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ABSTRACT

A new class of stochastic processes called episodic processes is
introduced to model the statistical regularity of data observed in
several applications in cyberphysical systems, neuroscience, and
medicine. Algorithms are proposed to detect a change in the dis-
tribution of episodic processes. The algorithms can be computed
recursively using finite memory and are shown to be asymptotically
optimal for well-defined Bayesian or minimax stochastic optimiza-
tion formulations. The application of the developed algorithms to
detect a change in waveform patterns is also discussed.

Index Terms— Cyclostationary behavior, arrhythmia detection,
waveform change detection, asymptotic optimality, quickest change
detection.

1. INTRODUCTION

In many problems of change detection in cyberphysical systems
and biology, the observation process exhibits statistical periodicity.
Specifically, after a certain time, the distribution of the process is
equal or similar to the distribution of the process at the beginning.
Examples include the following:

1. Traffic and social network data: Based on data collected from
New York City, it was observed in [1, 2] that the statistical
characteristics of traffic intensity and average counts of In-
stagram posts are similar on Sundays in the absence of any
major events.

2. Neural firing data: In some brain-computer interface studies,
the baseline firing patters of neurons show similarity across
trials [3,4].

3. ECG data: The ECG data collected from a person with a
normal heart follows regular patters of P, QRS, and ST seg-
ments [5, 6].

We refer the readers to [7] and [8] for more detailed discussions on
the phenomenon of statistical periodicity. The problem of anomaly
detection in these applications, i.e., detecting a change in traffic in-
tensity, neural firing patterns or ECG patterns (as in arrhythmia), can
be posed as the problem of detecting a change in statistically peri-
odic processes.

In [7] and [8], statistical models are proposed for modeling pro-
cesses with statistical periodicity. The papers also contain algo-
rithms and theory for detecting a change in such processes. A major
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assumption in these papers is that the period of statistical periodicity
is fixed or a constant. This assumption may not always be satisfied
in practice. For example, in the neuroscience application, the length
of a trial may not be fixed. In the ECG application, the length of
an ECG waveform can change over time depending on the physical
activity of a person.

In this paper, we develop models, algorithms, and theory for de-
tecting a change in statistically periodic processes where the period
is random. Specifically, we define a new class of stochastic pro-
cesses called episodic processes to model this dynamic behavior of
periods. The class of episodic processes is strictly larger than the
class of independent and periodically identically distributed (i.p.i.d.)
processes studied in [7] and [8]. We then propose algorithms to de-
tect a change in episodic processes and show that the algorithms
can be computed efficiently. We then show that the algorithms are
asymptotically optimal for well-defined problem formulations. We
investigate both Bayesian and minimax problem formulations. Fi-
nally, we discuss how the developed algorithms can be applied to
detect a change in waveform patterns. All the results in the paper are
formulated within the framework of quickest change detection. We
refer the readers to [9—11] for a review of the existing literature.

2. MODEL FOR STATISTICAL REGULARITY

An episodic process is characterized through a discrete integer-
valued random variable 7" with a mass function pr, and a family
of multivariate densities {fe+}, e, € N, called an episodic family
of densities.

Definition 1. An episodic family of densities {fe,1} is indexed by

an episode index e and episode length index t, with e,t € N. It is

a collection of multivariate densities such that for each e € N, the

density fe . is a density of t variables:
fet(@i,ma, ... xe).

We now define the concept of an episodic process.

Definition 2. An episodic process is a stochastic process { X,, } with
segments (called episodes)

(X1,.., X1y),
(X1y 41, -

episode 1 of length T,

< X1i41,), episode 2 of length T>,

‘ (1
(XZ:-,:—ll SONRTERE ’Xzf’:l 1,)s episode k of length Ty,

generated as follows. The sequence {T}} is generated as an i.i.d.
sequence with the mass function pr, and each episode is generated



independently using an episodic family of densities:
(XZ?;11T11+1""’XZ?=1T1')Nfk’T’“’ k=1,2,....

Here fr 1, is the episodic density with e = k and t = T},. We say
that we have a (pr, { fe,+ })-episodic process.

When the random variable 7" is identically equal to a constant,
T = t, the episodic densities satisfy

Jix = fie

and each episodic density f. ; is a product density, then an episodic
process reduces to an i.p.i.d. process studied in [7] and [8]. For
T =1, we get an i.i.d. process.

Vi, j € N,

Definition 3. An episodic process is called regular if episodes of
equal lengths are identically distributed: for any fixedt € N,

fix = fit = ft,

A regular episodic process is called strongly regular if the episodic
densities are product densities:

Vi,j € N.

ft($l7$27 e ,$t) = Hft(”(xl)
=1

Thus, an i.p.i.d. process is a strongly regular episodic process in
which the episode lengths are constant. More generally, conditioned
on the realizations of the episode lengths {7%}, a strongly regular
episodic process is a sequence of independent random variables.

Example 1. Let 6(s) be a function defined on [0,1] and {Vi.} be
a sequence of i.i.d. random variables. For each positive integer T,
define

Xk:9(§>+vk., fork=1,2,...,T. )

Let fi be the density of (X1,...,Xr) when T = t in (2) and let
T be randomly generated with a mass function pr. Then, the pair
(pr, {f+}) defines a strongly regular episodic process. We call an
episodic process of this type as a waveform process. In the ECG ap-
plication, the function 0(s) can be interpreted as the average normal
ECG waveform normalized to the interval [0,1], and (X1,. .., Xr)
can be seen as the measured noisy ECG signal of length T during a
single heartbeat. The problem of arrhythmia detection can be posed
as the problem of detecting a change in the waveform 0(s).

3. CONDITIONAL CHANGE POINT MODEL FOR
EPISODIC PROCESSES

In this section, we propose a conditional change point model for
strongly regular episodic processes. Change point models and al-
gorithms for more general episodic processes can be developed fol-
lowing the development here. In the rest of the paper, for simplicity,
we refer to a strongly regular episodic process as simply an episodic
process.

We recall that a (strongly regular) episodic process is com-
pletely charaterized by the episode length law pr and the multivari-
ate episodic densities {f:}, t € N, where f; is the joint (product)
density of variables in an episode of length ¢:

t
folwr,ma, . we) = [ £ (). (3)
i=1

We assume that in the normal regime, the data is modeled as a
(pr, {f¢})—episodic process. At some point in time v, due to some
event or an anomaly, the distribution of the process changes and the
new law becomes (pr, {g:}), where {g: },t € N, is another family
of episodic joint product densities:

t
gie(T1,T2,. .., Tt) :Hgtm(xi). 4)
i=1

To be precise, let
T=1T1,T) (5)

collect the realizations of the episode lengths. Let f(x|n,T) be the
density of the random variable X, given the realizations 7 when the
law of the process is (pr, {ft:}). Also, let g(x|n, T) be the density
of the random variable X, given the realizations 7 when the law of
the process is (pr, {g:}). Then, the change point model we assume
is given v and T,

X, ~ f(z|n, T), forn < v ©)
g(z|n,T), forn > v.

The objective is to detect this change in distribution as quickly as

possible, subject to a constraint on the rate of false alarms.

4. STOCHASTIC OPTIMIZATION PROBLEM
FORMULATIONS FOR CHANGE DETECTION

Let P,,7 denote the probability measure under which the change
point occurs at time v and the realizations of episode lengths are
T, and let E, 7 be the corresponding expectation. We use Eoo, 7
to denote the expectation when there is no change point. To detect
the change, we seek a stopping time N for the process {X,} to
minimizes the detection delay N — v while avoiding frequent false
alarms. We investigate two different classes of problem formula-
tions: Bayesian and Minimax.

4.1. Bayesian Formulation

For a Bayesian analysis, we assume that the change point is a random
variable with prior distribution

T, =P =k).

We also define the average probability measure
Pr7 = Z TPr,T,
k=1

with E 7 being the corresponding expectation. We seek a stopping
time for the process {X,} to solve the following modification of
Shiryaev’s problem for every m [12]:

inf Ex7[(N—v)"|N >v]
N N
PW,T(N < l/) < a.

subj. to
Here o € [0,1] is a constraint on the probability of a false alarm.
We refer to (7) as a modification because of the extra conditioning
on the realizations of the episode lengths 7. Also, note that we are
seeking a time IV so that all the moments of the detection delay are
optimized. We emphasize that while the lengths of the episodes are
random and are realizations of a random variable 7" with the mass



function pr, in the optimization problems above, we seek a solu-
tion that is optimal for every realization 7. For the same reason,
the stopping time NN is adapted to the knowledge of these realiza-
tions. In practice, this can be achieved by acquiring the lengths of
the episodes (or estimating them) just before the episodes start. We
will revisit this issue in the numerical results section.

4.2. Minimax Formulations

In the minimax settings, we assume that the change point is an un-
known constant v and seek a stopping time /N so as to solve the
following problem which is a modified version of the formulation of
Pollak [13]:

inf sup E,7[N —v|N > V]
Mooz ®)

subj. to  Eeo,7[N] > 5,

where (3 is a given constraint on the mean time to a false alarm. We
follow the classical approach of seeking at the same time a solution
to the related problem of Lorden [14]:

inf  sup esssup E, 7[(N — )V X1, , X, 4]
Yoo ©)
subj. to  Eo,7[N] > 5,

where ess sup is used to denote the supremum of the random variable
E.,7[N —v|X1,- -+, X,—1] outside a set of measure zero.

S. ALGORITHMS FOR CHANGE DETECTION IN
EPISODIC PROCESSES

We now discuss algorithms for detecting a change in an episodic
process. We discuss three algorithms: one Bayesian and two non-
Bayesian.

5.1. A Bayesian Algorithm

Define the a posteriori probability that the change has already oc-
curred given all the available observations:

pn=Prr( <n|X1, -, Xn), forn > 1. (10)

Our Bayesian algorithm or stopping rule is to stop the first time this
probability is above a pre-designed threshold A:

N =min{n > 1:p, > A}. (11

It is customary in the literature to refer to an a posteriori probability-
based change detection rule as the Shiryaev stopping rule [15,16]. To
emphasize the fact that we are computing the statistic for a new class
of stochastic processes, we call the statistic the episodic-Shiryaev
statistic and the stopping rule the episodic-Shiryaev algorithm.

In the following lemma, it is proved that the episodic-Shiryaev
statistic p,, for episodic processes can be computed recursively for
geometric priors. Furthermore, we only need a finite amount of
memory when the episode length variable 7" is bounded. Note that
without the boundedness assumption on 7', we need potentially infi-
nite amounts of memory to compute the statistic.

Lemma 1. Let the prior be geometrically distributed with parameter
p: .
=P =k =(1-p""p.

The episodic-Shiryaev statistic p, in (10) can be recursively com-
puted using the following equations: po = 0 and for n > 1, we
have

_ ﬁn—l g(XTL'naT)
p~n71 g(annaT) + (1 _ﬁnfl)f(Xn"nﬁ T)7

Pn 12)

where pr—1 = pn—1+ (1 —pn—1)p. Furthermore, if T is a bounded
random variable, then the statistic can be computed using a finite
amount of memory.

5.2. Non-Bayesian Algorithms

We now propose a maximum likelihood test statistic to detect the
change. We compute the sequence of statistics

W= e, 28 i T "

i=k
and raise an alarm as soon as the statistic is above a threshold:
Ne=inf{n >1: W, > A}. (14)

We call this algorithm the episodic-cumulative sum (CUSUM) al-
gorithm. In the next lemma, it is proved that the episodic-CUSUM
statistic W, can also be computed recursively. Again, we only need
a finite amount of memory when the episode length variable 7' is
bounded.

Lemma 2. The statistic sequence {Wy} can be recursively com-
puted as

9(Xn|n, T)
f(Xnln, T)’
where ()t = max{x, 0}. Further, if T is a bounded random vari-
able, then the above statistic can be computed using a finite amount
of memory.

W, =W, +log (15)

In a non-Bayesian setting, we can also use the episodic-
Shiryaev-Roberts (SR) statistic:

_ 9(Xn|n, T)
R, = (1 + Rn—l)m

which can be obtained from the Shiryaev statistic by setting the ge-
ometric parameter p = 0.

6. ASYMPTOTIC OPTIMALITY OF THE PROPOSED

ALGORITHMS
Define fort € N,
1< e
=32 D" 1) (16)

where D(gt(i) | fti)) is the Kullback-Leibler divergence between
) and #*) appearing in (4) and (3). Also, define

the densities g,
Im)g - th pT(t) (17)
t
We first prove that the episodic-Shiryaev algorithm is asymptot-

ically optimal for the Bayesian formulation, under geometric prior
and for each integer m > 0, as a — 0.



Theorem 6.1. Let the information number 1.4 as defined in (17)
satisfy 0 < Igug < 00. Setting A = 1 — ain (11) ensures that

Pr7(Ns <v) <a.

Furthermore, for every m > 0, as o — 0,

|log af )m
Lavg + [log(1 = p)|
~ Nlenéa Erx7[(N—=v)"|N >v],

(18)

Evr [(Ne = )N, > 1] ~ (

where Co = {N : P 7(N < v) < a} and we use a(a) ~ b(a)

as o — 0 to denote that ‘;((g)) —lasa— 0.

In the minimax settings, we have the following optimality result.

Theorem 6.2. Let Z; = log % be the log likelihood ratio at
time i. Let the information number 1,.4 as defined in (17) satisfy

0 < Inwg < 00. If

n—00 ;,>] t<

v+t
lim sup P, 7 (maxZZi > Tovg(1+ 6)n> =0, V§d>0,

k+n
li Por| =Y Zi<I.,—6]|=0V§>o0.
m sup T <n Z < g > >

n—=00 k> >1 Py

19)

Then, with A = log 3 in (14) we have Ex 7[Nc] > B, and as
B — oo,

supEv 7 [(Ne — )| N, > o] ~ 287

v>1 Ia.'ug
~ i — >
Nlenlgﬁ lS/l;I; E,7 [(N —v)|N >v],
(20)

where Dg = {N : Eo,7[N] > }. Furthermore, the above state-
ment remains valid if we use the modified Lorden’s delay metric (9)
in place of the Pollak’s metric (8).

The conditions in (19) are satisfied, for example, when the pro-
cesses are i.p.i.d. [8], [7] .

7. NUMERICAL RESULTS

In this section, we apply the episodic CUSUM algorithm to simu-
lated waveform data to detect a change in the waveform pattern. We
first generated a waveform process as discussed in Example 1; see
(2). The waveform 6(s) selected is the Ricker wavelet or the Mexi-
can hat wavelet because of its resemblance with an ECG waveform
(see Fig. 1):

0 — 2 (1 (5)) e

(s) = Ranl/e < - (;) > e 202,
The waveform process is generated as follows. There is a total of
10 waveform data concatenated to produce a single large waveform
data. The change in the waveform pattern occurs after 5 waveforms
indicated by the vertical red line in Fig. 2. Before the change, the
variables for each episode of the waveform data is generated by
stretching or shrinking the Ricker wavelet and adding i.i.d. zero-
mean Gaussian noise with a standard deviation of 0.005. After the

soss] — Normal waveform pattern
—— Anomalous waveform pattern

_____

3 150 %0 30 %0 ED

Fig. 1: The Mexican hat wavelet 0(s) with o = 50. Also shown is
an anomalous waveform obtained by adding a linear drift function
0.0001s to 6(s).

change Point”

.| — Episodic-CUSUM statistic

Cﬁ%nge Point”

Fig. 2: Top: Waveform data generated by stretching and shrink-
ing the Ricker wavelet and adding Gaussian noise, concatenated
with drifted versions of the wavelet as anomalous patterns. Bot-
tom: Episodic-CUSUM statistic (13) computed for the waveform
data. The change point for the waveform pattern is indicated by the
vertical red lines. The change is detected by the algorithm as soon
as it occurs. This is indicated by a change in the drift or the growth
of the statistic towards infinity.

change, the variables are generated in each episode by adding Gaus-
sian noise with the same standard deviation to the shrunken version
of the anomalous waveform pattern shown in Fig. 1. The anomalous
waveform is

0(s) 4+ 0.0001s.

We then applied the episodic-CUSUM algorithm (13) to the wave-
form data. The evolution of the statistic is plotted in Fig. 2. As seen
in the figure, the change in pattern is detected immediately after the
change occurred. We note that for optimal detection, it is impor-
tant to know the length of each episode. In real ECG applications,
the duration of the next heartbeat can be estimated from recent past
heartbeats.

8. CONCLUSIONS AND FUTURE WORK

We developed theory and algorithms for change detection in a new
class of stochastic processes called episodic processes. The wave-
form processes as discussed in Example 1 is a special sub-class of
episodic process. The detection algorithms developed here can be
applied for the detection of heart arrhythmia. In the future, we will
extend the theory of episodic processes and also apply the algorithms
to real ECG data.
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