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Abstract—The problem of detecting the presence of a signal
that can lead to a disaster is studied. A decision-maker collects
data sequentially over time. At some point in time, called the
change point, the distribution of data changes. This change
in distribution could be due to an event or a sudden arrival
of an enemy object. If not detected quickly, this change has
the potential to cause a major disaster. In space and military
applications, the values of the measurements can stochastically
grow with time as the enemy object moves closer to the target. A
new class of stochastic processes, called exploding processes, is
introduced to model stochastically growing data. An algorithm
is proposed and shown to be asymptotically optimal as the mean
time to a false alarm goes to infinity.

I. INTRODUCTION

In the problem of quickest change detection (QCD), a

decision maker collects a sequence of measurements. The

values in the sequence are seen as a realization of a stochastic

process. It is assumed that the law of this stochastic process

initially follows a distribution that is believed to be normal.

At some point in time, called the change point, the statistical

properties of the measurements or the law of the process

changes. The goal of the QCD problem is to detect this

change in distribution as quickly as possible while avoiding

many false alarms [1]–[3]. The most common change point

model is the abrupt and persistent change model [4]–[9]. In

this model,the law of the process abruptly changes at the

change point and persists with that new law forever. For

example, in Fig. 1, we have plotted the mean values of a

sequence of Gaussian random variables. At the change point

(80 in the figure), the mean abruptly changes from 0 to 4
and stays at 4 forever.

In some military and space applications, the post-change

law can have an exploding nature. Space scientists are

concerned with the detection of debris or other hazardous

objects approaching a satellite and destroying it (see Fig. 2).

As the target object rapidly approaches the satellite, the mean

of the measurements will have an exploding nature as shown

in Fig. 3. Another classical example is enemy object detection

in military applications. As a missile approaches a target or

a torpedo approaches a submarine or ship, the values of the

measurements are expected to increase with time.

Fig. 1: Classical abrupt change point model.

Fig. 2: Space scientists are concerned with debris or other

hazardous objects approaching a satellite and destroying it.

A missile (or torpedo) can quickly approach a target (or sub-

marine) and destroy it. Source: https://images.google.com/.

Fig. 3: In some space or military applications, the post-

change measurements can have an exploding effect (linear,

super-linear, or sublinear). The values of measurements can

stochastically increase as the enemy object comes closer.



In this paper, we propose a new class of stochastic

processes to capture the stochastically growing nature of a

process. We then obtain an optimal algorithm for detecting

a change in distribution in this new class of processes.

II. MODEL AND PROBLEM FORMULATION

A. Data Model

We introduce a new class of stochastic processes defined

to model exploding nature of the post-change process:

Definition 1: We say that a process {Xn}n≥1 with densi-

ties {fn}n≥0 is an exploding process if

1) {Xn} are jointly independent,

2) Xn ∼ fn−1, ∀n,

3)
fn+1(x)
fn(x)

is increasing in x, ∀n. We use fn ≺ fn+1 to

denote this monotone likelihood ratio (MLR) order.

If fn+1 = fn, for all n, then we get an independent

and identically distributed (i.i.d.) process. Note that MLR

dominance implies stochastic dominance [10]:
∫ ∞

x

fn(x)dx ≤

∫ ∞

x

fn+1(x)dx, ∀x, n.

B. Change point model

We assume that before change, data is i.i.d. with density

g ≺ f0, and after change, an exploding process with sequence

{fn}n≥0 of densities. Mathematically, there is a discrete-time

ν such that

Xn ∼

{

g, ∀n < ν,

fn−ν ∀n ≥ ν.

Here we have used the notation X ∼ f to denote that the

random variable X has law f . Note that the post-change

density of an observation depends on the location of the

change point ν. Our goal is to detect this change as quickly

as possible, subject to a constraint on the rate of false alarms.

C. Problem Formulation

To solve the change detection problem, we are interested

in two popular minimax formulations for the quickest change

detection. To state the formulations, we define, for 1 ≤ ν ≤
∞, Eν as the expectation when the change occurs at time ν.

We consider the problem formulation of Lorden [11]:

min
τ

sup
ν≥1

ess sup Eν [(τ − ν + 1)+|X1, . . . , Xν−1],

subj. to E∞[τ ] ≥ γ,

(1)

where γ is a constraint on the mean time to a false alarm.

We will also consider the formulation of Pollak [12]:

min
τ

sup
ν≥1

Eν [τ − ν|τ ≥ ν],

subj. to E∞[τ ] ≥ γ,
(2)

where again γ is a constraint on the mean time to a false

alarm.

III. CANDIDATE ALGORITHM: EXPLODING CUMULATIVE

SUM ALGORITHM

We propose to use the following exploding Cumulative

Sum (EX-CUSUM) statistic for change detection:

Wn = max
1≤k≤n

n
∑

i=k

log
fi−k(Xi)

g(Xi)
. (3)

The term
∑n

i=k log fi−k(Xi)
g(Xi)

is the log-likelihood ratio of

the observations between post-change and pre-change distri-

butions, conditioned that the change occurs at time k. Since

we do not know the change point, we take the maximum of

all possible values at time n, i.e., 1 ≤ k ≤ n.

In the above statistic, note that the likelihood ratio of an

observation Xi at time i,

fi−k(Xi)

g(Xi)
,

depends on the relative distance i − k between time i and

the hypothesis k of the change point. It is because of this

reason the EX-CUSUM statistic is not a special case of the

generalized CUSUM statistic of Lai [6].

To detect the change in law from i.i.d. with law g to

an exploding process {fn}, we stop the first time the EX-

CUSUM statistic is above a threshold A:

τec = inf{n ≥ 1 : Wn > A}. (4)

We select the threshold A to control the rate of false alarms:

the higher the threshold, the smaller the mean time to a false

alarm E∞[τec] (this fact will be formally proved below).

Our goal in this paper is to characterize conditions under

which the EX-CUSUM algorithm is asymptotically optimal

for Lorden’s and Pollak’s problems in (1) and (2).

IV. ASYMPTOTIC LOWER BOUND ON THE PERFORMANCE

A. Lai’s Asymptotic Lower Bound

In [6], Lai reported a general minimax theory for the

quickest change detection. We first review it and discuss its

limitations.

It is assumed in [6] that the pre-change densities are

f0(Xi|X1, . . . , Xi−1) at time i and the post-change densities

are f1(Xi|X1, . . . , Xi−1) giving us the log-likelihood ratio

Zi = log
f1(Xi|X1, . . . , Xi−1)

f0(Xi|X1, . . . , Xi−1)
.

Note that the densities are general conditional densities

allowing for data dependence but are not a function of the

hypothesis on the change point (as defined in the paper). Lai



showed that if Zis are such that there exists an information

number I > 0 satisfying

lim
n→∞

sup
ν≥1

ess sup Pν

(

max
t≤n

ν+t
∑

i=ν

Zi ≥ I(1 + δ)n

∣

∣

∣

∣

X1, . . . , Xν−1

)

= 0,

(5)

then we have the universal lower bound as γ → ∞,

min
τ

sup
ν≥1

ess sup Eν [(τ − ν + 1)+|X1, . . . , Xν−1]

≥ min
τ

sup
ν≥1

Eν [τ − ν|τ ≥ ν]

≥
log γ

I
(1 + o(1)).

(6)

Here the minimum over τ is over those stopping times

satisfying E∞[τ ] ≥ γ. Lai further showed that under certain

additional conditions on the Zis, the generalized CUSUM

algorithm,

τc = min

{

n ≥ 1 : max
1≤k≤n

n
∑

i=k

Zi ≥ log(γ)

}

,

is asymptotically optimal for both Lorden and Pollak’s prob-

lems. Specifically,

E∞[τc] ≥ γ.

Further, if Zis satisfy

lim
n→∞

sup
k≥ν≥1

ess sup Pν

(

1

n

k+n
∑

i=k

Zi ≤ I − δ

∣

∣

∣

∣

X1, . . . , Xk−1

)

= 0.

(7)

then as γ → ∞, τc achieves the lower bound:

sup
ν≥1

ess sup Eν [(τc − ν + 1)+|X1, . . . , Xν−1]

≤
log γ

I
(1 + o(1)), γ → ∞.

(8)

It is not clear if these results are valid for the exploding

process setting because in the latter setting likelihood ratios

do depend on where the change point is. We discuss this

next.

B. Sufficient Conditions for Change Point Dependent Likeli-

hoods

In this section, we extend Lai’s results to the case of

change point-dependent likelihoods. We continue to allow

data dependence across time to state the more general result.

Define the log-likelihood ratio at time n when change occurs

at ν as

Zn,ν = log
fn,ν(Xn|X1, . . . , Xn−1)

f0(Xn|X1, . . . , Xn−1)
.

Theorem 4.1:

1) Let there exist a positive number I such that the bivari-

ate log likelihood ratios {Zn,ν} satisfy the following

condition:

lim
n→∞

sup
ν≥1

ess sup Pν

(

max
t≤n

ν+t
∑

i=ν

Zi,ν ≥ I(1 + δ)n

∣

∣

∣

∣

X1, . . . , Xν−1

)

= 0,

(9)

Then, we have the universal lower bound as γ → ∞,

min
τ

sup
ν≥1

ess sup Eν [(τ − ν + 1)+|X1, . . . , Xν−1]

≥ min
τ

sup
ν≥1

Eν [τ − ν|τ ≥ ν]

≥
log γ

I
(1 + o(1)).

(10)

Here the minimum over τ is over those stopping times

satisfying E∞[τ ] ≥ γ.

2) The following modified generalized CUSUM algorithm,

τmc = min

{

n ≥ 1 : max
1≤k≤n

n
∑

i=k

Zi,k ≥ log(γ)

}

,

satisfies

E∞[τmc] ≥ γ.

3) Let the bivariate log-likelihood ratios {Zn,ν} also satisfy

lim
n→∞

sup
k≥ν≥1

ess sup Pν

(

1

n

k+n
∑

i=k

Zi,k ≤ I − δ

∣

∣

∣

∣

X1, . . . , Xk−1

)

= 0.

(11)

Then as γ → ∞, τmc achieves the lower bound:

sup
ν≥1

ess sup Eν [(τmc − ν + 1)+|X1, . . . , Xν−1]

≤
log γ

I
(1 + o(1)), γ → ∞.

(12)

Proof: The lower bound result goes through by replacing

Zis by Zn,νs in [6]. This is because the proof relies on a

change of measure argument to get the lower bound. Since

the likelihood ratios here are a function of Zn,ν , the same

change of measure argument works. The proof of detection

delay also goes through provided the above conditions are

satisfied and everywhere Zi are replaced by Zi,k. It is not

clear to the authors whether Lai’s proof for the mean time to

a false alarm result can be extended to the time-dependent

setting. But, one can use another technique based on the



Shiryaev-Roberts statistic and optional sampling theorem.

The arguments will be provided in a detailed version of the

paper.

While presenting this paper, the authors were made aware

of another paper [13] in which more general sufficient

conditions for optimality (more general than those in [6])

have been established.

V. OPTIMALITY OF EX-CUSUM ALGORITHM

In this section, we first simplify the conditions in Theo-

rem 4.1 for exploding processes as defined in Definition 1.

We then provide additional comments on the simplified

conditions to guarantee the optimality of the EX-CUSUM

algorithm.

A. Simplifying Lower Bound Condition for Exploding Pro-

cesses

In the theorem below, we show that the lower bound

condition (9) can be simplified in the case of exploding

processes.

Theorem 5.1: To satisfy

lim
n→∞

sup
ν≥1

ess sup Pν

(

max
t≤n

ν+t
∑

i=ν

Zi,ν ≥ I(1 + δ)n

∣

∣

∣

∣

X1, . . . , Xν−1

)

= 0

(13)

for some 0 < I < ∞, it is sufficient that

1

n

n
∑

k=1

Zk,1 =
1

n

n
∑

k=1

log
fk−1(Xk)

g(Xk)
→ I, a.s. under P1.

Proof: Because of independence, we have

sup
ν≥1

ess sup Pν

(

max
t≤n

ν+t
∑

i=ν

Zi,ν ≥ I(1 + δ)n

∣

∣

∣

∣

X1, . . . , Xν−1

)

= sup
ν≥1

Pν

(

max
t≤n

ν+t
∑

i=ν

log
fi−ν(Xi)

g(Xi)
≥ I(1 + δ)n

)

.

Since likelihood ratios are computed relative to the change

point ν, the probability on the right is not a function of ν.

This implies

sup
ν≥1

Pν

(

max
t≤n

ν+t
∑

i=ν

log
fi−ν(Xi)

g(Xi)
≥ I(1 + δ)n

)

= P1

(

max
t≤n

1+t
∑

i=1

log
fi−1(Xi)

g(Xi)
≥ I(1 + δ)n

)

= P1

(

1

n
max
t≤n

1+t
∑

i=1

log
fi−1(Xi)

g(Xi)
≥ I(1 + δ)

)

.

Note that if the post-change process evolves differently for

different change points, then the above simplification may

not be true. Now, if

1

n

n
∑

i=1

log
fi−1(Xi)

g(Xi)
→ I, a.s. under P1,

then

1

n
max
t≤n

1+t
∑

i=1

log
fi,1(Xi)

g(Xi)
→ I, a.s. under P1.

For proof of the above fact, see the Proof of Theorem 5.1 in

[14]. This proves the theorem because convergence almost

surely implies convergence in probability.

We still need to characterize conditions under which

1

n

n
∑

i=1

log
fi−1(Xi)

g(Xi)
→ I, a.s. under P1,

for an exploding process. This will be done in Section V-D

B. Controlling the False Alarm

In this section, we show that by setting the threshold A =
log γ in the EX-CUSUM algorithm, the constraints on the

mean time to a false alarm can be satisfied. This is the content

of the next theorem.

Recall that

Wn = max
1≤k≤n

n
∑

i=k

log
fi−k(Xi)

g(Xi)
,

τec = inf{n ≥ 1 : Wn > A}.

Theorem 5.2: Setting A = log(γ) ensures that

E∞[τec] ≥ γ.

Proof: This proof technique is standard and has been

used, for example, in [3]. Because logarithm is monotonic

and the maximum of positive quantities is always less than

their sum, we have

τec = inf

{

n ≥ 1 : max
1≤k≤n

n
∑

i=k

log
fi−k(Xi)

g(Xi)
> A

}

= inf

{

n ≥ 1 : max
1≤k≤n

n
∏

i=k

fi−k(Xi)

g(Xi)
> eA

}

≥ inf







n ≥ 1 :
∑

1≤k≤n

n
∏

i=k

fi−k(Xi)

g(Xi)
> eA







:= τesr.

The process

Rn − n :=
∑

1≤k≤n

n
∏

i=k

fi−k(Xi)

g(Xi)
− n



is a P∞-martingale. Assuming E[τesr] < ∞ (otherwise the

false alarm constraint is trivially satisfied), we have

E [|Rn − n|; {τesr > n}] ≤ E
[

eA + τesr; {τesr > n}
]

→ 0, n → ∞.

Thus, by Doob’s optional sampling theorem [15],

E [Rτesr − τesr] = 0,

and

E [τesr] = E [Rτesr ] ≥ eA.

Now, set A = log γ to complete the proof.

C. Simplifying Upper Bound Condition for Delay Analysis

of an Exploding Process

In this section, we simplify the condition (11) for explod-

ing processes. To complete this step, we need an intermediate

result.

Lemma 5.1: Let f(x1, x2, . . . , xn) be a continuous func-

tion increasing in each of its arguments, with other arguments

fixed. If {Xn} is a stochastic process generated according to

an exploding process, then for all n,m, t,

P (f(Xn, Xn+1, . . . , Xn+m) ≥ t)

≤ P (f(Xn+1, Xn+2, . . . , Xn+m+1) ≥ t) .
(14)

Proof: The proof is a slight variant of a similar proof

found in [16]. Our proof requires an additional randomization

step.

As in Theorem 5.1, we show below that an almost sure

condition is sufficient to satisfy the condition in (11).

Theorem 5.3: To satisfy, for all δ > 0,

lim
n→∞

sup
k≥ν≥1

ess sup Pν

(

1

n

k+n
∑

i=k

Zi,k ≤ I − δ

∣

∣

∣

∣

X1, . . . , Xk−1

)

= 0

(15)

for some 0 < I < ∞, it is sufficient that the log-likelihoods

are continuous and

1

n

n
∑

k=1

Zk,1 =
1

n

n
∑

k=1

log
fk−1(Xk)

g(Xk)
→ I, a.s. under P1.

Proof: Due to independence and the nature of exploding

processes, we have

sup
k≥ν≥1

ess sup Pν

(

1

n

k+n
∑

i=k

Zi,k ≤ I − δ

∣

∣

∣

∣

X1, . . . , Xk−1

)

= sup
k≥ν≥1

Pν

(

1

n

k+n
∑

i=k

log
fi−k(Xi)

g(Xi)
≤ I − δ

)

= sup
k≥1

P1

(

1

n

k+n
∑

i=k

log
fi−k(Xi)

g(Xi)
≤ I − δ

)

.

Because of Lemma 5.1, the random variables

1

n

k+n
∑

i=k

log
fi−k(Xi)

g(Xi)

becomes stochastically bigger as k increases. Thus, the

maximum probability over k is achieved at k = 1. This gives

sup
k≥1

P1

(

1

n

k+n
∑

i=k

log
fi−k(Xi)

g(Xi)
≤ I − δ

)

= P1

(

1

n

1+n
∑

i=1

log
fi−1(Xi)

g(Xi)
≤ I − δ

)

.

The last term goes to zero if

1

n

n
∑

k=1

log
fk−1(Xk)

g(Xk)
→ I, a.s. under P1.

This completes the proof.

Thus, for the optimality of the exploding CUSUM algo-

rithms, it is enough to find conditions under which the almost

sure convergence stated in the previous theorem is satisfied.

D. A Law of Large Numbers for Independent and Non-

Identically Distributed Random Variables

In this section, we give conditions on exploding processes

to guarantee

1

n

n
∑

k=1

log
fk−1(Xk)

g(Xk)
→ I, a.s. under P1.

We first recall Cantelli’s strong law of large numbers. The

proof can be found in [17].

Lemma 5.2: Let Y1, Y2, . . . be independent random vari-

ables with finite fourth moments, and let

E[|Yn − E[Yn]|
4] ≤ C, n ≥ 1,

for some constant C. Then, as n → ∞,

Sn − E[Sn]

n
→ 0, almost surely.

Here Sn = Y1 + Y2 + . . . Yn.

Cantelli’s strong law of large numbers provides us the

needed tool to state our conditions.

Theorem 5.4: We assume the following conditions hold for

every k ≥ 1:

E

[

(

log
fk−1(Xk)

g(Xk)

)4
]

< ∞, Xk ∼ fk−1,

E

[

(

log
fk−1(Xk)

g(Xk)
−D(fk−1 ‖ g)

)4
]

≤ C, Xk ∼ fk−1,

(16)



where C is a constant. Further, there exists an I > 0 such

that

1

n

n
∑

k=1

D(fk−1 ‖ g) → I, n → ∞. (17)

Then, by Cantelli’s strong law of large numbers (Lemma 5.2),

1

n

n
∑

k=1

log
fk−1(Xk)

g(Xk)
→ I, a.s. under P1.

E. Asymptotic Optimality of EX-CUSUM Algorithm

The previous theorem provides further simplification on

the conditions needed for the optimality of the EX-CUSUM

algorithm. We state this as a theorem:

Theorem 5.5: Under moment conditions stated in Theo-

rem 5.4, if there exists an I > 0, such that

1

n

n
∑

k=1

D(fk−1 ‖ g) → I, n → ∞,

then the EX-CUSUM algorithm is asymptotically optimal for

both Lorden’s and Pollak’s minimax formulations.

F. Gaussian Example

We now give an example of an exploding process model

for which all the conditions stated in this paper are satisfied.

We assume that

g = N (0, 1).

and

fn = N (µn, 1)

with

0 ≤ µn ↑ µ.

All the likelihood ratios in this example are monotone be-

cause 0 ≤ µn → µ. Also, log-likelihood ratios are continuous

because they are linear. The fourth-moment condition on log-

likelihood ratios is satisfied because of Gaussianity.

Further, the log-likelihood ratio between fn and g is given

by

log
fn(Xn+1)

g(Xn+1)
= µn(Xn+1 −

µn

2
).

Thus,

D(fn ‖ g) = EXn+1∼fn

[

log
fn(Xn+1)

g(Xn+1)

]

= µn

[

EXn+1∼fn [Xn+1]−
µn

2

]

= µn

(

µn −
µn

2

)

=
µ2
n

2
.

(18)

This implies

D(fn ‖ g) =
µ2
n

2
→

µ2

2
.

This further implies

1

n

n
∑

k=1

D(fk−1 ‖ g) →
µ2

2

by Cesaro sum limit.

Finally, we need to check if the fourth central moments of

the log-likelihoods are uniformly bounded. Let

ξn := log
fn(Xn+1)

g(Xn+1)
= µn(Xn+1 −

µn

2
).

Also, let

Ξn := EXn+1∼fn [ξn] =
µ2
n

2
.

Then,

EXn+1∼fn

[

(ξn − Ξn)
4
]

= EXn+1∼fn

[

(

µn(Xn+1 −
µn

2
)−

µ2
n

2

)4
]

= EXn+1∼fn

[

(

µnXn+1 − µ2
n

)4
]

= EXn+1∼fn

[

(µn(Xn+1 − µn))
4
]

= µ4
nEXn+1∼fn

[

((Xn+1 − µn))
4
]

≤ 3µ4.

(19)

The last inequality is true because µn ↑ µ and because

under fn, Xn+1 − µn ∼ N (0, 1), and the latter’s fourth

moment is exactly equal to 3. Thus, the fourth central

moments are uniformly bounded by C = 3µ4. All the

above arguments show that the EX-CUSUM algorithm is

asymptotically optimal for this example.

VI. NUMERICAL RESULTS

In this section, we apply the EX-CUSUM algorithm to the

Gaussian data example discussed in Section V-F. To generate

data in Fig. 4, we used

µn = arctan(n) → µ =
π

2
.

As seen in the figure, the EX-CUSUM statistic stays close

to zero before the change point of 80 and grows toward ∞
after the change. This growth can be detected using a well-

designed threshold.

VII. CONCLUSIONS

We introduced a new class of stochastic processes to

model exploding nature of post-change observations in some

change-point problems. Such observations are common in

satellite and military applications where an approaching

enemy object can cause the observation to grow stochastically

over time. We proved that under mild conditions on the



Fig. 4: EX-CUSUM algorithm applied to Gaussian data.

growth of Kullback-Leibler divergence, our proposed EX-

CUSUM algorithm is asymptotically optimal, as the mean

time to false alarm grows to infinity. In our future work,

we will investigate the exact optimality of the algorithm and

also obtain computationally efficient methods for detecting

changes.
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