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ABSTRACT

A new class of stochastic processes called episodic processes is

introduced to model the statistical regularity of data observed in

several applications in cyberphysical systems, neuroscience, and

medicine. Algorithms are proposed to detect a change in the dis-

tribution of episodic processes. The algorithms can be computed

recursively using finite memory and are shown to be asymptotically

optimal for well-defined Bayesian or minimax stochastic optimiza-

tion formulations. The application of the developed algorithms to

detect a change in waveform patterns is also discussed.

Index Terms— Cyclostationary behavior, arrhythmia detection,

waveform change detection, asymptotic optimality, quickest change

detection.

1. INTRODUCTION

In many problems of change detection in cyberphysical systems

and biology, the observation process exhibits statistical periodicity.

Specifically, after a certain time, the distribution of the process is

equal or similar to the distribution of the process at the beginning.

Examples include the following:

1. Traffic and social network data: Based on data collected from

New York City, it was observed in [1, 2] that the statistical

characteristics of traffic intensity and average counts of In-

stagram posts are similar on Sundays in the absence of any

major events.

2. Neural firing data: In some brain-computer interface studies,

the baseline firing patters of neurons show similarity across

trials [3, 4].

3. ECG data: The ECG data collected from a person with a

normal heart follows regular patters of P, QRS, and ST seg-

ments [5, 6].

We refer the readers to [7] and [8] for more detailed discussions on

the phenomenon of statistical periodicity. The problem of anomaly

detection in these applications, i.e., detecting a change in traffic in-

tensity, neural firing patterns or ECG patterns (as in arrhythmia), can

be posed as the problem of detecting a change in statistically peri-

odic processes.

In [7] and [8], statistical models are proposed for modeling pro-

cesses with statistical periodicity. The papers also contain algo-

rithms and theory for detecting a change in such processes. A major
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assumption in these papers is that the period of statistical periodicity

is fixed or a constant. This assumption may not always be satisfied

in practice. For example, in the neuroscience application, the length

of a trial may not be fixed. In the ECG application, the length of

an ECG waveform can change over time depending on the physical

activity of a person.

In this paper, we develop models, algorithms, and theory for de-

tecting a change in statistically periodic processes where the period

is random. Specifically, we define a new class of stochastic pro-

cesses called episodic processes to model this dynamic behavior of

periods. The class of episodic processes is strictly larger than the

class of independent and periodically identically distributed (i.p.i.d.)

processes studied in [7] and [8]. We then propose algorithms to de-

tect a change in episodic processes and show that the algorithms

can be computed efficiently. We then show that the algorithms are

asymptotically optimal for well-defined problem formulations. We

investigate both Bayesian and minimax problem formulations. Fi-

nally, we discuss how the developed algorithms can be applied to

detect a change in waveform patterns. All the results in the paper are

formulated within the framework of quickest change detection. We

refer the readers to [9–11] for a review of the existing literature.

2. MODEL FOR STATISTICAL REGULARITY

An episodic process is characterized through a discrete integer-

valued random variable T with a mass function pT , and a family

of multivariate densities {fe,t}, e, t ∈ N, called an episodic family

of densities.

Definition 1. An episodic family of densities {fe,t} is indexed by

an episode index e and episode length index t, with e, t ∈ N. It is

a collection of multivariate densities such that for each e ∈ N, the

density fe,t is a density of t variables:

fe,t(x1, x2, . . . , xt).

We now define the concept of an episodic process.

Definition 2. An episodic process is a stochastic process {Xn} with

segments (called episodes)

(X1, . . . , XT1
), episode 1 of length T1,

(XT1+1, . . . , XT1+T2
), episode 2 of length T2,

...

(X∑k−1

i=1
Ti+1

, . . . , X∑
k
i=1

Ti
), episode k of length Tk,

...

(1)

generated as follows. The sequence {Tk} is generated as an i.i.d.

sequence with the mass function pT , and each episode is generated



independently using an episodic family of densities:

(X∑k−1

i=1
Ti+1

, . . . , X∑
k
i=1

Ti
) ∼ fk,Tk

, k = 1, 2, . . . .

Here fk,Tk
is the episodic density with e = k and t = Tk. We say

that we have a (pT , {fe,t})-episodic process.

When the random variable T is identically equal to a constant,

T ≡ t, the episodic densities satisfy

fi,t = fj,t, ∀i, j ∈ N,

and each episodic density fe,t is a product density, then an episodic

process reduces to an i.p.i.d. process studied in [7] and [8]. For

T ≡ 1, we get an i.i.d. process.

Definition 3. An episodic process is called regular if episodes of

equal lengths are identically distributed: for any fixed t ∈ N,

fi,t = fj,t = ft, ∀i, j ∈ N.

A regular episodic process is called strongly regular if the episodic

densities are product densities:

ft(x1, x2, . . . , xt) =

t
∏

i=1

f
(i)
t (xi).

Thus, an i.p.i.d. process is a strongly regular episodic process in

which the episode lengths are constant. More generally, conditioned

on the realizations of the episode lengths {Tk}, a strongly regular

episodic process is a sequence of independent random variables.

Example 1. Let θ(s) be a function defined on [0, 1] and {Vk} be

a sequence of i.i.d. random variables. For each positive integer T ,

define

Xk = θ

(

k

T

)

+ Vk, for k = 1, 2, . . . , T. (2)

Let ft be the density of (X1, . . . , XT ) when T = t in (2) and let

T be randomly generated with a mass function pT . Then, the pair

(pT , {ft}) defines a strongly regular episodic process. We call an

episodic process of this type as a waveform process. In the ECG ap-

plication, the function θ(s) can be interpreted as the average normal

ECG waveform normalized to the interval [0, 1], and (X1, . . . , XT )
can be seen as the measured noisy ECG signal of length T during a

single heartbeat. The problem of arrhythmia detection can be posed

as the problem of detecting a change in the waveform θ(s).

3. CONDITIONAL CHANGE POINT MODEL FOR

EPISODIC PROCESSES

In this section, we propose a conditional change point model for

strongly regular episodic processes. Change point models and al-

gorithms for more general episodic processes can be developed fol-

lowing the development here. In the rest of the paper, for simplicity,

we refer to a strongly regular episodic process as simply an episodic

process.

We recall that a (strongly regular) episodic process is com-

pletely charaterized by the episode length law pT and the multivari-

ate episodic densities {ft}, t ∈ N, where ft is the joint (product)

density of variables in an episode of length t:

ft(x1, x2, . . . , xt) =

t
∏

i=1

f
(i)
t (xi). (3)

We assume that in the normal regime, the data is modeled as a

(pT , {ft})–episodic process. At some point in time ν, due to some

event or an anomaly, the distribution of the process changes and the

new law becomes (pT , {gt}), where {gt}, t ∈ N, is another family

of episodic joint product densities:

gt(x1, x2, . . . , xt) =

t
∏

i=1

g
(i)
t (xi). (4)

To be precise, let

T = (T1, T2, · · · ) (5)

collect the realizations of the episode lengths. Let f(x|n, T ) be the

density of the random variable Xn given the realizations T when the

law of the process is (pT , {ft}). Also, let g(x|n, T ) be the density

of the random variable Xn given the realizations T when the law of

the process is (pT , {gt}). Then, the change point model we assume

is given ν and T ,

Xn ∼
{

f(x|n, T ), for n < ν

g(x|n, T ), for n ≥ ν.
(6)

The objective is to detect this change in distribution as quickly as

possible, subject to a constraint on the rate of false alarms.

4. STOCHASTIC OPTIMIZATION PROBLEM

FORMULATIONS FOR CHANGE DETECTION

Let Pν,T denote the probability measure under which the change

point occurs at time ν and the realizations of episode lengths are

T , and let Eν,T be the corresponding expectation. We use E∞,T

to denote the expectation when there is no change point. To detect

the change, we seek a stopping time N for the process {Xn} to

minimizes the detection delay N − ν while avoiding frequent false

alarms. We investigate two different classes of problem formula-

tions: Bayesian and Minimax.

4.1. Bayesian Formulation

For a Bayesian analysis, we assume that the change point is a random

variable with prior distribution

πk = P(ν = k).

We also define the average probability measure

Pπ,T =
∞
∑

k=1

πkPk,T ,

with Eπ,T being the corresponding expectation. We seek a stopping

time for the process {Xn} to solve the following modification of

Shiryaev’s problem for every m [12]:

inf
N

Eπ,T [(N − ν)m|N ≥ ν]

subj. to Pπ,T (N < ν) ≤ α.
(7)

Here α ∈ [0, 1] is a constraint on the probability of a false alarm.

We refer to (7) as a modification because of the extra conditioning

on the realizations of the episode lengths T . Also, note that we are

seeking a time N so that all the moments of the detection delay are

optimized. We emphasize that while the lengths of the episodes are

random and are realizations of a random variable T with the mass



function pT , in the optimization problems above, we seek a solu-

tion that is optimal for every realization T . For the same reason,

the stopping time N is adapted to the knowledge of these realiza-

tions. In practice, this can be achieved by acquiring the lengths of

the episodes (or estimating them) just before the episodes start. We

will revisit this issue in the numerical results section.

4.2. Minimax Formulations

In the minimax settings, we assume that the change point is an un-

known constant ν and seek a stopping time N so as to solve the

following problem which is a modified version of the formulation of

Pollak [13]:

inf
N

sup
ν≥1

Eν,T [N − ν|N ≥ ν]

subj. to E∞,T [N ] ≥ β,
(8)

where β is a given constraint on the mean time to a false alarm. We

follow the classical approach of seeking at the same time a solution

to the related problem of Lorden [14]:

inf
N

sup
ν≥1

ess supEν,T [(N − ν)+|X1, · · · , Xν−1]

subj. to E∞,T [N ] ≥ β,

(9)

where ess sup is used to denote the supremum of the random variable

Eν,T [N − ν|X1, · · · , Xν−1] outside a set of measure zero.

5. ALGORITHMS FOR CHANGE DETECTION IN

EPISODIC PROCESSES

We now discuss algorithms for detecting a change in an episodic

process. We discuss three algorithms: one Bayesian and two non-

Bayesian.

5.1. A Bayesian Algorithm

Define the a posteriori probability that the change has already oc-

curred given all the available observations:

pn = Pπ,T (ν ≤ n|X1, · · · , Xn), for n ≥ 1. (10)

Our Bayesian algorithm or stopping rule is to stop the first time this

probability is above a pre-designed threshold A:

Ns = min{n ≥ 1 : pn > A}. (11)

It is customary in the literature to refer to an a posteriori probability-

based change detection rule as the Shiryaev stopping rule [15,16]. To

emphasize the fact that we are computing the statistic for a new class

of stochastic processes, we call the statistic the episodic-Shiryaev

statistic and the stopping rule the episodic-Shiryaev algorithm.

In the following lemma, it is proved that the episodic-Shiryaev

statistic pn for episodic processes can be computed recursively for

geometric priors. Furthermore, we only need a finite amount of

memory when the episode length variable T is bounded. Note that

without the boundedness assumption on T , we need potentially infi-

nite amounts of memory to compute the statistic.

Lemma 1. Let the prior be geometrically distributed with parameter

ρ:

πk = P(ν = k) = (1− ρ)k−1
ρ.

The episodic-Shiryaev statistic pn in (10) can be recursively com-

puted using the following equations: p0 = 0 and for n ≥ 1, we

have

pn =
p̃n−1 g(Xn|n, T )

p̃n−1 g(Xn|n, T ) + (1− p̃n−1)f(Xn|n, T )
, (12)

where p̃n−1 = pn−1+(1−pn−1)ρ. Furthermore, if T is a bounded

random variable, then the statistic can be computed using a finite

amount of memory.

5.2. Non-Bayesian Algorithms

We now propose a maximum likelihood test statistic to detect the

change. We compute the sequence of statistics

Wn = max
1≤k≤n

n
∑

i=k

log
g(Xi|i, T )

f(Xi|i, T )
(13)

and raise an alarm as soon as the statistic is above a threshold:

Nc = inf{n ≥ 1 : Wn > A}. (14)

We call this algorithm the episodic-cumulative sum (CUSUM) al-

gorithm. In the next lemma, it is proved that the episodic-CUSUM

statistic Wn can also be computed recursively. Again, we only need

a finite amount of memory when the episode length variable T is

bounded.

Lemma 2. The statistic sequence {Wn} can be recursively com-

puted as

Wn = W
+
n−1 + log

g(Xn|n, T )

f(Xn|n, T )
, (15)

where (x)+ = max{x, 0}. Further, if T is a bounded random vari-

able, then the above statistic can be computed using a finite amount

of memory.

In a non-Bayesian setting, we can also use the episodic-

Shiryaev-Roberts (SR) statistic:

Rn = (1 +Rn−1)
g(Xn|n, T )

f(Xn|n, T )

which can be obtained from the Shiryaev statistic by setting the ge-

ometric parameter ρ = 0.

6. ASYMPTOTIC OPTIMALITY OF THE PROPOSED

ALGORITHMS

Define for t ∈ N,

It =
1

t

t
∑

i=1

D(g
(i)
t ‖ f

(i)
t ), (16)

where D(g
(i)
t ‖ f

(i)
t ) is the Kullback-Leibler divergence between

the densities g
(i)
t and f

(i)
t appearing in (4) and (3). Also, define

Iavg =
∑

t

It pT (t). (17)

We first prove that the episodic-Shiryaev algorithm is asymptot-

ically optimal for the Bayesian formulation, under geometric prior

and for each integer m > 0, as α → 0.



Theorem 6.1. Let the information number Iavg as defined in (17)

satisfy 0 < Iavg < ∞. Setting A = 1− α in (11) ensures that

Pπ,T (Ns < ν) ≤ α.

Furthermore, for every m > 0, as α → 0,

Eπ,T [(Ns − ν)m|Ns ≥ ν] ∼
(

| logα|
Iavg + | log(1− ρ)|

)m

∼ inf
N∈Cα

Eπ,T [(N − ν)m|N ≥ ν] ,

(18)

where Cα = {N : Pπ,T (N < ν) ≤ α} and we use a(α) ∼ b(α)

as α → 0 to denote that
a(α)
b(α)

→ 1 as α → 0.

In the minimax settings, we have the following optimality result.

Theorem 6.2. Let Zi = log g(Xi|i,T )
f(Xi|i,T )

be the log likelihood ratio at

time i. Let the information number Iavg as defined in (17) satisfy

0 < Iavg < ∞. If

lim
n→∞

sup
ν≥1

Pν,T

(

max
t≤n

ν+t
∑

i=ν

Zi ≥ Iavg(1 + δ)n

)

= 0, ∀δ > 0,

lim
n→∞

sup
k≥ν≥1

Pν,T

(

1

n

k+n
∑

i=k

Zi ≤ Iavg − δ

)

= 0, ∀δ > 0.

(19)

Then, with A = log β in (14) we have E∞,T [Nc] ≥ β, and as

β → ∞,

sup
ν≥1

Eν,T [(Nc − ν)|Nc ≥ ν] ∼ log β

Iavg

∼ inf
N∈Dβ

sup
ν≥1

Eν,T [(N − ν)|N ≥ ν] ,

(20)

where Dβ = {N : E∞,T [N ] ≥ β}. Furthermore, the above state-

ment remains valid if we use the modified Lorden’s delay metric (9)

in place of the Pollak’s metric (8).

The conditions in (19) are satisfied, for example, when the pro-

cesses are i.p.i.d. [8], [7] .

7. NUMERICAL RESULTS

In this section, we apply the episodic CUSUM algorithm to simu-

lated waveform data to detect a change in the waveform pattern. We

first generated a waveform process as discussed in Example 1; see

(2). The waveform θ(s) selected is the Ricker wavelet or the Mexi-

can hat wavelet because of its resemblance with an ECG waveform

(see Fig. 1):

θ(s) =
2√

3σπ1/4

(

1−
( s

σ

)2
)

e
− s2

2σ2 .

The waveform process is generated as follows. There is a total of

10 waveform data concatenated to produce a single large waveform

data. The change in the waveform pattern occurs after 5 waveforms

indicated by the vertical red line in Fig. 2. Before the change, the

variables for each episode of the waveform data is generated by

stretching or shrinking the Ricker wavelet and adding i.i.d. zero-

mean Gaussian noise with a standard deviation of 0.005. After the

Fig. 1: The Mexican hat wavelet θ(s) with σ = 50. Also shown is

an anomalous waveform obtained by adding a linear drift function

0.0001s to θ(s).

Fig. 2: Top: Waveform data generated by stretching and shrink-

ing the Ricker wavelet and adding Gaussian noise, concatenated

with drifted versions of the wavelet as anomalous patterns. Bot-

tom: Episodic-CUSUM statistic (13) computed for the waveform

data. The change point for the waveform pattern is indicated by the

vertical red lines. The change is detected by the algorithm as soon

as it occurs. This is indicated by a change in the drift or the growth

of the statistic towards infinity.

change, the variables are generated in each episode by adding Gaus-

sian noise with the same standard deviation to the shrunken version

of the anomalous waveform pattern shown in Fig. 1. The anomalous

waveform is

θ(s) + 0.0001s.

We then applied the episodic-CUSUM algorithm (13) to the wave-

form data. The evolution of the statistic is plotted in Fig. 2. As seen

in the figure, the change in pattern is detected immediately after the

change occurred. We note that for optimal detection, it is impor-

tant to know the length of each episode. In real ECG applications,

the duration of the next heartbeat can be estimated from recent past

heartbeats.

8. CONCLUSIONS AND FUTURE WORK

We developed theory and algorithms for change detection in a new

class of stochastic processes called episodic processes. The wave-

form processes as discussed in Example 1 is a special sub-class of

episodic process. The detection algorithms developed here can be

applied for the detection of heart arrhythmia. In the future, we will

extend the theory of episodic processes and also apply the algorithms

to real ECG data.
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