain
additional conditions on the Z;s, the generalized CUSUM
algorithm,

n
max

1<k<n 4
i=k

TcmiH{TLZlS ZiZIOg(’Y)}v

is asymptotically optimal for both Lorden and Pollak’s prob-
lems. Specifically,
Ewolre] > 7.

Further, if Z;s satisfy

k+n
1
li P, — g Z; <I—-96
1m sup €SS sup (n 2 S

n—oo k>v>1

XX ) 0.

(7N
then as v — oo, 7. achieves the lower bound:
sup ess sup E, [(7c — v+ 1) X1, ..., X,1]
v>1
> 8)
1 (
<X (1+0(1), 7 o0,

It is not clear if these results are valid for the exploding
process setting because in the latter setting likelihood ratios
do depend on where the change point is. We discuss this
next.

B. Sufficient Conditions for Change Point Dependent Likeli-
hoods

In this section, we extend Lai’s results to the case of
change point-dependent likelihoods. We continue to allow
data dependence across time to state the more general result.
Define the log-likelihood ratio at time n when change occurs
at v as

fn,V(Xn|X1a .. aXn—l)

fo(Xn|Xq,. .. '

Zn, = log X
sy An—1

Theorem 4.1:

1) Let there exist a positive number I such that the bivari-
ate log likelihood ratios {Z, ,} satisfy the following
condition:

v+t
. S
lim sup ess sup P, <Igl<azcz Ziy, > I(140)n

n—r oo v>1

‘Xl,...,X,_1> =0,

9
Then, we have the universal lower bound as v — oo,
min sup ess sup E,[(7 — v+ 1)T|X1,..., X, 1]
T v>1
>  min sup E, [ —v|T > V]
T v>1
lo
> §7(1 +o(1)).

(10)

Here the minimum over 7 is over those stopping times
satisfying Eoo[7] > 7.
2) The following modified generalized CUSUM algorithm,
max
1<k<n
==k

Tmc:min{nZL

Ziy > 10g(7)} ;

satisfies
Eoo[Tme] = -
3) Let the bivariate log-likelihood ratios {Z,, , } also satisfy

k+n
. 1
lim sup esssup P, <n Z:k Zipy <I—96

n—oo k>v>1

‘Xl,...,Xk1> =0.

(11)
Then as v — 00, Ty, achieves the lower bound:
sup ess sup E,[(Time — v+ D)1 X1,..., X, 1]
v>1
1
< O}gv(l +o0(1)), v— o0.
(12)

Proof: The lower bound result goes through by replacing
Zis by Z, s in [6]. This is because the proof relies on a
change of measure argument to get the lower bound. Since
the likelihood ratios here are a function of Z, ,, the same
change of measure argument works. The proof of detection
delay also goes through provided the above conditions are
satisfied and everywhere Z; are replaced by Z; ;. It is not
clear to the authors whether Lai’s proof for the mean time to
a false alarm result can be extended to the time-dependent
setting. But, one can use another technique based on the



Shiryaev-Roberts statistic and optional sampling theorem.
The arguments will be provided in a detailed version of the
paper. ]

While presenting this paper, the authors were made aware
of another paper [13] in which more general sufficient
conditions for optimality (more general than those in [6])
have been established.

V. OPTIMALITY OF EX-CUSUM ALGORITHM

In this section, we first simplify the conditions in Theo-
rem 4.1 for exploding processes as defined in Definition 1.
We then provide additional comments on the simplified
conditions to guarantee the optimality of the EX-CUSUM
algorithm.

A. Simplifying Lower Bound Condition for Exploding Pro-
cesses

In the theorem below, we show that the lower bound
condition (9) can be simplified in the case of exploding
processes.

Theorem 5.1: To satisfy

v+t
iy >
<Itn<a2{2 Ziy, > I(140)n

lim sup ess sup P,
n—oo v>1
- (13)
‘ Xl,...,Xl,_1> =0
for some 0 < I < oo, it is sufficient that
X
*szl— Zl fk 1 k — I, a.s. under P;.

Proof: Because of independence, we have

v+t
P>
(r;gzcz Ziy > I(1+6)n

X)
>I(1+ 6)n> .

Since likelihood ratios are Computed relative to the change
point v, the probability on the right is not a function of v.
This implies

sup ess sup P,
v>1

sup P,
v>1

v+t
(maleog /i (l:)((l) i) > I(1+9) )

> I(1+ 5)n>

LSO 5))

Note that if the post-change process evolves differently for
different change points, then the above simplification may
not be true. Now, if

I i—1(X;
— Zlogfli() — I, a.s. under Pq,
n 9(Xi)
then
14t f
7 1
- Itn<aT>L(Z log =—==—— — I, a.s. under P;.

For proof of the above fact, see the Proof of Theorem 5.1 in
[14]. This proves the theorem because convergence almost
surely implies convergence in probability. [ ]

We still need to characterize conditions under which
I i—1(X;
L5 108 fi—1(X5)
n 9(X5)

for an exploding process. This will be done in Section V-D

— I, a.s. under Pq,

B. Controlling the False Alarm

In this section, we show that by setting the threshold A =
logy in the EX-CUSUM algorithm, the constraints on the
mean time to a false alarm can be satisfied. This is the content
of the next theorem.

Recall that

S fiek(X5)

W, = max log ,
9(X5)

1<k<n
=T =k
Tec = lnf{n >1:W, > A}
Theorem 5.2: Setting A = log(~y) ensures that

Eoo [Tec] > Y-

Proof: This proof technique is standard and has been
used, for example, in [3]. Because logarithm is monotonic
and the maximum of positive quantities is always less than
their sum, we have

. - Jimr(X5)
— > : - T 7
Tee = Inf {n >1 121152(71 2 log 90X > A

. T fik(Xi) a4
= > : R e——
inf {n >1 1211]3%(" .Iikl 9(X) >e

>inf{n>1: Z Hfl

1<k<n i=k

= Tesr-

The process

Roonim 30 [T EE)

1<k<n i=k



is a Po,-martingale. Assuming E[7.s.] < oo (otherwise the

false alarm constraint is trivially satisfied), we have
E[|Rn — nl; {Tesr > n}] < E [ + Ter; {Tesr > n}]
— 0, n—oo.

Thus, by Doob’s optional sampling theorem [15],

E [R‘resr - Tesr} = 07
and
E [Tesr] =E [RTesr] > e
Now, set A = log~ to complete the proof. ]

C. Simplifying Upper Bound Condition for Delay Analysis
of an Exploding Process

In this section, we simplify the condition (11) for explod-
ing processes. To complete this step, we need an intermediate
result.

Lemma 5.1: Let f(x1,xs,...,2,) be a continuous func-
tion increasing in each of its arguments, with other arguments
fixed. If {X,,} is a stochastic process generated according to
an exploding process, then for all n, m,¢,

P(f(Xn, Xnt1s---s Xnam) > 1)
S P (f(Xn+17 Xn+27 e 7Xn+m+1) Z ﬁ) .
Proof: The proof is a slight variant of a similar proof
found in [16]. Our proof requires an additional randomization
step. u

As in Theorem 5.1, we show below that an almost sure
condition is sufficient to satisfy the condition in (11).

(14)

Theorem 5.3: To satisfy, for all § > 0,

k+n
( Zsz<I )

‘xl,...,xk_1> ~0
(s)

for some 0 < I < oo, it is sufficient that the log-likelihoods
are continuous and

1 1 (X
7ZZ]C71 = fZIOgM — I, a.s. under P;.
nk::l nk:1 g(Xk)

Proof: Due to independence and the nature of exploding
processes, we have

lim sup esssup P,
n—oo E>v>1

sup ess sup P,
k>v>1

k+n
( ZZZ,,C<I 6‘X1,...7 1)
= sup P,

k+n
(121 Jizr(Xs) <I- 6)
k>v>1
k+n
supP1<1Zl fl <I- 5)

k>1

Because of Lemma 5.1, the random variables

k+n
lzl fz

becomes stochastically bigger as k increases. Thus, the
maximum probability over k is achieved at £ = 1. This gives

1k+n f
sup P log == <I 1)
1( 2 )
14+n
<121 fira(X3) <I 6)

The last term goes to zero if
(Xk)
—Zl fk 1 k — I, a.s. under P;.

This completes the proof.
|
Thus, for the optimality of the exploding CUSUM algo-
rithms, it is enough to find conditions under which the almost
sure convergence stated in the previous theorem is satisfied.

D. A Law of Large Numbers for Independent and Non-
Identically Distributed Random Variables

In this section, we give conditions on exploding processes
to guarantee

(Xk)
721 fkl k — I, a.s. under P;.

We first recall Cantelli’s strong law of large numbers. The
proof can be found in [17].

Lemma 5.2: Let Y1,Y5,... be independent random vari-
ables with finite fourth moments, and let

ElY, —E,][]<C, n>1,

for some constant C'. Then, as n — oo,
Sy — E[Sh]
n
Here S, =Y1 + Yo +...Y,.
Cantelli’s strong law of large numbers provides us the
needed tool to state our conditions.

— 0, almost surely.

Theorem 5.4: We assume the following conditions hold for
every k > 1:

fro1(Xi)\*
E Klogg(Xk) ) ] <00, X~ fr-1,

4
D | g)) <C Xi~ for.

(16)



where C is a constant. Further, there exists an I > 0 such
that

1 n
EZD(fk—l lg) — I, n—oo. a7
k=1

Then, by Cantelli’s strong law of large numbers (Lemma 5.2),

1 zn:log Jr—1(Xk)

— I,
(X&)

a.s. under P;.
k=1

E. Asymptotic Optimality of EX-CUSUM Algorithm

The previous theorem provides further simplification on
the conditions needed for the optimality of the EX-CUSUM
algorithm. We state this as a theorem:

Theorem 5.5: Under moment conditions stated in Theo-
rem 5.4, if there exists an / > 0, such that

1774
EZD(kaHQ) — I, n—oo,
k=1

then the EX-CUSUM algorithm is asymptotically optimal for
both Lorden’s and Pollak’s minimax formulations.

F. Gaussian Example

We now give an example of an exploding process model
for which all the conditions stated in this paper are satisfied.
We assume that

g=N(0,1).
and
fn =N (pin, 1)
with
0<pntp

All the likelihood ratios in this example are monotone be-
cause 0 < p,, — . Also, log-likelihood ratios are continuous
because they are linear. The fourth-moment condition on log-
likelihood ratios is satisfied because of Gaussianity.

Further, the log-likelihood ratio between f, and g is given

» (Xus)
fn Xn+1 Hn
log =/——""2 = 1, (X001 — —).
& 9(Xni1) pn (X 2 )
Thus,
fn(X71,+1):|
D(f, =E i~ |log —F—=5
(o 1 9) = Exams, [l 22

’L”} (18)

= in {Exn+1~fn [(Xnt1] = 5

i (= 1) = 2

This implies
N
D(fnllg) = o - o

This further implies

2

1 n H
—_ D _ T
> D(fialle) ok
k=1
by Cesaro sum limit.
Finally, we need to check if the fourth central moments of
the log-likelihoods are uniformly bounded. Let

fn(Xn-i-l) Hn
€n =1log Y = (X — 1),
9(Xnt1) (e 2 )
Also, let )
—_ Hn
En i =Ex,i~p 0] = 5>

Then,
EXn+1~fn [(Sn - En)4]

2\ 4
,U/n Mn
= EXn+1~fn l(ﬂn(XnJrl - 7) - 2) ]

=Ex, i~fn [(Nan+1 - #3)4}
=Ex,ii~fn [(/in(Xn+1 - ,un))ﬂ
= ,uiEXn“an [((Xn+1 - Nn))ﬂ

< 3u.
(19)

The last inequality is true because u, 1T p and because
under f,, X,41 — pn ~ N(0,1), and the latter’s fourth
moment is exactly equal to 3. Thus, the fourth central
moments are uniformly bounded by C' = 3u*. All the
above arguments show that the EX-CUSUM algorithm is
asymptotically optimal for this example.

VI. NUMERICAL RESULTS

In this section, we apply the EX-CUSUM algorithm to the
Gaussian data example discussed in Section V-F. To generate
data in Fig. 4, we used

T

Un = arctan(n) — pu = 3

As seen in the figure, the EX-CUSUM statistic stays close

to zero before the change point of 80 and grows toward oo

after the change. This growth can be detected using a well-
designed threshold.

VII. CONCLUSIONS

We introduced a new class of stochastic processes to
model exploding nature of post-change observations in some
change-point problems. Such observations are common in
satellite and military applications where an approaching
enemy object can cause the observation to grow stochastically
over time. We proved that under mild conditions on the
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Fig. 4: EX-CUSUM algorithm applied to Gaussian data.

growth of Kullback-Leibler divergence, our proposed EX-
CUSUM algorithm is asymptotically optimal, as the mean
time to false alarm grows to infinity. In our future work,
we will investigate the exact optimality of the algorithm and
also obtain computationally efficient methods for detecting
changes.
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